]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/vmscan.c
pmem: add wb_cache_pmem() to the PMEM API
[thirdparty/kernel/stable.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
b1de0d13
MH
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
1da177e4
LT
16#include <linux/mm.h>
17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
268bb0ce 47#include <linux/prefetch.h>
b1de0d13 48#include <linux/printk.h>
1da177e4
LT
49
50#include <asm/tlbflush.h>
51#include <asm/div64.h>
52
53#include <linux/swapops.h>
117aad1e 54#include <linux/balloon_compaction.h>
1da177e4 55
0f8053a5
NP
56#include "internal.h"
57
33906bc5
MG
58#define CREATE_TRACE_POINTS
59#include <trace/events/vmscan.h>
60
1da177e4 61struct scan_control {
22fba335
KM
62 /* How many pages shrink_list() should reclaim */
63 unsigned long nr_to_reclaim;
64
1da177e4 65 /* This context's GFP mask */
6daa0e28 66 gfp_t gfp_mask;
1da177e4 67
ee814fe2 68 /* Allocation order */
5ad333eb 69 int order;
66e1707b 70
ee814fe2
JW
71 /*
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
74 */
75 nodemask_t *nodemask;
9e3b2f8c 76
f16015fb
JW
77 /*
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
80 */
81 struct mem_cgroup *target_mem_cgroup;
66e1707b 82
ee814fe2
JW
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
86 unsigned int may_writepage:1;
87
88 /* Can mapped pages be reclaimed? */
89 unsigned int may_unmap:1;
90
91 /* Can pages be swapped as part of reclaim? */
92 unsigned int may_swap:1;
93
241994ed
JW
94 /* Can cgroups be reclaimed below their normal consumption range? */
95 unsigned int may_thrash:1;
96
ee814fe2
JW
97 unsigned int hibernation_mode:1;
98
99 /* One of the zones is ready for compaction */
100 unsigned int compaction_ready:1;
101
102 /* Incremented by the number of inactive pages that were scanned */
103 unsigned long nr_scanned;
104
105 /* Number of pages freed so far during a call to shrink_zones() */
106 unsigned long nr_reclaimed;
1da177e4
LT
107};
108
1da177e4
LT
109#ifdef ARCH_HAS_PREFETCH
110#define prefetch_prev_lru_page(_page, _base, _field) \
111 do { \
112 if ((_page)->lru.prev != _base) { \
113 struct page *prev; \
114 \
115 prev = lru_to_page(&(_page->lru)); \
116 prefetch(&prev->_field); \
117 } \
118 } while (0)
119#else
120#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
121#endif
122
123#ifdef ARCH_HAS_PREFETCHW
124#define prefetchw_prev_lru_page(_page, _base, _field) \
125 do { \
126 if ((_page)->lru.prev != _base) { \
127 struct page *prev; \
128 \
129 prev = lru_to_page(&(_page->lru)); \
130 prefetchw(&prev->_field); \
131 } \
132 } while (0)
133#else
134#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
135#endif
136
137/*
138 * From 0 .. 100. Higher means more swappy.
139 */
140int vm_swappiness = 60;
d0480be4
WSH
141/*
142 * The total number of pages which are beyond the high watermark within all
143 * zones.
144 */
145unsigned long vm_total_pages;
1da177e4
LT
146
147static LIST_HEAD(shrinker_list);
148static DECLARE_RWSEM(shrinker_rwsem);
149
c255a458 150#ifdef CONFIG_MEMCG
89b5fae5
JW
151static bool global_reclaim(struct scan_control *sc)
152{
f16015fb 153 return !sc->target_mem_cgroup;
89b5fae5 154}
97c9341f
TH
155
156/**
157 * sane_reclaim - is the usual dirty throttling mechanism operational?
158 * @sc: scan_control in question
159 *
160 * The normal page dirty throttling mechanism in balance_dirty_pages() is
161 * completely broken with the legacy memcg and direct stalling in
162 * shrink_page_list() is used for throttling instead, which lacks all the
163 * niceties such as fairness, adaptive pausing, bandwidth proportional
164 * allocation and configurability.
165 *
166 * This function tests whether the vmscan currently in progress can assume
167 * that the normal dirty throttling mechanism is operational.
168 */
169static bool sane_reclaim(struct scan_control *sc)
170{
171 struct mem_cgroup *memcg = sc->target_mem_cgroup;
172
173 if (!memcg)
174 return true;
175#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 176 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
177 return true;
178#endif
179 return false;
180}
91a45470 181#else
89b5fae5
JW
182static bool global_reclaim(struct scan_control *sc)
183{
184 return true;
185}
97c9341f
TH
186
187static bool sane_reclaim(struct scan_control *sc)
188{
189 return true;
190}
91a45470
KH
191#endif
192
a1c3bfb2 193static unsigned long zone_reclaimable_pages(struct zone *zone)
6e543d57 194{
d031a157 195 unsigned long nr;
6e543d57
LD
196
197 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
9f6c399d
MH
198 zone_page_state(zone, NR_INACTIVE_FILE) +
199 zone_page_state(zone, NR_ISOLATED_FILE);
6e543d57
LD
200
201 if (get_nr_swap_pages() > 0)
202 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
9f6c399d
MH
203 zone_page_state(zone, NR_INACTIVE_ANON) +
204 zone_page_state(zone, NR_ISOLATED_ANON);
6e543d57
LD
205
206 return nr;
207}
208
209bool zone_reclaimable(struct zone *zone)
210{
0d5d823a
MG
211 return zone_page_state(zone, NR_PAGES_SCANNED) <
212 zone_reclaimable_pages(zone) * 6;
6e543d57
LD
213}
214
4d7dcca2 215static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 216{
c3c787e8 217 if (!mem_cgroup_disabled())
4d7dcca2 218 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 219
074291fe 220 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
221}
222
1da177e4 223/*
1d3d4437 224 * Add a shrinker callback to be called from the vm.
1da177e4 225 */
1d3d4437 226int register_shrinker(struct shrinker *shrinker)
1da177e4 227{
1d3d4437
GC
228 size_t size = sizeof(*shrinker->nr_deferred);
229
230 /*
231 * If we only have one possible node in the system anyway, save
232 * ourselves the trouble and disable NUMA aware behavior. This way we
233 * will save memory and some small loop time later.
234 */
235 if (nr_node_ids == 1)
236 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
237
238 if (shrinker->flags & SHRINKER_NUMA_AWARE)
239 size *= nr_node_ids;
240
241 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
242 if (!shrinker->nr_deferred)
243 return -ENOMEM;
244
8e1f936b
RR
245 down_write(&shrinker_rwsem);
246 list_add_tail(&shrinker->list, &shrinker_list);
247 up_write(&shrinker_rwsem);
1d3d4437 248 return 0;
1da177e4 249}
8e1f936b 250EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
251
252/*
253 * Remove one
254 */
8e1f936b 255void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
256{
257 down_write(&shrinker_rwsem);
258 list_del(&shrinker->list);
259 up_write(&shrinker_rwsem);
ae393321 260 kfree(shrinker->nr_deferred);
1da177e4 261}
8e1f936b 262EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
263
264#define SHRINK_BATCH 128
1d3d4437 265
cb731d6c
VD
266static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
267 struct shrinker *shrinker,
268 unsigned long nr_scanned,
269 unsigned long nr_eligible)
1d3d4437
GC
270{
271 unsigned long freed = 0;
272 unsigned long long delta;
273 long total_scan;
d5bc5fd3 274 long freeable;
1d3d4437
GC
275 long nr;
276 long new_nr;
277 int nid = shrinkctl->nid;
278 long batch_size = shrinker->batch ? shrinker->batch
279 : SHRINK_BATCH;
280
d5bc5fd3
VD
281 freeable = shrinker->count_objects(shrinker, shrinkctl);
282 if (freeable == 0)
1d3d4437
GC
283 return 0;
284
285 /*
286 * copy the current shrinker scan count into a local variable
287 * and zero it so that other concurrent shrinker invocations
288 * don't also do this scanning work.
289 */
290 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
291
292 total_scan = nr;
6b4f7799 293 delta = (4 * nr_scanned) / shrinker->seeks;
d5bc5fd3 294 delta *= freeable;
6b4f7799 295 do_div(delta, nr_eligible + 1);
1d3d4437
GC
296 total_scan += delta;
297 if (total_scan < 0) {
8612c663 298 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 299 shrinker->scan_objects, total_scan);
d5bc5fd3 300 total_scan = freeable;
1d3d4437
GC
301 }
302
303 /*
304 * We need to avoid excessive windup on filesystem shrinkers
305 * due to large numbers of GFP_NOFS allocations causing the
306 * shrinkers to return -1 all the time. This results in a large
307 * nr being built up so when a shrink that can do some work
308 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 309 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
310 * memory.
311 *
312 * Hence only allow the shrinker to scan the entire cache when
313 * a large delta change is calculated directly.
314 */
d5bc5fd3
VD
315 if (delta < freeable / 4)
316 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
317
318 /*
319 * Avoid risking looping forever due to too large nr value:
320 * never try to free more than twice the estimate number of
321 * freeable entries.
322 */
d5bc5fd3
VD
323 if (total_scan > freeable * 2)
324 total_scan = freeable * 2;
1d3d4437
GC
325
326 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
6b4f7799
JW
327 nr_scanned, nr_eligible,
328 freeable, delta, total_scan);
1d3d4437 329
0b1fb40a
VD
330 /*
331 * Normally, we should not scan less than batch_size objects in one
332 * pass to avoid too frequent shrinker calls, but if the slab has less
333 * than batch_size objects in total and we are really tight on memory,
334 * we will try to reclaim all available objects, otherwise we can end
335 * up failing allocations although there are plenty of reclaimable
336 * objects spread over several slabs with usage less than the
337 * batch_size.
338 *
339 * We detect the "tight on memory" situations by looking at the total
340 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 341 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
342 * scanning at high prio and therefore should try to reclaim as much as
343 * possible.
344 */
345 while (total_scan >= batch_size ||
d5bc5fd3 346 total_scan >= freeable) {
a0b02131 347 unsigned long ret;
0b1fb40a 348 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 349
0b1fb40a 350 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
351 ret = shrinker->scan_objects(shrinker, shrinkctl);
352 if (ret == SHRINK_STOP)
353 break;
354 freed += ret;
1d3d4437 355
0b1fb40a
VD
356 count_vm_events(SLABS_SCANNED, nr_to_scan);
357 total_scan -= nr_to_scan;
1d3d4437
GC
358
359 cond_resched();
360 }
361
362 /*
363 * move the unused scan count back into the shrinker in a
364 * manner that handles concurrent updates. If we exhausted the
365 * scan, there is no need to do an update.
366 */
367 if (total_scan > 0)
368 new_nr = atomic_long_add_return(total_scan,
369 &shrinker->nr_deferred[nid]);
370 else
371 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
372
df9024a8 373 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 374 return freed;
1495f230
YH
375}
376
6b4f7799 377/**
cb731d6c 378 * shrink_slab - shrink slab caches
6b4f7799
JW
379 * @gfp_mask: allocation context
380 * @nid: node whose slab caches to target
cb731d6c 381 * @memcg: memory cgroup whose slab caches to target
6b4f7799
JW
382 * @nr_scanned: pressure numerator
383 * @nr_eligible: pressure denominator
1da177e4 384 *
6b4f7799 385 * Call the shrink functions to age shrinkable caches.
1da177e4 386 *
6b4f7799
JW
387 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
388 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 389 *
cb731d6c
VD
390 * @memcg specifies the memory cgroup to target. If it is not NULL,
391 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
392 * objects from the memory cgroup specified. Otherwise all shrinkers
393 * are called, and memcg aware shrinkers are supposed to scan the
394 * global list then.
395 *
6b4f7799
JW
396 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
397 * the available objects should be scanned. Page reclaim for example
398 * passes the number of pages scanned and the number of pages on the
399 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
400 * when it encountered mapped pages. The ratio is further biased by
401 * the ->seeks setting of the shrink function, which indicates the
402 * cost to recreate an object relative to that of an LRU page.
b15e0905 403 *
6b4f7799 404 * Returns the number of reclaimed slab objects.
1da177e4 405 */
cb731d6c
VD
406static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
407 struct mem_cgroup *memcg,
408 unsigned long nr_scanned,
409 unsigned long nr_eligible)
1da177e4
LT
410{
411 struct shrinker *shrinker;
24f7c6b9 412 unsigned long freed = 0;
1da177e4 413
567e9ab2 414 if (memcg && !memcg_kmem_online(memcg))
cb731d6c
VD
415 return 0;
416
6b4f7799
JW
417 if (nr_scanned == 0)
418 nr_scanned = SWAP_CLUSTER_MAX;
1da177e4 419
f06590bd 420 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
421 /*
422 * If we would return 0, our callers would understand that we
423 * have nothing else to shrink and give up trying. By returning
424 * 1 we keep it going and assume we'll be able to shrink next
425 * time.
426 */
427 freed = 1;
f06590bd
MK
428 goto out;
429 }
1da177e4
LT
430
431 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
432 struct shrink_control sc = {
433 .gfp_mask = gfp_mask,
434 .nid = nid,
cb731d6c 435 .memcg = memcg,
6b4f7799 436 };
ec97097b 437
cb731d6c
VD
438 if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
439 continue;
440
6b4f7799
JW
441 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
442 sc.nid = 0;
1da177e4 443
cb731d6c 444 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
1da177e4 445 }
6b4f7799 446
1da177e4 447 up_read(&shrinker_rwsem);
f06590bd
MK
448out:
449 cond_resched();
24f7c6b9 450 return freed;
1da177e4
LT
451}
452
cb731d6c
VD
453void drop_slab_node(int nid)
454{
455 unsigned long freed;
456
457 do {
458 struct mem_cgroup *memcg = NULL;
459
460 freed = 0;
461 do {
462 freed += shrink_slab(GFP_KERNEL, nid, memcg,
463 1000, 1000);
464 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
465 } while (freed > 10);
466}
467
468void drop_slab(void)
469{
470 int nid;
471
472 for_each_online_node(nid)
473 drop_slab_node(nid);
474}
475
1da177e4
LT
476static inline int is_page_cache_freeable(struct page *page)
477{
ceddc3a5
JW
478 /*
479 * A freeable page cache page is referenced only by the caller
480 * that isolated the page, the page cache radix tree and
481 * optional buffer heads at page->private.
482 */
edcf4748 483 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
484}
485
703c2708 486static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 487{
930d9152 488 if (current->flags & PF_SWAPWRITE)
1da177e4 489 return 1;
703c2708 490 if (!inode_write_congested(inode))
1da177e4 491 return 1;
703c2708 492 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
493 return 1;
494 return 0;
495}
496
497/*
498 * We detected a synchronous write error writing a page out. Probably
499 * -ENOSPC. We need to propagate that into the address_space for a subsequent
500 * fsync(), msync() or close().
501 *
502 * The tricky part is that after writepage we cannot touch the mapping: nothing
503 * prevents it from being freed up. But we have a ref on the page and once
504 * that page is locked, the mapping is pinned.
505 *
506 * We're allowed to run sleeping lock_page() here because we know the caller has
507 * __GFP_FS.
508 */
509static void handle_write_error(struct address_space *mapping,
510 struct page *page, int error)
511{
7eaceacc 512 lock_page(page);
3e9f45bd
GC
513 if (page_mapping(page) == mapping)
514 mapping_set_error(mapping, error);
1da177e4
LT
515 unlock_page(page);
516}
517
04e62a29
CL
518/* possible outcome of pageout() */
519typedef enum {
520 /* failed to write page out, page is locked */
521 PAGE_KEEP,
522 /* move page to the active list, page is locked */
523 PAGE_ACTIVATE,
524 /* page has been sent to the disk successfully, page is unlocked */
525 PAGE_SUCCESS,
526 /* page is clean and locked */
527 PAGE_CLEAN,
528} pageout_t;
529
1da177e4 530/*
1742f19f
AM
531 * pageout is called by shrink_page_list() for each dirty page.
532 * Calls ->writepage().
1da177e4 533 */
c661b078 534static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 535 struct scan_control *sc)
1da177e4
LT
536{
537 /*
538 * If the page is dirty, only perform writeback if that write
539 * will be non-blocking. To prevent this allocation from being
540 * stalled by pagecache activity. But note that there may be
541 * stalls if we need to run get_block(). We could test
542 * PagePrivate for that.
543 *
8174202b 544 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
545 * this page's queue, we can perform writeback even if that
546 * will block.
547 *
548 * If the page is swapcache, write it back even if that would
549 * block, for some throttling. This happens by accident, because
550 * swap_backing_dev_info is bust: it doesn't reflect the
551 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
552 */
553 if (!is_page_cache_freeable(page))
554 return PAGE_KEEP;
555 if (!mapping) {
556 /*
557 * Some data journaling orphaned pages can have
558 * page->mapping == NULL while being dirty with clean buffers.
559 */
266cf658 560 if (page_has_private(page)) {
1da177e4
LT
561 if (try_to_free_buffers(page)) {
562 ClearPageDirty(page);
b1de0d13 563 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
564 return PAGE_CLEAN;
565 }
566 }
567 return PAGE_KEEP;
568 }
569 if (mapping->a_ops->writepage == NULL)
570 return PAGE_ACTIVATE;
703c2708 571 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
572 return PAGE_KEEP;
573
574 if (clear_page_dirty_for_io(page)) {
575 int res;
576 struct writeback_control wbc = {
577 .sync_mode = WB_SYNC_NONE,
578 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
579 .range_start = 0,
580 .range_end = LLONG_MAX,
1da177e4
LT
581 .for_reclaim = 1,
582 };
583
584 SetPageReclaim(page);
585 res = mapping->a_ops->writepage(page, &wbc);
586 if (res < 0)
587 handle_write_error(mapping, page, res);
994fc28c 588 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
589 ClearPageReclaim(page);
590 return PAGE_ACTIVATE;
591 }
c661b078 592
1da177e4
LT
593 if (!PageWriteback(page)) {
594 /* synchronous write or broken a_ops? */
595 ClearPageReclaim(page);
596 }
3aa23851 597 trace_mm_vmscan_writepage(page);
e129b5c2 598 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
599 return PAGE_SUCCESS;
600 }
601
602 return PAGE_CLEAN;
603}
604
a649fd92 605/*
e286781d
NP
606 * Same as remove_mapping, but if the page is removed from the mapping, it
607 * gets returned with a refcount of 0.
a649fd92 608 */
a528910e
JW
609static int __remove_mapping(struct address_space *mapping, struct page *page,
610 bool reclaimed)
49d2e9cc 611{
c4843a75
GT
612 unsigned long flags;
613 struct mem_cgroup *memcg;
614
28e4d965
NP
615 BUG_ON(!PageLocked(page));
616 BUG_ON(mapping != page_mapping(page));
49d2e9cc 617
c4843a75
GT
618 memcg = mem_cgroup_begin_page_stat(page);
619 spin_lock_irqsave(&mapping->tree_lock, flags);
49d2e9cc 620 /*
0fd0e6b0
NP
621 * The non racy check for a busy page.
622 *
623 * Must be careful with the order of the tests. When someone has
624 * a ref to the page, it may be possible that they dirty it then
625 * drop the reference. So if PageDirty is tested before page_count
626 * here, then the following race may occur:
627 *
628 * get_user_pages(&page);
629 * [user mapping goes away]
630 * write_to(page);
631 * !PageDirty(page) [good]
632 * SetPageDirty(page);
633 * put_page(page);
634 * !page_count(page) [good, discard it]
635 *
636 * [oops, our write_to data is lost]
637 *
638 * Reversing the order of the tests ensures such a situation cannot
639 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
640 * load is not satisfied before that of page->_count.
641 *
642 * Note that if SetPageDirty is always performed via set_page_dirty,
643 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 644 */
e286781d 645 if (!page_freeze_refs(page, 2))
49d2e9cc 646 goto cannot_free;
e286781d
NP
647 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
648 if (unlikely(PageDirty(page))) {
649 page_unfreeze_refs(page, 2);
49d2e9cc 650 goto cannot_free;
e286781d 651 }
49d2e9cc
CL
652
653 if (PageSwapCache(page)) {
654 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 655 mem_cgroup_swapout(page, swap);
49d2e9cc 656 __delete_from_swap_cache(page);
c4843a75
GT
657 spin_unlock_irqrestore(&mapping->tree_lock, flags);
658 mem_cgroup_end_page_stat(memcg);
0a31bc97 659 swapcache_free(swap);
e286781d 660 } else {
6072d13c 661 void (*freepage)(struct page *);
a528910e 662 void *shadow = NULL;
6072d13c
LT
663
664 freepage = mapping->a_ops->freepage;
a528910e
JW
665 /*
666 * Remember a shadow entry for reclaimed file cache in
667 * order to detect refaults, thus thrashing, later on.
668 *
669 * But don't store shadows in an address space that is
670 * already exiting. This is not just an optizimation,
671 * inode reclaim needs to empty out the radix tree or
672 * the nodes are lost. Don't plant shadows behind its
673 * back.
674 */
675 if (reclaimed && page_is_file_cache(page) &&
676 !mapping_exiting(mapping))
677 shadow = workingset_eviction(mapping, page);
c4843a75
GT
678 __delete_from_page_cache(page, shadow, memcg);
679 spin_unlock_irqrestore(&mapping->tree_lock, flags);
680 mem_cgroup_end_page_stat(memcg);
6072d13c
LT
681
682 if (freepage != NULL)
683 freepage(page);
49d2e9cc
CL
684 }
685
49d2e9cc
CL
686 return 1;
687
688cannot_free:
c4843a75
GT
689 spin_unlock_irqrestore(&mapping->tree_lock, flags);
690 mem_cgroup_end_page_stat(memcg);
49d2e9cc
CL
691 return 0;
692}
693
e286781d
NP
694/*
695 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
696 * someone else has a ref on the page, abort and return 0. If it was
697 * successfully detached, return 1. Assumes the caller has a single ref on
698 * this page.
699 */
700int remove_mapping(struct address_space *mapping, struct page *page)
701{
a528910e 702 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
703 /*
704 * Unfreezing the refcount with 1 rather than 2 effectively
705 * drops the pagecache ref for us without requiring another
706 * atomic operation.
707 */
708 page_unfreeze_refs(page, 1);
709 return 1;
710 }
711 return 0;
712}
713
894bc310
LS
714/**
715 * putback_lru_page - put previously isolated page onto appropriate LRU list
716 * @page: page to be put back to appropriate lru list
717 *
718 * Add previously isolated @page to appropriate LRU list.
719 * Page may still be unevictable for other reasons.
720 *
721 * lru_lock must not be held, interrupts must be enabled.
722 */
894bc310
LS
723void putback_lru_page(struct page *page)
724{
0ec3b74c 725 bool is_unevictable;
bbfd28ee 726 int was_unevictable = PageUnevictable(page);
894bc310 727
309381fe 728 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
729
730redo:
731 ClearPageUnevictable(page);
732
39b5f29a 733 if (page_evictable(page)) {
894bc310
LS
734 /*
735 * For evictable pages, we can use the cache.
736 * In event of a race, worst case is we end up with an
737 * unevictable page on [in]active list.
738 * We know how to handle that.
739 */
0ec3b74c 740 is_unevictable = false;
c53954a0 741 lru_cache_add(page);
894bc310
LS
742 } else {
743 /*
744 * Put unevictable pages directly on zone's unevictable
745 * list.
746 */
0ec3b74c 747 is_unevictable = true;
894bc310 748 add_page_to_unevictable_list(page);
6a7b9548 749 /*
21ee9f39
MK
750 * When racing with an mlock or AS_UNEVICTABLE clearing
751 * (page is unlocked) make sure that if the other thread
752 * does not observe our setting of PG_lru and fails
24513264 753 * isolation/check_move_unevictable_pages,
21ee9f39 754 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
755 * the page back to the evictable list.
756 *
21ee9f39 757 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
758 */
759 smp_mb();
894bc310 760 }
894bc310
LS
761
762 /*
763 * page's status can change while we move it among lru. If an evictable
764 * page is on unevictable list, it never be freed. To avoid that,
765 * check after we added it to the list, again.
766 */
0ec3b74c 767 if (is_unevictable && page_evictable(page)) {
894bc310
LS
768 if (!isolate_lru_page(page)) {
769 put_page(page);
770 goto redo;
771 }
772 /* This means someone else dropped this page from LRU
773 * So, it will be freed or putback to LRU again. There is
774 * nothing to do here.
775 */
776 }
777
0ec3b74c 778 if (was_unevictable && !is_unevictable)
bbfd28ee 779 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 780 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
781 count_vm_event(UNEVICTABLE_PGCULLED);
782
894bc310
LS
783 put_page(page); /* drop ref from isolate */
784}
785
dfc8d636
JW
786enum page_references {
787 PAGEREF_RECLAIM,
788 PAGEREF_RECLAIM_CLEAN,
64574746 789 PAGEREF_KEEP,
dfc8d636
JW
790 PAGEREF_ACTIVATE,
791};
792
793static enum page_references page_check_references(struct page *page,
794 struct scan_control *sc)
795{
64574746 796 int referenced_ptes, referenced_page;
dfc8d636 797 unsigned long vm_flags;
dfc8d636 798
c3ac9a8a
JW
799 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
800 &vm_flags);
64574746 801 referenced_page = TestClearPageReferenced(page);
dfc8d636 802
dfc8d636
JW
803 /*
804 * Mlock lost the isolation race with us. Let try_to_unmap()
805 * move the page to the unevictable list.
806 */
807 if (vm_flags & VM_LOCKED)
808 return PAGEREF_RECLAIM;
809
64574746 810 if (referenced_ptes) {
e4898273 811 if (PageSwapBacked(page))
64574746
JW
812 return PAGEREF_ACTIVATE;
813 /*
814 * All mapped pages start out with page table
815 * references from the instantiating fault, so we need
816 * to look twice if a mapped file page is used more
817 * than once.
818 *
819 * Mark it and spare it for another trip around the
820 * inactive list. Another page table reference will
821 * lead to its activation.
822 *
823 * Note: the mark is set for activated pages as well
824 * so that recently deactivated but used pages are
825 * quickly recovered.
826 */
827 SetPageReferenced(page);
828
34dbc67a 829 if (referenced_page || referenced_ptes > 1)
64574746
JW
830 return PAGEREF_ACTIVATE;
831
c909e993
KK
832 /*
833 * Activate file-backed executable pages after first usage.
834 */
835 if (vm_flags & VM_EXEC)
836 return PAGEREF_ACTIVATE;
837
64574746
JW
838 return PAGEREF_KEEP;
839 }
dfc8d636
JW
840
841 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 842 if (referenced_page && !PageSwapBacked(page))
64574746
JW
843 return PAGEREF_RECLAIM_CLEAN;
844
845 return PAGEREF_RECLAIM;
dfc8d636
JW
846}
847
e2be15f6
MG
848/* Check if a page is dirty or under writeback */
849static void page_check_dirty_writeback(struct page *page,
850 bool *dirty, bool *writeback)
851{
b4597226
MG
852 struct address_space *mapping;
853
e2be15f6
MG
854 /*
855 * Anonymous pages are not handled by flushers and must be written
856 * from reclaim context. Do not stall reclaim based on them
857 */
858 if (!page_is_file_cache(page)) {
859 *dirty = false;
860 *writeback = false;
861 return;
862 }
863
864 /* By default assume that the page flags are accurate */
865 *dirty = PageDirty(page);
866 *writeback = PageWriteback(page);
b4597226
MG
867
868 /* Verify dirty/writeback state if the filesystem supports it */
869 if (!page_has_private(page))
870 return;
871
872 mapping = page_mapping(page);
873 if (mapping && mapping->a_ops->is_dirty_writeback)
874 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
875}
876
1da177e4 877/*
1742f19f 878 * shrink_page_list() returns the number of reclaimed pages
1da177e4 879 */
1742f19f 880static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 881 struct zone *zone,
f84f6e2b 882 struct scan_control *sc,
02c6de8d 883 enum ttu_flags ttu_flags,
8e950282 884 unsigned long *ret_nr_dirty,
d43006d5 885 unsigned long *ret_nr_unqueued_dirty,
8e950282 886 unsigned long *ret_nr_congested,
02c6de8d 887 unsigned long *ret_nr_writeback,
b1a6f21e 888 unsigned long *ret_nr_immediate,
02c6de8d 889 bool force_reclaim)
1da177e4
LT
890{
891 LIST_HEAD(ret_pages);
abe4c3b5 892 LIST_HEAD(free_pages);
1da177e4 893 int pgactivate = 0;
d43006d5 894 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
895 unsigned long nr_dirty = 0;
896 unsigned long nr_congested = 0;
05ff5137 897 unsigned long nr_reclaimed = 0;
92df3a72 898 unsigned long nr_writeback = 0;
b1a6f21e 899 unsigned long nr_immediate = 0;
1da177e4
LT
900
901 cond_resched();
902
1da177e4
LT
903 while (!list_empty(page_list)) {
904 struct address_space *mapping;
905 struct page *page;
906 int may_enter_fs;
02c6de8d 907 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 908 bool dirty, writeback;
854e9ed0
MK
909 bool lazyfree = false;
910 int ret = SWAP_SUCCESS;
1da177e4
LT
911
912 cond_resched();
913
914 page = lru_to_page(page_list);
915 list_del(&page->lru);
916
529ae9aa 917 if (!trylock_page(page))
1da177e4
LT
918 goto keep;
919
309381fe
SL
920 VM_BUG_ON_PAGE(PageActive(page), page);
921 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1da177e4
LT
922
923 sc->nr_scanned++;
80e43426 924
39b5f29a 925 if (unlikely(!page_evictable(page)))
b291f000 926 goto cull_mlocked;
894bc310 927
a6dc60f8 928 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
929 goto keep_locked;
930
1da177e4
LT
931 /* Double the slab pressure for mapped and swapcache pages */
932 if (page_mapped(page) || PageSwapCache(page))
933 sc->nr_scanned++;
934
c661b078
AW
935 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
936 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
937
e2be15f6
MG
938 /*
939 * The number of dirty pages determines if a zone is marked
940 * reclaim_congested which affects wait_iff_congested. kswapd
941 * will stall and start writing pages if the tail of the LRU
942 * is all dirty unqueued pages.
943 */
944 page_check_dirty_writeback(page, &dirty, &writeback);
945 if (dirty || writeback)
946 nr_dirty++;
947
948 if (dirty && !writeback)
949 nr_unqueued_dirty++;
950
d04e8acd
MG
951 /*
952 * Treat this page as congested if the underlying BDI is or if
953 * pages are cycling through the LRU so quickly that the
954 * pages marked for immediate reclaim are making it to the
955 * end of the LRU a second time.
956 */
e2be15f6 957 mapping = page_mapping(page);
1da58ee2 958 if (((dirty || writeback) && mapping &&
703c2708 959 inode_write_congested(mapping->host)) ||
d04e8acd 960 (writeback && PageReclaim(page)))
e2be15f6
MG
961 nr_congested++;
962
283aba9f
MG
963 /*
964 * If a page at the tail of the LRU is under writeback, there
965 * are three cases to consider.
966 *
967 * 1) If reclaim is encountering an excessive number of pages
968 * under writeback and this page is both under writeback and
969 * PageReclaim then it indicates that pages are being queued
970 * for IO but are being recycled through the LRU before the
971 * IO can complete. Waiting on the page itself risks an
972 * indefinite stall if it is impossible to writeback the
973 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
974 * note that the LRU is being scanned too quickly and the
975 * caller can stall after page list has been processed.
283aba9f 976 *
97c9341f 977 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
978 * not marked for immediate reclaim, or the caller does not
979 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
980 * not to fs). In this case mark the page for immediate
97c9341f 981 * reclaim and continue scanning.
283aba9f 982 *
ecf5fc6e
MH
983 * Require may_enter_fs because we would wait on fs, which
984 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
985 * enter reclaim, and deadlock if it waits on a page for
986 * which it is needed to do the write (loop masks off
987 * __GFP_IO|__GFP_FS for this reason); but more thought
988 * would probably show more reasons.
989 *
7fadc820 990 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
991 * PageReclaim. memcg does not have any dirty pages
992 * throttling so we could easily OOM just because too many
993 * pages are in writeback and there is nothing else to
994 * reclaim. Wait for the writeback to complete.
995 */
c661b078 996 if (PageWriteback(page)) {
283aba9f
MG
997 /* Case 1 above */
998 if (current_is_kswapd() &&
999 PageReclaim(page) &&
57054651 1000 test_bit(ZONE_WRITEBACK, &zone->flags)) {
b1a6f21e
MG
1001 nr_immediate++;
1002 goto keep_locked;
283aba9f
MG
1003
1004 /* Case 2 above */
97c9341f 1005 } else if (sane_reclaim(sc) ||
ecf5fc6e 1006 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1007 /*
1008 * This is slightly racy - end_page_writeback()
1009 * might have just cleared PageReclaim, then
1010 * setting PageReclaim here end up interpreted
1011 * as PageReadahead - but that does not matter
1012 * enough to care. What we do want is for this
1013 * page to have PageReclaim set next time memcg
1014 * reclaim reaches the tests above, so it will
1015 * then wait_on_page_writeback() to avoid OOM;
1016 * and it's also appropriate in global reclaim.
1017 */
1018 SetPageReclaim(page);
e62e384e 1019 nr_writeback++;
c3b94f44 1020 goto keep_locked;
283aba9f
MG
1021
1022 /* Case 3 above */
1023 } else {
7fadc820 1024 unlock_page(page);
283aba9f 1025 wait_on_page_writeback(page);
7fadc820
HD
1026 /* then go back and try same page again */
1027 list_add_tail(&page->lru, page_list);
1028 continue;
e62e384e 1029 }
c661b078 1030 }
1da177e4 1031
02c6de8d
MK
1032 if (!force_reclaim)
1033 references = page_check_references(page, sc);
1034
dfc8d636
JW
1035 switch (references) {
1036 case PAGEREF_ACTIVATE:
1da177e4 1037 goto activate_locked;
64574746
JW
1038 case PAGEREF_KEEP:
1039 goto keep_locked;
dfc8d636
JW
1040 case PAGEREF_RECLAIM:
1041 case PAGEREF_RECLAIM_CLEAN:
1042 ; /* try to reclaim the page below */
1043 }
1da177e4 1044
1da177e4
LT
1045 /*
1046 * Anonymous process memory has backing store?
1047 * Try to allocate it some swap space here.
1048 */
b291f000 1049 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
1050 if (!(sc->gfp_mask & __GFP_IO))
1051 goto keep_locked;
5bc7b8ac 1052 if (!add_to_swap(page, page_list))
1da177e4 1053 goto activate_locked;
854e9ed0 1054 lazyfree = true;
63eb6b93 1055 may_enter_fs = 1;
1da177e4 1056
e2be15f6
MG
1057 /* Adding to swap updated mapping */
1058 mapping = page_mapping(page);
1059 }
1da177e4
LT
1060
1061 /*
1062 * The page is mapped into the page tables of one or more
1063 * processes. Try to unmap it here.
1064 */
1065 if (page_mapped(page) && mapping) {
854e9ed0
MK
1066 switch (ret = try_to_unmap(page, lazyfree ?
1067 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1068 (ttu_flags | TTU_BATCH_FLUSH))) {
1da177e4
LT
1069 case SWAP_FAIL:
1070 goto activate_locked;
1071 case SWAP_AGAIN:
1072 goto keep_locked;
b291f000
NP
1073 case SWAP_MLOCK:
1074 goto cull_mlocked;
854e9ed0
MK
1075 case SWAP_LZFREE:
1076 goto lazyfree;
1da177e4
LT
1077 case SWAP_SUCCESS:
1078 ; /* try to free the page below */
1079 }
1080 }
1081
1082 if (PageDirty(page)) {
ee72886d
MG
1083 /*
1084 * Only kswapd can writeback filesystem pages to
d43006d5
MG
1085 * avoid risk of stack overflow but only writeback
1086 * if many dirty pages have been encountered.
ee72886d 1087 */
f84f6e2b 1088 if (page_is_file_cache(page) &&
9e3b2f8c 1089 (!current_is_kswapd() ||
57054651 1090 !test_bit(ZONE_DIRTY, &zone->flags))) {
49ea7eb6
MG
1091 /*
1092 * Immediately reclaim when written back.
1093 * Similar in principal to deactivate_page()
1094 * except we already have the page isolated
1095 * and know it's dirty
1096 */
1097 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1098 SetPageReclaim(page);
1099
ee72886d
MG
1100 goto keep_locked;
1101 }
1102
dfc8d636 1103 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1104 goto keep_locked;
4dd4b920 1105 if (!may_enter_fs)
1da177e4 1106 goto keep_locked;
52a8363e 1107 if (!sc->may_writepage)
1da177e4
LT
1108 goto keep_locked;
1109
d950c947
MG
1110 /*
1111 * Page is dirty. Flush the TLB if a writable entry
1112 * potentially exists to avoid CPU writes after IO
1113 * starts and then write it out here.
1114 */
1115 try_to_unmap_flush_dirty();
7d3579e8 1116 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1117 case PAGE_KEEP:
1118 goto keep_locked;
1119 case PAGE_ACTIVATE:
1120 goto activate_locked;
1121 case PAGE_SUCCESS:
7d3579e8 1122 if (PageWriteback(page))
41ac1999 1123 goto keep;
7d3579e8 1124 if (PageDirty(page))
1da177e4 1125 goto keep;
7d3579e8 1126
1da177e4
LT
1127 /*
1128 * A synchronous write - probably a ramdisk. Go
1129 * ahead and try to reclaim the page.
1130 */
529ae9aa 1131 if (!trylock_page(page))
1da177e4
LT
1132 goto keep;
1133 if (PageDirty(page) || PageWriteback(page))
1134 goto keep_locked;
1135 mapping = page_mapping(page);
1136 case PAGE_CLEAN:
1137 ; /* try to free the page below */
1138 }
1139 }
1140
1141 /*
1142 * If the page has buffers, try to free the buffer mappings
1143 * associated with this page. If we succeed we try to free
1144 * the page as well.
1145 *
1146 * We do this even if the page is PageDirty().
1147 * try_to_release_page() does not perform I/O, but it is
1148 * possible for a page to have PageDirty set, but it is actually
1149 * clean (all its buffers are clean). This happens if the
1150 * buffers were written out directly, with submit_bh(). ext3
894bc310 1151 * will do this, as well as the blockdev mapping.
1da177e4
LT
1152 * try_to_release_page() will discover that cleanness and will
1153 * drop the buffers and mark the page clean - it can be freed.
1154 *
1155 * Rarely, pages can have buffers and no ->mapping. These are
1156 * the pages which were not successfully invalidated in
1157 * truncate_complete_page(). We try to drop those buffers here
1158 * and if that worked, and the page is no longer mapped into
1159 * process address space (page_count == 1) it can be freed.
1160 * Otherwise, leave the page on the LRU so it is swappable.
1161 */
266cf658 1162 if (page_has_private(page)) {
1da177e4
LT
1163 if (!try_to_release_page(page, sc->gfp_mask))
1164 goto activate_locked;
e286781d
NP
1165 if (!mapping && page_count(page) == 1) {
1166 unlock_page(page);
1167 if (put_page_testzero(page))
1168 goto free_it;
1169 else {
1170 /*
1171 * rare race with speculative reference.
1172 * the speculative reference will free
1173 * this page shortly, so we may
1174 * increment nr_reclaimed here (and
1175 * leave it off the LRU).
1176 */
1177 nr_reclaimed++;
1178 continue;
1179 }
1180 }
1da177e4
LT
1181 }
1182
854e9ed0 1183lazyfree:
a528910e 1184 if (!mapping || !__remove_mapping(mapping, page, true))
49d2e9cc 1185 goto keep_locked;
1da177e4 1186
a978d6f5
NP
1187 /*
1188 * At this point, we have no other references and there is
1189 * no way to pick any more up (removed from LRU, removed
1190 * from pagecache). Can use non-atomic bitops now (and
1191 * we obviously don't have to worry about waking up a process
1192 * waiting on the page lock, because there are no references.
1193 */
48c935ad 1194 __ClearPageLocked(page);
e286781d 1195free_it:
854e9ed0
MK
1196 if (ret == SWAP_LZFREE)
1197 count_vm_event(PGLAZYFREED);
1198
05ff5137 1199 nr_reclaimed++;
abe4c3b5
MG
1200
1201 /*
1202 * Is there need to periodically free_page_list? It would
1203 * appear not as the counts should be low
1204 */
1205 list_add(&page->lru, &free_pages);
1da177e4
LT
1206 continue;
1207
b291f000 1208cull_mlocked:
63d6c5ad
HD
1209 if (PageSwapCache(page))
1210 try_to_free_swap(page);
b291f000 1211 unlock_page(page);
c54839a7 1212 list_add(&page->lru, &ret_pages);
b291f000
NP
1213 continue;
1214
1da177e4 1215activate_locked:
68a22394 1216 /* Not a candidate for swapping, so reclaim swap space. */
5ccc5aba 1217 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
a2c43eed 1218 try_to_free_swap(page);
309381fe 1219 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1220 SetPageActive(page);
1221 pgactivate++;
1222keep_locked:
1223 unlock_page(page);
1224keep:
1225 list_add(&page->lru, &ret_pages);
309381fe 1226 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1227 }
abe4c3b5 1228
747db954 1229 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1230 try_to_unmap_flush();
b745bc85 1231 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1232
1da177e4 1233 list_splice(&ret_pages, page_list);
f8891e5e 1234 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1235
8e950282
MG
1236 *ret_nr_dirty += nr_dirty;
1237 *ret_nr_congested += nr_congested;
d43006d5 1238 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1239 *ret_nr_writeback += nr_writeback;
b1a6f21e 1240 *ret_nr_immediate += nr_immediate;
05ff5137 1241 return nr_reclaimed;
1da177e4
LT
1242}
1243
02c6de8d
MK
1244unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1245 struct list_head *page_list)
1246{
1247 struct scan_control sc = {
1248 .gfp_mask = GFP_KERNEL,
1249 .priority = DEF_PRIORITY,
1250 .may_unmap = 1,
1251 };
8e950282 1252 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1253 struct page *page, *next;
1254 LIST_HEAD(clean_pages);
1255
1256 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e
RA
1257 if (page_is_file_cache(page) && !PageDirty(page) &&
1258 !isolated_balloon_page(page)) {
02c6de8d
MK
1259 ClearPageActive(page);
1260 list_move(&page->lru, &clean_pages);
1261 }
1262 }
1263
1264 ret = shrink_page_list(&clean_pages, zone, &sc,
8e950282
MG
1265 TTU_UNMAP|TTU_IGNORE_ACCESS,
1266 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d 1267 list_splice(&clean_pages, page_list);
83da7510 1268 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1269 return ret;
1270}
1271
5ad333eb
AW
1272/*
1273 * Attempt to remove the specified page from its LRU. Only take this page
1274 * if it is of the appropriate PageActive status. Pages which are being
1275 * freed elsewhere are also ignored.
1276 *
1277 * page: page to consider
1278 * mode: one of the LRU isolation modes defined above
1279 *
1280 * returns 0 on success, -ve errno on failure.
1281 */
f3fd4a61 1282int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1283{
1284 int ret = -EINVAL;
1285
1286 /* Only take pages on the LRU. */
1287 if (!PageLRU(page))
1288 return ret;
1289
e46a2879
MK
1290 /* Compaction should not handle unevictable pages but CMA can do so */
1291 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1292 return ret;
1293
5ad333eb 1294 ret = -EBUSY;
08e552c6 1295
c8244935
MG
1296 /*
1297 * To minimise LRU disruption, the caller can indicate that it only
1298 * wants to isolate pages it will be able to operate on without
1299 * blocking - clean pages for the most part.
1300 *
1301 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1302 * is used by reclaim when it is cannot write to backing storage
1303 *
1304 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1305 * that it is possible to migrate without blocking
1306 */
1307 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1308 /* All the caller can do on PageWriteback is block */
1309 if (PageWriteback(page))
1310 return ret;
1311
1312 if (PageDirty(page)) {
1313 struct address_space *mapping;
1314
1315 /* ISOLATE_CLEAN means only clean pages */
1316 if (mode & ISOLATE_CLEAN)
1317 return ret;
1318
1319 /*
1320 * Only pages without mappings or that have a
1321 * ->migratepage callback are possible to migrate
1322 * without blocking
1323 */
1324 mapping = page_mapping(page);
1325 if (mapping && !mapping->a_ops->migratepage)
1326 return ret;
1327 }
1328 }
39deaf85 1329
f80c0673
MK
1330 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1331 return ret;
1332
5ad333eb
AW
1333 if (likely(get_page_unless_zero(page))) {
1334 /*
1335 * Be careful not to clear PageLRU until after we're
1336 * sure the page is not being freed elsewhere -- the
1337 * page release code relies on it.
1338 */
1339 ClearPageLRU(page);
1340 ret = 0;
1341 }
1342
1343 return ret;
1344}
1345
1da177e4
LT
1346/*
1347 * zone->lru_lock is heavily contended. Some of the functions that
1348 * shrink the lists perform better by taking out a batch of pages
1349 * and working on them outside the LRU lock.
1350 *
1351 * For pagecache intensive workloads, this function is the hottest
1352 * spot in the kernel (apart from copy_*_user functions).
1353 *
1354 * Appropriate locks must be held before calling this function.
1355 *
1356 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1357 * @lruvec: The LRU vector to pull pages from.
1da177e4 1358 * @dst: The temp list to put pages on to.
f626012d 1359 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1360 * @sc: The scan_control struct for this reclaim session
5ad333eb 1361 * @mode: One of the LRU isolation modes
3cb99451 1362 * @lru: LRU list id for isolating
1da177e4
LT
1363 *
1364 * returns how many pages were moved onto *@dst.
1365 */
69e05944 1366static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1367 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1368 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1369 isolate_mode_t mode, enum lru_list lru)
1da177e4 1370{
75b00af7 1371 struct list_head *src = &lruvec->lists[lru];
69e05944 1372 unsigned long nr_taken = 0;
c9b02d97 1373 unsigned long scan;
1da177e4 1374
0b802f10
VD
1375 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1376 !list_empty(src); scan++) {
5ad333eb 1377 struct page *page;
fa9add64 1378 int nr_pages;
5ad333eb 1379
1da177e4
LT
1380 page = lru_to_page(src);
1381 prefetchw_prev_lru_page(page, src, flags);
1382
309381fe 1383 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1384
f3fd4a61 1385 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1386 case 0:
fa9add64
HD
1387 nr_pages = hpage_nr_pages(page);
1388 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1389 list_move(&page->lru, dst);
fa9add64 1390 nr_taken += nr_pages;
5ad333eb
AW
1391 break;
1392
1393 case -EBUSY:
1394 /* else it is being freed elsewhere */
1395 list_move(&page->lru, src);
1396 continue;
46453a6e 1397
5ad333eb
AW
1398 default:
1399 BUG();
1400 }
1da177e4
LT
1401 }
1402
f626012d 1403 *nr_scanned = scan;
75b00af7
HD
1404 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1405 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1406 return nr_taken;
1407}
1408
62695a84
NP
1409/**
1410 * isolate_lru_page - tries to isolate a page from its LRU list
1411 * @page: page to isolate from its LRU list
1412 *
1413 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1414 * vmstat statistic corresponding to whatever LRU list the page was on.
1415 *
1416 * Returns 0 if the page was removed from an LRU list.
1417 * Returns -EBUSY if the page was not on an LRU list.
1418 *
1419 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1420 * the active list, it will have PageActive set. If it was found on
1421 * the unevictable list, it will have the PageUnevictable bit set. That flag
1422 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1423 *
1424 * The vmstat statistic corresponding to the list on which the page was
1425 * found will be decremented.
1426 *
1427 * Restrictions:
1428 * (1) Must be called with an elevated refcount on the page. This is a
1429 * fundamentnal difference from isolate_lru_pages (which is called
1430 * without a stable reference).
1431 * (2) the lru_lock must not be held.
1432 * (3) interrupts must be enabled.
1433 */
1434int isolate_lru_page(struct page *page)
1435{
1436 int ret = -EBUSY;
1437
309381fe 1438 VM_BUG_ON_PAGE(!page_count(page), page);
bb5b8589 1439 VM_BUG_ON_PAGE(PageTail(page), page);
0c917313 1440
62695a84
NP
1441 if (PageLRU(page)) {
1442 struct zone *zone = page_zone(page);
fa9add64 1443 struct lruvec *lruvec;
62695a84
NP
1444
1445 spin_lock_irq(&zone->lru_lock);
fa9add64 1446 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1447 if (PageLRU(page)) {
894bc310 1448 int lru = page_lru(page);
0c917313 1449 get_page(page);
62695a84 1450 ClearPageLRU(page);
fa9add64
HD
1451 del_page_from_lru_list(page, lruvec, lru);
1452 ret = 0;
62695a84
NP
1453 }
1454 spin_unlock_irq(&zone->lru_lock);
1455 }
1456 return ret;
1457}
1458
35cd7815 1459/*
d37dd5dc
FW
1460 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1461 * then get resheduled. When there are massive number of tasks doing page
1462 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1463 * the LRU list will go small and be scanned faster than necessary, leading to
1464 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1465 */
1466static int too_many_isolated(struct zone *zone, int file,
1467 struct scan_control *sc)
1468{
1469 unsigned long inactive, isolated;
1470
1471 if (current_is_kswapd())
1472 return 0;
1473
97c9341f 1474 if (!sane_reclaim(sc))
35cd7815
RR
1475 return 0;
1476
1477 if (file) {
1478 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1479 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1480 } else {
1481 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1482 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1483 }
1484
3cf23841
FW
1485 /*
1486 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1487 * won't get blocked by normal direct-reclaimers, forming a circular
1488 * deadlock.
1489 */
d0164adc 1490 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1491 inactive >>= 3;
1492
35cd7815
RR
1493 return isolated > inactive;
1494}
1495
66635629 1496static noinline_for_stack void
75b00af7 1497putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1498{
27ac81d8
KK
1499 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1500 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1501 LIST_HEAD(pages_to_free);
66635629 1502
66635629
MG
1503 /*
1504 * Put back any unfreeable pages.
1505 */
66635629 1506 while (!list_empty(page_list)) {
3f79768f 1507 struct page *page = lru_to_page(page_list);
66635629 1508 int lru;
3f79768f 1509
309381fe 1510 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1511 list_del(&page->lru);
39b5f29a 1512 if (unlikely(!page_evictable(page))) {
66635629
MG
1513 spin_unlock_irq(&zone->lru_lock);
1514 putback_lru_page(page);
1515 spin_lock_irq(&zone->lru_lock);
1516 continue;
1517 }
fa9add64
HD
1518
1519 lruvec = mem_cgroup_page_lruvec(page, zone);
1520
7a608572 1521 SetPageLRU(page);
66635629 1522 lru = page_lru(page);
fa9add64
HD
1523 add_page_to_lru_list(page, lruvec, lru);
1524
66635629
MG
1525 if (is_active_lru(lru)) {
1526 int file = is_file_lru(lru);
9992af10
RR
1527 int numpages = hpage_nr_pages(page);
1528 reclaim_stat->recent_rotated[file] += numpages;
66635629 1529 }
2bcf8879
HD
1530 if (put_page_testzero(page)) {
1531 __ClearPageLRU(page);
1532 __ClearPageActive(page);
fa9add64 1533 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1534
1535 if (unlikely(PageCompound(page))) {
1536 spin_unlock_irq(&zone->lru_lock);
747db954 1537 mem_cgroup_uncharge(page);
2bcf8879
HD
1538 (*get_compound_page_dtor(page))(page);
1539 spin_lock_irq(&zone->lru_lock);
1540 } else
1541 list_add(&page->lru, &pages_to_free);
66635629
MG
1542 }
1543 }
66635629 1544
3f79768f
HD
1545 /*
1546 * To save our caller's stack, now use input list for pages to free.
1547 */
1548 list_splice(&pages_to_free, page_list);
66635629
MG
1549}
1550
399ba0b9
N
1551/*
1552 * If a kernel thread (such as nfsd for loop-back mounts) services
1553 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1554 * In that case we should only throttle if the backing device it is
1555 * writing to is congested. In other cases it is safe to throttle.
1556 */
1557static int current_may_throttle(void)
1558{
1559 return !(current->flags & PF_LESS_THROTTLE) ||
1560 current->backing_dev_info == NULL ||
1561 bdi_write_congested(current->backing_dev_info);
1562}
1563
1da177e4 1564/*
1742f19f
AM
1565 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1566 * of reclaimed pages
1da177e4 1567 */
66635629 1568static noinline_for_stack unsigned long
1a93be0e 1569shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1570 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1571{
1572 LIST_HEAD(page_list);
e247dbce 1573 unsigned long nr_scanned;
05ff5137 1574 unsigned long nr_reclaimed = 0;
e247dbce 1575 unsigned long nr_taken;
8e950282
MG
1576 unsigned long nr_dirty = 0;
1577 unsigned long nr_congested = 0;
e2be15f6 1578 unsigned long nr_unqueued_dirty = 0;
92df3a72 1579 unsigned long nr_writeback = 0;
b1a6f21e 1580 unsigned long nr_immediate = 0;
f3fd4a61 1581 isolate_mode_t isolate_mode = 0;
3cb99451 1582 int file = is_file_lru(lru);
1a93be0e
KK
1583 struct zone *zone = lruvec_zone(lruvec);
1584 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1585
35cd7815 1586 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1587 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1588
1589 /* We are about to die and free our memory. Return now. */
1590 if (fatal_signal_pending(current))
1591 return SWAP_CLUSTER_MAX;
1592 }
1593
1da177e4 1594 lru_add_drain();
f80c0673
MK
1595
1596 if (!sc->may_unmap)
61317289 1597 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1598 if (!sc->may_writepage)
61317289 1599 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1600
1da177e4 1601 spin_lock_irq(&zone->lru_lock);
b35ea17b 1602
5dc35979
KK
1603 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1604 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1605
1606 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1607 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1608
89b5fae5 1609 if (global_reclaim(sc)) {
0d5d823a 1610 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
e247dbce 1611 if (current_is_kswapd())
75b00af7 1612 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1613 else
75b00af7 1614 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1615 }
d563c050 1616 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1617
d563c050 1618 if (nr_taken == 0)
66635629 1619 return 0;
5ad333eb 1620
02c6de8d 1621 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
8e950282
MG
1622 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1623 &nr_writeback, &nr_immediate,
1624 false);
c661b078 1625
3f79768f
HD
1626 spin_lock_irq(&zone->lru_lock);
1627
95d918fc 1628 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1629
904249aa
YH
1630 if (global_reclaim(sc)) {
1631 if (current_is_kswapd())
1632 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1633 nr_reclaimed);
1634 else
1635 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1636 nr_reclaimed);
1637 }
a74609fa 1638
27ac81d8 1639 putback_inactive_pages(lruvec, &page_list);
3f79768f 1640
95d918fc 1641 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1642
1643 spin_unlock_irq(&zone->lru_lock);
1644
747db954 1645 mem_cgroup_uncharge_list(&page_list);
b745bc85 1646 free_hot_cold_page_list(&page_list, true);
e11da5b4 1647
92df3a72
MG
1648 /*
1649 * If reclaim is isolating dirty pages under writeback, it implies
1650 * that the long-lived page allocation rate is exceeding the page
1651 * laundering rate. Either the global limits are not being effective
1652 * at throttling processes due to the page distribution throughout
1653 * zones or there is heavy usage of a slow backing device. The
1654 * only option is to throttle from reclaim context which is not ideal
1655 * as there is no guarantee the dirtying process is throttled in the
1656 * same way balance_dirty_pages() manages.
1657 *
8e950282
MG
1658 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1659 * of pages under pages flagged for immediate reclaim and stall if any
1660 * are encountered in the nr_immediate check below.
92df3a72 1661 */
918fc718 1662 if (nr_writeback && nr_writeback == nr_taken)
57054651 1663 set_bit(ZONE_WRITEBACK, &zone->flags);
92df3a72 1664
d43006d5 1665 /*
97c9341f
TH
1666 * Legacy memcg will stall in page writeback so avoid forcibly
1667 * stalling here.
d43006d5 1668 */
97c9341f 1669 if (sane_reclaim(sc)) {
8e950282
MG
1670 /*
1671 * Tag a zone as congested if all the dirty pages scanned were
1672 * backed by a congested BDI and wait_iff_congested will stall.
1673 */
1674 if (nr_dirty && nr_dirty == nr_congested)
57054651 1675 set_bit(ZONE_CONGESTED, &zone->flags);
8e950282 1676
b1a6f21e
MG
1677 /*
1678 * If dirty pages are scanned that are not queued for IO, it
1679 * implies that flushers are not keeping up. In this case, flag
57054651
JW
1680 * the zone ZONE_DIRTY and kswapd will start writing pages from
1681 * reclaim context.
b1a6f21e
MG
1682 */
1683 if (nr_unqueued_dirty == nr_taken)
57054651 1684 set_bit(ZONE_DIRTY, &zone->flags);
b1a6f21e
MG
1685
1686 /*
b738d764
LT
1687 * If kswapd scans pages marked marked for immediate
1688 * reclaim and under writeback (nr_immediate), it implies
1689 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1690 * they are written so also forcibly stall.
1691 */
b738d764 1692 if (nr_immediate && current_may_throttle())
b1a6f21e 1693 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1694 }
d43006d5 1695
8e950282
MG
1696 /*
1697 * Stall direct reclaim for IO completions if underlying BDIs or zone
1698 * is congested. Allow kswapd to continue until it starts encountering
1699 * unqueued dirty pages or cycling through the LRU too quickly.
1700 */
399ba0b9
N
1701 if (!sc->hibernation_mode && !current_is_kswapd() &&
1702 current_may_throttle())
8e950282
MG
1703 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1704
ba5e9579 1705 trace_mm_vmscan_lru_shrink_inactive(zone, nr_scanned, nr_reclaimed,
1706 sc->priority, file);
05ff5137 1707 return nr_reclaimed;
1da177e4
LT
1708}
1709
1710/*
1711 * This moves pages from the active list to the inactive list.
1712 *
1713 * We move them the other way if the page is referenced by one or more
1714 * processes, from rmap.
1715 *
1716 * If the pages are mostly unmapped, the processing is fast and it is
1717 * appropriate to hold zone->lru_lock across the whole operation. But if
1718 * the pages are mapped, the processing is slow (page_referenced()) so we
1719 * should drop zone->lru_lock around each page. It's impossible to balance
1720 * this, so instead we remove the pages from the LRU while processing them.
1721 * It is safe to rely on PG_active against the non-LRU pages in here because
1722 * nobody will play with that bit on a non-LRU page.
1723 *
1724 * The downside is that we have to touch page->_count against each page.
1725 * But we had to alter page->flags anyway.
1726 */
1cfb419b 1727
fa9add64 1728static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1729 struct list_head *list,
2bcf8879 1730 struct list_head *pages_to_free,
3eb4140f
WF
1731 enum lru_list lru)
1732{
fa9add64 1733 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1734 unsigned long pgmoved = 0;
3eb4140f 1735 struct page *page;
fa9add64 1736 int nr_pages;
3eb4140f 1737
3eb4140f
WF
1738 while (!list_empty(list)) {
1739 page = lru_to_page(list);
fa9add64 1740 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f 1741
309381fe 1742 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1743 SetPageLRU(page);
1744
fa9add64
HD
1745 nr_pages = hpage_nr_pages(page);
1746 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1747 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1748 pgmoved += nr_pages;
3eb4140f 1749
2bcf8879
HD
1750 if (put_page_testzero(page)) {
1751 __ClearPageLRU(page);
1752 __ClearPageActive(page);
fa9add64 1753 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1754
1755 if (unlikely(PageCompound(page))) {
1756 spin_unlock_irq(&zone->lru_lock);
747db954 1757 mem_cgroup_uncharge(page);
2bcf8879
HD
1758 (*get_compound_page_dtor(page))(page);
1759 spin_lock_irq(&zone->lru_lock);
1760 } else
1761 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1762 }
1763 }
1764 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1765 if (!is_active_lru(lru))
1766 __count_vm_events(PGDEACTIVATE, pgmoved);
1767}
1cfb419b 1768
f626012d 1769static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1770 struct lruvec *lruvec,
f16015fb 1771 struct scan_control *sc,
9e3b2f8c 1772 enum lru_list lru)
1da177e4 1773{
44c241f1 1774 unsigned long nr_taken;
f626012d 1775 unsigned long nr_scanned;
6fe6b7e3 1776 unsigned long vm_flags;
1da177e4 1777 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1778 LIST_HEAD(l_active);
b69408e8 1779 LIST_HEAD(l_inactive);
1da177e4 1780 struct page *page;
1a93be0e 1781 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1782 unsigned long nr_rotated = 0;
f3fd4a61 1783 isolate_mode_t isolate_mode = 0;
3cb99451 1784 int file = is_file_lru(lru);
1a93be0e 1785 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1786
1787 lru_add_drain();
f80c0673
MK
1788
1789 if (!sc->may_unmap)
61317289 1790 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1791 if (!sc->may_writepage)
61317289 1792 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1793
1da177e4 1794 spin_lock_irq(&zone->lru_lock);
925b7673 1795
5dc35979
KK
1796 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1797 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1798 if (global_reclaim(sc))
0d5d823a 1799 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
89b5fae5 1800
b7c46d15 1801 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1802
f626012d 1803 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1804 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1805 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1806 spin_unlock_irq(&zone->lru_lock);
1807
1da177e4
LT
1808 while (!list_empty(&l_hold)) {
1809 cond_resched();
1810 page = lru_to_page(&l_hold);
1811 list_del(&page->lru);
7e9cd484 1812
39b5f29a 1813 if (unlikely(!page_evictable(page))) {
894bc310
LS
1814 putback_lru_page(page);
1815 continue;
1816 }
1817
cc715d99
MG
1818 if (unlikely(buffer_heads_over_limit)) {
1819 if (page_has_private(page) && trylock_page(page)) {
1820 if (page_has_private(page))
1821 try_to_release_page(page, 0);
1822 unlock_page(page);
1823 }
1824 }
1825
c3ac9a8a
JW
1826 if (page_referenced(page, 0, sc->target_mem_cgroup,
1827 &vm_flags)) {
9992af10 1828 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1829 /*
1830 * Identify referenced, file-backed active pages and
1831 * give them one more trip around the active list. So
1832 * that executable code get better chances to stay in
1833 * memory under moderate memory pressure. Anon pages
1834 * are not likely to be evicted by use-once streaming
1835 * IO, plus JVM can create lots of anon VM_EXEC pages,
1836 * so we ignore them here.
1837 */
41e20983 1838 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1839 list_add(&page->lru, &l_active);
1840 continue;
1841 }
1842 }
7e9cd484 1843
5205e56e 1844 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1845 list_add(&page->lru, &l_inactive);
1846 }
1847
b555749a 1848 /*
8cab4754 1849 * Move pages back to the lru list.
b555749a 1850 */
2a1dc509 1851 spin_lock_irq(&zone->lru_lock);
556adecb 1852 /*
8cab4754
WF
1853 * Count referenced pages from currently used mappings as rotated,
1854 * even though only some of them are actually re-activated. This
1855 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 1856 * get_scan_count.
7e9cd484 1857 */
b7c46d15 1858 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1859
fa9add64
HD
1860 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1861 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1862 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1863 spin_unlock_irq(&zone->lru_lock);
2bcf8879 1864
747db954 1865 mem_cgroup_uncharge_list(&l_hold);
b745bc85 1866 free_hot_cold_page_list(&l_hold, true);
1da177e4
LT
1867}
1868
74e3f3c3 1869#ifdef CONFIG_SWAP
42e2e457 1870static bool inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1871{
1872 unsigned long active, inactive;
1873
1874 active = zone_page_state(zone, NR_ACTIVE_ANON);
1875 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1876
29d06bbb 1877 return inactive * zone->inactive_ratio < active;
f89eb90e
KM
1878}
1879
14797e23
KM
1880/**
1881 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1882 * @lruvec: LRU vector to check
14797e23
KM
1883 *
1884 * Returns true if the zone does not have enough inactive anon pages,
1885 * meaning some active anon pages need to be deactivated.
1886 */
42e2e457 1887static bool inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1888{
74e3f3c3
MK
1889 /*
1890 * If we don't have swap space, anonymous page deactivation
1891 * is pointless.
1892 */
1893 if (!total_swap_pages)
42e2e457 1894 return false;
74e3f3c3 1895
c3c787e8 1896 if (!mem_cgroup_disabled())
c56d5c7d 1897 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1898
c56d5c7d 1899 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1900}
74e3f3c3 1901#else
42e2e457 1902static inline bool inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3 1903{
42e2e457 1904 return false;
74e3f3c3
MK
1905}
1906#endif
14797e23 1907
56e49d21
RR
1908/**
1909 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1910 * @lruvec: LRU vector to check
56e49d21
RR
1911 *
1912 * When the system is doing streaming IO, memory pressure here
1913 * ensures that active file pages get deactivated, until more
1914 * than half of the file pages are on the inactive list.
1915 *
1916 * Once we get to that situation, protect the system's working
1917 * set from being evicted by disabling active file page aging.
1918 *
1919 * This uses a different ratio than the anonymous pages, because
1920 * the page cache uses a use-once replacement algorithm.
1921 */
42e2e457 1922static bool inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1923{
e3790144
JW
1924 unsigned long inactive;
1925 unsigned long active;
1926
1927 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1928 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1929
e3790144 1930 return active > inactive;
56e49d21
RR
1931}
1932
42e2e457 1933static bool inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1934{
75b00af7 1935 if (is_file_lru(lru))
c56d5c7d 1936 return inactive_file_is_low(lruvec);
b39415b2 1937 else
c56d5c7d 1938 return inactive_anon_is_low(lruvec);
b39415b2
RR
1939}
1940
4f98a2fe 1941static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1942 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1943{
b39415b2 1944 if (is_active_lru(lru)) {
75b00af7 1945 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1946 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1947 return 0;
1948 }
1949
1a93be0e 1950 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1951}
1952
9a265114
JW
1953enum scan_balance {
1954 SCAN_EQUAL,
1955 SCAN_FRACT,
1956 SCAN_ANON,
1957 SCAN_FILE,
1958};
1959
4f98a2fe
RR
1960/*
1961 * Determine how aggressively the anon and file LRU lists should be
1962 * scanned. The relative value of each set of LRU lists is determined
1963 * by looking at the fraction of the pages scanned we did rotate back
1964 * onto the active list instead of evict.
1965 *
be7bd59d
WL
1966 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1967 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1968 */
33377678 1969static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
1970 struct scan_control *sc, unsigned long *nr,
1971 unsigned long *lru_pages)
4f98a2fe 1972{
33377678 1973 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
1974 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1975 u64 fraction[2];
1976 u64 denominator = 0; /* gcc */
1977 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1978 unsigned long anon_prio, file_prio;
9a265114 1979 enum scan_balance scan_balance;
0bf1457f 1980 unsigned long anon, file;
9a265114 1981 bool force_scan = false;
4f98a2fe 1982 unsigned long ap, fp;
4111304d 1983 enum lru_list lru;
6f04f48d
SS
1984 bool some_scanned;
1985 int pass;
246e87a9 1986
f11c0ca5
JW
1987 /*
1988 * If the zone or memcg is small, nr[l] can be 0. This
1989 * results in no scanning on this priority and a potential
1990 * priority drop. Global direct reclaim can go to the next
1991 * zone and tends to have no problems. Global kswapd is for
1992 * zone balancing and it needs to scan a minimum amount. When
1993 * reclaiming for a memcg, a priority drop can cause high
1994 * latencies, so it's better to scan a minimum amount there as
1995 * well.
1996 */
90cbc250
VD
1997 if (current_is_kswapd()) {
1998 if (!zone_reclaimable(zone))
1999 force_scan = true;
eb01aaab 2000 if (!mem_cgroup_online(memcg))
90cbc250
VD
2001 force_scan = true;
2002 }
89b5fae5 2003 if (!global_reclaim(sc))
a4d3e9e7 2004 force_scan = true;
76a33fc3
SL
2005
2006 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2007 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2008 scan_balance = SCAN_FILE;
76a33fc3
SL
2009 goto out;
2010 }
4f98a2fe 2011
10316b31
JW
2012 /*
2013 * Global reclaim will swap to prevent OOM even with no
2014 * swappiness, but memcg users want to use this knob to
2015 * disable swapping for individual groups completely when
2016 * using the memory controller's swap limit feature would be
2017 * too expensive.
2018 */
02695175 2019 if (!global_reclaim(sc) && !swappiness) {
9a265114 2020 scan_balance = SCAN_FILE;
10316b31
JW
2021 goto out;
2022 }
2023
2024 /*
2025 * Do not apply any pressure balancing cleverness when the
2026 * system is close to OOM, scan both anon and file equally
2027 * (unless the swappiness setting disagrees with swapping).
2028 */
02695175 2029 if (!sc->priority && swappiness) {
9a265114 2030 scan_balance = SCAN_EQUAL;
10316b31
JW
2031 goto out;
2032 }
2033
62376251
JW
2034 /*
2035 * Prevent the reclaimer from falling into the cache trap: as
2036 * cache pages start out inactive, every cache fault will tip
2037 * the scan balance towards the file LRU. And as the file LRU
2038 * shrinks, so does the window for rotation from references.
2039 * This means we have a runaway feedback loop where a tiny
2040 * thrashing file LRU becomes infinitely more attractive than
2041 * anon pages. Try to detect this based on file LRU size.
2042 */
2043 if (global_reclaim(sc)) {
2ab051e1
JM
2044 unsigned long zonefile;
2045 unsigned long zonefree;
2046
2047 zonefree = zone_page_state(zone, NR_FREE_PAGES);
2048 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2049 zone_page_state(zone, NR_INACTIVE_FILE);
62376251 2050
2ab051e1 2051 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
62376251
JW
2052 scan_balance = SCAN_ANON;
2053 goto out;
2054 }
2055 }
2056
7c5bd705 2057 /*
316bda0e
VD
2058 * If there is enough inactive page cache, i.e. if the size of the
2059 * inactive list is greater than that of the active list *and* the
2060 * inactive list actually has some pages to scan on this priority, we
2061 * do not reclaim anything from the anonymous working set right now.
2062 * Without the second condition we could end up never scanning an
2063 * lruvec even if it has plenty of old anonymous pages unless the
2064 * system is under heavy pressure.
7c5bd705 2065 */
316bda0e
VD
2066 if (!inactive_file_is_low(lruvec) &&
2067 get_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
9a265114 2068 scan_balance = SCAN_FILE;
7c5bd705
JW
2069 goto out;
2070 }
2071
9a265114
JW
2072 scan_balance = SCAN_FRACT;
2073
58c37f6e
KM
2074 /*
2075 * With swappiness at 100, anonymous and file have the same priority.
2076 * This scanning priority is essentially the inverse of IO cost.
2077 */
02695175 2078 anon_prio = swappiness;
75b00af7 2079 file_prio = 200 - anon_prio;
58c37f6e 2080
4f98a2fe
RR
2081 /*
2082 * OK, so we have swap space and a fair amount of page cache
2083 * pages. We use the recently rotated / recently scanned
2084 * ratios to determine how valuable each cache is.
2085 *
2086 * Because workloads change over time (and to avoid overflow)
2087 * we keep these statistics as a floating average, which ends
2088 * up weighing recent references more than old ones.
2089 *
2090 * anon in [0], file in [1]
2091 */
2ab051e1
JM
2092
2093 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2094 get_lru_size(lruvec, LRU_INACTIVE_ANON);
2095 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2096 get_lru_size(lruvec, LRU_INACTIVE_FILE);
2097
90126375 2098 spin_lock_irq(&zone->lru_lock);
6e901571 2099 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2100 reclaim_stat->recent_scanned[0] /= 2;
2101 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2102 }
2103
6e901571 2104 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2105 reclaim_stat->recent_scanned[1] /= 2;
2106 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2107 }
2108
4f98a2fe 2109 /*
00d8089c
RR
2110 * The amount of pressure on anon vs file pages is inversely
2111 * proportional to the fraction of recently scanned pages on
2112 * each list that were recently referenced and in active use.
4f98a2fe 2113 */
fe35004f 2114 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2115 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2116
fe35004f 2117 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2118 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 2119 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 2120
76a33fc3
SL
2121 fraction[0] = ap;
2122 fraction[1] = fp;
2123 denominator = ap + fp + 1;
2124out:
6f04f48d
SS
2125 some_scanned = false;
2126 /* Only use force_scan on second pass. */
2127 for (pass = 0; !some_scanned && pass < 2; pass++) {
6b4f7799 2128 *lru_pages = 0;
6f04f48d
SS
2129 for_each_evictable_lru(lru) {
2130 int file = is_file_lru(lru);
2131 unsigned long size;
2132 unsigned long scan;
6e08a369 2133
6f04f48d
SS
2134 size = get_lru_size(lruvec, lru);
2135 scan = size >> sc->priority;
9a265114 2136
6f04f48d
SS
2137 if (!scan && pass && force_scan)
2138 scan = min(size, SWAP_CLUSTER_MAX);
9a265114 2139
6f04f48d
SS
2140 switch (scan_balance) {
2141 case SCAN_EQUAL:
2142 /* Scan lists relative to size */
2143 break;
2144 case SCAN_FRACT:
2145 /*
2146 * Scan types proportional to swappiness and
2147 * their relative recent reclaim efficiency.
2148 */
2149 scan = div64_u64(scan * fraction[file],
2150 denominator);
2151 break;
2152 case SCAN_FILE:
2153 case SCAN_ANON:
2154 /* Scan one type exclusively */
6b4f7799
JW
2155 if ((scan_balance == SCAN_FILE) != file) {
2156 size = 0;
6f04f48d 2157 scan = 0;
6b4f7799 2158 }
6f04f48d
SS
2159 break;
2160 default:
2161 /* Look ma, no brain */
2162 BUG();
2163 }
6b4f7799
JW
2164
2165 *lru_pages += size;
6f04f48d 2166 nr[lru] = scan;
6b4f7799 2167
9a265114 2168 /*
6f04f48d
SS
2169 * Skip the second pass and don't force_scan,
2170 * if we found something to scan.
9a265114 2171 */
6f04f48d 2172 some_scanned |= !!scan;
9a265114 2173 }
76a33fc3 2174 }
6e08a369 2175}
4f98a2fe 2176
72b252ae
MG
2177#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2178static void init_tlb_ubc(void)
2179{
2180 /*
2181 * This deliberately does not clear the cpumask as it's expensive
2182 * and unnecessary. If there happens to be data in there then the
2183 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2184 * then will be cleared.
2185 */
2186 current->tlb_ubc.flush_required = false;
2187}
2188#else
2189static inline void init_tlb_ubc(void)
2190{
2191}
2192#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2193
9b4f98cd
JW
2194/*
2195 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2196 */
33377678
VD
2197static void shrink_zone_memcg(struct zone *zone, struct mem_cgroup *memcg,
2198 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2199{
33377678 2200 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
9b4f98cd 2201 unsigned long nr[NR_LRU_LISTS];
e82e0561 2202 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2203 unsigned long nr_to_scan;
2204 enum lru_list lru;
2205 unsigned long nr_reclaimed = 0;
2206 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2207 struct blk_plug plug;
1a501907 2208 bool scan_adjusted;
9b4f98cd 2209
33377678 2210 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2211
e82e0561
MG
2212 /* Record the original scan target for proportional adjustments later */
2213 memcpy(targets, nr, sizeof(nr));
2214
1a501907
MG
2215 /*
2216 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2217 * event that can occur when there is little memory pressure e.g.
2218 * multiple streaming readers/writers. Hence, we do not abort scanning
2219 * when the requested number of pages are reclaimed when scanning at
2220 * DEF_PRIORITY on the assumption that the fact we are direct
2221 * reclaiming implies that kswapd is not keeping up and it is best to
2222 * do a batch of work at once. For memcg reclaim one check is made to
2223 * abort proportional reclaim if either the file or anon lru has already
2224 * dropped to zero at the first pass.
2225 */
2226 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2227 sc->priority == DEF_PRIORITY);
2228
72b252ae
MG
2229 init_tlb_ubc();
2230
9b4f98cd
JW
2231 blk_start_plug(&plug);
2232 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2233 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2234 unsigned long nr_anon, nr_file, percentage;
2235 unsigned long nr_scanned;
2236
9b4f98cd
JW
2237 for_each_evictable_lru(lru) {
2238 if (nr[lru]) {
2239 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2240 nr[lru] -= nr_to_scan;
2241
2242 nr_reclaimed += shrink_list(lru, nr_to_scan,
2243 lruvec, sc);
2244 }
2245 }
e82e0561
MG
2246
2247 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2248 continue;
2249
e82e0561
MG
2250 /*
2251 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2252 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2253 * proportionally what was requested by get_scan_count(). We
2254 * stop reclaiming one LRU and reduce the amount scanning
2255 * proportional to the original scan target.
2256 */
2257 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2258 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2259
1a501907
MG
2260 /*
2261 * It's just vindictive to attack the larger once the smaller
2262 * has gone to zero. And given the way we stop scanning the
2263 * smaller below, this makes sure that we only make one nudge
2264 * towards proportionality once we've got nr_to_reclaim.
2265 */
2266 if (!nr_file || !nr_anon)
2267 break;
2268
e82e0561
MG
2269 if (nr_file > nr_anon) {
2270 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2271 targets[LRU_ACTIVE_ANON] + 1;
2272 lru = LRU_BASE;
2273 percentage = nr_anon * 100 / scan_target;
2274 } else {
2275 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2276 targets[LRU_ACTIVE_FILE] + 1;
2277 lru = LRU_FILE;
2278 percentage = nr_file * 100 / scan_target;
2279 }
2280
2281 /* Stop scanning the smaller of the LRU */
2282 nr[lru] = 0;
2283 nr[lru + LRU_ACTIVE] = 0;
2284
2285 /*
2286 * Recalculate the other LRU scan count based on its original
2287 * scan target and the percentage scanning already complete
2288 */
2289 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2290 nr_scanned = targets[lru] - nr[lru];
2291 nr[lru] = targets[lru] * (100 - percentage) / 100;
2292 nr[lru] -= min(nr[lru], nr_scanned);
2293
2294 lru += LRU_ACTIVE;
2295 nr_scanned = targets[lru] - nr[lru];
2296 nr[lru] = targets[lru] * (100 - percentage) / 100;
2297 nr[lru] -= min(nr[lru], nr_scanned);
2298
2299 scan_adjusted = true;
9b4f98cd
JW
2300 }
2301 blk_finish_plug(&plug);
2302 sc->nr_reclaimed += nr_reclaimed;
2303
2304 /*
2305 * Even if we did not try to evict anon pages at all, we want to
2306 * rebalance the anon lru active/inactive ratio.
2307 */
2308 if (inactive_anon_is_low(lruvec))
2309 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2310 sc, LRU_ACTIVE_ANON);
2311
2312 throttle_vm_writeout(sc->gfp_mask);
2313}
2314
23b9da55 2315/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2316static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2317{
d84da3f9 2318 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2319 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2320 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2321 return true;
2322
2323 return false;
2324}
2325
3e7d3449 2326/*
23b9da55
MG
2327 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2328 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2329 * true if more pages should be reclaimed such that when the page allocator
2330 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2331 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2332 */
9b4f98cd 2333static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2334 unsigned long nr_reclaimed,
2335 unsigned long nr_scanned,
2336 struct scan_control *sc)
2337{
2338 unsigned long pages_for_compaction;
2339 unsigned long inactive_lru_pages;
2340
2341 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2342 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2343 return false;
2344
2876592f
MG
2345 /* Consider stopping depending on scan and reclaim activity */
2346 if (sc->gfp_mask & __GFP_REPEAT) {
2347 /*
2348 * For __GFP_REPEAT allocations, stop reclaiming if the
2349 * full LRU list has been scanned and we are still failing
2350 * to reclaim pages. This full LRU scan is potentially
2351 * expensive but a __GFP_REPEAT caller really wants to succeed
2352 */
2353 if (!nr_reclaimed && !nr_scanned)
2354 return false;
2355 } else {
2356 /*
2357 * For non-__GFP_REPEAT allocations which can presumably
2358 * fail without consequence, stop if we failed to reclaim
2359 * any pages from the last SWAP_CLUSTER_MAX number of
2360 * pages that were scanned. This will return to the
2361 * caller faster at the risk reclaim/compaction and
2362 * the resulting allocation attempt fails
2363 */
2364 if (!nr_reclaimed)
2365 return false;
2366 }
3e7d3449
MG
2367
2368 /*
2369 * If we have not reclaimed enough pages for compaction and the
2370 * inactive lists are large enough, continue reclaiming
2371 */
2372 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2373 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2374 if (get_nr_swap_pages() > 0)
9b4f98cd 2375 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2376 if (sc->nr_reclaimed < pages_for_compaction &&
2377 inactive_lru_pages > pages_for_compaction)
2378 return true;
2379
2380 /* If compaction would go ahead or the allocation would succeed, stop */
ebff3980 2381 switch (compaction_suitable(zone, sc->order, 0, 0)) {
3e7d3449
MG
2382 case COMPACT_PARTIAL:
2383 case COMPACT_CONTINUE:
2384 return false;
2385 default:
2386 return true;
2387 }
2388}
2389
6b4f7799
JW
2390static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2391 bool is_classzone)
1da177e4 2392{
cb731d6c 2393 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2394 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2395 bool reclaimable = false;
1da177e4 2396
9b4f98cd
JW
2397 do {
2398 struct mem_cgroup *root = sc->target_mem_cgroup;
2399 struct mem_cgroup_reclaim_cookie reclaim = {
2400 .zone = zone,
2401 .priority = sc->priority,
2402 };
6b4f7799 2403 unsigned long zone_lru_pages = 0;
694fbc0f 2404 struct mem_cgroup *memcg;
3e7d3449 2405
9b4f98cd
JW
2406 nr_reclaimed = sc->nr_reclaimed;
2407 nr_scanned = sc->nr_scanned;
1da177e4 2408
694fbc0f
AM
2409 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2410 do {
6b4f7799 2411 unsigned long lru_pages;
8e8ae645 2412 unsigned long reclaimed;
cb731d6c 2413 unsigned long scanned;
5660048c 2414
241994ed
JW
2415 if (mem_cgroup_low(root, memcg)) {
2416 if (!sc->may_thrash)
2417 continue;
2418 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2419 }
2420
8e8ae645 2421 reclaimed = sc->nr_reclaimed;
cb731d6c 2422 scanned = sc->nr_scanned;
f9be23d6 2423
33377678 2424 shrink_zone_memcg(zone, memcg, sc, &lru_pages);
6b4f7799 2425 zone_lru_pages += lru_pages;
f16015fb 2426
cb731d6c
VD
2427 if (memcg && is_classzone)
2428 shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2429 memcg, sc->nr_scanned - scanned,
2430 lru_pages);
2431
8e8ae645
JW
2432 /* Record the group's reclaim efficiency */
2433 vmpressure(sc->gfp_mask, memcg, false,
2434 sc->nr_scanned - scanned,
2435 sc->nr_reclaimed - reclaimed);
2436
9b4f98cd 2437 /*
a394cb8e
MH
2438 * Direct reclaim and kswapd have to scan all memory
2439 * cgroups to fulfill the overall scan target for the
9b4f98cd 2440 * zone.
a394cb8e
MH
2441 *
2442 * Limit reclaim, on the other hand, only cares about
2443 * nr_to_reclaim pages to be reclaimed and it will
2444 * retry with decreasing priority if one round over the
2445 * whole hierarchy is not sufficient.
9b4f98cd 2446 */
a394cb8e
MH
2447 if (!global_reclaim(sc) &&
2448 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2449 mem_cgroup_iter_break(root, memcg);
2450 break;
2451 }
241994ed 2452 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2453
6b4f7799
JW
2454 /*
2455 * Shrink the slab caches in the same proportion that
2456 * the eligible LRU pages were scanned.
2457 */
cb731d6c
VD
2458 if (global_reclaim(sc) && is_classzone)
2459 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2460 sc->nr_scanned - nr_scanned,
2461 zone_lru_pages);
2462
2463 if (reclaim_state) {
2464 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2465 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2466 }
2467
8e8ae645
JW
2468 /* Record the subtree's reclaim efficiency */
2469 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2470 sc->nr_scanned - nr_scanned,
2471 sc->nr_reclaimed - nr_reclaimed);
2472
2344d7e4
JW
2473 if (sc->nr_reclaimed - nr_reclaimed)
2474 reclaimable = true;
2475
9b4f98cd
JW
2476 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2477 sc->nr_scanned - nr_scanned, sc));
2344d7e4
JW
2478
2479 return reclaimable;
f16015fb
JW
2480}
2481
53853e2d
VB
2482/*
2483 * Returns true if compaction should go ahead for a high-order request, or
2484 * the high-order allocation would succeed without compaction.
2485 */
0b06496a 2486static inline bool compaction_ready(struct zone *zone, int order)
fe4b1b24
MG
2487{
2488 unsigned long balance_gap, watermark;
2489 bool watermark_ok;
2490
fe4b1b24
MG
2491 /*
2492 * Compaction takes time to run and there are potentially other
2493 * callers using the pages just freed. Continue reclaiming until
2494 * there is a buffer of free pages available to give compaction
2495 * a reasonable chance of completing and allocating the page
2496 */
4be89a34
JZ
2497 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2498 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
0b06496a 2499 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
e2b19197 2500 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0);
fe4b1b24
MG
2501
2502 /*
2503 * If compaction is deferred, reclaim up to a point where
2504 * compaction will have a chance of success when re-enabled
2505 */
0b06496a 2506 if (compaction_deferred(zone, order))
fe4b1b24
MG
2507 return watermark_ok;
2508
53853e2d
VB
2509 /*
2510 * If compaction is not ready to start and allocation is not likely
2511 * to succeed without it, then keep reclaiming.
2512 */
ebff3980 2513 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
fe4b1b24
MG
2514 return false;
2515
2516 return watermark_ok;
2517}
2518
1da177e4
LT
2519/*
2520 * This is the direct reclaim path, for page-allocating processes. We only
2521 * try to reclaim pages from zones which will satisfy the caller's allocation
2522 * request.
2523 *
41858966
MG
2524 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2525 * Because:
1da177e4
LT
2526 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2527 * allocation or
41858966
MG
2528 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2529 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2530 * zone defense algorithm.
1da177e4 2531 *
1da177e4
LT
2532 * If a zone is deemed to be full of pinned pages then just give it a light
2533 * scan then give up on it.
2344d7e4
JW
2534 *
2535 * Returns true if a zone was reclaimable.
1da177e4 2536 */
2344d7e4 2537static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2538{
dd1a239f 2539 struct zoneref *z;
54a6eb5c 2540 struct zone *zone;
0608f43d
AM
2541 unsigned long nr_soft_reclaimed;
2542 unsigned long nr_soft_scanned;
619d0d76 2543 gfp_t orig_mask;
9bbc04ee 2544 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2344d7e4 2545 bool reclaimable = false;
1cfb419b 2546
cc715d99
MG
2547 /*
2548 * If the number of buffer_heads in the machine exceeds the maximum
2549 * allowed level, force direct reclaim to scan the highmem zone as
2550 * highmem pages could be pinning lowmem pages storing buffer_heads
2551 */
619d0d76 2552 orig_mask = sc->gfp_mask;
cc715d99
MG
2553 if (buffer_heads_over_limit)
2554 sc->gfp_mask |= __GFP_HIGHMEM;
2555
d4debc66 2556 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6b4f7799
JW
2557 requested_highidx, sc->nodemask) {
2558 enum zone_type classzone_idx;
2559
f3fe6512 2560 if (!populated_zone(zone))
1da177e4 2561 continue;
6b4f7799
JW
2562
2563 classzone_idx = requested_highidx;
2564 while (!populated_zone(zone->zone_pgdat->node_zones +
2565 classzone_idx))
2566 classzone_idx--;
2567
1cfb419b
KH
2568 /*
2569 * Take care memory controller reclaiming has small influence
2570 * to global LRU.
2571 */
89b5fae5 2572 if (global_reclaim(sc)) {
344736f2
VD
2573 if (!cpuset_zone_allowed(zone,
2574 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2575 continue;
65ec02cb 2576
6e543d57
LD
2577 if (sc->priority != DEF_PRIORITY &&
2578 !zone_reclaimable(zone))
1cfb419b 2579 continue; /* Let kswapd poll it */
0b06496a
JW
2580
2581 /*
2582 * If we already have plenty of memory free for
2583 * compaction in this zone, don't free any more.
2584 * Even though compaction is invoked for any
2585 * non-zero order, only frequent costly order
2586 * reclamation is disruptive enough to become a
2587 * noticeable problem, like transparent huge
2588 * page allocations.
2589 */
2590 if (IS_ENABLED(CONFIG_COMPACTION) &&
2591 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2592 zonelist_zone_idx(z) <= requested_highidx &&
2593 compaction_ready(zone, sc->order)) {
2594 sc->compaction_ready = true;
2595 continue;
e0887c19 2596 }
0b06496a 2597
0608f43d
AM
2598 /*
2599 * This steals pages from memory cgroups over softlimit
2600 * and returns the number of reclaimed pages and
2601 * scanned pages. This works for global memory pressure
2602 * and balancing, not for a memcg's limit.
2603 */
2604 nr_soft_scanned = 0;
2605 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2606 sc->order, sc->gfp_mask,
2607 &nr_soft_scanned);
2608 sc->nr_reclaimed += nr_soft_reclaimed;
2609 sc->nr_scanned += nr_soft_scanned;
2344d7e4
JW
2610 if (nr_soft_reclaimed)
2611 reclaimable = true;
ac34a1a3 2612 /* need some check for avoid more shrink_zone() */
1cfb419b 2613 }
408d8544 2614
6b4f7799 2615 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2344d7e4
JW
2616 reclaimable = true;
2617
2618 if (global_reclaim(sc) &&
2619 !reclaimable && zone_reclaimable(zone))
2620 reclaimable = true;
1da177e4 2621 }
e0c23279 2622
619d0d76
WY
2623 /*
2624 * Restore to original mask to avoid the impact on the caller if we
2625 * promoted it to __GFP_HIGHMEM.
2626 */
2627 sc->gfp_mask = orig_mask;
d1908362 2628
2344d7e4 2629 return reclaimable;
1da177e4 2630}
4f98a2fe 2631
1da177e4
LT
2632/*
2633 * This is the main entry point to direct page reclaim.
2634 *
2635 * If a full scan of the inactive list fails to free enough memory then we
2636 * are "out of memory" and something needs to be killed.
2637 *
2638 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2639 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2640 * caller can't do much about. We kick the writeback threads and take explicit
2641 * naps in the hope that some of these pages can be written. But if the
2642 * allocating task holds filesystem locks which prevent writeout this might not
2643 * work, and the allocation attempt will fail.
a41f24ea
NA
2644 *
2645 * returns: 0, if no pages reclaimed
2646 * else, the number of pages reclaimed
1da177e4 2647 */
dac1d27b 2648static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2649 struct scan_control *sc)
1da177e4 2650{
241994ed 2651 int initial_priority = sc->priority;
69e05944 2652 unsigned long total_scanned = 0;
22fba335 2653 unsigned long writeback_threshold;
2344d7e4 2654 bool zones_reclaimable;
241994ed 2655retry:
873b4771
KK
2656 delayacct_freepages_start();
2657
89b5fae5 2658 if (global_reclaim(sc))
1cfb419b 2659 count_vm_event(ALLOCSTALL);
1da177e4 2660
9e3b2f8c 2661 do {
70ddf637
AV
2662 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2663 sc->priority);
66e1707b 2664 sc->nr_scanned = 0;
2344d7e4 2665 zones_reclaimable = shrink_zones(zonelist, sc);
c6a8a8c5 2666
66e1707b 2667 total_scanned += sc->nr_scanned;
bb21c7ce 2668 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2669 break;
2670
2671 if (sc->compaction_ready)
2672 break;
1da177e4 2673
0e50ce3b
MK
2674 /*
2675 * If we're getting trouble reclaiming, start doing
2676 * writepage even in laptop mode.
2677 */
2678 if (sc->priority < DEF_PRIORITY - 2)
2679 sc->may_writepage = 1;
2680
1da177e4
LT
2681 /*
2682 * Try to write back as many pages as we just scanned. This
2683 * tends to cause slow streaming writers to write data to the
2684 * disk smoothly, at the dirtying rate, which is nice. But
2685 * that's undesirable in laptop mode, where we *want* lumpy
2686 * writeout. So in laptop mode, write out the whole world.
2687 */
22fba335
KM
2688 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2689 if (total_scanned > writeback_threshold) {
0e175a18
CW
2690 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2691 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2692 sc->may_writepage = 1;
1da177e4 2693 }
0b06496a 2694 } while (--sc->priority >= 0);
bb21c7ce 2695
873b4771
KK
2696 delayacct_freepages_end();
2697
bb21c7ce
KM
2698 if (sc->nr_reclaimed)
2699 return sc->nr_reclaimed;
2700
0cee34fd 2701 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2702 if (sc->compaction_ready)
7335084d
MG
2703 return 1;
2704
241994ed
JW
2705 /* Untapped cgroup reserves? Don't OOM, retry. */
2706 if (!sc->may_thrash) {
2707 sc->priority = initial_priority;
2708 sc->may_thrash = 1;
2709 goto retry;
2710 }
2711
2344d7e4
JW
2712 /* Any of the zones still reclaimable? Don't OOM. */
2713 if (zones_reclaimable)
bb21c7ce
KM
2714 return 1;
2715
2716 return 0;
1da177e4
LT
2717}
2718
5515061d
MG
2719static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2720{
2721 struct zone *zone;
2722 unsigned long pfmemalloc_reserve = 0;
2723 unsigned long free_pages = 0;
2724 int i;
2725 bool wmark_ok;
2726
2727 for (i = 0; i <= ZONE_NORMAL; i++) {
2728 zone = &pgdat->node_zones[i];
f012a84a
NA
2729 if (!populated_zone(zone) ||
2730 zone_reclaimable_pages(zone) == 0)
675becce
MG
2731 continue;
2732
5515061d
MG
2733 pfmemalloc_reserve += min_wmark_pages(zone);
2734 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2735 }
2736
675becce
MG
2737 /* If there are no reserves (unexpected config) then do not throttle */
2738 if (!pfmemalloc_reserve)
2739 return true;
2740
5515061d
MG
2741 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2742
2743 /* kswapd must be awake if processes are being throttled */
2744 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2745 pgdat->classzone_idx = min(pgdat->classzone_idx,
2746 (enum zone_type)ZONE_NORMAL);
2747 wake_up_interruptible(&pgdat->kswapd_wait);
2748 }
2749
2750 return wmark_ok;
2751}
2752
2753/*
2754 * Throttle direct reclaimers if backing storage is backed by the network
2755 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2756 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2757 * when the low watermark is reached.
2758 *
2759 * Returns true if a fatal signal was delivered during throttling. If this
2760 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2761 */
50694c28 2762static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2763 nodemask_t *nodemask)
2764{
675becce 2765 struct zoneref *z;
5515061d 2766 struct zone *zone;
675becce 2767 pg_data_t *pgdat = NULL;
5515061d
MG
2768
2769 /*
2770 * Kernel threads should not be throttled as they may be indirectly
2771 * responsible for cleaning pages necessary for reclaim to make forward
2772 * progress. kjournald for example may enter direct reclaim while
2773 * committing a transaction where throttling it could forcing other
2774 * processes to block on log_wait_commit().
2775 */
2776 if (current->flags & PF_KTHREAD)
50694c28
MG
2777 goto out;
2778
2779 /*
2780 * If a fatal signal is pending, this process should not throttle.
2781 * It should return quickly so it can exit and free its memory
2782 */
2783 if (fatal_signal_pending(current))
2784 goto out;
5515061d 2785
675becce
MG
2786 /*
2787 * Check if the pfmemalloc reserves are ok by finding the first node
2788 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2789 * GFP_KERNEL will be required for allocating network buffers when
2790 * swapping over the network so ZONE_HIGHMEM is unusable.
2791 *
2792 * Throttling is based on the first usable node and throttled processes
2793 * wait on a queue until kswapd makes progress and wakes them. There
2794 * is an affinity then between processes waking up and where reclaim
2795 * progress has been made assuming the process wakes on the same node.
2796 * More importantly, processes running on remote nodes will not compete
2797 * for remote pfmemalloc reserves and processes on different nodes
2798 * should make reasonable progress.
2799 */
2800 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 2801 gfp_zone(gfp_mask), nodemask) {
675becce
MG
2802 if (zone_idx(zone) > ZONE_NORMAL)
2803 continue;
2804
2805 /* Throttle based on the first usable node */
2806 pgdat = zone->zone_pgdat;
2807 if (pfmemalloc_watermark_ok(pgdat))
2808 goto out;
2809 break;
2810 }
2811
2812 /* If no zone was usable by the allocation flags then do not throttle */
2813 if (!pgdat)
50694c28 2814 goto out;
5515061d 2815
68243e76
MG
2816 /* Account for the throttling */
2817 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2818
5515061d
MG
2819 /*
2820 * If the caller cannot enter the filesystem, it's possible that it
2821 * is due to the caller holding an FS lock or performing a journal
2822 * transaction in the case of a filesystem like ext[3|4]. In this case,
2823 * it is not safe to block on pfmemalloc_wait as kswapd could be
2824 * blocked waiting on the same lock. Instead, throttle for up to a
2825 * second before continuing.
2826 */
2827 if (!(gfp_mask & __GFP_FS)) {
2828 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2829 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2830
2831 goto check_pending;
5515061d
MG
2832 }
2833
2834 /* Throttle until kswapd wakes the process */
2835 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2836 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2837
2838check_pending:
2839 if (fatal_signal_pending(current))
2840 return true;
2841
2842out:
2843 return false;
5515061d
MG
2844}
2845
dac1d27b 2846unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2847 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2848{
33906bc5 2849 unsigned long nr_reclaimed;
66e1707b 2850 struct scan_control sc = {
ee814fe2 2851 .nr_to_reclaim = SWAP_CLUSTER_MAX,
21caf2fc 2852 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
ee814fe2
JW
2853 .order = order,
2854 .nodemask = nodemask,
2855 .priority = DEF_PRIORITY,
66e1707b 2856 .may_writepage = !laptop_mode,
a6dc60f8 2857 .may_unmap = 1,
2e2e4259 2858 .may_swap = 1,
66e1707b
BS
2859 };
2860
5515061d 2861 /*
50694c28
MG
2862 * Do not enter reclaim if fatal signal was delivered while throttled.
2863 * 1 is returned so that the page allocator does not OOM kill at this
2864 * point.
5515061d 2865 */
50694c28 2866 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2867 return 1;
2868
33906bc5
MG
2869 trace_mm_vmscan_direct_reclaim_begin(order,
2870 sc.may_writepage,
2871 gfp_mask);
2872
3115cd91 2873 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2874
2875 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2876
2877 return nr_reclaimed;
66e1707b
BS
2878}
2879
c255a458 2880#ifdef CONFIG_MEMCG
66e1707b 2881
72835c86 2882unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2883 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2884 struct zone *zone,
2885 unsigned long *nr_scanned)
4e416953
BS
2886{
2887 struct scan_control sc = {
b8f5c566 2888 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 2889 .target_mem_cgroup = memcg,
4e416953
BS
2890 .may_writepage = !laptop_mode,
2891 .may_unmap = 1,
2892 .may_swap = !noswap,
4e416953 2893 };
6b4f7799 2894 unsigned long lru_pages;
0ae5e89c 2895
4e416953
BS
2896 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2897 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2898
9e3b2f8c 2899 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2900 sc.may_writepage,
2901 sc.gfp_mask);
2902
4e416953
BS
2903 /*
2904 * NOTE: Although we can get the priority field, using it
2905 * here is not a good idea, since it limits the pages we can scan.
2906 * if we don't reclaim here, the shrink_zone from balance_pgdat
2907 * will pick up pages from other mem cgroup's as well. We hack
2908 * the priority and make it zero.
2909 */
33377678 2910 shrink_zone_memcg(zone, memcg, &sc, &lru_pages);
bdce6d9e
KM
2911
2912 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2913
0ae5e89c 2914 *nr_scanned = sc.nr_scanned;
4e416953
BS
2915 return sc.nr_reclaimed;
2916}
2917
72835c86 2918unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 2919 unsigned long nr_pages,
a7885eb8 2920 gfp_t gfp_mask,
b70a2a21 2921 bool may_swap)
66e1707b 2922{
4e416953 2923 struct zonelist *zonelist;
bdce6d9e 2924 unsigned long nr_reclaimed;
889976db 2925 int nid;
66e1707b 2926 struct scan_control sc = {
b70a2a21 2927 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
a09ed5e0
YH
2928 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2929 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
ee814fe2
JW
2930 .target_mem_cgroup = memcg,
2931 .priority = DEF_PRIORITY,
2932 .may_writepage = !laptop_mode,
2933 .may_unmap = 1,
b70a2a21 2934 .may_swap = may_swap,
a09ed5e0 2935 };
66e1707b 2936
889976db
YH
2937 /*
2938 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2939 * take care of from where we get pages. So the node where we start the
2940 * scan does not need to be the current node.
2941 */
72835c86 2942 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2943
2944 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2945
2946 trace_mm_vmscan_memcg_reclaim_begin(0,
2947 sc.may_writepage,
2948 sc.gfp_mask);
2949
3115cd91 2950 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
bdce6d9e
KM
2951
2952 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2953
2954 return nr_reclaimed;
66e1707b
BS
2955}
2956#endif
2957
9e3b2f8c 2958static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2959{
b95a2f2d 2960 struct mem_cgroup *memcg;
f16015fb 2961
b95a2f2d
JW
2962 if (!total_swap_pages)
2963 return;
2964
2965 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2966 do {
c56d5c7d 2967 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2968
c56d5c7d 2969 if (inactive_anon_is_low(lruvec))
1a93be0e 2970 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2971 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2972
2973 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2974 } while (memcg);
f16015fb
JW
2975}
2976
60cefed4
JW
2977static bool zone_balanced(struct zone *zone, int order,
2978 unsigned long balance_gap, int classzone_idx)
2979{
2980 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
e2b19197 2981 balance_gap, classzone_idx))
60cefed4
JW
2982 return false;
2983
ebff3980
VB
2984 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2985 order, 0, classzone_idx) == COMPACT_SKIPPED)
60cefed4
JW
2986 return false;
2987
2988 return true;
2989}
2990
1741c877 2991/*
4ae0a48b
ZC
2992 * pgdat_balanced() is used when checking if a node is balanced.
2993 *
2994 * For order-0, all zones must be balanced!
2995 *
2996 * For high-order allocations only zones that meet watermarks and are in a
2997 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2998 * total of balanced pages must be at least 25% of the zones allowed by
2999 * classzone_idx for the node to be considered balanced. Forcing all zones to
3000 * be balanced for high orders can cause excessive reclaim when there are
3001 * imbalanced zones.
1741c877
MG
3002 * The choice of 25% is due to
3003 * o a 16M DMA zone that is balanced will not balance a zone on any
3004 * reasonable sized machine
3005 * o On all other machines, the top zone must be at least a reasonable
25985edc 3006 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
3007 * would need to be at least 256M for it to be balance a whole node.
3008 * Similarly, on x86-64 the Normal zone would need to be at least 1G
3009 * to balance a node on its own. These seemed like reasonable ratios.
3010 */
4ae0a48b 3011static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 3012{
b40da049 3013 unsigned long managed_pages = 0;
4ae0a48b 3014 unsigned long balanced_pages = 0;
1741c877
MG
3015 int i;
3016
4ae0a48b
ZC
3017 /* Check the watermark levels */
3018 for (i = 0; i <= classzone_idx; i++) {
3019 struct zone *zone = pgdat->node_zones + i;
1741c877 3020
4ae0a48b
ZC
3021 if (!populated_zone(zone))
3022 continue;
3023
b40da049 3024 managed_pages += zone->managed_pages;
4ae0a48b
ZC
3025
3026 /*
3027 * A special case here:
3028 *
3029 * balance_pgdat() skips over all_unreclaimable after
3030 * DEF_PRIORITY. Effectively, it considers them balanced so
3031 * they must be considered balanced here as well!
3032 */
6e543d57 3033 if (!zone_reclaimable(zone)) {
b40da049 3034 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
3035 continue;
3036 }
3037
3038 if (zone_balanced(zone, order, 0, i))
b40da049 3039 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
3040 else if (!order)
3041 return false;
3042 }
3043
3044 if (order)
b40da049 3045 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
3046 else
3047 return true;
1741c877
MG
3048}
3049
5515061d
MG
3050/*
3051 * Prepare kswapd for sleeping. This verifies that there are no processes
3052 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3053 *
3054 * Returns true if kswapd is ready to sleep
3055 */
3056static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 3057 int classzone_idx)
f50de2d3 3058{
f50de2d3
MG
3059 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3060 if (remaining)
5515061d
MG
3061 return false;
3062
3063 /*
9e5e3661
VB
3064 * The throttled processes are normally woken up in balance_pgdat() as
3065 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3066 * race between when kswapd checks the watermarks and a process gets
3067 * throttled. There is also a potential race if processes get
3068 * throttled, kswapd wakes, a large process exits thereby balancing the
3069 * zones, which causes kswapd to exit balance_pgdat() before reaching
3070 * the wake up checks. If kswapd is going to sleep, no process should
3071 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3072 * the wake up is premature, processes will wake kswapd and get
3073 * throttled again. The difference from wake ups in balance_pgdat() is
3074 * that here we are under prepare_to_wait().
5515061d 3075 */
9e5e3661
VB
3076 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3077 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3078
4ae0a48b 3079 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
3080}
3081
75485363
MG
3082/*
3083 * kswapd shrinks the zone by the number of pages required to reach
3084 * the high watermark.
b8e83b94
MG
3085 *
3086 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3087 * reclaim or if the lack of progress was due to pages under writeback.
3088 * This is used to determine if the scanning priority needs to be raised.
75485363 3089 */
b8e83b94 3090static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 3091 int classzone_idx,
75485363 3092 struct scan_control *sc,
2ab44f43 3093 unsigned long *nr_attempted)
75485363 3094{
7c954f6d
MG
3095 int testorder = sc->order;
3096 unsigned long balance_gap;
7c954f6d 3097 bool lowmem_pressure;
75485363
MG
3098
3099 /* Reclaim above the high watermark. */
3100 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d
MG
3101
3102 /*
3103 * Kswapd reclaims only single pages with compaction enabled. Trying
3104 * too hard to reclaim until contiguous free pages have become
3105 * available can hurt performance by evicting too much useful data
3106 * from memory. Do not reclaim more than needed for compaction.
3107 */
3108 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
ebff3980
VB
3109 compaction_suitable(zone, sc->order, 0, classzone_idx)
3110 != COMPACT_SKIPPED)
7c954f6d
MG
3111 testorder = 0;
3112
3113 /*
3114 * We put equal pressure on every zone, unless one zone has way too
3115 * many pages free already. The "too many pages" is defined as the
3116 * high wmark plus a "gap" where the gap is either the low
3117 * watermark or 1% of the zone, whichever is smaller.
3118 */
4be89a34
JZ
3119 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3120 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
7c954f6d
MG
3121
3122 /*
3123 * If there is no low memory pressure or the zone is balanced then no
3124 * reclaim is necessary
3125 */
3126 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3127 if (!lowmem_pressure && zone_balanced(zone, testorder,
3128 balance_gap, classzone_idx))
3129 return true;
3130
6b4f7799 3131 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
75485363 3132
2ab44f43
MG
3133 /* Account for the number of pages attempted to reclaim */
3134 *nr_attempted += sc->nr_to_reclaim;
3135
57054651 3136 clear_bit(ZONE_WRITEBACK, &zone->flags);
283aba9f 3137
7c954f6d
MG
3138 /*
3139 * If a zone reaches its high watermark, consider it to be no longer
3140 * congested. It's possible there are dirty pages backed by congested
3141 * BDIs but as pressure is relieved, speculatively avoid congestion
3142 * waits.
3143 */
6e543d57 3144 if (zone_reclaimable(zone) &&
7c954f6d 3145 zone_balanced(zone, testorder, 0, classzone_idx)) {
57054651
JW
3146 clear_bit(ZONE_CONGESTED, &zone->flags);
3147 clear_bit(ZONE_DIRTY, &zone->flags);
7c954f6d
MG
3148 }
3149
b8e83b94 3150 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3151}
3152
1da177e4
LT
3153/*
3154 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 3155 * they are all at high_wmark_pages(zone).
1da177e4 3156 *
0abdee2b 3157 * Returns the final order kswapd was reclaiming at
1da177e4
LT
3158 *
3159 * There is special handling here for zones which are full of pinned pages.
3160 * This can happen if the pages are all mlocked, or if they are all used by
3161 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3162 * What we do is to detect the case where all pages in the zone have been
3163 * scanned twice and there has been zero successful reclaim. Mark the zone as
3164 * dead and from now on, only perform a short scan. Basically we're polling
3165 * the zone for when the problem goes away.
3166 *
3167 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
3168 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3169 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3170 * lower zones regardless of the number of free pages in the lower zones. This
3171 * interoperates with the page allocator fallback scheme to ensure that aging
3172 * of pages is balanced across the zones.
1da177e4 3173 */
99504748 3174static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 3175 int *classzone_idx)
1da177e4 3176{
1da177e4 3177 int i;
99504748 3178 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
0608f43d
AM
3179 unsigned long nr_soft_reclaimed;
3180 unsigned long nr_soft_scanned;
179e9639
AM
3181 struct scan_control sc = {
3182 .gfp_mask = GFP_KERNEL,
ee814fe2 3183 .order = order,
b8e83b94 3184 .priority = DEF_PRIORITY,
ee814fe2 3185 .may_writepage = !laptop_mode,
a6dc60f8 3186 .may_unmap = 1,
2e2e4259 3187 .may_swap = 1,
179e9639 3188 };
f8891e5e 3189 count_vm_event(PAGEOUTRUN);
1da177e4 3190
9e3b2f8c 3191 do {
2ab44f43 3192 unsigned long nr_attempted = 0;
b8e83b94 3193 bool raise_priority = true;
2ab44f43 3194 bool pgdat_needs_compaction = (order > 0);
b8e83b94
MG
3195
3196 sc.nr_reclaimed = 0;
1da177e4 3197
d6277db4
RW
3198 /*
3199 * Scan in the highmem->dma direction for the highest
3200 * zone which needs scanning
3201 */
3202 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3203 struct zone *zone = pgdat->node_zones + i;
1da177e4 3204
d6277db4
RW
3205 if (!populated_zone(zone))
3206 continue;
1da177e4 3207
6e543d57
LD
3208 if (sc.priority != DEF_PRIORITY &&
3209 !zone_reclaimable(zone))
d6277db4 3210 continue;
1da177e4 3211
556adecb
RR
3212 /*
3213 * Do some background aging of the anon list, to give
3214 * pages a chance to be referenced before reclaiming.
3215 */
9e3b2f8c 3216 age_active_anon(zone, &sc);
556adecb 3217
cc715d99
MG
3218 /*
3219 * If the number of buffer_heads in the machine
3220 * exceeds the maximum allowed level and this node
3221 * has a highmem zone, force kswapd to reclaim from
3222 * it to relieve lowmem pressure.
3223 */
3224 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3225 end_zone = i;
3226 break;
3227 }
3228
60cefed4 3229 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 3230 end_zone = i;
e1dbeda6 3231 break;
439423f6 3232 } else {
d43006d5
MG
3233 /*
3234 * If balanced, clear the dirty and congested
3235 * flags
3236 */
57054651
JW
3237 clear_bit(ZONE_CONGESTED, &zone->flags);
3238 clear_bit(ZONE_DIRTY, &zone->flags);
1da177e4 3239 }
1da177e4 3240 }
dafcb73e 3241
b8e83b94 3242 if (i < 0)
e1dbeda6
AM
3243 goto out;
3244
1da177e4
LT
3245 for (i = 0; i <= end_zone; i++) {
3246 struct zone *zone = pgdat->node_zones + i;
3247
2ab44f43
MG
3248 if (!populated_zone(zone))
3249 continue;
3250
2ab44f43
MG
3251 /*
3252 * If any zone is currently balanced then kswapd will
3253 * not call compaction as it is expected that the
3254 * necessary pages are already available.
3255 */
3256 if (pgdat_needs_compaction &&
3257 zone_watermark_ok(zone, order,
3258 low_wmark_pages(zone),
3259 *classzone_idx, 0))
3260 pgdat_needs_compaction = false;
1da177e4
LT
3261 }
3262
b7ea3c41
MG
3263 /*
3264 * If we're getting trouble reclaiming, start doing writepage
3265 * even in laptop mode.
3266 */
3267 if (sc.priority < DEF_PRIORITY - 2)
3268 sc.may_writepage = 1;
3269
1da177e4
LT
3270 /*
3271 * Now scan the zone in the dma->highmem direction, stopping
3272 * at the last zone which needs scanning.
3273 *
3274 * We do this because the page allocator works in the opposite
3275 * direction. This prevents the page allocator from allocating
3276 * pages behind kswapd's direction of progress, which would
3277 * cause too much scanning of the lower zones.
3278 */
3279 for (i = 0; i <= end_zone; i++) {
3280 struct zone *zone = pgdat->node_zones + i;
3281
f3fe6512 3282 if (!populated_zone(zone))
1da177e4
LT
3283 continue;
3284
6e543d57
LD
3285 if (sc.priority != DEF_PRIORITY &&
3286 !zone_reclaimable(zone))
1da177e4
LT
3287 continue;
3288
1da177e4 3289 sc.nr_scanned = 0;
4e416953 3290
0608f43d
AM
3291 nr_soft_scanned = 0;
3292 /*
3293 * Call soft limit reclaim before calling shrink_zone.
3294 */
3295 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3296 order, sc.gfp_mask,
3297 &nr_soft_scanned);
3298 sc.nr_reclaimed += nr_soft_reclaimed;
3299
32a4330d 3300 /*
7c954f6d
MG
3301 * There should be no need to raise the scanning
3302 * priority if enough pages are already being scanned
3303 * that that high watermark would be met at 100%
3304 * efficiency.
fe2c2a10 3305 */
6b4f7799
JW
3306 if (kswapd_shrink_zone(zone, end_zone,
3307 &sc, &nr_attempted))
7c954f6d 3308 raise_priority = false;
1da177e4 3309 }
5515061d
MG
3310
3311 /*
3312 * If the low watermark is met there is no need for processes
3313 * to be throttled on pfmemalloc_wait as they should not be
3314 * able to safely make forward progress. Wake them
3315 */
3316 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3317 pfmemalloc_watermark_ok(pgdat))
cfc51155 3318 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3319
1da177e4 3320 /*
b8e83b94
MG
3321 * Fragmentation may mean that the system cannot be rebalanced
3322 * for high-order allocations in all zones. If twice the
3323 * allocation size has been reclaimed and the zones are still
3324 * not balanced then recheck the watermarks at order-0 to
3325 * prevent kswapd reclaiming excessively. Assume that a
3326 * process requested a high-order can direct reclaim/compact.
1da177e4 3327 */
b8e83b94
MG
3328 if (order && sc.nr_reclaimed >= 2UL << order)
3329 order = sc.order = 0;
8357376d 3330
b8e83b94
MG
3331 /* Check if kswapd should be suspending */
3332 if (try_to_freeze() || kthread_should_stop())
3333 break;
8357376d 3334
2ab44f43
MG
3335 /*
3336 * Compact if necessary and kswapd is reclaiming at least the
3337 * high watermark number of pages as requsted
3338 */
3339 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3340 compact_pgdat(pgdat, order);
3341
73ce02e9 3342 /*
b8e83b94
MG
3343 * Raise priority if scanning rate is too low or there was no
3344 * progress in reclaiming pages
73ce02e9 3345 */
b8e83b94
MG
3346 if (raise_priority || !sc.nr_reclaimed)
3347 sc.priority--;
9aa41348 3348 } while (sc.priority >= 1 &&
b8e83b94 3349 !pgdat_balanced(pgdat, order, *classzone_idx));
1da177e4 3350
b8e83b94 3351out:
0abdee2b 3352 /*
5515061d 3353 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
3354 * makes a decision on the order we were last reclaiming at. However,
3355 * if another caller entered the allocator slow path while kswapd
3356 * was awake, order will remain at the higher level
3357 */
dc83edd9 3358 *classzone_idx = end_zone;
0abdee2b 3359 return order;
1da177e4
LT
3360}
3361
dc83edd9 3362static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
3363{
3364 long remaining = 0;
3365 DEFINE_WAIT(wait);
3366
3367 if (freezing(current) || kthread_should_stop())
3368 return;
3369
3370 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3371
3372 /* Try to sleep for a short interval */
5515061d 3373 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3374 remaining = schedule_timeout(HZ/10);
3375 finish_wait(&pgdat->kswapd_wait, &wait);
3376 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3377 }
3378
3379 /*
3380 * After a short sleep, check if it was a premature sleep. If not, then
3381 * go fully to sleep until explicitly woken up.
3382 */
5515061d 3383 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3384 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3385
3386 /*
3387 * vmstat counters are not perfectly accurate and the estimated
3388 * value for counters such as NR_FREE_PAGES can deviate from the
3389 * true value by nr_online_cpus * threshold. To avoid the zone
3390 * watermarks being breached while under pressure, we reduce the
3391 * per-cpu vmstat threshold while kswapd is awake and restore
3392 * them before going back to sleep.
3393 */
3394 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 3395
62997027
MG
3396 /*
3397 * Compaction records what page blocks it recently failed to
3398 * isolate pages from and skips them in the future scanning.
3399 * When kswapd is going to sleep, it is reasonable to assume
3400 * that pages and compaction may succeed so reset the cache.
3401 */
3402 reset_isolation_suitable(pgdat);
3403
1c7e7f6c
AK
3404 if (!kthread_should_stop())
3405 schedule();
3406
f0bc0a60
KM
3407 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3408 } else {
3409 if (remaining)
3410 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3411 else
3412 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3413 }
3414 finish_wait(&pgdat->kswapd_wait, &wait);
3415}
3416
1da177e4
LT
3417/*
3418 * The background pageout daemon, started as a kernel thread
4f98a2fe 3419 * from the init process.
1da177e4
LT
3420 *
3421 * This basically trickles out pages so that we have _some_
3422 * free memory available even if there is no other activity
3423 * that frees anything up. This is needed for things like routing
3424 * etc, where we otherwise might have all activity going on in
3425 * asynchronous contexts that cannot page things out.
3426 *
3427 * If there are applications that are active memory-allocators
3428 * (most normal use), this basically shouldn't matter.
3429 */
3430static int kswapd(void *p)
3431{
215ddd66 3432 unsigned long order, new_order;
d2ebd0f6 3433 unsigned balanced_order;
215ddd66 3434 int classzone_idx, new_classzone_idx;
d2ebd0f6 3435 int balanced_classzone_idx;
1da177e4
LT
3436 pg_data_t *pgdat = (pg_data_t*)p;
3437 struct task_struct *tsk = current;
f0bc0a60 3438
1da177e4
LT
3439 struct reclaim_state reclaim_state = {
3440 .reclaimed_slab = 0,
3441 };
a70f7302 3442 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3443
cf40bd16
NP
3444 lockdep_set_current_reclaim_state(GFP_KERNEL);
3445
174596a0 3446 if (!cpumask_empty(cpumask))
c5f59f08 3447 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3448 current->reclaim_state = &reclaim_state;
3449
3450 /*
3451 * Tell the memory management that we're a "memory allocator",
3452 * and that if we need more memory we should get access to it
3453 * regardless (see "__alloc_pages()"). "kswapd" should
3454 * never get caught in the normal page freeing logic.
3455 *
3456 * (Kswapd normally doesn't need memory anyway, but sometimes
3457 * you need a small amount of memory in order to be able to
3458 * page out something else, and this flag essentially protects
3459 * us from recursively trying to free more memory as we're
3460 * trying to free the first piece of memory in the first place).
3461 */
930d9152 3462 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3463 set_freezable();
1da177e4 3464
215ddd66 3465 order = new_order = 0;
d2ebd0f6 3466 balanced_order = 0;
215ddd66 3467 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3468 balanced_classzone_idx = classzone_idx;
1da177e4 3469 for ( ; ; ) {
6f6313d4 3470 bool ret;
3e1d1d28 3471
215ddd66
MG
3472 /*
3473 * If the last balance_pgdat was unsuccessful it's unlikely a
3474 * new request of a similar or harder type will succeed soon
3475 * so consider going to sleep on the basis we reclaimed at
3476 */
d2ebd0f6
AS
3477 if (balanced_classzone_idx >= new_classzone_idx &&
3478 balanced_order == new_order) {
215ddd66
MG
3479 new_order = pgdat->kswapd_max_order;
3480 new_classzone_idx = pgdat->classzone_idx;
3481 pgdat->kswapd_max_order = 0;
3482 pgdat->classzone_idx = pgdat->nr_zones - 1;
3483 }
3484
99504748 3485 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3486 /*
3487 * Don't sleep if someone wants a larger 'order'
99504748 3488 * allocation or has tigher zone constraints
1da177e4
LT
3489 */
3490 order = new_order;
99504748 3491 classzone_idx = new_classzone_idx;
1da177e4 3492 } else {
d2ebd0f6
AS
3493 kswapd_try_to_sleep(pgdat, balanced_order,
3494 balanced_classzone_idx);
1da177e4 3495 order = pgdat->kswapd_max_order;
99504748 3496 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3497 new_order = order;
3498 new_classzone_idx = classzone_idx;
4d40502e 3499 pgdat->kswapd_max_order = 0;
215ddd66 3500 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3501 }
1da177e4 3502
8fe23e05
DR
3503 ret = try_to_freeze();
3504 if (kthread_should_stop())
3505 break;
3506
3507 /*
3508 * We can speed up thawing tasks if we don't call balance_pgdat
3509 * after returning from the refrigerator
3510 */
33906bc5
MG
3511 if (!ret) {
3512 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3513 balanced_classzone_idx = classzone_idx;
3514 balanced_order = balance_pgdat(pgdat, order,
3515 &balanced_classzone_idx);
33906bc5 3516 }
1da177e4 3517 }
b0a8cc58 3518
71abdc15 3519 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3520 current->reclaim_state = NULL;
71abdc15
JW
3521 lockdep_clear_current_reclaim_state();
3522
1da177e4
LT
3523 return 0;
3524}
3525
3526/*
3527 * A zone is low on free memory, so wake its kswapd task to service it.
3528 */
99504748 3529void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3530{
3531 pg_data_t *pgdat;
3532
f3fe6512 3533 if (!populated_zone(zone))
1da177e4
LT
3534 return;
3535
344736f2 3536 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
1da177e4 3537 return;
88f5acf8 3538 pgdat = zone->zone_pgdat;
99504748 3539 if (pgdat->kswapd_max_order < order) {
1da177e4 3540 pgdat->kswapd_max_order = order;
99504748
MG
3541 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3542 }
8d0986e2 3543 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3544 return;
892f795d 3545 if (zone_balanced(zone, order, 0, 0))
88f5acf8
MG
3546 return;
3547
3548 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3549 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3550}
3551
c6f37f12 3552#ifdef CONFIG_HIBERNATION
1da177e4 3553/*
7b51755c 3554 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3555 * freed pages.
3556 *
3557 * Rather than trying to age LRUs the aim is to preserve the overall
3558 * LRU order by reclaiming preferentially
3559 * inactive > active > active referenced > active mapped
1da177e4 3560 */
7b51755c 3561unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3562{
d6277db4 3563 struct reclaim_state reclaim_state;
d6277db4 3564 struct scan_control sc = {
ee814fe2 3565 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3566 .gfp_mask = GFP_HIGHUSER_MOVABLE,
ee814fe2 3567 .priority = DEF_PRIORITY,
d6277db4 3568 .may_writepage = 1,
ee814fe2
JW
3569 .may_unmap = 1,
3570 .may_swap = 1,
7b51755c 3571 .hibernation_mode = 1,
1da177e4 3572 };
a09ed5e0 3573 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3574 struct task_struct *p = current;
3575 unsigned long nr_reclaimed;
1da177e4 3576
7b51755c
KM
3577 p->flags |= PF_MEMALLOC;
3578 lockdep_set_current_reclaim_state(sc.gfp_mask);
3579 reclaim_state.reclaimed_slab = 0;
3580 p->reclaim_state = &reclaim_state;
d6277db4 3581
3115cd91 3582 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3583
7b51755c
KM
3584 p->reclaim_state = NULL;
3585 lockdep_clear_current_reclaim_state();
3586 p->flags &= ~PF_MEMALLOC;
d6277db4 3587
7b51755c 3588 return nr_reclaimed;
1da177e4 3589}
c6f37f12 3590#endif /* CONFIG_HIBERNATION */
1da177e4 3591
1da177e4
LT
3592/* It's optimal to keep kswapds on the same CPUs as their memory, but
3593 not required for correctness. So if the last cpu in a node goes
3594 away, we get changed to run anywhere: as the first one comes back,
3595 restore their cpu bindings. */
fcb35a9b
GKH
3596static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3597 void *hcpu)
1da177e4 3598{
58c0a4a7 3599 int nid;
1da177e4 3600
8bb78442 3601 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3602 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3603 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3604 const struct cpumask *mask;
3605
3606 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3607
3e597945 3608 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3609 /* One of our CPUs online: restore mask */
c5f59f08 3610 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3611 }
3612 }
3613 return NOTIFY_OK;
3614}
1da177e4 3615
3218ae14
YG
3616/*
3617 * This kswapd start function will be called by init and node-hot-add.
3618 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3619 */
3620int kswapd_run(int nid)
3621{
3622 pg_data_t *pgdat = NODE_DATA(nid);
3623 int ret = 0;
3624
3625 if (pgdat->kswapd)
3626 return 0;
3627
3628 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3629 if (IS_ERR(pgdat->kswapd)) {
3630 /* failure at boot is fatal */
3631 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3632 pr_err("Failed to start kswapd on node %d\n", nid);
3633 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3634 pgdat->kswapd = NULL;
3218ae14
YG
3635 }
3636 return ret;
3637}
3638
8fe23e05 3639/*
d8adde17 3640 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3641 * hold mem_hotplug_begin/end().
8fe23e05
DR
3642 */
3643void kswapd_stop(int nid)
3644{
3645 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3646
d8adde17 3647 if (kswapd) {
8fe23e05 3648 kthread_stop(kswapd);
d8adde17
JL
3649 NODE_DATA(nid)->kswapd = NULL;
3650 }
8fe23e05
DR
3651}
3652
1da177e4
LT
3653static int __init kswapd_init(void)
3654{
3218ae14 3655 int nid;
69e05944 3656
1da177e4 3657 swap_setup();
48fb2e24 3658 for_each_node_state(nid, N_MEMORY)
3218ae14 3659 kswapd_run(nid);
1da177e4
LT
3660 hotcpu_notifier(cpu_callback, 0);
3661 return 0;
3662}
3663
3664module_init(kswapd_init)
9eeff239
CL
3665
3666#ifdef CONFIG_NUMA
3667/*
3668 * Zone reclaim mode
3669 *
3670 * If non-zero call zone_reclaim when the number of free pages falls below
3671 * the watermarks.
9eeff239
CL
3672 */
3673int zone_reclaim_mode __read_mostly;
3674
1b2ffb78 3675#define RECLAIM_OFF 0
7d03431c 3676#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 3677#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 3678#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 3679
a92f7126
CL
3680/*
3681 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3682 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3683 * a zone.
3684 */
3685#define ZONE_RECLAIM_PRIORITY 4
3686
9614634f
CL
3687/*
3688 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3689 * occur.
3690 */
3691int sysctl_min_unmapped_ratio = 1;
3692
0ff38490
CL
3693/*
3694 * If the number of slab pages in a zone grows beyond this percentage then
3695 * slab reclaim needs to occur.
3696 */
3697int sysctl_min_slab_ratio = 5;
3698
90afa5de
MG
3699static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3700{
3701 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3702 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3703 zone_page_state(zone, NR_ACTIVE_FILE);
3704
3705 /*
3706 * It's possible for there to be more file mapped pages than
3707 * accounted for by the pages on the file LRU lists because
3708 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3709 */
3710 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3711}
3712
3713/* Work out how many page cache pages we can reclaim in this reclaim_mode */
d031a157 3714static unsigned long zone_pagecache_reclaimable(struct zone *zone)
90afa5de 3715{
d031a157
AM
3716 unsigned long nr_pagecache_reclaimable;
3717 unsigned long delta = 0;
90afa5de
MG
3718
3719 /*
95bbc0c7 3720 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de
MG
3721 * potentially reclaimable. Otherwise, we have to worry about
3722 * pages like swapcache and zone_unmapped_file_pages() provides
3723 * a better estimate
3724 */
95bbc0c7 3725 if (zone_reclaim_mode & RECLAIM_UNMAP)
90afa5de
MG
3726 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3727 else
3728 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3729
3730 /* If we can't clean pages, remove dirty pages from consideration */
3731 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3732 delta += zone_page_state(zone, NR_FILE_DIRTY);
3733
3734 /* Watch for any possible underflows due to delta */
3735 if (unlikely(delta > nr_pagecache_reclaimable))
3736 delta = nr_pagecache_reclaimable;
3737
3738 return nr_pagecache_reclaimable - delta;
3739}
3740
9eeff239
CL
3741/*
3742 * Try to free up some pages from this zone through reclaim.
3743 */
179e9639 3744static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3745{
7fb2d46d 3746 /* Minimum pages needed in order to stay on node */
69e05944 3747 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3748 struct task_struct *p = current;
3749 struct reclaim_state reclaim_state;
179e9639 3750 struct scan_control sc = {
62b726c1 3751 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3752 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3753 .order = order,
9e3b2f8c 3754 .priority = ZONE_RECLAIM_PRIORITY,
ee814fe2 3755 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
95bbc0c7 3756 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 3757 .may_swap = 1,
179e9639 3758 };
9eeff239 3759
9eeff239 3760 cond_resched();
d4f7796e 3761 /*
95bbc0c7 3762 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 3763 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 3764 * and RECLAIM_UNMAP.
d4f7796e
CL
3765 */
3766 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3767 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3768 reclaim_state.reclaimed_slab = 0;
3769 p->reclaim_state = &reclaim_state;
c84db23c 3770
90afa5de 3771 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3772 /*
3773 * Free memory by calling shrink zone with increasing
3774 * priorities until we have enough memory freed.
3775 */
0ff38490 3776 do {
6b4f7799 3777 shrink_zone(zone, &sc, true);
9e3b2f8c 3778 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3779 }
c84db23c 3780
9eeff239 3781 p->reclaim_state = NULL;
d4f7796e 3782 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3783 lockdep_clear_current_reclaim_state();
a79311c1 3784 return sc.nr_reclaimed >= nr_pages;
9eeff239 3785}
179e9639
AM
3786
3787int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3788{
179e9639 3789 int node_id;
d773ed6b 3790 int ret;
179e9639
AM
3791
3792 /*
0ff38490
CL
3793 * Zone reclaim reclaims unmapped file backed pages and
3794 * slab pages if we are over the defined limits.
34aa1330 3795 *
9614634f
CL
3796 * A small portion of unmapped file backed pages is needed for
3797 * file I/O otherwise pages read by file I/O will be immediately
3798 * thrown out if the zone is overallocated. So we do not reclaim
3799 * if less than a specified percentage of the zone is used by
3800 * unmapped file backed pages.
179e9639 3801 */
90afa5de
MG
3802 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3803 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3804 return ZONE_RECLAIM_FULL;
179e9639 3805
6e543d57 3806 if (!zone_reclaimable(zone))
fa5e084e 3807 return ZONE_RECLAIM_FULL;
d773ed6b 3808
179e9639 3809 /*
d773ed6b 3810 * Do not scan if the allocation should not be delayed.
179e9639 3811 */
d0164adc 3812 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
fa5e084e 3813 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3814
3815 /*
3816 * Only run zone reclaim on the local zone or on zones that do not
3817 * have associated processors. This will favor the local processor
3818 * over remote processors and spread off node memory allocations
3819 * as wide as possible.
3820 */
89fa3024 3821 node_id = zone_to_nid(zone);
37c0708d 3822 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3823 return ZONE_RECLAIM_NOSCAN;
d773ed6b 3824
57054651 3825 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
fa5e084e
MG
3826 return ZONE_RECLAIM_NOSCAN;
3827
d773ed6b 3828 ret = __zone_reclaim(zone, gfp_mask, order);
57054651 3829 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
d773ed6b 3830
24cf7251
MG
3831 if (!ret)
3832 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3833
d773ed6b 3834 return ret;
179e9639 3835}
9eeff239 3836#endif
894bc310 3837
894bc310
LS
3838/*
3839 * page_evictable - test whether a page is evictable
3840 * @page: the page to test
894bc310
LS
3841 *
3842 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3843 * lists vs unevictable list.
894bc310
LS
3844 *
3845 * Reasons page might not be evictable:
ba9ddf49 3846 * (1) page's mapping marked unevictable
b291f000 3847 * (2) page is part of an mlocked VMA
ba9ddf49 3848 *
894bc310 3849 */
39b5f29a 3850int page_evictable(struct page *page)
894bc310 3851{
39b5f29a 3852 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3853}
89e004ea 3854
85046579 3855#ifdef CONFIG_SHMEM
89e004ea 3856/**
24513264
HD
3857 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3858 * @pages: array of pages to check
3859 * @nr_pages: number of pages to check
89e004ea 3860 *
24513264 3861 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3862 *
3863 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3864 */
24513264 3865void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3866{
925b7673 3867 struct lruvec *lruvec;
24513264
HD
3868 struct zone *zone = NULL;
3869 int pgscanned = 0;
3870 int pgrescued = 0;
3871 int i;
89e004ea 3872
24513264
HD
3873 for (i = 0; i < nr_pages; i++) {
3874 struct page *page = pages[i];
3875 struct zone *pagezone;
89e004ea 3876
24513264
HD
3877 pgscanned++;
3878 pagezone = page_zone(page);
3879 if (pagezone != zone) {
3880 if (zone)
3881 spin_unlock_irq(&zone->lru_lock);
3882 zone = pagezone;
3883 spin_lock_irq(&zone->lru_lock);
3884 }
fa9add64 3885 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3886
24513264
HD
3887 if (!PageLRU(page) || !PageUnevictable(page))
3888 continue;
89e004ea 3889
39b5f29a 3890 if (page_evictable(page)) {
24513264
HD
3891 enum lru_list lru = page_lru_base_type(page);
3892
309381fe 3893 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3894 ClearPageUnevictable(page);
fa9add64
HD
3895 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3896 add_page_to_lru_list(page, lruvec, lru);
24513264 3897 pgrescued++;
89e004ea 3898 }
24513264 3899 }
89e004ea 3900
24513264
HD
3901 if (zone) {
3902 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3903 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3904 spin_unlock_irq(&zone->lru_lock);
89e004ea 3905 }
89e004ea 3906}
85046579 3907#endif /* CONFIG_SHMEM */