]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - fs/splice.c
splice: remove permission hook from do_splice_direct()
[thirdparty/kernel/linux.git] / fs / splice.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * "splice": joining two ropes together by interweaving their strands.
4 *
5 * This is the "extended pipe" functionality, where a pipe is used as
6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7 * buffer that you can use to transfer data from one end to the other.
8 *
9 * The traditional unix read/write is extended with a "splice()" operation
10 * that transfers data buffers to or from a pipe buffer.
11 *
12 * Named by Larry McVoy, original implementation from Linus, extended by
13 * Jens to support splicing to files, network, direct splicing, etc and
14 * fixing lots of bugs.
15 *
16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19 *
20 */
21 #include <linux/bvec.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/splice.h>
26 #include <linux/memcontrol.h>
27 #include <linux/mm_inline.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/export.h>
31 #include <linux/syscalls.h>
32 #include <linux/uio.h>
33 #include <linux/fsnotify.h>
34 #include <linux/security.h>
35 #include <linux/gfp.h>
36 #include <linux/net.h>
37 #include <linux/socket.h>
38 #include <linux/sched/signal.h>
39
40 #include "internal.h"
41
42 /*
43 * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to
44 * indicate they support non-blocking reads or writes, we must clear it
45 * here if set to avoid blocking other users of this pipe if splice is
46 * being done on it.
47 */
48 static noinline void noinline pipe_clear_nowait(struct file *file)
49 {
50 fmode_t fmode = READ_ONCE(file->f_mode);
51
52 do {
53 if (!(fmode & FMODE_NOWAIT))
54 break;
55 } while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT));
56 }
57
58 /*
59 * Attempt to steal a page from a pipe buffer. This should perhaps go into
60 * a vm helper function, it's already simplified quite a bit by the
61 * addition of remove_mapping(). If success is returned, the caller may
62 * attempt to reuse this page for another destination.
63 */
64 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
65 struct pipe_buffer *buf)
66 {
67 struct folio *folio = page_folio(buf->page);
68 struct address_space *mapping;
69
70 folio_lock(folio);
71
72 mapping = folio_mapping(folio);
73 if (mapping) {
74 WARN_ON(!folio_test_uptodate(folio));
75
76 /*
77 * At least for ext2 with nobh option, we need to wait on
78 * writeback completing on this folio, since we'll remove it
79 * from the pagecache. Otherwise truncate wont wait on the
80 * folio, allowing the disk blocks to be reused by someone else
81 * before we actually wrote our data to them. fs corruption
82 * ensues.
83 */
84 folio_wait_writeback(folio);
85
86 if (!filemap_release_folio(folio, GFP_KERNEL))
87 goto out_unlock;
88
89 /*
90 * If we succeeded in removing the mapping, set LRU flag
91 * and return good.
92 */
93 if (remove_mapping(mapping, folio)) {
94 buf->flags |= PIPE_BUF_FLAG_LRU;
95 return true;
96 }
97 }
98
99 /*
100 * Raced with truncate or failed to remove folio from current
101 * address space, unlock and return failure.
102 */
103 out_unlock:
104 folio_unlock(folio);
105 return false;
106 }
107
108 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
109 struct pipe_buffer *buf)
110 {
111 put_page(buf->page);
112 buf->flags &= ~PIPE_BUF_FLAG_LRU;
113 }
114
115 /*
116 * Check whether the contents of buf is OK to access. Since the content
117 * is a page cache page, IO may be in flight.
118 */
119 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
120 struct pipe_buffer *buf)
121 {
122 struct folio *folio = page_folio(buf->page);
123 int err;
124
125 if (!folio_test_uptodate(folio)) {
126 folio_lock(folio);
127
128 /*
129 * Folio got truncated/unhashed. This will cause a 0-byte
130 * splice, if this is the first page.
131 */
132 if (!folio->mapping) {
133 err = -ENODATA;
134 goto error;
135 }
136
137 /*
138 * Uh oh, read-error from disk.
139 */
140 if (!folio_test_uptodate(folio)) {
141 err = -EIO;
142 goto error;
143 }
144
145 /* Folio is ok after all, we are done */
146 folio_unlock(folio);
147 }
148
149 return 0;
150 error:
151 folio_unlock(folio);
152 return err;
153 }
154
155 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
156 .confirm = page_cache_pipe_buf_confirm,
157 .release = page_cache_pipe_buf_release,
158 .try_steal = page_cache_pipe_buf_try_steal,
159 .get = generic_pipe_buf_get,
160 };
161
162 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
163 struct pipe_buffer *buf)
164 {
165 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
166 return false;
167
168 buf->flags |= PIPE_BUF_FLAG_LRU;
169 return generic_pipe_buf_try_steal(pipe, buf);
170 }
171
172 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
173 .release = page_cache_pipe_buf_release,
174 .try_steal = user_page_pipe_buf_try_steal,
175 .get = generic_pipe_buf_get,
176 };
177
178 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
179 {
180 smp_mb();
181 if (waitqueue_active(&pipe->rd_wait))
182 wake_up_interruptible(&pipe->rd_wait);
183 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
184 }
185
186 /**
187 * splice_to_pipe - fill passed data into a pipe
188 * @pipe: pipe to fill
189 * @spd: data to fill
190 *
191 * Description:
192 * @spd contains a map of pages and len/offset tuples, along with
193 * the struct pipe_buf_operations associated with these pages. This
194 * function will link that data to the pipe.
195 *
196 */
197 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
198 struct splice_pipe_desc *spd)
199 {
200 unsigned int spd_pages = spd->nr_pages;
201 unsigned int tail = pipe->tail;
202 unsigned int head = pipe->head;
203 unsigned int mask = pipe->ring_size - 1;
204 int ret = 0, page_nr = 0;
205
206 if (!spd_pages)
207 return 0;
208
209 if (unlikely(!pipe->readers)) {
210 send_sig(SIGPIPE, current, 0);
211 ret = -EPIPE;
212 goto out;
213 }
214
215 while (!pipe_full(head, tail, pipe->max_usage)) {
216 struct pipe_buffer *buf = &pipe->bufs[head & mask];
217
218 buf->page = spd->pages[page_nr];
219 buf->offset = spd->partial[page_nr].offset;
220 buf->len = spd->partial[page_nr].len;
221 buf->private = spd->partial[page_nr].private;
222 buf->ops = spd->ops;
223 buf->flags = 0;
224
225 head++;
226 pipe->head = head;
227 page_nr++;
228 ret += buf->len;
229
230 if (!--spd->nr_pages)
231 break;
232 }
233
234 if (!ret)
235 ret = -EAGAIN;
236
237 out:
238 while (page_nr < spd_pages)
239 spd->spd_release(spd, page_nr++);
240
241 return ret;
242 }
243 EXPORT_SYMBOL_GPL(splice_to_pipe);
244
245 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
246 {
247 unsigned int head = pipe->head;
248 unsigned int tail = pipe->tail;
249 unsigned int mask = pipe->ring_size - 1;
250 int ret;
251
252 if (unlikely(!pipe->readers)) {
253 send_sig(SIGPIPE, current, 0);
254 ret = -EPIPE;
255 } else if (pipe_full(head, tail, pipe->max_usage)) {
256 ret = -EAGAIN;
257 } else {
258 pipe->bufs[head & mask] = *buf;
259 pipe->head = head + 1;
260 return buf->len;
261 }
262 pipe_buf_release(pipe, buf);
263 return ret;
264 }
265 EXPORT_SYMBOL(add_to_pipe);
266
267 /*
268 * Check if we need to grow the arrays holding pages and partial page
269 * descriptions.
270 */
271 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
272 {
273 unsigned int max_usage = READ_ONCE(pipe->max_usage);
274
275 spd->nr_pages_max = max_usage;
276 if (max_usage <= PIPE_DEF_BUFFERS)
277 return 0;
278
279 spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
280 spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
281 GFP_KERNEL);
282
283 if (spd->pages && spd->partial)
284 return 0;
285
286 kfree(spd->pages);
287 kfree(spd->partial);
288 return -ENOMEM;
289 }
290
291 void splice_shrink_spd(struct splice_pipe_desc *spd)
292 {
293 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
294 return;
295
296 kfree(spd->pages);
297 kfree(spd->partial);
298 }
299
300 /**
301 * copy_splice_read - Copy data from a file and splice the copy into a pipe
302 * @in: The file to read from
303 * @ppos: Pointer to the file position to read from
304 * @pipe: The pipe to splice into
305 * @len: The amount to splice
306 * @flags: The SPLICE_F_* flags
307 *
308 * This function allocates a bunch of pages sufficient to hold the requested
309 * amount of data (but limited by the remaining pipe capacity), passes it to
310 * the file's ->read_iter() to read into and then splices the used pages into
311 * the pipe.
312 *
313 * Return: On success, the number of bytes read will be returned and *@ppos
314 * will be updated if appropriate; 0 will be returned if there is no more data
315 * to be read; -EAGAIN will be returned if the pipe had no space, and some
316 * other negative error code will be returned on error. A short read may occur
317 * if the pipe has insufficient space, we reach the end of the data or we hit a
318 * hole.
319 */
320 ssize_t copy_splice_read(struct file *in, loff_t *ppos,
321 struct pipe_inode_info *pipe,
322 size_t len, unsigned int flags)
323 {
324 struct iov_iter to;
325 struct bio_vec *bv;
326 struct kiocb kiocb;
327 struct page **pages;
328 ssize_t ret;
329 size_t used, npages, chunk, remain, keep = 0;
330 int i;
331
332 /* Work out how much data we can actually add into the pipe */
333 used = pipe_occupancy(pipe->head, pipe->tail);
334 npages = max_t(ssize_t, pipe->max_usage - used, 0);
335 len = min_t(size_t, len, npages * PAGE_SIZE);
336 npages = DIV_ROUND_UP(len, PAGE_SIZE);
337
338 bv = kzalloc(array_size(npages, sizeof(bv[0])) +
339 array_size(npages, sizeof(struct page *)), GFP_KERNEL);
340 if (!bv)
341 return -ENOMEM;
342
343 pages = (struct page **)(bv + npages);
344 npages = alloc_pages_bulk_array(GFP_USER, npages, pages);
345 if (!npages) {
346 kfree(bv);
347 return -ENOMEM;
348 }
349
350 remain = len = min_t(size_t, len, npages * PAGE_SIZE);
351
352 for (i = 0; i < npages; i++) {
353 chunk = min_t(size_t, PAGE_SIZE, remain);
354 bv[i].bv_page = pages[i];
355 bv[i].bv_offset = 0;
356 bv[i].bv_len = chunk;
357 remain -= chunk;
358 }
359
360 /* Do the I/O */
361 iov_iter_bvec(&to, ITER_DEST, bv, npages, len);
362 init_sync_kiocb(&kiocb, in);
363 kiocb.ki_pos = *ppos;
364 ret = call_read_iter(in, &kiocb, &to);
365
366 if (ret > 0) {
367 keep = DIV_ROUND_UP(ret, PAGE_SIZE);
368 *ppos = kiocb.ki_pos;
369 }
370
371 /*
372 * Callers of ->splice_read() expect -EAGAIN on "can't put anything in
373 * there", rather than -EFAULT.
374 */
375 if (ret == -EFAULT)
376 ret = -EAGAIN;
377
378 /* Free any pages that didn't get touched at all. */
379 if (keep < npages)
380 release_pages(pages + keep, npages - keep);
381
382 /* Push the remaining pages into the pipe. */
383 remain = ret;
384 for (i = 0; i < keep; i++) {
385 struct pipe_buffer *buf = pipe_head_buf(pipe);
386
387 chunk = min_t(size_t, remain, PAGE_SIZE);
388 *buf = (struct pipe_buffer) {
389 .ops = &default_pipe_buf_ops,
390 .page = bv[i].bv_page,
391 .offset = 0,
392 .len = chunk,
393 };
394 pipe->head++;
395 remain -= chunk;
396 }
397
398 kfree(bv);
399 return ret;
400 }
401 EXPORT_SYMBOL(copy_splice_read);
402
403 const struct pipe_buf_operations default_pipe_buf_ops = {
404 .release = generic_pipe_buf_release,
405 .try_steal = generic_pipe_buf_try_steal,
406 .get = generic_pipe_buf_get,
407 };
408
409 /* Pipe buffer operations for a socket and similar. */
410 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
411 .release = generic_pipe_buf_release,
412 .get = generic_pipe_buf_get,
413 };
414 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
415
416 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
417 {
418 smp_mb();
419 if (waitqueue_active(&pipe->wr_wait))
420 wake_up_interruptible(&pipe->wr_wait);
421 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
422 }
423
424 /**
425 * splice_from_pipe_feed - feed available data from a pipe to a file
426 * @pipe: pipe to splice from
427 * @sd: information to @actor
428 * @actor: handler that splices the data
429 *
430 * Description:
431 * This function loops over the pipe and calls @actor to do the
432 * actual moving of a single struct pipe_buffer to the desired
433 * destination. It returns when there's no more buffers left in
434 * the pipe or if the requested number of bytes (@sd->total_len)
435 * have been copied. It returns a positive number (one) if the
436 * pipe needs to be filled with more data, zero if the required
437 * number of bytes have been copied and -errno on error.
438 *
439 * This, together with splice_from_pipe_{begin,end,next}, may be
440 * used to implement the functionality of __splice_from_pipe() when
441 * locking is required around copying the pipe buffers to the
442 * destination.
443 */
444 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
445 splice_actor *actor)
446 {
447 unsigned int head = pipe->head;
448 unsigned int tail = pipe->tail;
449 unsigned int mask = pipe->ring_size - 1;
450 int ret;
451
452 while (!pipe_empty(head, tail)) {
453 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
454
455 sd->len = buf->len;
456 if (sd->len > sd->total_len)
457 sd->len = sd->total_len;
458
459 ret = pipe_buf_confirm(pipe, buf);
460 if (unlikely(ret)) {
461 if (ret == -ENODATA)
462 ret = 0;
463 return ret;
464 }
465
466 ret = actor(pipe, buf, sd);
467 if (ret <= 0)
468 return ret;
469
470 buf->offset += ret;
471 buf->len -= ret;
472
473 sd->num_spliced += ret;
474 sd->len -= ret;
475 sd->pos += ret;
476 sd->total_len -= ret;
477
478 if (!buf->len) {
479 pipe_buf_release(pipe, buf);
480 tail++;
481 pipe->tail = tail;
482 if (pipe->files)
483 sd->need_wakeup = true;
484 }
485
486 if (!sd->total_len)
487 return 0;
488 }
489
490 return 1;
491 }
492
493 /* We know we have a pipe buffer, but maybe it's empty? */
494 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
495 {
496 unsigned int tail = pipe->tail;
497 unsigned int mask = pipe->ring_size - 1;
498 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
499
500 if (unlikely(!buf->len)) {
501 pipe_buf_release(pipe, buf);
502 pipe->tail = tail+1;
503 return true;
504 }
505
506 return false;
507 }
508
509 /**
510 * splice_from_pipe_next - wait for some data to splice from
511 * @pipe: pipe to splice from
512 * @sd: information about the splice operation
513 *
514 * Description:
515 * This function will wait for some data and return a positive
516 * value (one) if pipe buffers are available. It will return zero
517 * or -errno if no more data needs to be spliced.
518 */
519 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
520 {
521 /*
522 * Check for signal early to make process killable when there are
523 * always buffers available
524 */
525 if (signal_pending(current))
526 return -ERESTARTSYS;
527
528 repeat:
529 while (pipe_empty(pipe->head, pipe->tail)) {
530 if (!pipe->writers)
531 return 0;
532
533 if (sd->num_spliced)
534 return 0;
535
536 if (sd->flags & SPLICE_F_NONBLOCK)
537 return -EAGAIN;
538
539 if (signal_pending(current))
540 return -ERESTARTSYS;
541
542 if (sd->need_wakeup) {
543 wakeup_pipe_writers(pipe);
544 sd->need_wakeup = false;
545 }
546
547 pipe_wait_readable(pipe);
548 }
549
550 if (eat_empty_buffer(pipe))
551 goto repeat;
552
553 return 1;
554 }
555
556 /**
557 * splice_from_pipe_begin - start splicing from pipe
558 * @sd: information about the splice operation
559 *
560 * Description:
561 * This function should be called before a loop containing
562 * splice_from_pipe_next() and splice_from_pipe_feed() to
563 * initialize the necessary fields of @sd.
564 */
565 static void splice_from_pipe_begin(struct splice_desc *sd)
566 {
567 sd->num_spliced = 0;
568 sd->need_wakeup = false;
569 }
570
571 /**
572 * splice_from_pipe_end - finish splicing from pipe
573 * @pipe: pipe to splice from
574 * @sd: information about the splice operation
575 *
576 * Description:
577 * This function will wake up pipe writers if necessary. It should
578 * be called after a loop containing splice_from_pipe_next() and
579 * splice_from_pipe_feed().
580 */
581 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
582 {
583 if (sd->need_wakeup)
584 wakeup_pipe_writers(pipe);
585 }
586
587 /**
588 * __splice_from_pipe - splice data from a pipe to given actor
589 * @pipe: pipe to splice from
590 * @sd: information to @actor
591 * @actor: handler that splices the data
592 *
593 * Description:
594 * This function does little more than loop over the pipe and call
595 * @actor to do the actual moving of a single struct pipe_buffer to
596 * the desired destination. See pipe_to_file, pipe_to_sendmsg, or
597 * pipe_to_user.
598 *
599 */
600 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
601 splice_actor *actor)
602 {
603 int ret;
604
605 splice_from_pipe_begin(sd);
606 do {
607 cond_resched();
608 ret = splice_from_pipe_next(pipe, sd);
609 if (ret > 0)
610 ret = splice_from_pipe_feed(pipe, sd, actor);
611 } while (ret > 0);
612 splice_from_pipe_end(pipe, sd);
613
614 return sd->num_spliced ? sd->num_spliced : ret;
615 }
616 EXPORT_SYMBOL(__splice_from_pipe);
617
618 /**
619 * splice_from_pipe - splice data from a pipe to a file
620 * @pipe: pipe to splice from
621 * @out: file to splice to
622 * @ppos: position in @out
623 * @len: how many bytes to splice
624 * @flags: splice modifier flags
625 * @actor: handler that splices the data
626 *
627 * Description:
628 * See __splice_from_pipe. This function locks the pipe inode,
629 * otherwise it's identical to __splice_from_pipe().
630 *
631 */
632 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
633 loff_t *ppos, size_t len, unsigned int flags,
634 splice_actor *actor)
635 {
636 ssize_t ret;
637 struct splice_desc sd = {
638 .total_len = len,
639 .flags = flags,
640 .pos = *ppos,
641 .u.file = out,
642 };
643
644 pipe_lock(pipe);
645 ret = __splice_from_pipe(pipe, &sd, actor);
646 pipe_unlock(pipe);
647
648 return ret;
649 }
650
651 /**
652 * iter_file_splice_write - splice data from a pipe to a file
653 * @pipe: pipe info
654 * @out: file to write to
655 * @ppos: position in @out
656 * @len: number of bytes to splice
657 * @flags: splice modifier flags
658 *
659 * Description:
660 * Will either move or copy pages (determined by @flags options) from
661 * the given pipe inode to the given file.
662 * This one is ->write_iter-based.
663 *
664 */
665 ssize_t
666 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
667 loff_t *ppos, size_t len, unsigned int flags)
668 {
669 struct splice_desc sd = {
670 .total_len = len,
671 .flags = flags,
672 .pos = *ppos,
673 .u.file = out,
674 };
675 int nbufs = pipe->max_usage;
676 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
677 GFP_KERNEL);
678 ssize_t ret;
679
680 if (unlikely(!array))
681 return -ENOMEM;
682
683 pipe_lock(pipe);
684
685 splice_from_pipe_begin(&sd);
686 while (sd.total_len) {
687 struct iov_iter from;
688 unsigned int head, tail, mask;
689 size_t left;
690 int n;
691
692 ret = splice_from_pipe_next(pipe, &sd);
693 if (ret <= 0)
694 break;
695
696 if (unlikely(nbufs < pipe->max_usage)) {
697 kfree(array);
698 nbufs = pipe->max_usage;
699 array = kcalloc(nbufs, sizeof(struct bio_vec),
700 GFP_KERNEL);
701 if (!array) {
702 ret = -ENOMEM;
703 break;
704 }
705 }
706
707 head = pipe->head;
708 tail = pipe->tail;
709 mask = pipe->ring_size - 1;
710
711 /* build the vector */
712 left = sd.total_len;
713 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
714 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
715 size_t this_len = buf->len;
716
717 /* zero-length bvecs are not supported, skip them */
718 if (!this_len)
719 continue;
720 this_len = min(this_len, left);
721
722 ret = pipe_buf_confirm(pipe, buf);
723 if (unlikely(ret)) {
724 if (ret == -ENODATA)
725 ret = 0;
726 goto done;
727 }
728
729 bvec_set_page(&array[n], buf->page, this_len,
730 buf->offset);
731 left -= this_len;
732 n++;
733 }
734
735 iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left);
736 ret = vfs_iter_write(out, &from, &sd.pos, 0);
737 if (ret <= 0)
738 break;
739
740 sd.num_spliced += ret;
741 sd.total_len -= ret;
742 *ppos = sd.pos;
743
744 /* dismiss the fully eaten buffers, adjust the partial one */
745 tail = pipe->tail;
746 while (ret) {
747 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
748 if (ret >= buf->len) {
749 ret -= buf->len;
750 buf->len = 0;
751 pipe_buf_release(pipe, buf);
752 tail++;
753 pipe->tail = tail;
754 if (pipe->files)
755 sd.need_wakeup = true;
756 } else {
757 buf->offset += ret;
758 buf->len -= ret;
759 ret = 0;
760 }
761 }
762 }
763 done:
764 kfree(array);
765 splice_from_pipe_end(pipe, &sd);
766
767 pipe_unlock(pipe);
768
769 if (sd.num_spliced)
770 ret = sd.num_spliced;
771
772 return ret;
773 }
774
775 EXPORT_SYMBOL(iter_file_splice_write);
776
777 #ifdef CONFIG_NET
778 /**
779 * splice_to_socket - splice data from a pipe to a socket
780 * @pipe: pipe to splice from
781 * @out: socket to write to
782 * @ppos: position in @out
783 * @len: number of bytes to splice
784 * @flags: splice modifier flags
785 *
786 * Description:
787 * Will send @len bytes from the pipe to a network socket. No data copying
788 * is involved.
789 *
790 */
791 ssize_t splice_to_socket(struct pipe_inode_info *pipe, struct file *out,
792 loff_t *ppos, size_t len, unsigned int flags)
793 {
794 struct socket *sock = sock_from_file(out);
795 struct bio_vec bvec[16];
796 struct msghdr msg = {};
797 ssize_t ret = 0;
798 size_t spliced = 0;
799 bool need_wakeup = false;
800
801 pipe_lock(pipe);
802
803 while (len > 0) {
804 unsigned int head, tail, mask, bc = 0;
805 size_t remain = len;
806
807 /*
808 * Check for signal early to make process killable when there
809 * are always buffers available
810 */
811 ret = -ERESTARTSYS;
812 if (signal_pending(current))
813 break;
814
815 while (pipe_empty(pipe->head, pipe->tail)) {
816 ret = 0;
817 if (!pipe->writers)
818 goto out;
819
820 if (spliced)
821 goto out;
822
823 ret = -EAGAIN;
824 if (flags & SPLICE_F_NONBLOCK)
825 goto out;
826
827 ret = -ERESTARTSYS;
828 if (signal_pending(current))
829 goto out;
830
831 if (need_wakeup) {
832 wakeup_pipe_writers(pipe);
833 need_wakeup = false;
834 }
835
836 pipe_wait_readable(pipe);
837 }
838
839 head = pipe->head;
840 tail = pipe->tail;
841 mask = pipe->ring_size - 1;
842
843 while (!pipe_empty(head, tail)) {
844 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
845 size_t seg;
846
847 if (!buf->len) {
848 tail++;
849 continue;
850 }
851
852 seg = min_t(size_t, remain, buf->len);
853
854 ret = pipe_buf_confirm(pipe, buf);
855 if (unlikely(ret)) {
856 if (ret == -ENODATA)
857 ret = 0;
858 break;
859 }
860
861 bvec_set_page(&bvec[bc++], buf->page, seg, buf->offset);
862 remain -= seg;
863 if (remain == 0 || bc >= ARRAY_SIZE(bvec))
864 break;
865 tail++;
866 }
867
868 if (!bc)
869 break;
870
871 msg.msg_flags = MSG_SPLICE_PAGES;
872 if (flags & SPLICE_F_MORE)
873 msg.msg_flags |= MSG_MORE;
874 if (remain && pipe_occupancy(pipe->head, tail) > 0)
875 msg.msg_flags |= MSG_MORE;
876 if (out->f_flags & O_NONBLOCK)
877 msg.msg_flags |= MSG_DONTWAIT;
878
879 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, bvec, bc,
880 len - remain);
881 ret = sock_sendmsg(sock, &msg);
882 if (ret <= 0)
883 break;
884
885 spliced += ret;
886 len -= ret;
887 tail = pipe->tail;
888 while (ret > 0) {
889 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
890 size_t seg = min_t(size_t, ret, buf->len);
891
892 buf->offset += seg;
893 buf->len -= seg;
894 ret -= seg;
895
896 if (!buf->len) {
897 pipe_buf_release(pipe, buf);
898 tail++;
899 }
900 }
901
902 if (tail != pipe->tail) {
903 pipe->tail = tail;
904 if (pipe->files)
905 need_wakeup = true;
906 }
907 }
908
909 out:
910 pipe_unlock(pipe);
911 if (need_wakeup)
912 wakeup_pipe_writers(pipe);
913 return spliced ?: ret;
914 }
915 #endif
916
917 static int warn_unsupported(struct file *file, const char *op)
918 {
919 pr_debug_ratelimited(
920 "splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
921 op, file, current->pid, current->comm);
922 return -EINVAL;
923 }
924
925 /*
926 * Attempt to initiate a splice from pipe to file.
927 */
928 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
929 loff_t *ppos, size_t len, unsigned int flags)
930 {
931 if (unlikely(!out->f_op->splice_write))
932 return warn_unsupported(out, "write");
933 return out->f_op->splice_write(pipe, out, ppos, len, flags);
934 }
935
936 /*
937 * Indicate to the caller that there was a premature EOF when reading from the
938 * source and the caller didn't indicate they would be sending more data after
939 * this.
940 */
941 static void do_splice_eof(struct splice_desc *sd)
942 {
943 if (sd->splice_eof)
944 sd->splice_eof(sd);
945 }
946
947 /**
948 * vfs_splice_read - Read data from a file and splice it into a pipe
949 * @in: File to splice from
950 * @ppos: Input file offset
951 * @pipe: Pipe to splice to
952 * @len: Number of bytes to splice
953 * @flags: Splice modifier flags (SPLICE_F_*)
954 *
955 * Splice the requested amount of data from the input file to the pipe. This
956 * is synchronous as the caller must hold the pipe lock across the entire
957 * operation.
958 *
959 * If successful, it returns the amount of data spliced, 0 if it hit the EOF or
960 * a hole and a negative error code otherwise.
961 */
962 long vfs_splice_read(struct file *in, loff_t *ppos,
963 struct pipe_inode_info *pipe, size_t len,
964 unsigned int flags)
965 {
966 unsigned int p_space;
967 int ret;
968
969 if (unlikely(!(in->f_mode & FMODE_READ)))
970 return -EBADF;
971 if (!len)
972 return 0;
973
974 /* Don't try to read more the pipe has space for. */
975 p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail);
976 len = min_t(size_t, len, p_space << PAGE_SHIFT);
977
978 ret = rw_verify_area(READ, in, ppos, len);
979 if (unlikely(ret < 0))
980 return ret;
981
982 if (unlikely(len > MAX_RW_COUNT))
983 len = MAX_RW_COUNT;
984
985 if (unlikely(!in->f_op->splice_read))
986 return warn_unsupported(in, "read");
987 /*
988 * O_DIRECT and DAX don't deal with the pagecache, so we allocate a
989 * buffer, copy into it and splice that into the pipe.
990 */
991 if ((in->f_flags & O_DIRECT) || IS_DAX(in->f_mapping->host))
992 return copy_splice_read(in, ppos, pipe, len, flags);
993 return in->f_op->splice_read(in, ppos, pipe, len, flags);
994 }
995 EXPORT_SYMBOL_GPL(vfs_splice_read);
996
997 /**
998 * splice_direct_to_actor - splices data directly between two non-pipes
999 * @in: file to splice from
1000 * @sd: actor information on where to splice to
1001 * @actor: handles the data splicing
1002 *
1003 * Description:
1004 * This is a special case helper to splice directly between two
1005 * points, without requiring an explicit pipe. Internally an allocated
1006 * pipe is cached in the process, and reused during the lifetime of
1007 * that process.
1008 *
1009 */
1010 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1011 splice_direct_actor *actor)
1012 {
1013 struct pipe_inode_info *pipe;
1014 long ret, bytes;
1015 size_t len;
1016 int i, flags, more;
1017
1018 /*
1019 * We require the input to be seekable, as we don't want to randomly
1020 * drop data for eg socket -> socket splicing. Use the piped splicing
1021 * for that!
1022 */
1023 if (unlikely(!(in->f_mode & FMODE_LSEEK)))
1024 return -EINVAL;
1025
1026 /*
1027 * neither in nor out is a pipe, setup an internal pipe attached to
1028 * 'out' and transfer the wanted data from 'in' to 'out' through that
1029 */
1030 pipe = current->splice_pipe;
1031 if (unlikely(!pipe)) {
1032 pipe = alloc_pipe_info();
1033 if (!pipe)
1034 return -ENOMEM;
1035
1036 /*
1037 * We don't have an immediate reader, but we'll read the stuff
1038 * out of the pipe right after the splice_to_pipe(). So set
1039 * PIPE_READERS appropriately.
1040 */
1041 pipe->readers = 1;
1042
1043 current->splice_pipe = pipe;
1044 }
1045
1046 /*
1047 * Do the splice.
1048 */
1049 bytes = 0;
1050 len = sd->total_len;
1051
1052 /* Don't block on output, we have to drain the direct pipe. */
1053 flags = sd->flags;
1054 sd->flags &= ~SPLICE_F_NONBLOCK;
1055
1056 /*
1057 * We signal MORE until we've read sufficient data to fulfill the
1058 * request and we keep signalling it if the caller set it.
1059 */
1060 more = sd->flags & SPLICE_F_MORE;
1061 sd->flags |= SPLICE_F_MORE;
1062
1063 WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
1064
1065 while (len) {
1066 size_t read_len;
1067 loff_t pos = sd->pos, prev_pos = pos;
1068
1069 ret = vfs_splice_read(in, &pos, pipe, len, flags);
1070 if (unlikely(ret <= 0))
1071 goto read_failure;
1072
1073 read_len = ret;
1074 sd->total_len = read_len;
1075
1076 /*
1077 * If we now have sufficient data to fulfill the request then
1078 * we clear SPLICE_F_MORE if it was not set initially.
1079 */
1080 if (read_len >= len && !more)
1081 sd->flags &= ~SPLICE_F_MORE;
1082
1083 /*
1084 * NOTE: nonblocking mode only applies to the input. We
1085 * must not do the output in nonblocking mode as then we
1086 * could get stuck data in the internal pipe:
1087 */
1088 ret = actor(pipe, sd);
1089 if (unlikely(ret <= 0)) {
1090 sd->pos = prev_pos;
1091 goto out_release;
1092 }
1093
1094 bytes += ret;
1095 len -= ret;
1096 sd->pos = pos;
1097
1098 if (ret < read_len) {
1099 sd->pos = prev_pos + ret;
1100 goto out_release;
1101 }
1102 }
1103
1104 done:
1105 pipe->tail = pipe->head = 0;
1106 file_accessed(in);
1107 return bytes;
1108
1109 read_failure:
1110 /*
1111 * If the user did *not* set SPLICE_F_MORE *and* we didn't hit that
1112 * "use all of len" case that cleared SPLICE_F_MORE, *and* we did a
1113 * "->splice_in()" that returned EOF (ie zero) *and* we have sent at
1114 * least 1 byte *then* we will also do the ->splice_eof() call.
1115 */
1116 if (ret == 0 && !more && len > 0 && bytes)
1117 do_splice_eof(sd);
1118 out_release:
1119 /*
1120 * If we did an incomplete transfer we must release
1121 * the pipe buffers in question:
1122 */
1123 for (i = 0; i < pipe->ring_size; i++) {
1124 struct pipe_buffer *buf = &pipe->bufs[i];
1125
1126 if (buf->ops)
1127 pipe_buf_release(pipe, buf);
1128 }
1129
1130 if (!bytes)
1131 bytes = ret;
1132
1133 goto done;
1134 }
1135 EXPORT_SYMBOL(splice_direct_to_actor);
1136
1137 static int direct_splice_actor(struct pipe_inode_info *pipe,
1138 struct splice_desc *sd)
1139 {
1140 struct file *file = sd->u.file;
1141
1142 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1143 sd->flags);
1144 }
1145
1146 static void direct_file_splice_eof(struct splice_desc *sd)
1147 {
1148 struct file *file = sd->u.file;
1149
1150 if (file->f_op->splice_eof)
1151 file->f_op->splice_eof(file);
1152 }
1153
1154 /**
1155 * do_splice_direct - splices data directly between two files
1156 * @in: file to splice from
1157 * @ppos: input file offset
1158 * @out: file to splice to
1159 * @opos: output file offset
1160 * @len: number of bytes to splice
1161 * @flags: splice modifier flags
1162 *
1163 * Description:
1164 * For use by do_sendfile(). splice can easily emulate sendfile, but
1165 * doing it in the application would incur an extra system call
1166 * (splice in + splice out, as compared to just sendfile()). So this helper
1167 * can splice directly through a process-private pipe.
1168 *
1169 * Callers already called rw_verify_area() on the entire range.
1170 */
1171 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1172 loff_t *opos, size_t len, unsigned int flags)
1173 {
1174 struct splice_desc sd = {
1175 .len = len,
1176 .total_len = len,
1177 .flags = flags,
1178 .pos = *ppos,
1179 .u.file = out,
1180 .splice_eof = direct_file_splice_eof,
1181 .opos = opos,
1182 };
1183 long ret;
1184
1185 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1186 return -EBADF;
1187
1188 if (unlikely(out->f_flags & O_APPEND))
1189 return -EINVAL;
1190
1191 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1192 if (ret > 0)
1193 *ppos = sd.pos;
1194
1195 return ret;
1196 }
1197 EXPORT_SYMBOL(do_splice_direct);
1198
1199 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1200 {
1201 for (;;) {
1202 if (unlikely(!pipe->readers)) {
1203 send_sig(SIGPIPE, current, 0);
1204 return -EPIPE;
1205 }
1206 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1207 return 0;
1208 if (flags & SPLICE_F_NONBLOCK)
1209 return -EAGAIN;
1210 if (signal_pending(current))
1211 return -ERESTARTSYS;
1212 pipe_wait_writable(pipe);
1213 }
1214 }
1215
1216 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1217 struct pipe_inode_info *opipe,
1218 size_t len, unsigned int flags);
1219
1220 long splice_file_to_pipe(struct file *in,
1221 struct pipe_inode_info *opipe,
1222 loff_t *offset,
1223 size_t len, unsigned int flags)
1224 {
1225 long ret;
1226
1227 pipe_lock(opipe);
1228 ret = wait_for_space(opipe, flags);
1229 if (!ret)
1230 ret = vfs_splice_read(in, offset, opipe, len, flags);
1231 pipe_unlock(opipe);
1232 if (ret > 0)
1233 wakeup_pipe_readers(opipe);
1234 return ret;
1235 }
1236
1237 /*
1238 * Determine where to splice to/from.
1239 */
1240 long do_splice(struct file *in, loff_t *off_in, struct file *out,
1241 loff_t *off_out, size_t len, unsigned int flags)
1242 {
1243 struct pipe_inode_info *ipipe;
1244 struct pipe_inode_info *opipe;
1245 loff_t offset;
1246 long ret;
1247
1248 if (unlikely(!(in->f_mode & FMODE_READ) ||
1249 !(out->f_mode & FMODE_WRITE)))
1250 return -EBADF;
1251
1252 ipipe = get_pipe_info(in, true);
1253 opipe = get_pipe_info(out, true);
1254
1255 if (ipipe && opipe) {
1256 if (off_in || off_out)
1257 return -ESPIPE;
1258
1259 /* Splicing to self would be fun, but... */
1260 if (ipipe == opipe)
1261 return -EINVAL;
1262
1263 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1264 flags |= SPLICE_F_NONBLOCK;
1265
1266 ret = splice_pipe_to_pipe(ipipe, opipe, len, flags);
1267 } else if (ipipe) {
1268 if (off_in)
1269 return -ESPIPE;
1270 if (off_out) {
1271 if (!(out->f_mode & FMODE_PWRITE))
1272 return -EINVAL;
1273 offset = *off_out;
1274 } else {
1275 offset = out->f_pos;
1276 }
1277
1278 if (unlikely(out->f_flags & O_APPEND))
1279 return -EINVAL;
1280
1281 ret = rw_verify_area(WRITE, out, &offset, len);
1282 if (unlikely(ret < 0))
1283 return ret;
1284
1285 if (in->f_flags & O_NONBLOCK)
1286 flags |= SPLICE_F_NONBLOCK;
1287
1288 file_start_write(out);
1289 ret = do_splice_from(ipipe, out, &offset, len, flags);
1290 file_end_write(out);
1291
1292 if (!off_out)
1293 out->f_pos = offset;
1294 else
1295 *off_out = offset;
1296 } else if (opipe) {
1297 if (off_out)
1298 return -ESPIPE;
1299 if (off_in) {
1300 if (!(in->f_mode & FMODE_PREAD))
1301 return -EINVAL;
1302 offset = *off_in;
1303 } else {
1304 offset = in->f_pos;
1305 }
1306
1307 if (out->f_flags & O_NONBLOCK)
1308 flags |= SPLICE_F_NONBLOCK;
1309
1310 ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
1311
1312 if (!off_in)
1313 in->f_pos = offset;
1314 else
1315 *off_in = offset;
1316 } else {
1317 ret = -EINVAL;
1318 }
1319
1320 if (ret > 0) {
1321 /*
1322 * Generate modify out before access in:
1323 * do_splice_from() may've already sent modify out,
1324 * and this ensures the events get merged.
1325 */
1326 fsnotify_modify(out);
1327 fsnotify_access(in);
1328 }
1329
1330 return ret;
1331 }
1332
1333 static long __do_splice(struct file *in, loff_t __user *off_in,
1334 struct file *out, loff_t __user *off_out,
1335 size_t len, unsigned int flags)
1336 {
1337 struct pipe_inode_info *ipipe;
1338 struct pipe_inode_info *opipe;
1339 loff_t offset, *__off_in = NULL, *__off_out = NULL;
1340 long ret;
1341
1342 ipipe = get_pipe_info(in, true);
1343 opipe = get_pipe_info(out, true);
1344
1345 if (ipipe) {
1346 if (off_in)
1347 return -ESPIPE;
1348 pipe_clear_nowait(in);
1349 }
1350 if (opipe) {
1351 if (off_out)
1352 return -ESPIPE;
1353 pipe_clear_nowait(out);
1354 }
1355
1356 if (off_out) {
1357 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1358 return -EFAULT;
1359 __off_out = &offset;
1360 }
1361 if (off_in) {
1362 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1363 return -EFAULT;
1364 __off_in = &offset;
1365 }
1366
1367 ret = do_splice(in, __off_in, out, __off_out, len, flags);
1368 if (ret < 0)
1369 return ret;
1370
1371 if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
1372 return -EFAULT;
1373 if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
1374 return -EFAULT;
1375
1376 return ret;
1377 }
1378
1379 static int iter_to_pipe(struct iov_iter *from,
1380 struct pipe_inode_info *pipe,
1381 unsigned flags)
1382 {
1383 struct pipe_buffer buf = {
1384 .ops = &user_page_pipe_buf_ops,
1385 .flags = flags
1386 };
1387 size_t total = 0;
1388 int ret = 0;
1389
1390 while (iov_iter_count(from)) {
1391 struct page *pages[16];
1392 ssize_t left;
1393 size_t start;
1394 int i, n;
1395
1396 left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start);
1397 if (left <= 0) {
1398 ret = left;
1399 break;
1400 }
1401
1402 n = DIV_ROUND_UP(left + start, PAGE_SIZE);
1403 for (i = 0; i < n; i++) {
1404 int size = min_t(int, left, PAGE_SIZE - start);
1405
1406 buf.page = pages[i];
1407 buf.offset = start;
1408 buf.len = size;
1409 ret = add_to_pipe(pipe, &buf);
1410 if (unlikely(ret < 0)) {
1411 iov_iter_revert(from, left);
1412 // this one got dropped by add_to_pipe()
1413 while (++i < n)
1414 put_page(pages[i]);
1415 goto out;
1416 }
1417 total += ret;
1418 left -= size;
1419 start = 0;
1420 }
1421 }
1422 out:
1423 return total ? total : ret;
1424 }
1425
1426 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1427 struct splice_desc *sd)
1428 {
1429 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1430 return n == sd->len ? n : -EFAULT;
1431 }
1432
1433 /*
1434 * For lack of a better implementation, implement vmsplice() to userspace
1435 * as a simple copy of the pipes pages to the user iov.
1436 */
1437 static long vmsplice_to_user(struct file *file, struct iov_iter *iter,
1438 unsigned int flags)
1439 {
1440 struct pipe_inode_info *pipe = get_pipe_info(file, true);
1441 struct splice_desc sd = {
1442 .total_len = iov_iter_count(iter),
1443 .flags = flags,
1444 .u.data = iter
1445 };
1446 long ret = 0;
1447
1448 if (!pipe)
1449 return -EBADF;
1450
1451 pipe_clear_nowait(file);
1452
1453 if (sd.total_len) {
1454 pipe_lock(pipe);
1455 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1456 pipe_unlock(pipe);
1457 }
1458
1459 if (ret > 0)
1460 fsnotify_access(file);
1461
1462 return ret;
1463 }
1464
1465 /*
1466 * vmsplice splices a user address range into a pipe. It can be thought of
1467 * as splice-from-memory, where the regular splice is splice-from-file (or
1468 * to file). In both cases the output is a pipe, naturally.
1469 */
1470 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1471 unsigned int flags)
1472 {
1473 struct pipe_inode_info *pipe;
1474 long ret = 0;
1475 unsigned buf_flag = 0;
1476
1477 if (flags & SPLICE_F_GIFT)
1478 buf_flag = PIPE_BUF_FLAG_GIFT;
1479
1480 pipe = get_pipe_info(file, true);
1481 if (!pipe)
1482 return -EBADF;
1483
1484 pipe_clear_nowait(file);
1485
1486 pipe_lock(pipe);
1487 ret = wait_for_space(pipe, flags);
1488 if (!ret)
1489 ret = iter_to_pipe(iter, pipe, buf_flag);
1490 pipe_unlock(pipe);
1491 if (ret > 0) {
1492 wakeup_pipe_readers(pipe);
1493 fsnotify_modify(file);
1494 }
1495 return ret;
1496 }
1497
1498 static int vmsplice_type(struct fd f, int *type)
1499 {
1500 if (!f.file)
1501 return -EBADF;
1502 if (f.file->f_mode & FMODE_WRITE) {
1503 *type = ITER_SOURCE;
1504 } else if (f.file->f_mode & FMODE_READ) {
1505 *type = ITER_DEST;
1506 } else {
1507 fdput(f);
1508 return -EBADF;
1509 }
1510 return 0;
1511 }
1512
1513 /*
1514 * Note that vmsplice only really supports true splicing _from_ user memory
1515 * to a pipe, not the other way around. Splicing from user memory is a simple
1516 * operation that can be supported without any funky alignment restrictions
1517 * or nasty vm tricks. We simply map in the user memory and fill them into
1518 * a pipe. The reverse isn't quite as easy, though. There are two possible
1519 * solutions for that:
1520 *
1521 * - memcpy() the data internally, at which point we might as well just
1522 * do a regular read() on the buffer anyway.
1523 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1524 * has restriction limitations on both ends of the pipe).
1525 *
1526 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1527 *
1528 */
1529 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1530 unsigned long, nr_segs, unsigned int, flags)
1531 {
1532 struct iovec iovstack[UIO_FASTIOV];
1533 struct iovec *iov = iovstack;
1534 struct iov_iter iter;
1535 ssize_t error;
1536 struct fd f;
1537 int type;
1538
1539 if (unlikely(flags & ~SPLICE_F_ALL))
1540 return -EINVAL;
1541
1542 f = fdget(fd);
1543 error = vmsplice_type(f, &type);
1544 if (error)
1545 return error;
1546
1547 error = import_iovec(type, uiov, nr_segs,
1548 ARRAY_SIZE(iovstack), &iov, &iter);
1549 if (error < 0)
1550 goto out_fdput;
1551
1552 if (!iov_iter_count(&iter))
1553 error = 0;
1554 else if (type == ITER_SOURCE)
1555 error = vmsplice_to_pipe(f.file, &iter, flags);
1556 else
1557 error = vmsplice_to_user(f.file, &iter, flags);
1558
1559 kfree(iov);
1560 out_fdput:
1561 fdput(f);
1562 return error;
1563 }
1564
1565 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1566 int, fd_out, loff_t __user *, off_out,
1567 size_t, len, unsigned int, flags)
1568 {
1569 struct fd in, out;
1570 long error;
1571
1572 if (unlikely(!len))
1573 return 0;
1574
1575 if (unlikely(flags & ~SPLICE_F_ALL))
1576 return -EINVAL;
1577
1578 error = -EBADF;
1579 in = fdget(fd_in);
1580 if (in.file) {
1581 out = fdget(fd_out);
1582 if (out.file) {
1583 error = __do_splice(in.file, off_in, out.file, off_out,
1584 len, flags);
1585 fdput(out);
1586 }
1587 fdput(in);
1588 }
1589 return error;
1590 }
1591
1592 /*
1593 * Make sure there's data to read. Wait for input if we can, otherwise
1594 * return an appropriate error.
1595 */
1596 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1597 {
1598 int ret;
1599
1600 /*
1601 * Check the pipe occupancy without the inode lock first. This function
1602 * is speculative anyways, so missing one is ok.
1603 */
1604 if (!pipe_empty(pipe->head, pipe->tail))
1605 return 0;
1606
1607 ret = 0;
1608 pipe_lock(pipe);
1609
1610 while (pipe_empty(pipe->head, pipe->tail)) {
1611 if (signal_pending(current)) {
1612 ret = -ERESTARTSYS;
1613 break;
1614 }
1615 if (!pipe->writers)
1616 break;
1617 if (flags & SPLICE_F_NONBLOCK) {
1618 ret = -EAGAIN;
1619 break;
1620 }
1621 pipe_wait_readable(pipe);
1622 }
1623
1624 pipe_unlock(pipe);
1625 return ret;
1626 }
1627
1628 /*
1629 * Make sure there's writeable room. Wait for room if we can, otherwise
1630 * return an appropriate error.
1631 */
1632 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1633 {
1634 int ret;
1635
1636 /*
1637 * Check pipe occupancy without the inode lock first. This function
1638 * is speculative anyways, so missing one is ok.
1639 */
1640 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1641 return 0;
1642
1643 ret = 0;
1644 pipe_lock(pipe);
1645
1646 while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1647 if (!pipe->readers) {
1648 send_sig(SIGPIPE, current, 0);
1649 ret = -EPIPE;
1650 break;
1651 }
1652 if (flags & SPLICE_F_NONBLOCK) {
1653 ret = -EAGAIN;
1654 break;
1655 }
1656 if (signal_pending(current)) {
1657 ret = -ERESTARTSYS;
1658 break;
1659 }
1660 pipe_wait_writable(pipe);
1661 }
1662
1663 pipe_unlock(pipe);
1664 return ret;
1665 }
1666
1667 /*
1668 * Splice contents of ipipe to opipe.
1669 */
1670 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1671 struct pipe_inode_info *opipe,
1672 size_t len, unsigned int flags)
1673 {
1674 struct pipe_buffer *ibuf, *obuf;
1675 unsigned int i_head, o_head;
1676 unsigned int i_tail, o_tail;
1677 unsigned int i_mask, o_mask;
1678 int ret = 0;
1679 bool input_wakeup = false;
1680
1681
1682 retry:
1683 ret = ipipe_prep(ipipe, flags);
1684 if (ret)
1685 return ret;
1686
1687 ret = opipe_prep(opipe, flags);
1688 if (ret)
1689 return ret;
1690
1691 /*
1692 * Potential ABBA deadlock, work around it by ordering lock
1693 * grabbing by pipe info address. Otherwise two different processes
1694 * could deadlock (one doing tee from A -> B, the other from B -> A).
1695 */
1696 pipe_double_lock(ipipe, opipe);
1697
1698 i_tail = ipipe->tail;
1699 i_mask = ipipe->ring_size - 1;
1700 o_head = opipe->head;
1701 o_mask = opipe->ring_size - 1;
1702
1703 do {
1704 size_t o_len;
1705
1706 if (!opipe->readers) {
1707 send_sig(SIGPIPE, current, 0);
1708 if (!ret)
1709 ret = -EPIPE;
1710 break;
1711 }
1712
1713 i_head = ipipe->head;
1714 o_tail = opipe->tail;
1715
1716 if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1717 break;
1718
1719 /*
1720 * Cannot make any progress, because either the input
1721 * pipe is empty or the output pipe is full.
1722 */
1723 if (pipe_empty(i_head, i_tail) ||
1724 pipe_full(o_head, o_tail, opipe->max_usage)) {
1725 /* Already processed some buffers, break */
1726 if (ret)
1727 break;
1728
1729 if (flags & SPLICE_F_NONBLOCK) {
1730 ret = -EAGAIN;
1731 break;
1732 }
1733
1734 /*
1735 * We raced with another reader/writer and haven't
1736 * managed to process any buffers. A zero return
1737 * value means EOF, so retry instead.
1738 */
1739 pipe_unlock(ipipe);
1740 pipe_unlock(opipe);
1741 goto retry;
1742 }
1743
1744 ibuf = &ipipe->bufs[i_tail & i_mask];
1745 obuf = &opipe->bufs[o_head & o_mask];
1746
1747 if (len >= ibuf->len) {
1748 /*
1749 * Simply move the whole buffer from ipipe to opipe
1750 */
1751 *obuf = *ibuf;
1752 ibuf->ops = NULL;
1753 i_tail++;
1754 ipipe->tail = i_tail;
1755 input_wakeup = true;
1756 o_len = obuf->len;
1757 o_head++;
1758 opipe->head = o_head;
1759 } else {
1760 /*
1761 * Get a reference to this pipe buffer,
1762 * so we can copy the contents over.
1763 */
1764 if (!pipe_buf_get(ipipe, ibuf)) {
1765 if (ret == 0)
1766 ret = -EFAULT;
1767 break;
1768 }
1769 *obuf = *ibuf;
1770
1771 /*
1772 * Don't inherit the gift and merge flags, we need to
1773 * prevent multiple steals of this page.
1774 */
1775 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1776 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1777
1778 obuf->len = len;
1779 ibuf->offset += len;
1780 ibuf->len -= len;
1781 o_len = len;
1782 o_head++;
1783 opipe->head = o_head;
1784 }
1785 ret += o_len;
1786 len -= o_len;
1787 } while (len);
1788
1789 pipe_unlock(ipipe);
1790 pipe_unlock(opipe);
1791
1792 /*
1793 * If we put data in the output pipe, wakeup any potential readers.
1794 */
1795 if (ret > 0)
1796 wakeup_pipe_readers(opipe);
1797
1798 if (input_wakeup)
1799 wakeup_pipe_writers(ipipe);
1800
1801 return ret;
1802 }
1803
1804 /*
1805 * Link contents of ipipe to opipe.
1806 */
1807 static int link_pipe(struct pipe_inode_info *ipipe,
1808 struct pipe_inode_info *opipe,
1809 size_t len, unsigned int flags)
1810 {
1811 struct pipe_buffer *ibuf, *obuf;
1812 unsigned int i_head, o_head;
1813 unsigned int i_tail, o_tail;
1814 unsigned int i_mask, o_mask;
1815 int ret = 0;
1816
1817 /*
1818 * Potential ABBA deadlock, work around it by ordering lock
1819 * grabbing by pipe info address. Otherwise two different processes
1820 * could deadlock (one doing tee from A -> B, the other from B -> A).
1821 */
1822 pipe_double_lock(ipipe, opipe);
1823
1824 i_tail = ipipe->tail;
1825 i_mask = ipipe->ring_size - 1;
1826 o_head = opipe->head;
1827 o_mask = opipe->ring_size - 1;
1828
1829 do {
1830 if (!opipe->readers) {
1831 send_sig(SIGPIPE, current, 0);
1832 if (!ret)
1833 ret = -EPIPE;
1834 break;
1835 }
1836
1837 i_head = ipipe->head;
1838 o_tail = opipe->tail;
1839
1840 /*
1841 * If we have iterated all input buffers or run out of
1842 * output room, break.
1843 */
1844 if (pipe_empty(i_head, i_tail) ||
1845 pipe_full(o_head, o_tail, opipe->max_usage))
1846 break;
1847
1848 ibuf = &ipipe->bufs[i_tail & i_mask];
1849 obuf = &opipe->bufs[o_head & o_mask];
1850
1851 /*
1852 * Get a reference to this pipe buffer,
1853 * so we can copy the contents over.
1854 */
1855 if (!pipe_buf_get(ipipe, ibuf)) {
1856 if (ret == 0)
1857 ret = -EFAULT;
1858 break;
1859 }
1860
1861 *obuf = *ibuf;
1862
1863 /*
1864 * Don't inherit the gift and merge flag, we need to prevent
1865 * multiple steals of this page.
1866 */
1867 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1868 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1869
1870 if (obuf->len > len)
1871 obuf->len = len;
1872 ret += obuf->len;
1873 len -= obuf->len;
1874
1875 o_head++;
1876 opipe->head = o_head;
1877 i_tail++;
1878 } while (len);
1879
1880 pipe_unlock(ipipe);
1881 pipe_unlock(opipe);
1882
1883 /*
1884 * If we put data in the output pipe, wakeup any potential readers.
1885 */
1886 if (ret > 0)
1887 wakeup_pipe_readers(opipe);
1888
1889 return ret;
1890 }
1891
1892 /*
1893 * This is a tee(1) implementation that works on pipes. It doesn't copy
1894 * any data, it simply references the 'in' pages on the 'out' pipe.
1895 * The 'flags' used are the SPLICE_F_* variants, currently the only
1896 * applicable one is SPLICE_F_NONBLOCK.
1897 */
1898 long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags)
1899 {
1900 struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1901 struct pipe_inode_info *opipe = get_pipe_info(out, true);
1902 int ret = -EINVAL;
1903
1904 if (unlikely(!(in->f_mode & FMODE_READ) ||
1905 !(out->f_mode & FMODE_WRITE)))
1906 return -EBADF;
1907
1908 /*
1909 * Duplicate the contents of ipipe to opipe without actually
1910 * copying the data.
1911 */
1912 if (ipipe && opipe && ipipe != opipe) {
1913 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1914 flags |= SPLICE_F_NONBLOCK;
1915
1916 /*
1917 * Keep going, unless we encounter an error. The ipipe/opipe
1918 * ordering doesn't really matter.
1919 */
1920 ret = ipipe_prep(ipipe, flags);
1921 if (!ret) {
1922 ret = opipe_prep(opipe, flags);
1923 if (!ret)
1924 ret = link_pipe(ipipe, opipe, len, flags);
1925 }
1926 }
1927
1928 if (ret > 0) {
1929 fsnotify_access(in);
1930 fsnotify_modify(out);
1931 }
1932
1933 return ret;
1934 }
1935
1936 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1937 {
1938 struct fd in, out;
1939 int error;
1940
1941 if (unlikely(flags & ~SPLICE_F_ALL))
1942 return -EINVAL;
1943
1944 if (unlikely(!len))
1945 return 0;
1946
1947 error = -EBADF;
1948 in = fdget(fdin);
1949 if (in.file) {
1950 out = fdget(fdout);
1951 if (out.file) {
1952 error = do_tee(in.file, out.file, len, flags);
1953 fdput(out);
1954 }
1955 fdput(in);
1956 }
1957
1958 return error;
1959 }