]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/huge_memory.c
uprobes: split THPs before trying to replace them
[thirdparty/kernel/stable.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f 21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
f25748e3 23#include <linux/pfn_t.h>
a664b2d8 24#include <linux/mman.h>
3565fce3 25#include <linux/memremap.h>
325adeb5 26#include <linux/pagemap.h>
49071d43 27#include <linux/debugfs.h>
4daae3b4 28#include <linux/migrate.h>
43b5fbbd 29#include <linux/hashtable.h>
6b251fc9 30#include <linux/userfaultfd_k.h>
33c3fc71 31#include <linux/page_idle.h>
baa355fd 32#include <linux/shmem_fs.h>
97ae1749 33
71e3aac0
AA
34#include <asm/tlb.h>
35#include <asm/pgalloc.h>
36#include "internal.h"
37
ba76149f 38/*
8bfa3f9a
JW
39 * By default transparent hugepage support is disabled in order that avoid
40 * to risk increase the memory footprint of applications without a guaranteed
41 * benefit. When transparent hugepage support is enabled, is for all mappings,
42 * and khugepaged scans all mappings.
43 * Defrag is invoked by khugepaged hugepage allocations and by page faults
44 * for all hugepage allocations.
ba76149f 45 */
71e3aac0 46unsigned long transparent_hugepage_flags __read_mostly =
13ece886 47#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 48 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
49#endif
50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
51 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
52#endif
444eb2a4 53 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
54 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
55 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 56
9a982250 57static struct shrinker deferred_split_shrinker;
f000565a 58
97ae1749 59static atomic_t huge_zero_refcount;
56873f43 60struct page *huge_zero_page __read_mostly;
4a6c1297 61
6fcb52a5 62static struct page *get_huge_zero_page(void)
97ae1749
KS
63{
64 struct page *zero_page;
65retry:
66 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 67 return READ_ONCE(huge_zero_page);
97ae1749
KS
68
69 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 70 HPAGE_PMD_ORDER);
d8a8e1f0
KS
71 if (!zero_page) {
72 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 73 return NULL;
d8a8e1f0
KS
74 }
75 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 76 preempt_disable();
5918d10a 77 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 78 preempt_enable();
5ddacbe9 79 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
80 goto retry;
81 }
82
83 /* We take additional reference here. It will be put back by shrinker */
84 atomic_set(&huge_zero_refcount, 2);
85 preempt_enable();
4db0c3c2 86 return READ_ONCE(huge_zero_page);
4a6c1297
KS
87}
88
6fcb52a5 89static void put_huge_zero_page(void)
4a6c1297 90{
97ae1749
KS
91 /*
92 * Counter should never go to zero here. Only shrinker can put
93 * last reference.
94 */
95 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
96}
97
6fcb52a5
AL
98struct page *mm_get_huge_zero_page(struct mm_struct *mm)
99{
100 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
101 return READ_ONCE(huge_zero_page);
102
103 if (!get_huge_zero_page())
104 return NULL;
105
106 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
107 put_huge_zero_page();
108
109 return READ_ONCE(huge_zero_page);
110}
111
112void mm_put_huge_zero_page(struct mm_struct *mm)
113{
114 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
115 put_huge_zero_page();
116}
117
48896466
GC
118static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
119 struct shrink_control *sc)
4a6c1297 120{
48896466
GC
121 /* we can free zero page only if last reference remains */
122 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
123}
97ae1749 124
48896466
GC
125static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
126 struct shrink_control *sc)
127{
97ae1749 128 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
129 struct page *zero_page = xchg(&huge_zero_page, NULL);
130 BUG_ON(zero_page == NULL);
5ddacbe9 131 __free_pages(zero_page, compound_order(zero_page));
48896466 132 return HPAGE_PMD_NR;
97ae1749
KS
133 }
134
135 return 0;
4a6c1297
KS
136}
137
97ae1749 138static struct shrinker huge_zero_page_shrinker = {
48896466
GC
139 .count_objects = shrink_huge_zero_page_count,
140 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
141 .seeks = DEFAULT_SEEKS,
142};
143
71e3aac0 144#ifdef CONFIG_SYSFS
71e3aac0
AA
145static ssize_t enabled_show(struct kobject *kobj,
146 struct kobj_attribute *attr, char *buf)
147{
444eb2a4
MG
148 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
149 return sprintf(buf, "[always] madvise never\n");
150 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
151 return sprintf(buf, "always [madvise] never\n");
152 else
153 return sprintf(buf, "always madvise [never]\n");
71e3aac0 154}
444eb2a4 155
71e3aac0
AA
156static ssize_t enabled_store(struct kobject *kobj,
157 struct kobj_attribute *attr,
158 const char *buf, size_t count)
159{
21440d7e 160 ssize_t ret = count;
ba76149f 161
21440d7e
DR
162 if (!memcmp("always", buf,
163 min(sizeof("always")-1, count))) {
164 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
165 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
166 } else if (!memcmp("madvise", buf,
167 min(sizeof("madvise")-1, count))) {
168 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
170 } else if (!memcmp("never", buf,
171 min(sizeof("never")-1, count))) {
172 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
173 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
174 } else
175 ret = -EINVAL;
ba76149f
AA
176
177 if (ret > 0) {
b46e756f 178 int err = start_stop_khugepaged();
ba76149f
AA
179 if (err)
180 ret = err;
181 }
ba76149f 182 return ret;
71e3aac0
AA
183}
184static struct kobj_attribute enabled_attr =
185 __ATTR(enabled, 0644, enabled_show, enabled_store);
186
b46e756f 187ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
188 struct kobj_attribute *attr, char *buf,
189 enum transparent_hugepage_flag flag)
190{
e27e6151
BH
191 return sprintf(buf, "%d\n",
192 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 193}
e27e6151 194
b46e756f 195ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
196 struct kobj_attribute *attr,
197 const char *buf, size_t count,
198 enum transparent_hugepage_flag flag)
199{
e27e6151
BH
200 unsigned long value;
201 int ret;
202
203 ret = kstrtoul(buf, 10, &value);
204 if (ret < 0)
205 return ret;
206 if (value > 1)
207 return -EINVAL;
208
209 if (value)
71e3aac0 210 set_bit(flag, &transparent_hugepage_flags);
e27e6151 211 else
71e3aac0 212 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
213
214 return count;
215}
216
71e3aac0
AA
217static ssize_t defrag_show(struct kobject *kobj,
218 struct kobj_attribute *attr, char *buf)
219{
444eb2a4 220 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 221 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 222 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
223 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
224 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
225 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
226 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
227 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
228 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 229}
21440d7e 230
71e3aac0
AA
231static ssize_t defrag_store(struct kobject *kobj,
232 struct kobj_attribute *attr,
233 const char *buf, size_t count)
234{
21440d7e
DR
235 if (!memcmp("always", buf,
236 min(sizeof("always")-1, count))) {
237 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
238 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
239 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
240 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
241 } else if (!memcmp("defer", buf,
242 min(sizeof("defer")-1, count))) {
243 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
244 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
245 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
246 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
247 } else if (!memcmp("defer+madvise", buf,
248 min(sizeof("defer+madvise")-1, count))) {
249 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
250 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
252 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 } else if (!memcmp("madvise", buf,
254 min(sizeof("madvise")-1, count))) {
255 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
258 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259 } else if (!memcmp("never", buf,
260 min(sizeof("never")-1, count))) {
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
265 } else
266 return -EINVAL;
267
268 return count;
71e3aac0
AA
269}
270static struct kobj_attribute defrag_attr =
271 __ATTR(defrag, 0644, defrag_show, defrag_store);
272
79da5407
KS
273static ssize_t use_zero_page_show(struct kobject *kobj,
274 struct kobj_attribute *attr, char *buf)
275{
b46e756f 276 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
277 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
278}
279static ssize_t use_zero_page_store(struct kobject *kobj,
280 struct kobj_attribute *attr, const char *buf, size_t count)
281{
b46e756f 282 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
283 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
284}
285static struct kobj_attribute use_zero_page_attr =
286 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
287
288static ssize_t hpage_pmd_size_show(struct kobject *kobj,
289 struct kobj_attribute *attr, char *buf)
290{
291 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
292}
293static struct kobj_attribute hpage_pmd_size_attr =
294 __ATTR_RO(hpage_pmd_size);
295
71e3aac0
AA
296#ifdef CONFIG_DEBUG_VM
297static ssize_t debug_cow_show(struct kobject *kobj,
298 struct kobj_attribute *attr, char *buf)
299{
b46e756f 300 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
301 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
302}
303static ssize_t debug_cow_store(struct kobject *kobj,
304 struct kobj_attribute *attr,
305 const char *buf, size_t count)
306{
b46e756f 307 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
308 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
309}
310static struct kobj_attribute debug_cow_attr =
311 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
312#endif /* CONFIG_DEBUG_VM */
313
314static struct attribute *hugepage_attr[] = {
315 &enabled_attr.attr,
316 &defrag_attr.attr,
79da5407 317 &use_zero_page_attr.attr,
49920d28 318 &hpage_pmd_size_attr.attr,
e496cf3d 319#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
320 &shmem_enabled_attr.attr,
321#endif
71e3aac0
AA
322#ifdef CONFIG_DEBUG_VM
323 &debug_cow_attr.attr,
324#endif
325 NULL,
326};
327
328static struct attribute_group hugepage_attr_group = {
329 .attrs = hugepage_attr,
ba76149f
AA
330};
331
569e5590 332static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 333{
71e3aac0
AA
334 int err;
335
569e5590
SL
336 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
337 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 338 pr_err("failed to create transparent hugepage kobject\n");
569e5590 339 return -ENOMEM;
ba76149f
AA
340 }
341
569e5590 342 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 343 if (err) {
ae3a8c1c 344 pr_err("failed to register transparent hugepage group\n");
569e5590 345 goto delete_obj;
ba76149f
AA
346 }
347
569e5590 348 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 349 if (err) {
ae3a8c1c 350 pr_err("failed to register transparent hugepage group\n");
569e5590 351 goto remove_hp_group;
ba76149f 352 }
569e5590
SL
353
354 return 0;
355
356remove_hp_group:
357 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
358delete_obj:
359 kobject_put(*hugepage_kobj);
360 return err;
361}
362
363static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
364{
365 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
366 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
367 kobject_put(hugepage_kobj);
368}
369#else
370static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
371{
372 return 0;
373}
374
375static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
376{
377}
378#endif /* CONFIG_SYSFS */
379
380static int __init hugepage_init(void)
381{
382 int err;
383 struct kobject *hugepage_kobj;
384
385 if (!has_transparent_hugepage()) {
386 transparent_hugepage_flags = 0;
387 return -EINVAL;
388 }
389
ff20c2e0
KS
390 /*
391 * hugepages can't be allocated by the buddy allocator
392 */
393 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
394 /*
395 * we use page->mapping and page->index in second tail page
396 * as list_head: assuming THP order >= 2
397 */
398 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
399
569e5590
SL
400 err = hugepage_init_sysfs(&hugepage_kobj);
401 if (err)
65ebb64f 402 goto err_sysfs;
ba76149f 403
b46e756f 404 err = khugepaged_init();
ba76149f 405 if (err)
65ebb64f 406 goto err_slab;
ba76149f 407
65ebb64f
KS
408 err = register_shrinker(&huge_zero_page_shrinker);
409 if (err)
410 goto err_hzp_shrinker;
9a982250
KS
411 err = register_shrinker(&deferred_split_shrinker);
412 if (err)
413 goto err_split_shrinker;
97ae1749 414
97562cd2
RR
415 /*
416 * By default disable transparent hugepages on smaller systems,
417 * where the extra memory used could hurt more than TLB overhead
418 * is likely to save. The admin can still enable it through /sys.
419 */
79553da2 420 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 421 transparent_hugepage_flags = 0;
79553da2
KS
422 return 0;
423 }
97562cd2 424
79553da2 425 err = start_stop_khugepaged();
65ebb64f
KS
426 if (err)
427 goto err_khugepaged;
ba76149f 428
569e5590 429 return 0;
65ebb64f 430err_khugepaged:
9a982250
KS
431 unregister_shrinker(&deferred_split_shrinker);
432err_split_shrinker:
65ebb64f
KS
433 unregister_shrinker(&huge_zero_page_shrinker);
434err_hzp_shrinker:
b46e756f 435 khugepaged_destroy();
65ebb64f 436err_slab:
569e5590 437 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 438err_sysfs:
ba76149f 439 return err;
71e3aac0 440}
a64fb3cd 441subsys_initcall(hugepage_init);
71e3aac0
AA
442
443static int __init setup_transparent_hugepage(char *str)
444{
445 int ret = 0;
446 if (!str)
447 goto out;
448 if (!strcmp(str, "always")) {
449 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
450 &transparent_hugepage_flags);
451 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
452 &transparent_hugepage_flags);
453 ret = 1;
454 } else if (!strcmp(str, "madvise")) {
455 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
456 &transparent_hugepage_flags);
457 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
458 &transparent_hugepage_flags);
459 ret = 1;
460 } else if (!strcmp(str, "never")) {
461 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
462 &transparent_hugepage_flags);
463 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
464 &transparent_hugepage_flags);
465 ret = 1;
466 }
467out:
468 if (!ret)
ae3a8c1c 469 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
470 return ret;
471}
472__setup("transparent_hugepage=", setup_transparent_hugepage);
473
b32967ff 474pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
475{
476 if (likely(vma->vm_flags & VM_WRITE))
477 pmd = pmd_mkwrite(pmd);
478 return pmd;
479}
480
9a982250
KS
481static inline struct list_head *page_deferred_list(struct page *page)
482{
483 /*
484 * ->lru in the tail pages is occupied by compound_head.
485 * Let's use ->mapping + ->index in the second tail page as list_head.
486 */
487 return (struct list_head *)&page[2].mapping;
488}
489
490void prep_transhuge_page(struct page *page)
491{
492 /*
493 * we use page->mapping and page->indexlru in second tail page
494 * as list_head: assuming THP order >= 2
495 */
9a982250
KS
496
497 INIT_LIST_HEAD(page_deferred_list(page));
498 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
499}
500
74d2fad1
TK
501unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
502 loff_t off, unsigned long flags, unsigned long size)
503{
504 unsigned long addr;
505 loff_t off_end = off + len;
506 loff_t off_align = round_up(off, size);
507 unsigned long len_pad;
508
509 if (off_end <= off_align || (off_end - off_align) < size)
510 return 0;
511
512 len_pad = len + size;
513 if (len_pad < len || (off + len_pad) < off)
514 return 0;
515
516 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
517 off >> PAGE_SHIFT, flags);
518 if (IS_ERR_VALUE(addr))
519 return 0;
520
521 addr += (off - addr) & (size - 1);
522 return addr;
523}
524
525unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
526 unsigned long len, unsigned long pgoff, unsigned long flags)
527{
528 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
529
530 if (addr)
531 goto out;
532 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
533 goto out;
534
535 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
536 if (addr)
537 return addr;
538
539 out:
540 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
541}
542EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
543
82b0f8c3 544static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
bae473a4 545 gfp_t gfp)
71e3aac0 546{
82b0f8c3 547 struct vm_area_struct *vma = vmf->vma;
00501b53 548 struct mem_cgroup *memcg;
71e3aac0 549 pgtable_t pgtable;
82b0f8c3 550 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 551
309381fe 552 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 553
bae473a4 554 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
555 put_page(page);
556 count_vm_event(THP_FAULT_FALLBACK);
557 return VM_FAULT_FALLBACK;
558 }
00501b53 559
bae473a4 560 pgtable = pte_alloc_one(vma->vm_mm, haddr);
00501b53 561 if (unlikely(!pgtable)) {
f627c2f5 562 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 563 put_page(page);
71e3aac0 564 return VM_FAULT_OOM;
00501b53 565 }
71e3aac0
AA
566
567 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
568 /*
569 * The memory barrier inside __SetPageUptodate makes sure that
570 * clear_huge_page writes become visible before the set_pmd_at()
571 * write.
572 */
71e3aac0
AA
573 __SetPageUptodate(page);
574
82b0f8c3
JK
575 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
576 if (unlikely(!pmd_none(*vmf->pmd))) {
577 spin_unlock(vmf->ptl);
f627c2f5 578 mem_cgroup_cancel_charge(page, memcg, true);
71e3aac0 579 put_page(page);
bae473a4 580 pte_free(vma->vm_mm, pgtable);
71e3aac0
AA
581 } else {
582 pmd_t entry;
6b251fc9
AA
583
584 /* Deliver the page fault to userland */
585 if (userfaultfd_missing(vma)) {
586 int ret;
587
82b0f8c3 588 spin_unlock(vmf->ptl);
f627c2f5 589 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 590 put_page(page);
bae473a4 591 pte_free(vma->vm_mm, pgtable);
82b0f8c3 592 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
593 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
594 return ret;
595 }
596
3122359a
KS
597 entry = mk_huge_pmd(page, vma->vm_page_prot);
598 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 599 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 600 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 601 lru_cache_add_active_or_unevictable(page, vma);
82b0f8c3
JK
602 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
603 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4
KS
604 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
605 atomic_long_inc(&vma->vm_mm->nr_ptes);
82b0f8c3 606 spin_unlock(vmf->ptl);
6b251fc9 607 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
608 }
609
aa2e878e 610 return 0;
71e3aac0
AA
611}
612
444eb2a4 613/*
21440d7e
DR
614 * always: directly stall for all thp allocations
615 * defer: wake kswapd and fail if not immediately available
616 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
617 * fail if not immediately available
618 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
619 * available
620 * never: never stall for any thp allocation
444eb2a4
MG
621 */
622static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
623{
21440d7e 624 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
25160354 625
21440d7e 626 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
25160354 627 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
21440d7e
DR
628 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
629 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
630 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
631 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
632 __GFP_KSWAPD_RECLAIM);
633 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
634 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
635 0);
25160354 636 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
637}
638
c4088ebd 639/* Caller must hold page table lock. */
d295e341 640static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 641 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 642 struct page *zero_page)
fc9fe822
KS
643{
644 pmd_t entry;
7c414164
AM
645 if (!pmd_none(*pmd))
646 return false;
5918d10a 647 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 648 entry = pmd_mkhuge(entry);
12c9d70b
MW
649 if (pgtable)
650 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 651 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 652 atomic_long_inc(&mm->nr_ptes);
7c414164 653 return true;
fc9fe822
KS
654}
655
82b0f8c3 656int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 657{
82b0f8c3 658 struct vm_area_struct *vma = vmf->vma;
077fcf11 659 gfp_t gfp;
71e3aac0 660 struct page *page;
82b0f8c3 661 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 662
128ec037 663 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 664 return VM_FAULT_FALLBACK;
128ec037
KS
665 if (unlikely(anon_vma_prepare(vma)))
666 return VM_FAULT_OOM;
6d50e60c 667 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 668 return VM_FAULT_OOM;
82b0f8c3 669 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 670 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
671 transparent_hugepage_use_zero_page()) {
672 pgtable_t pgtable;
673 struct page *zero_page;
674 bool set;
6b251fc9 675 int ret;
bae473a4 676 pgtable = pte_alloc_one(vma->vm_mm, haddr);
128ec037 677 if (unlikely(!pgtable))
ba76149f 678 return VM_FAULT_OOM;
6fcb52a5 679 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 680 if (unlikely(!zero_page)) {
bae473a4 681 pte_free(vma->vm_mm, pgtable);
81ab4201 682 count_vm_event(THP_FAULT_FALLBACK);
c0292554 683 return VM_FAULT_FALLBACK;
b9bbfbe3 684 }
82b0f8c3 685 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
686 ret = 0;
687 set = false;
82b0f8c3 688 if (pmd_none(*vmf->pmd)) {
6b251fc9 689 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
690 spin_unlock(vmf->ptl);
691 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
692 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
693 } else {
bae473a4 694 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
695 haddr, vmf->pmd, zero_page);
696 spin_unlock(vmf->ptl);
6b251fc9
AA
697 set = true;
698 }
699 } else
82b0f8c3 700 spin_unlock(vmf->ptl);
6fcb52a5 701 if (!set)
bae473a4 702 pte_free(vma->vm_mm, pgtable);
6b251fc9 703 return ret;
71e3aac0 704 }
444eb2a4 705 gfp = alloc_hugepage_direct_gfpmask(vma);
077fcf11 706 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
707 if (unlikely(!page)) {
708 count_vm_event(THP_FAULT_FALLBACK);
c0292554 709 return VM_FAULT_FALLBACK;
128ec037 710 }
9a982250 711 prep_transhuge_page(page);
82b0f8c3 712 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
713}
714
ae18d6dc 715static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 716 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
5cad465d
MW
717{
718 struct mm_struct *mm = vma->vm_mm;
719 pmd_t entry;
720 spinlock_t *ptl;
721
722 ptl = pmd_lock(mm, pmd);
f25748e3
DW
723 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
724 if (pfn_t_devmap(pfn))
725 entry = pmd_mkdevmap(entry);
01871e59
RZ
726 if (write) {
727 entry = pmd_mkyoung(pmd_mkdirty(entry));
728 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 729 }
01871e59
RZ
730 set_pmd_at(mm, addr, pmd, entry);
731 update_mmu_cache_pmd(vma, addr, pmd);
5cad465d 732 spin_unlock(ptl);
5cad465d
MW
733}
734
735int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 736 pmd_t *pmd, pfn_t pfn, bool write)
5cad465d
MW
737{
738 pgprot_t pgprot = vma->vm_page_prot;
739 /*
740 * If we had pmd_special, we could avoid all these restrictions,
741 * but we need to be consistent with PTEs and architectures that
742 * can't support a 'special' bit.
743 */
744 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
745 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
746 (VM_PFNMAP|VM_MIXEDMAP));
747 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
f25748e3 748 BUG_ON(!pfn_t_devmap(pfn));
5cad465d
MW
749
750 if (addr < vma->vm_start || addr >= vma->vm_end)
751 return VM_FAULT_SIGBUS;
308a047c
BP
752
753 track_pfn_insert(vma, &pgprot, pfn);
754
ae18d6dc
MW
755 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
756 return VM_FAULT_NOPAGE;
5cad465d 757}
dee41079 758EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 759
a00cc7d9
MW
760#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
761static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
762{
763 if (likely(vma->vm_flags & VM_WRITE))
764 pud = pud_mkwrite(pud);
765 return pud;
766}
767
768static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
769 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
770{
771 struct mm_struct *mm = vma->vm_mm;
772 pud_t entry;
773 spinlock_t *ptl;
774
775 ptl = pud_lock(mm, pud);
776 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
777 if (pfn_t_devmap(pfn))
778 entry = pud_mkdevmap(entry);
779 if (write) {
780 entry = pud_mkyoung(pud_mkdirty(entry));
781 entry = maybe_pud_mkwrite(entry, vma);
782 }
783 set_pud_at(mm, addr, pud, entry);
784 update_mmu_cache_pud(vma, addr, pud);
785 spin_unlock(ptl);
786}
787
788int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
789 pud_t *pud, pfn_t pfn, bool write)
790{
791 pgprot_t pgprot = vma->vm_page_prot;
792 /*
793 * If we had pud_special, we could avoid all these restrictions,
794 * but we need to be consistent with PTEs and architectures that
795 * can't support a 'special' bit.
796 */
797 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
798 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
799 (VM_PFNMAP|VM_MIXEDMAP));
800 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
801 BUG_ON(!pfn_t_devmap(pfn));
802
803 if (addr < vma->vm_start || addr >= vma->vm_end)
804 return VM_FAULT_SIGBUS;
805
806 track_pfn_insert(vma, &pgprot, pfn);
807
808 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
809 return VM_FAULT_NOPAGE;
810}
811EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
812#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
813
3565fce3
DW
814static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
815 pmd_t *pmd)
816{
817 pmd_t _pmd;
818
819 /*
820 * We should set the dirty bit only for FOLL_WRITE but for now
821 * the dirty bit in the pmd is meaningless. And if the dirty
822 * bit will become meaningful and we'll only set it with
823 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
824 * set the young bit, instead of the current set_pmd_at.
825 */
826 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
827 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
828 pmd, _pmd, 1))
829 update_mmu_cache_pmd(vma, addr, pmd);
830}
831
832struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
833 pmd_t *pmd, int flags)
834{
835 unsigned long pfn = pmd_pfn(*pmd);
836 struct mm_struct *mm = vma->vm_mm;
837 struct dev_pagemap *pgmap;
838 struct page *page;
839
840 assert_spin_locked(pmd_lockptr(mm, pmd));
841
8310d48b
KF
842 /*
843 * When we COW a devmap PMD entry, we split it into PTEs, so we should
844 * not be in this function with `flags & FOLL_COW` set.
845 */
846 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
847
3565fce3
DW
848 if (flags & FOLL_WRITE && !pmd_write(*pmd))
849 return NULL;
850
851 if (pmd_present(*pmd) && pmd_devmap(*pmd))
852 /* pass */;
853 else
854 return NULL;
855
856 if (flags & FOLL_TOUCH)
857 touch_pmd(vma, addr, pmd);
858
859 /*
860 * device mapped pages can only be returned if the
861 * caller will manage the page reference count.
862 */
863 if (!(flags & FOLL_GET))
864 return ERR_PTR(-EEXIST);
865
866 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
867 pgmap = get_dev_pagemap(pfn, NULL);
868 if (!pgmap)
869 return ERR_PTR(-EFAULT);
870 page = pfn_to_page(pfn);
871 get_page(page);
872 put_dev_pagemap(pgmap);
873
874 return page;
875}
876
71e3aac0
AA
877int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
878 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
879 struct vm_area_struct *vma)
880{
c4088ebd 881 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
882 struct page *src_page;
883 pmd_t pmd;
12c9d70b 884 pgtable_t pgtable = NULL;
628d47ce 885 int ret = -ENOMEM;
71e3aac0 886
628d47ce
KS
887 /* Skip if can be re-fill on fault */
888 if (!vma_is_anonymous(vma))
889 return 0;
890
891 pgtable = pte_alloc_one(dst_mm, addr);
892 if (unlikely(!pgtable))
893 goto out;
71e3aac0 894
c4088ebd
KS
895 dst_ptl = pmd_lock(dst_mm, dst_pmd);
896 src_ptl = pmd_lockptr(src_mm, src_pmd);
897 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
898
899 ret = -EAGAIN;
900 pmd = *src_pmd;
628d47ce 901 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
902 pte_free(dst_mm, pgtable);
903 goto out_unlock;
904 }
fc9fe822 905 /*
c4088ebd 906 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
907 * under splitting since we don't split the page itself, only pmd to
908 * a page table.
909 */
910 if (is_huge_zero_pmd(pmd)) {
5918d10a 911 struct page *zero_page;
97ae1749
KS
912 /*
913 * get_huge_zero_page() will never allocate a new page here,
914 * since we already have a zero page to copy. It just takes a
915 * reference.
916 */
6fcb52a5 917 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 918 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 919 zero_page);
fc9fe822
KS
920 ret = 0;
921 goto out_unlock;
922 }
de466bd6 923
628d47ce
KS
924 src_page = pmd_page(pmd);
925 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
926 get_page(src_page);
927 page_dup_rmap(src_page, true);
928 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
929 atomic_long_inc(&dst_mm->nr_ptes);
930 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
931
932 pmdp_set_wrprotect(src_mm, addr, src_pmd);
933 pmd = pmd_mkold(pmd_wrprotect(pmd));
934 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
935
936 ret = 0;
937out_unlock:
c4088ebd
KS
938 spin_unlock(src_ptl);
939 spin_unlock(dst_ptl);
71e3aac0
AA
940out:
941 return ret;
942}
943
a00cc7d9
MW
944#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
945static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
946 pud_t *pud)
947{
948 pud_t _pud;
949
950 /*
951 * We should set the dirty bit only for FOLL_WRITE but for now
952 * the dirty bit in the pud is meaningless. And if the dirty
953 * bit will become meaningful and we'll only set it with
954 * FOLL_WRITE, an atomic set_bit will be required on the pud to
955 * set the young bit, instead of the current set_pud_at.
956 */
957 _pud = pud_mkyoung(pud_mkdirty(*pud));
958 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
959 pud, _pud, 1))
960 update_mmu_cache_pud(vma, addr, pud);
961}
962
963struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
964 pud_t *pud, int flags)
965{
966 unsigned long pfn = pud_pfn(*pud);
967 struct mm_struct *mm = vma->vm_mm;
968 struct dev_pagemap *pgmap;
969 struct page *page;
970
971 assert_spin_locked(pud_lockptr(mm, pud));
972
973 if (flags & FOLL_WRITE && !pud_write(*pud))
974 return NULL;
975
976 if (pud_present(*pud) && pud_devmap(*pud))
977 /* pass */;
978 else
979 return NULL;
980
981 if (flags & FOLL_TOUCH)
982 touch_pud(vma, addr, pud);
983
984 /*
985 * device mapped pages can only be returned if the
986 * caller will manage the page reference count.
987 */
988 if (!(flags & FOLL_GET))
989 return ERR_PTR(-EEXIST);
990
991 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
992 pgmap = get_dev_pagemap(pfn, NULL);
993 if (!pgmap)
994 return ERR_PTR(-EFAULT);
995 page = pfn_to_page(pfn);
996 get_page(page);
997 put_dev_pagemap(pgmap);
998
999 return page;
1000}
1001
1002int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1003 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1004 struct vm_area_struct *vma)
1005{
1006 spinlock_t *dst_ptl, *src_ptl;
1007 pud_t pud;
1008 int ret;
1009
1010 dst_ptl = pud_lock(dst_mm, dst_pud);
1011 src_ptl = pud_lockptr(src_mm, src_pud);
1012 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1013
1014 ret = -EAGAIN;
1015 pud = *src_pud;
1016 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1017 goto out_unlock;
1018
1019 /*
1020 * When page table lock is held, the huge zero pud should not be
1021 * under splitting since we don't split the page itself, only pud to
1022 * a page table.
1023 */
1024 if (is_huge_zero_pud(pud)) {
1025 /* No huge zero pud yet */
1026 }
1027
1028 pudp_set_wrprotect(src_mm, addr, src_pud);
1029 pud = pud_mkold(pud_wrprotect(pud));
1030 set_pud_at(dst_mm, addr, dst_pud, pud);
1031
1032 ret = 0;
1033out_unlock:
1034 spin_unlock(src_ptl);
1035 spin_unlock(dst_ptl);
1036 return ret;
1037}
1038
1039void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1040{
1041 pud_t entry;
1042 unsigned long haddr;
1043 bool write = vmf->flags & FAULT_FLAG_WRITE;
1044
1045 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1046 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1047 goto unlock;
1048
1049 entry = pud_mkyoung(orig_pud);
1050 if (write)
1051 entry = pud_mkdirty(entry);
1052 haddr = vmf->address & HPAGE_PUD_MASK;
1053 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1054 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1055
1056unlock:
1057 spin_unlock(vmf->ptl);
1058}
1059#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1060
82b0f8c3 1061void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1062{
1063 pmd_t entry;
1064 unsigned long haddr;
20f664aa 1065 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1066
82b0f8c3
JK
1067 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1068 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1069 goto unlock;
1070
1071 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1072 if (write)
1073 entry = pmd_mkdirty(entry);
82b0f8c3 1074 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1075 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1076 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1077
1078unlock:
82b0f8c3 1079 spin_unlock(vmf->ptl);
a1dd450b
WD
1080}
1081
82b0f8c3 1082static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
bae473a4 1083 struct page *page)
71e3aac0 1084{
82b0f8c3
JK
1085 struct vm_area_struct *vma = vmf->vma;
1086 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
00501b53 1087 struct mem_cgroup *memcg;
71e3aac0
AA
1088 pgtable_t pgtable;
1089 pmd_t _pmd;
1090 int ret = 0, i;
1091 struct page **pages;
2ec74c3e
SG
1092 unsigned long mmun_start; /* For mmu_notifiers */
1093 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1094
1095 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1096 GFP_KERNEL);
1097 if (unlikely(!pages)) {
1098 ret |= VM_FAULT_OOM;
1099 goto out;
1100 }
1101
1102 for (i = 0; i < HPAGE_PMD_NR; i++) {
41b6167e 1103 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 1104 vmf->address, page_to_nid(page));
b9bbfbe3 1105 if (unlikely(!pages[i] ||
bae473a4
KS
1106 mem_cgroup_try_charge(pages[i], vma->vm_mm,
1107 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1108 if (pages[i])
71e3aac0 1109 put_page(pages[i]);
b9bbfbe3 1110 while (--i >= 0) {
00501b53
JW
1111 memcg = (void *)page_private(pages[i]);
1112 set_page_private(pages[i], 0);
f627c2f5
KS
1113 mem_cgroup_cancel_charge(pages[i], memcg,
1114 false);
b9bbfbe3
AA
1115 put_page(pages[i]);
1116 }
71e3aac0
AA
1117 kfree(pages);
1118 ret |= VM_FAULT_OOM;
1119 goto out;
1120 }
00501b53 1121 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1122 }
1123
1124 for (i = 0; i < HPAGE_PMD_NR; i++) {
1125 copy_user_highpage(pages[i], page + i,
0089e485 1126 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1127 __SetPageUptodate(pages[i]);
1128 cond_resched();
1129 }
1130
2ec74c3e
SG
1131 mmun_start = haddr;
1132 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1133 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1134
82b0f8c3
JK
1135 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1136 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0 1137 goto out_free_pages;
309381fe 1138 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1139
82b0f8c3 1140 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
71e3aac0
AA
1141 /* leave pmd empty until pte is filled */
1142
82b0f8c3 1143 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
bae473a4 1144 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1145
1146 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1147 pte_t entry;
71e3aac0
AA
1148 entry = mk_pte(pages[i], vma->vm_page_prot);
1149 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1150 memcg = (void *)page_private(pages[i]);
1151 set_page_private(pages[i], 0);
82b0f8c3 1152 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
f627c2f5 1153 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1154 lru_cache_add_active_or_unevictable(pages[i], vma);
82b0f8c3
JK
1155 vmf->pte = pte_offset_map(&_pmd, haddr);
1156 VM_BUG_ON(!pte_none(*vmf->pte));
1157 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1158 pte_unmap(vmf->pte);
71e3aac0
AA
1159 }
1160 kfree(pages);
1161
71e3aac0 1162 smp_wmb(); /* make pte visible before pmd */
82b0f8c3 1163 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
d281ee61 1164 page_remove_rmap(page, true);
82b0f8c3 1165 spin_unlock(vmf->ptl);
71e3aac0 1166
bae473a4 1167 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1168
71e3aac0
AA
1169 ret |= VM_FAULT_WRITE;
1170 put_page(page);
1171
1172out:
1173 return ret;
1174
1175out_free_pages:
82b0f8c3 1176 spin_unlock(vmf->ptl);
bae473a4 1177 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
b9bbfbe3 1178 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1179 memcg = (void *)page_private(pages[i]);
1180 set_page_private(pages[i], 0);
f627c2f5 1181 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1182 put_page(pages[i]);
b9bbfbe3 1183 }
71e3aac0
AA
1184 kfree(pages);
1185 goto out;
1186}
1187
82b0f8c3 1188int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1189{
82b0f8c3 1190 struct vm_area_struct *vma = vmf->vma;
93b4796d 1191 struct page *page = NULL, *new_page;
00501b53 1192 struct mem_cgroup *memcg;
82b0f8c3 1193 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2ec74c3e
SG
1194 unsigned long mmun_start; /* For mmu_notifiers */
1195 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1196 gfp_t huge_gfp; /* for allocation and charge */
bae473a4 1197 int ret = 0;
71e3aac0 1198
82b0f8c3 1199 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1200 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1201 if (is_huge_zero_pmd(orig_pmd))
1202 goto alloc;
82b0f8c3
JK
1203 spin_lock(vmf->ptl);
1204 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0
AA
1205 goto out_unlock;
1206
1207 page = pmd_page(orig_pmd);
309381fe 1208 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1209 /*
1210 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1211 * part.
1f25fe20 1212 */
6d0a07ed 1213 if (page_trans_huge_mapcount(page, NULL) == 1) {
71e3aac0
AA
1214 pmd_t entry;
1215 entry = pmd_mkyoung(orig_pmd);
1216 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3
JK
1217 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1218 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
71e3aac0
AA
1219 ret |= VM_FAULT_WRITE;
1220 goto out_unlock;
1221 }
ddc58f27 1222 get_page(page);
82b0f8c3 1223 spin_unlock(vmf->ptl);
93b4796d 1224alloc:
71e3aac0 1225 if (transparent_hugepage_enabled(vma) &&
077fcf11 1226 !transparent_hugepage_debug_cow()) {
444eb2a4 1227 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
3b363692 1228 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1229 } else
71e3aac0
AA
1230 new_page = NULL;
1231
9a982250
KS
1232 if (likely(new_page)) {
1233 prep_transhuge_page(new_page);
1234 } else {
eecc1e42 1235 if (!page) {
82b0f8c3 1236 split_huge_pmd(vma, vmf->pmd, vmf->address);
e9b71ca9 1237 ret |= VM_FAULT_FALLBACK;
93b4796d 1238 } else {
82b0f8c3 1239 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
9845cbbd 1240 if (ret & VM_FAULT_OOM) {
82b0f8c3 1241 split_huge_pmd(vma, vmf->pmd, vmf->address);
9845cbbd
KS
1242 ret |= VM_FAULT_FALLBACK;
1243 }
ddc58f27 1244 put_page(page);
93b4796d 1245 }
17766dde 1246 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1247 goto out;
1248 }
1249
bae473a4
KS
1250 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1251 huge_gfp, &memcg, true))) {
b9bbfbe3 1252 put_page(new_page);
82b0f8c3 1253 split_huge_pmd(vma, vmf->pmd, vmf->address);
bae473a4 1254 if (page)
ddc58f27 1255 put_page(page);
9845cbbd 1256 ret |= VM_FAULT_FALLBACK;
17766dde 1257 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1258 goto out;
1259 }
1260
17766dde
DR
1261 count_vm_event(THP_FAULT_ALLOC);
1262
eecc1e42 1263 if (!page)
93b4796d
KS
1264 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1265 else
1266 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1267 __SetPageUptodate(new_page);
1268
2ec74c3e
SG
1269 mmun_start = haddr;
1270 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1271 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1272
82b0f8c3 1273 spin_lock(vmf->ptl);
93b4796d 1274 if (page)
ddc58f27 1275 put_page(page);
82b0f8c3
JK
1276 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1277 spin_unlock(vmf->ptl);
f627c2f5 1278 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1279 put_page(new_page);
2ec74c3e 1280 goto out_mn;
b9bbfbe3 1281 } else {
71e3aac0 1282 pmd_t entry;
3122359a
KS
1283 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1284 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3 1285 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
d281ee61 1286 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1287 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1288 lru_cache_add_active_or_unevictable(new_page, vma);
82b0f8c3
JK
1289 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1290 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
eecc1e42 1291 if (!page) {
bae473a4 1292 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1293 } else {
309381fe 1294 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1295 page_remove_rmap(page, true);
93b4796d
KS
1296 put_page(page);
1297 }
71e3aac0
AA
1298 ret |= VM_FAULT_WRITE;
1299 }
82b0f8c3 1300 spin_unlock(vmf->ptl);
2ec74c3e 1301out_mn:
bae473a4 1302 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
71e3aac0
AA
1303out:
1304 return ret;
2ec74c3e 1305out_unlock:
82b0f8c3 1306 spin_unlock(vmf->ptl);
2ec74c3e 1307 return ret;
71e3aac0
AA
1308}
1309
8310d48b
KF
1310/*
1311 * FOLL_FORCE can write to even unwritable pmd's, but only
1312 * after we've gone through a COW cycle and they are dirty.
1313 */
1314static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1315{
1316 return pmd_write(pmd) ||
1317 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1318}
1319
b676b293 1320struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1321 unsigned long addr,
1322 pmd_t *pmd,
1323 unsigned int flags)
1324{
b676b293 1325 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1326 struct page *page = NULL;
1327
c4088ebd 1328 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1329
8310d48b 1330 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1331 goto out;
1332
85facf25
KS
1333 /* Avoid dumping huge zero page */
1334 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1335 return ERR_PTR(-EFAULT);
1336
2b4847e7 1337 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1338 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1339 goto out;
1340
71e3aac0 1341 page = pmd_page(*pmd);
ca120cf6 1342 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3565fce3
DW
1343 if (flags & FOLL_TOUCH)
1344 touch_pmd(vma, addr, pmd);
de60f5f1 1345 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1346 /*
1347 * We don't mlock() pte-mapped THPs. This way we can avoid
1348 * leaking mlocked pages into non-VM_LOCKED VMAs.
1349 *
9a73f61b
KS
1350 * For anon THP:
1351 *
e90309c9
KS
1352 * In most cases the pmd is the only mapping of the page as we
1353 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1354 * writable private mappings in populate_vma_page_range().
1355 *
1356 * The only scenario when we have the page shared here is if we
1357 * mlocking read-only mapping shared over fork(). We skip
1358 * mlocking such pages.
9a73f61b
KS
1359 *
1360 * For file THP:
1361 *
1362 * We can expect PageDoubleMap() to be stable under page lock:
1363 * for file pages we set it in page_add_file_rmap(), which
1364 * requires page to be locked.
e90309c9 1365 */
9a73f61b
KS
1366
1367 if (PageAnon(page) && compound_mapcount(page) != 1)
1368 goto skip_mlock;
1369 if (PageDoubleMap(page) || !page->mapping)
1370 goto skip_mlock;
1371 if (!trylock_page(page))
1372 goto skip_mlock;
1373 lru_add_drain();
1374 if (page->mapping && !PageDoubleMap(page))
1375 mlock_vma_page(page);
1376 unlock_page(page);
b676b293 1377 }
9a73f61b 1378skip_mlock:
71e3aac0 1379 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1380 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0 1381 if (flags & FOLL_GET)
ddc58f27 1382 get_page(page);
71e3aac0
AA
1383
1384out:
1385 return page;
1386}
1387
d10e63f2 1388/* NUMA hinting page fault entry point for trans huge pmds */
82b0f8c3 1389int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1390{
82b0f8c3 1391 struct vm_area_struct *vma = vmf->vma;
b8916634 1392 struct anon_vma *anon_vma = NULL;
b32967ff 1393 struct page *page;
82b0f8c3 1394 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
8191acbd 1395 int page_nid = -1, this_nid = numa_node_id();
90572890 1396 int target_nid, last_cpupid = -1;
8191acbd
MG
1397 bool page_locked;
1398 bool migrated = false;
b191f9b1 1399 bool was_writable;
6688cc05 1400 int flags = 0;
d10e63f2 1401
82b0f8c3
JK
1402 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1403 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1404 goto out_unlock;
1405
de466bd6
MG
1406 /*
1407 * If there are potential migrations, wait for completion and retry
1408 * without disrupting NUMA hinting information. Do not relock and
1409 * check_same as the page may no longer be mapped.
1410 */
82b0f8c3
JK
1411 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1412 page = pmd_page(*vmf->pmd);
1413 spin_unlock(vmf->ptl);
5d833062 1414 wait_on_page_locked(page);
de466bd6
MG
1415 goto out;
1416 }
1417
d10e63f2 1418 page = pmd_page(pmd);
a1a46184 1419 BUG_ON(is_huge_zero_page(page));
8191acbd 1420 page_nid = page_to_nid(page);
90572890 1421 last_cpupid = page_cpupid_last(page);
03c5a6e1 1422 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1423 if (page_nid == this_nid) {
03c5a6e1 1424 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1425 flags |= TNF_FAULT_LOCAL;
1426 }
4daae3b4 1427
bea66fbd 1428 /* See similar comment in do_numa_page for explanation */
d59dc7bc 1429 if (!pmd_write(pmd))
6688cc05
PZ
1430 flags |= TNF_NO_GROUP;
1431
ff9042b1
MG
1432 /*
1433 * Acquire the page lock to serialise THP migrations but avoid dropping
1434 * page_table_lock if at all possible
1435 */
b8916634
MG
1436 page_locked = trylock_page(page);
1437 target_nid = mpol_misplaced(page, vma, haddr);
1438 if (target_nid == -1) {
1439 /* If the page was locked, there are no parallel migrations */
a54a407f 1440 if (page_locked)
b8916634 1441 goto clear_pmdnuma;
2b4847e7 1442 }
4daae3b4 1443
de466bd6 1444 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1445 if (!page_locked) {
82b0f8c3 1446 spin_unlock(vmf->ptl);
b8916634 1447 wait_on_page_locked(page);
a54a407f 1448 page_nid = -1;
b8916634
MG
1449 goto out;
1450 }
1451
2b4847e7
MG
1452 /*
1453 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1454 * to serialises splits
1455 */
b8916634 1456 get_page(page);
82b0f8c3 1457 spin_unlock(vmf->ptl);
b8916634 1458 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1459
c69307d5 1460 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1461 spin_lock(vmf->ptl);
1462 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1463 unlock_page(page);
1464 put_page(page);
a54a407f 1465 page_nid = -1;
4daae3b4 1466 goto out_unlock;
b32967ff 1467 }
ff9042b1 1468
c3a489ca
MG
1469 /* Bail if we fail to protect against THP splits for any reason */
1470 if (unlikely(!anon_vma)) {
1471 put_page(page);
1472 page_nid = -1;
1473 goto clear_pmdnuma;
1474 }
1475
a54a407f
MG
1476 /*
1477 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1478 * and access rights restored.
a54a407f 1479 */
82b0f8c3 1480 spin_unlock(vmf->ptl);
bae473a4 1481 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1482 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1483 if (migrated) {
1484 flags |= TNF_MIGRATED;
8191acbd 1485 page_nid = target_nid;
074c2381
MG
1486 } else
1487 flags |= TNF_MIGRATE_FAIL;
b32967ff 1488
8191acbd 1489 goto out;
b32967ff 1490clear_pmdnuma:
a54a407f 1491 BUG_ON(!PageLocked(page));
b191f9b1 1492 was_writable = pmd_write(pmd);
4d942466 1493 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1494 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1495 if (was_writable)
1496 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1497 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1498 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1499 unlock_page(page);
d10e63f2 1500out_unlock:
82b0f8c3 1501 spin_unlock(vmf->ptl);
b8916634
MG
1502
1503out:
1504 if (anon_vma)
1505 page_unlock_anon_vma_read(anon_vma);
1506
8191acbd 1507 if (page_nid != -1)
82b0f8c3
JK
1508 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1509 vmf->flags);
8191acbd 1510
d10e63f2
MG
1511 return 0;
1512}
1513
319904ad
HY
1514/*
1515 * Return true if we do MADV_FREE successfully on entire pmd page.
1516 * Otherwise, return false.
1517 */
1518bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1519 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1520{
1521 spinlock_t *ptl;
1522 pmd_t orig_pmd;
1523 struct page *page;
1524 struct mm_struct *mm = tlb->mm;
319904ad 1525 bool ret = false;
b8d3c4c3 1526
07e32661
AK
1527 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1528
b6ec57f4
KS
1529 ptl = pmd_trans_huge_lock(pmd, vma);
1530 if (!ptl)
25eedabe 1531 goto out_unlocked;
b8d3c4c3
MK
1532
1533 orig_pmd = *pmd;
319904ad 1534 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1535 goto out;
b8d3c4c3
MK
1536
1537 page = pmd_page(orig_pmd);
1538 /*
1539 * If other processes are mapping this page, we couldn't discard
1540 * the page unless they all do MADV_FREE so let's skip the page.
1541 */
1542 if (page_mapcount(page) != 1)
1543 goto out;
1544
1545 if (!trylock_page(page))
1546 goto out;
1547
1548 /*
1549 * If user want to discard part-pages of THP, split it so MADV_FREE
1550 * will deactivate only them.
1551 */
1552 if (next - addr != HPAGE_PMD_SIZE) {
1553 get_page(page);
1554 spin_unlock(ptl);
9818b8cd 1555 split_huge_page(page);
b8d3c4c3
MK
1556 put_page(page);
1557 unlock_page(page);
b8d3c4c3
MK
1558 goto out_unlocked;
1559 }
1560
1561 if (PageDirty(page))
1562 ClearPageDirty(page);
1563 unlock_page(page);
1564
1565 if (PageActive(page))
1566 deactivate_page(page);
1567
1568 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1569 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1570 tlb->fullmm);
1571 orig_pmd = pmd_mkold(orig_pmd);
1572 orig_pmd = pmd_mkclean(orig_pmd);
1573
1574 set_pmd_at(mm, addr, pmd, orig_pmd);
1575 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1576 }
319904ad 1577 ret = true;
b8d3c4c3
MK
1578out:
1579 spin_unlock(ptl);
1580out_unlocked:
1581 return ret;
1582}
1583
953c66c2
AK
1584static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1585{
1586 pgtable_t pgtable;
1587
1588 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1589 pte_free(mm, pgtable);
1590 atomic_long_dec(&mm->nr_ptes);
1591}
1592
71e3aac0 1593int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1594 pmd_t *pmd, unsigned long addr)
71e3aac0 1595{
da146769 1596 pmd_t orig_pmd;
bf929152 1597 spinlock_t *ptl;
71e3aac0 1598
07e32661
AK
1599 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1600
b6ec57f4
KS
1601 ptl = __pmd_trans_huge_lock(pmd, vma);
1602 if (!ptl)
da146769
KS
1603 return 0;
1604 /*
1605 * For architectures like ppc64 we look at deposited pgtable
1606 * when calling pmdp_huge_get_and_clear. So do the
1607 * pgtable_trans_huge_withdraw after finishing pmdp related
1608 * operations.
1609 */
1610 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1611 tlb->fullmm);
1612 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1613 if (vma_is_dax(vma)) {
1614 spin_unlock(ptl);
1615 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1616 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769
KS
1617 } else if (is_huge_zero_pmd(orig_pmd)) {
1618 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1619 atomic_long_dec(&tlb->mm->nr_ptes);
1620 spin_unlock(ptl);
c0f2e176 1621 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769
KS
1622 } else {
1623 struct page *page = pmd_page(orig_pmd);
d281ee61 1624 page_remove_rmap(page, true);
da146769 1625 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
da146769 1626 VM_BUG_ON_PAGE(!PageHead(page), page);
b5072380
KS
1627 if (PageAnon(page)) {
1628 pgtable_t pgtable;
1629 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1630 pte_free(tlb->mm, pgtable);
1631 atomic_long_dec(&tlb->mm->nr_ptes);
1632 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1633 } else {
953c66c2
AK
1634 if (arch_needs_pgtable_deposit())
1635 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1636 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1637 }
da146769 1638 spin_unlock(ptl);
e77b0852 1639 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1640 }
da146769 1641 return 1;
71e3aac0
AA
1642}
1643
1dd38b6c
AK
1644#ifndef pmd_move_must_withdraw
1645static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1646 spinlock_t *old_pmd_ptl,
1647 struct vm_area_struct *vma)
1648{
1649 /*
1650 * With split pmd lock we also need to move preallocated
1651 * PTE page table if new_pmd is on different PMD page table.
1652 *
1653 * We also don't deposit and withdraw tables for file pages.
1654 */
1655 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1656}
1657#endif
1658
bf8616d5 1659bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1660 unsigned long new_addr, unsigned long old_end,
5d190420 1661 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
37a1c49a 1662{
bf929152 1663 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1664 pmd_t pmd;
37a1c49a 1665 struct mm_struct *mm = vma->vm_mm;
5d190420 1666 bool force_flush = false;
37a1c49a
AA
1667
1668 if ((old_addr & ~HPAGE_PMD_MASK) ||
1669 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1670 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1671 return false;
37a1c49a
AA
1672
1673 /*
1674 * The destination pmd shouldn't be established, free_pgtables()
1675 * should have release it.
1676 */
1677 if (WARN_ON(!pmd_none(*new_pmd))) {
1678 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1679 return false;
37a1c49a
AA
1680 }
1681
bf929152
KS
1682 /*
1683 * We don't have to worry about the ordering of src and dst
1684 * ptlocks because exclusive mmap_sem prevents deadlock.
1685 */
b6ec57f4
KS
1686 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1687 if (old_ptl) {
bf929152
KS
1688 new_ptl = pmd_lockptr(mm, new_pmd);
1689 if (new_ptl != old_ptl)
1690 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1691 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
a2ce2666
AL
1692 if (pmd_present(pmd) && pmd_dirty(pmd))
1693 force_flush = true;
025c5b24 1694 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1695
1dd38b6c 1696 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1697 pgtable_t pgtable;
3592806c
KS
1698 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1699 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1700 }
b3084f4d
AK
1701 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1702 if (new_ptl != old_ptl)
1703 spin_unlock(new_ptl);
5d190420
AL
1704 if (force_flush)
1705 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1706 else
1707 *need_flush = true;
bf929152 1708 spin_unlock(old_ptl);
4b471e88 1709 return true;
37a1c49a 1710 }
4b471e88 1711 return false;
37a1c49a
AA
1712}
1713
f123d74a
MG
1714/*
1715 * Returns
1716 * - 0 if PMD could not be locked
1717 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1718 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1719 */
cd7548ab 1720int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1721 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1722{
1723 struct mm_struct *mm = vma->vm_mm;
bf929152 1724 spinlock_t *ptl;
cd7548ab
JW
1725 int ret = 0;
1726
b6ec57f4
KS
1727 ptl = __pmd_trans_huge_lock(pmd, vma);
1728 if (ptl) {
025c5b24 1729 pmd_t entry;
b191f9b1 1730 bool preserve_write = prot_numa && pmd_write(*pmd);
ba68bc01 1731 ret = 1;
e944fd67
MG
1732
1733 /*
1734 * Avoid trapping faults against the zero page. The read-only
1735 * data is likely to be read-cached on the local CPU and
1736 * local/remote hits to the zero page are not interesting.
1737 */
1738 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1739 spin_unlock(ptl);
ba68bc01 1740 return ret;
e944fd67
MG
1741 }
1742
10c1045f 1743 if (!prot_numa || !pmd_protnone(*pmd)) {
8809aa2d 1744 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
10c1045f 1745 entry = pmd_modify(entry, newprot);
b191f9b1
MG
1746 if (preserve_write)
1747 entry = pmd_mkwrite(entry);
10c1045f
MG
1748 ret = HPAGE_PMD_NR;
1749 set_pmd_at(mm, addr, pmd, entry);
b237aded
KS
1750 BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1751 pmd_write(entry));
10c1045f 1752 }
bf929152 1753 spin_unlock(ptl);
025c5b24
NH
1754 }
1755
1756 return ret;
1757}
1758
1759/*
8f19b0c0 1760 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1761 *
8f19b0c0
HY
1762 * Note that if it returns page table lock pointer, this routine returns without
1763 * unlocking page table lock. So callers must unlock it.
025c5b24 1764 */
b6ec57f4 1765spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1766{
b6ec57f4
KS
1767 spinlock_t *ptl;
1768 ptl = pmd_lock(vma->vm_mm, pmd);
5c7fb56e 1769 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
b6ec57f4
KS
1770 return ptl;
1771 spin_unlock(ptl);
1772 return NULL;
cd7548ab
JW
1773}
1774
a00cc7d9
MW
1775/*
1776 * Returns true if a given pud maps a thp, false otherwise.
1777 *
1778 * Note that if it returns true, this routine returns without unlocking page
1779 * table lock. So callers must unlock it.
1780 */
1781spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1782{
1783 spinlock_t *ptl;
1784
1785 ptl = pud_lock(vma->vm_mm, pud);
1786 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1787 return ptl;
1788 spin_unlock(ptl);
1789 return NULL;
1790}
1791
1792#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1793int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1794 pud_t *pud, unsigned long addr)
1795{
1796 pud_t orig_pud;
1797 spinlock_t *ptl;
1798
1799 ptl = __pud_trans_huge_lock(pud, vma);
1800 if (!ptl)
1801 return 0;
1802 /*
1803 * For architectures like ppc64 we look at deposited pgtable
1804 * when calling pudp_huge_get_and_clear. So do the
1805 * pgtable_trans_huge_withdraw after finishing pudp related
1806 * operations.
1807 */
1808 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1809 tlb->fullmm);
1810 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1811 if (vma_is_dax(vma)) {
1812 spin_unlock(ptl);
1813 /* No zero page support yet */
1814 } else {
1815 /* No support for anonymous PUD pages yet */
1816 BUG();
1817 }
1818 return 1;
1819}
1820
1821static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1822 unsigned long haddr)
1823{
1824 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1825 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1826 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1827 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1828
1829 count_vm_event(THP_SPLIT_PMD);
1830
1831 pudp_huge_clear_flush_notify(vma, haddr, pud);
1832}
1833
1834void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1835 unsigned long address)
1836{
1837 spinlock_t *ptl;
1838 struct mm_struct *mm = vma->vm_mm;
1839 unsigned long haddr = address & HPAGE_PUD_MASK;
1840
1841 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
1842 ptl = pud_lock(mm, pud);
1843 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1844 goto out;
1845 __split_huge_pud_locked(vma, pud, haddr);
1846
1847out:
1848 spin_unlock(ptl);
1849 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE);
1850}
1851#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1852
eef1b3ba
KS
1853static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1854 unsigned long haddr, pmd_t *pmd)
1855{
1856 struct mm_struct *mm = vma->vm_mm;
1857 pgtable_t pgtable;
1858 pmd_t _pmd;
1859 int i;
1860
1861 /* leave pmd empty until pte is filled */
1862 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1863
1864 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1865 pmd_populate(mm, &_pmd, pgtable);
1866
1867 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1868 pte_t *pte, entry;
1869 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1870 entry = pte_mkspecial(entry);
1871 pte = pte_offset_map(&_pmd, haddr);
1872 VM_BUG_ON(!pte_none(*pte));
1873 set_pte_at(mm, haddr, pte, entry);
1874 pte_unmap(pte);
1875 }
1876 smp_wmb(); /* make pte visible before pmd */
1877 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
1878}
1879
1880static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 1881 unsigned long haddr, bool freeze)
eef1b3ba
KS
1882{
1883 struct mm_struct *mm = vma->vm_mm;
1884 struct page *page;
1885 pgtable_t pgtable;
1886 pmd_t _pmd;
804dd150 1887 bool young, write, dirty, soft_dirty;
2ac015e2 1888 unsigned long addr;
eef1b3ba
KS
1889 int i;
1890
1891 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1892 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1893 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
5c7fb56e 1894 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
eef1b3ba
KS
1895
1896 count_vm_event(THP_SPLIT_PMD);
1897
d21b9e57
KS
1898 if (!vma_is_anonymous(vma)) {
1899 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
1900 /*
1901 * We are going to unmap this huge page. So
1902 * just go ahead and zap it
1903 */
1904 if (arch_needs_pgtable_deposit())
1905 zap_deposited_table(mm, pmd);
d21b9e57
KS
1906 if (vma_is_dax(vma))
1907 return;
1908 page = pmd_page(_pmd);
1909 if (!PageReferenced(page) && pmd_young(_pmd))
1910 SetPageReferenced(page);
1911 page_remove_rmap(page, true);
1912 put_page(page);
1913 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
eef1b3ba
KS
1914 return;
1915 } else if (is_huge_zero_pmd(*pmd)) {
1916 return __split_huge_zero_page_pmd(vma, haddr, pmd);
1917 }
1918
1919 page = pmd_page(*pmd);
1920 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 1921 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba
KS
1922 write = pmd_write(*pmd);
1923 young = pmd_young(*pmd);
b8d3c4c3 1924 dirty = pmd_dirty(*pmd);
804dd150 1925 soft_dirty = pmd_soft_dirty(*pmd);
eef1b3ba 1926
c777e2a8 1927 pmdp_huge_split_prepare(vma, haddr, pmd);
eef1b3ba
KS
1928 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1929 pmd_populate(mm, &_pmd, pgtable);
1930
2ac015e2 1931 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
1932 pte_t entry, *pte;
1933 /*
1934 * Note that NUMA hinting access restrictions are not
1935 * transferred to avoid any possibility of altering
1936 * permissions across VMAs.
1937 */
ba988280
KS
1938 if (freeze) {
1939 swp_entry_t swp_entry;
1940 swp_entry = make_migration_entry(page + i, write);
1941 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
1942 if (soft_dirty)
1943 entry = pte_swp_mksoft_dirty(entry);
ba988280 1944 } else {
6d2329f8 1945 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 1946 entry = maybe_mkwrite(entry, vma);
ba988280
KS
1947 if (!write)
1948 entry = pte_wrprotect(entry);
1949 if (!young)
1950 entry = pte_mkold(entry);
804dd150
AA
1951 if (soft_dirty)
1952 entry = pte_mksoft_dirty(entry);
ba988280 1953 }
b8d3c4c3
MK
1954 if (dirty)
1955 SetPageDirty(page + i);
2ac015e2 1956 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 1957 BUG_ON(!pte_none(*pte));
2ac015e2 1958 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
1959 atomic_inc(&page[i]._mapcount);
1960 pte_unmap(pte);
1961 }
1962
1963 /*
1964 * Set PG_double_map before dropping compound_mapcount to avoid
1965 * false-negative page_mapped().
1966 */
1967 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
1968 for (i = 0; i < HPAGE_PMD_NR; i++)
1969 atomic_inc(&page[i]._mapcount);
1970 }
1971
1972 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
1973 /* Last compound_mapcount is gone. */
11fb9989 1974 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
1975 if (TestClearPageDoubleMap(page)) {
1976 /* No need in mapcount reference anymore */
1977 for (i = 0; i < HPAGE_PMD_NR; i++)
1978 atomic_dec(&page[i]._mapcount);
1979 }
1980 }
1981
1982 smp_wmb(); /* make pte visible before pmd */
e9b61f19
KS
1983 /*
1984 * Up to this point the pmd is present and huge and userland has the
1985 * whole access to the hugepage during the split (which happens in
1986 * place). If we overwrite the pmd with the not-huge version pointing
1987 * to the pte here (which of course we could if all CPUs were bug
1988 * free), userland could trigger a small page size TLB miss on the
1989 * small sized TLB while the hugepage TLB entry is still established in
1990 * the huge TLB. Some CPU doesn't like that.
1991 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1992 * 383 on page 93. Intel should be safe but is also warns that it's
1993 * only safe if the permission and cache attributes of the two entries
1994 * loaded in the two TLB is identical (which should be the case here).
1995 * But it is generally safer to never allow small and huge TLB entries
1996 * for the same virtual address to be loaded simultaneously. So instead
1997 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1998 * current pmd notpresent (atomically because here the pmd_trans_huge
1999 * and pmd_trans_splitting must remain set at all times on the pmd
2000 * until the split is complete for this pmd), then we flush the SMP TLB
2001 * and finally we write the non-huge version of the pmd entry with
2002 * pmd_populate.
2003 */
2004 pmdp_invalidate(vma, haddr, pmd);
eef1b3ba 2005 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2006
2007 if (freeze) {
2ac015e2 2008 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2009 page_remove_rmap(page + i, false);
2010 put_page(page + i);
2011 }
2012 }
eef1b3ba
KS
2013}
2014
2015void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2016 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2017{
2018 spinlock_t *ptl;
2019 struct mm_struct *mm = vma->vm_mm;
2020 unsigned long haddr = address & HPAGE_PMD_MASK;
2021
2022 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2023 ptl = pmd_lock(mm, pmd);
33f4751e
NH
2024
2025 /*
2026 * If caller asks to setup a migration entries, we need a page to check
2027 * pmd against. Otherwise we can end up replacing wrong page.
2028 */
2029 VM_BUG_ON(freeze && !page);
2030 if (page && page != pmd_page(*pmd))
2031 goto out;
2032
5c7fb56e 2033 if (pmd_trans_huge(*pmd)) {
33f4751e 2034 page = pmd_page(*pmd);
5c7fb56e 2035 if (PageMlocked(page))
5f737714 2036 clear_page_mlock(page);
5c7fb56e 2037 } else if (!pmd_devmap(*pmd))
e90309c9 2038 goto out;
fec89c10 2039 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
e90309c9 2040out:
eef1b3ba
KS
2041 spin_unlock(ptl);
2042 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2043}
2044
fec89c10
KS
2045void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2046 bool freeze, struct page *page)
94fcc585 2047{
f72e7dcd
HD
2048 pgd_t *pgd;
2049 pud_t *pud;
94fcc585
AA
2050 pmd_t *pmd;
2051
78ddc534 2052 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2053 if (!pgd_present(*pgd))
2054 return;
2055
2056 pud = pud_offset(pgd, address);
2057 if (!pud_present(*pud))
2058 return;
2059
2060 pmd = pmd_offset(pud, address);
fec89c10 2061
33f4751e 2062 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2063}
2064
e1b9996b 2065void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2066 unsigned long start,
2067 unsigned long end,
2068 long adjust_next)
2069{
2070 /*
2071 * If the new start address isn't hpage aligned and it could
2072 * previously contain an hugepage: check if we need to split
2073 * an huge pmd.
2074 */
2075 if (start & ~HPAGE_PMD_MASK &&
2076 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2077 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2078 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2079
2080 /*
2081 * If the new end address isn't hpage aligned and it could
2082 * previously contain an hugepage: check if we need to split
2083 * an huge pmd.
2084 */
2085 if (end & ~HPAGE_PMD_MASK &&
2086 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2087 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2088 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2089
2090 /*
2091 * If we're also updating the vma->vm_next->vm_start, if the new
2092 * vm_next->vm_start isn't page aligned and it could previously
2093 * contain an hugepage: check if we need to split an huge pmd.
2094 */
2095 if (adjust_next > 0) {
2096 struct vm_area_struct *next = vma->vm_next;
2097 unsigned long nstart = next->vm_start;
2098 nstart += adjust_next << PAGE_SHIFT;
2099 if (nstart & ~HPAGE_PMD_MASK &&
2100 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2101 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2102 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2103 }
2104}
e9b61f19 2105
fec89c10 2106static void freeze_page(struct page *page)
e9b61f19 2107{
baa355fd
KS
2108 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2109 TTU_RMAP_LOCKED;
fec89c10 2110 int i, ret;
e9b61f19
KS
2111
2112 VM_BUG_ON_PAGE(!PageHead(page), page);
2113
baa355fd
KS
2114 if (PageAnon(page))
2115 ttu_flags |= TTU_MIGRATION;
2116
fec89c10
KS
2117 /* We only need TTU_SPLIT_HUGE_PMD once */
2118 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
2119 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
2120 /* Cut short if the page is unmapped */
2121 if (page_count(page) == 1)
2122 return;
e9b61f19 2123
fec89c10 2124 ret = try_to_unmap(page + i, ttu_flags);
e9b61f19 2125 }
baa355fd 2126 VM_BUG_ON_PAGE(ret, page + i - 1);
e9b61f19
KS
2127}
2128
fec89c10 2129static void unfreeze_page(struct page *page)
e9b61f19 2130{
fec89c10 2131 int i;
e9b61f19 2132
fec89c10
KS
2133 for (i = 0; i < HPAGE_PMD_NR; i++)
2134 remove_migration_ptes(page + i, page + i, true);
e9b61f19
KS
2135}
2136
8df651c7 2137static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2138 struct lruvec *lruvec, struct list_head *list)
2139{
e9b61f19
KS
2140 struct page *page_tail = head + tail;
2141
8df651c7 2142 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
fe896d18 2143 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
e9b61f19
KS
2144
2145 /*
0139aa7b 2146 * tail_page->_refcount is zero and not changing from under us. But
e9b61f19 2147 * get_page_unless_zero() may be running from under us on the
baa355fd
KS
2148 * tail_page. If we used atomic_set() below instead of atomic_inc() or
2149 * atomic_add(), we would then run atomic_set() concurrently with
e9b61f19
KS
2150 * get_page_unless_zero(), and atomic_set() is implemented in C not
2151 * using locked ops. spin_unlock on x86 sometime uses locked ops
2152 * because of PPro errata 66, 92, so unless somebody can guarantee
2153 * atomic_set() here would be safe on all archs (and not only on x86),
baa355fd 2154 * it's safer to use atomic_inc()/atomic_add().
e9b61f19 2155 */
baa355fd
KS
2156 if (PageAnon(head)) {
2157 page_ref_inc(page_tail);
2158 } else {
2159 /* Additional pin to radix tree */
2160 page_ref_add(page_tail, 2);
2161 }
e9b61f19
KS
2162
2163 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2164 page_tail->flags |= (head->flags &
2165 ((1L << PG_referenced) |
2166 (1L << PG_swapbacked) |
2167 (1L << PG_mlocked) |
2168 (1L << PG_uptodate) |
2169 (1L << PG_active) |
2170 (1L << PG_locked) |
b8d3c4c3
MK
2171 (1L << PG_unevictable) |
2172 (1L << PG_dirty)));
e9b61f19
KS
2173
2174 /*
2175 * After clearing PageTail the gup refcount can be released.
2176 * Page flags also must be visible before we make the page non-compound.
2177 */
2178 smp_wmb();
2179
2180 clear_compound_head(page_tail);
2181
2182 if (page_is_young(head))
2183 set_page_young(page_tail);
2184 if (page_is_idle(head))
2185 set_page_idle(page_tail);
2186
2187 /* ->mapping in first tail page is compound_mapcount */
9a982250 2188 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
e9b61f19
KS
2189 page_tail);
2190 page_tail->mapping = head->mapping;
2191
2192 page_tail->index = head->index + tail;
2193 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2194 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2195}
2196
baa355fd
KS
2197static void __split_huge_page(struct page *page, struct list_head *list,
2198 unsigned long flags)
e9b61f19
KS
2199{
2200 struct page *head = compound_head(page);
2201 struct zone *zone = page_zone(head);
2202 struct lruvec *lruvec;
baa355fd 2203 pgoff_t end = -1;
8df651c7 2204 int i;
e9b61f19 2205
599d0c95 2206 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
e9b61f19
KS
2207
2208 /* complete memcg works before add pages to LRU */
2209 mem_cgroup_split_huge_fixup(head);
2210
baa355fd
KS
2211 if (!PageAnon(page))
2212 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2213
2214 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 2215 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2216 /* Some pages can be beyond i_size: drop them from page cache */
2217 if (head[i].index >= end) {
2218 __ClearPageDirty(head + i);
2219 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2220 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2221 shmem_uncharge(head->mapping->host, 1);
baa355fd
KS
2222 put_page(head + i);
2223 }
2224 }
e9b61f19
KS
2225
2226 ClearPageCompound(head);
baa355fd
KS
2227 /* See comment in __split_huge_page_tail() */
2228 if (PageAnon(head)) {
2229 page_ref_inc(head);
2230 } else {
2231 /* Additional pin to radix tree */
2232 page_ref_add(head, 2);
2233 spin_unlock(&head->mapping->tree_lock);
2234 }
2235
a52633d8 2236 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
e9b61f19 2237
fec89c10 2238 unfreeze_page(head);
e9b61f19
KS
2239
2240 for (i = 0; i < HPAGE_PMD_NR; i++) {
2241 struct page *subpage = head + i;
2242 if (subpage == page)
2243 continue;
2244 unlock_page(subpage);
2245
2246 /*
2247 * Subpages may be freed if there wasn't any mapping
2248 * like if add_to_swap() is running on a lru page that
2249 * had its mapping zapped. And freeing these pages
2250 * requires taking the lru_lock so we do the put_page
2251 * of the tail pages after the split is complete.
2252 */
2253 put_page(subpage);
2254 }
2255}
2256
b20ce5e0
KS
2257int total_mapcount(struct page *page)
2258{
dd78fedd 2259 int i, compound, ret;
b20ce5e0
KS
2260
2261 VM_BUG_ON_PAGE(PageTail(page), page);
2262
2263 if (likely(!PageCompound(page)))
2264 return atomic_read(&page->_mapcount) + 1;
2265
dd78fedd 2266 compound = compound_mapcount(page);
b20ce5e0 2267 if (PageHuge(page))
dd78fedd
KS
2268 return compound;
2269 ret = compound;
b20ce5e0
KS
2270 for (i = 0; i < HPAGE_PMD_NR; i++)
2271 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2272 /* File pages has compound_mapcount included in _mapcount */
2273 if (!PageAnon(page))
2274 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2275 if (PageDoubleMap(page))
2276 ret -= HPAGE_PMD_NR;
2277 return ret;
2278}
2279
6d0a07ed
AA
2280/*
2281 * This calculates accurately how many mappings a transparent hugepage
2282 * has (unlike page_mapcount() which isn't fully accurate). This full
2283 * accuracy is primarily needed to know if copy-on-write faults can
2284 * reuse the page and change the mapping to read-write instead of
2285 * copying them. At the same time this returns the total_mapcount too.
2286 *
2287 * The function returns the highest mapcount any one of the subpages
2288 * has. If the return value is one, even if different processes are
2289 * mapping different subpages of the transparent hugepage, they can
2290 * all reuse it, because each process is reusing a different subpage.
2291 *
2292 * The total_mapcount is instead counting all virtual mappings of the
2293 * subpages. If the total_mapcount is equal to "one", it tells the
2294 * caller all mappings belong to the same "mm" and in turn the
2295 * anon_vma of the transparent hugepage can become the vma->anon_vma
2296 * local one as no other process may be mapping any of the subpages.
2297 *
2298 * It would be more accurate to replace page_mapcount() with
2299 * page_trans_huge_mapcount(), however we only use
2300 * page_trans_huge_mapcount() in the copy-on-write faults where we
2301 * need full accuracy to avoid breaking page pinning, because
2302 * page_trans_huge_mapcount() is slower than page_mapcount().
2303 */
2304int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2305{
2306 int i, ret, _total_mapcount, mapcount;
2307
2308 /* hugetlbfs shouldn't call it */
2309 VM_BUG_ON_PAGE(PageHuge(page), page);
2310
2311 if (likely(!PageTransCompound(page))) {
2312 mapcount = atomic_read(&page->_mapcount) + 1;
2313 if (total_mapcount)
2314 *total_mapcount = mapcount;
2315 return mapcount;
2316 }
2317
2318 page = compound_head(page);
2319
2320 _total_mapcount = ret = 0;
2321 for (i = 0; i < HPAGE_PMD_NR; i++) {
2322 mapcount = atomic_read(&page[i]._mapcount) + 1;
2323 ret = max(ret, mapcount);
2324 _total_mapcount += mapcount;
2325 }
2326 if (PageDoubleMap(page)) {
2327 ret -= 1;
2328 _total_mapcount -= HPAGE_PMD_NR;
2329 }
2330 mapcount = compound_mapcount(page);
2331 ret += mapcount;
2332 _total_mapcount += mapcount;
2333 if (total_mapcount)
2334 *total_mapcount = _total_mapcount;
2335 return ret;
2336}
2337
e9b61f19
KS
2338/*
2339 * This function splits huge page into normal pages. @page can point to any
2340 * subpage of huge page to split. Split doesn't change the position of @page.
2341 *
2342 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2343 * The huge page must be locked.
2344 *
2345 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2346 *
2347 * Both head page and tail pages will inherit mapping, flags, and so on from
2348 * the hugepage.
2349 *
2350 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2351 * they are not mapped.
2352 *
2353 * Returns 0 if the hugepage is split successfully.
2354 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2355 * us.
2356 */
2357int split_huge_page_to_list(struct page *page, struct list_head *list)
2358{
2359 struct page *head = compound_head(page);
a3d0a918 2360 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
baa355fd
KS
2361 struct anon_vma *anon_vma = NULL;
2362 struct address_space *mapping = NULL;
2363 int count, mapcount, extra_pins, ret;
d9654322 2364 bool mlocked;
0b9b6fff 2365 unsigned long flags;
e9b61f19
KS
2366
2367 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
e9b61f19
KS
2368 VM_BUG_ON_PAGE(!PageLocked(page), page);
2369 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2370 VM_BUG_ON_PAGE(!PageCompound(page), page);
2371
baa355fd
KS
2372 if (PageAnon(head)) {
2373 /*
2374 * The caller does not necessarily hold an mmap_sem that would
2375 * prevent the anon_vma disappearing so we first we take a
2376 * reference to it and then lock the anon_vma for write. This
2377 * is similar to page_lock_anon_vma_read except the write lock
2378 * is taken to serialise against parallel split or collapse
2379 * operations.
2380 */
2381 anon_vma = page_get_anon_vma(head);
2382 if (!anon_vma) {
2383 ret = -EBUSY;
2384 goto out;
2385 }
2386 extra_pins = 0;
2387 mapping = NULL;
2388 anon_vma_lock_write(anon_vma);
2389 } else {
2390 mapping = head->mapping;
2391
2392 /* Truncated ? */
2393 if (!mapping) {
2394 ret = -EBUSY;
2395 goto out;
2396 }
2397
2398 /* Addidional pins from radix tree */
2399 extra_pins = HPAGE_PMD_NR;
2400 anon_vma = NULL;
2401 i_mmap_lock_read(mapping);
e9b61f19 2402 }
e9b61f19
KS
2403
2404 /*
2405 * Racy check if we can split the page, before freeze_page() will
2406 * split PMDs
2407 */
baa355fd 2408 if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
e9b61f19
KS
2409 ret = -EBUSY;
2410 goto out_unlock;
2411 }
2412
d9654322 2413 mlocked = PageMlocked(page);
fec89c10 2414 freeze_page(head);
e9b61f19
KS
2415 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2416
d9654322
KS
2417 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2418 if (mlocked)
2419 lru_add_drain();
2420
baa355fd 2421 /* prevent PageLRU to go away from under us, and freeze lru stats */
a52633d8 2422 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
baa355fd
KS
2423
2424 if (mapping) {
2425 void **pslot;
2426
2427 spin_lock(&mapping->tree_lock);
2428 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2429 page_index(head));
2430 /*
2431 * Check if the head page is present in radix tree.
2432 * We assume all tail are present too, if head is there.
2433 */
2434 if (radix_tree_deref_slot_protected(pslot,
2435 &mapping->tree_lock) != head)
2436 goto fail;
2437 }
2438
0139aa7b 2439 /* Prevent deferred_split_scan() touching ->_refcount */
baa355fd 2440 spin_lock(&pgdata->split_queue_lock);
e9b61f19
KS
2441 count = page_count(head);
2442 mapcount = total_mapcount(head);
baa355fd 2443 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2444 if (!list_empty(page_deferred_list(head))) {
a3d0a918 2445 pgdata->split_queue_len--;
9a982250
KS
2446 list_del(page_deferred_list(head));
2447 }
65c45377 2448 if (mapping)
11fb9989 2449 __dec_node_page_state(page, NR_SHMEM_THPS);
baa355fd
KS
2450 spin_unlock(&pgdata->split_queue_lock);
2451 __split_huge_page(page, list, flags);
e9b61f19 2452 ret = 0;
e9b61f19 2453 } else {
baa355fd
KS
2454 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2455 pr_alert("total_mapcount: %u, page_count(): %u\n",
2456 mapcount, count);
2457 if (PageTail(page))
2458 dump_page(head, NULL);
2459 dump_page(page, "total_mapcount(head) > 0");
2460 BUG();
2461 }
2462 spin_unlock(&pgdata->split_queue_lock);
2463fail: if (mapping)
2464 spin_unlock(&mapping->tree_lock);
a52633d8 2465 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
fec89c10 2466 unfreeze_page(head);
e9b61f19
KS
2467 ret = -EBUSY;
2468 }
2469
2470out_unlock:
baa355fd
KS
2471 if (anon_vma) {
2472 anon_vma_unlock_write(anon_vma);
2473 put_anon_vma(anon_vma);
2474 }
2475 if (mapping)
2476 i_mmap_unlock_read(mapping);
e9b61f19
KS
2477out:
2478 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2479 return ret;
2480}
9a982250
KS
2481
2482void free_transhuge_page(struct page *page)
2483{
a3d0a918 2484 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2485 unsigned long flags;
2486
a3d0a918 2487 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2488 if (!list_empty(page_deferred_list(page))) {
a3d0a918 2489 pgdata->split_queue_len--;
9a982250
KS
2490 list_del(page_deferred_list(page));
2491 }
a3d0a918 2492 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2493 free_compound_page(page);
2494}
2495
2496void deferred_split_huge_page(struct page *page)
2497{
a3d0a918 2498 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2499 unsigned long flags;
2500
2501 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2502
a3d0a918 2503 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2504 if (list_empty(page_deferred_list(page))) {
f9719a03 2505 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
2506 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2507 pgdata->split_queue_len++;
9a982250 2508 }
a3d0a918 2509 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2510}
2511
2512static unsigned long deferred_split_count(struct shrinker *shrink,
2513 struct shrink_control *sc)
2514{
a3d0a918 2515 struct pglist_data *pgdata = NODE_DATA(sc->nid);
cb8d68ec 2516 return ACCESS_ONCE(pgdata->split_queue_len);
9a982250
KS
2517}
2518
2519static unsigned long deferred_split_scan(struct shrinker *shrink,
2520 struct shrink_control *sc)
2521{
a3d0a918 2522 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
2523 unsigned long flags;
2524 LIST_HEAD(list), *pos, *next;
2525 struct page *page;
2526 int split = 0;
2527
a3d0a918 2528 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2529 /* Take pin on all head pages to avoid freeing them under us */
ae026204 2530 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
2531 page = list_entry((void *)pos, struct page, mapping);
2532 page = compound_head(page);
e3ae1953
KS
2533 if (get_page_unless_zero(page)) {
2534 list_move(page_deferred_list(page), &list);
2535 } else {
2536 /* We lost race with put_compound_page() */
9a982250 2537 list_del_init(page_deferred_list(page));
a3d0a918 2538 pgdata->split_queue_len--;
9a982250 2539 }
e3ae1953
KS
2540 if (!--sc->nr_to_scan)
2541 break;
9a982250 2542 }
a3d0a918 2543 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2544
2545 list_for_each_safe(pos, next, &list) {
2546 page = list_entry((void *)pos, struct page, mapping);
2547 lock_page(page);
2548 /* split_huge_page() removes page from list on success */
2549 if (!split_huge_page(page))
2550 split++;
2551 unlock_page(page);
2552 put_page(page);
2553 }
2554
a3d0a918
KS
2555 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2556 list_splice_tail(&list, &pgdata->split_queue);
2557 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 2558
cb8d68ec
KS
2559 /*
2560 * Stop shrinker if we didn't split any page, but the queue is empty.
2561 * This can happen if pages were freed under us.
2562 */
2563 if (!split && list_empty(&pgdata->split_queue))
2564 return SHRINK_STOP;
2565 return split;
9a982250
KS
2566}
2567
2568static struct shrinker deferred_split_shrinker = {
2569 .count_objects = deferred_split_count,
2570 .scan_objects = deferred_split_scan,
2571 .seeks = DEFAULT_SEEKS,
a3d0a918 2572 .flags = SHRINKER_NUMA_AWARE,
9a982250 2573};
49071d43
KS
2574
2575#ifdef CONFIG_DEBUG_FS
2576static int split_huge_pages_set(void *data, u64 val)
2577{
2578 struct zone *zone;
2579 struct page *page;
2580 unsigned long pfn, max_zone_pfn;
2581 unsigned long total = 0, split = 0;
2582
2583 if (val != 1)
2584 return -EINVAL;
2585
2586 for_each_populated_zone(zone) {
2587 max_zone_pfn = zone_end_pfn(zone);
2588 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2589 if (!pfn_valid(pfn))
2590 continue;
2591
2592 page = pfn_to_page(pfn);
2593 if (!get_page_unless_zero(page))
2594 continue;
2595
2596 if (zone != page_zone(page))
2597 goto next;
2598
baa355fd 2599 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2600 goto next;
2601
2602 total++;
2603 lock_page(page);
2604 if (!split_huge_page(page))
2605 split++;
2606 unlock_page(page);
2607next:
2608 put_page(page);
2609 }
2610 }
2611
145bdaa1 2612 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2613
2614 return 0;
2615}
2616DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2617 "%llu\n");
2618
2619static int __init split_huge_pages_debugfs(void)
2620{
2621 void *ret;
2622
145bdaa1 2623 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
49071d43
KS
2624 &split_huge_pages_fops);
2625 if (!ret)
2626 pr_warn("Failed to create split_huge_pages in debugfs");
2627 return 0;
2628}
2629late_initcall(split_huge_pages_debugfs);
2630#endif