]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/net/ethernet/broadcom/bnx2x/bnx2x_cmn.c
bnx2x: Prevent load reordering in tx completion processing
[thirdparty/kernel/stable.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_cmn.c
1 /* bnx2x_cmn.c: QLogic Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
10 *
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
17 *
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
25 #include <linux/ip.h>
26 #include <linux/crash_dump.h>
27 #include <net/tcp.h>
28 #include <net/ipv6.h>
29 #include <net/ip6_checksum.h>
30 #include <linux/prefetch.h>
31 #include "bnx2x_cmn.h"
32 #include "bnx2x_init.h"
33 #include "bnx2x_sp.h"
34
35 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp);
36 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp);
37 static int bnx2x_alloc_fp_mem(struct bnx2x *bp);
38 static int bnx2x_poll(struct napi_struct *napi, int budget);
39
40 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp)
41 {
42 int i;
43
44 /* Add NAPI objects */
45 for_each_rx_queue_cnic(bp, i) {
46 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
47 bnx2x_poll, NAPI_POLL_WEIGHT);
48 }
49 }
50
51 static void bnx2x_add_all_napi(struct bnx2x *bp)
52 {
53 int i;
54
55 /* Add NAPI objects */
56 for_each_eth_queue(bp, i) {
57 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
58 bnx2x_poll, NAPI_POLL_WEIGHT);
59 }
60 }
61
62 static int bnx2x_calc_num_queues(struct bnx2x *bp)
63 {
64 int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues();
65
66 /* Reduce memory usage in kdump environment by using only one queue */
67 if (is_kdump_kernel())
68 nq = 1;
69
70 nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp));
71 return nq;
72 }
73
74 /**
75 * bnx2x_move_fp - move content of the fastpath structure.
76 *
77 * @bp: driver handle
78 * @from: source FP index
79 * @to: destination FP index
80 *
81 * Makes sure the contents of the bp->fp[to].napi is kept
82 * intact. This is done by first copying the napi struct from
83 * the target to the source, and then mem copying the entire
84 * source onto the target. Update txdata pointers and related
85 * content.
86 */
87 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
88 {
89 struct bnx2x_fastpath *from_fp = &bp->fp[from];
90 struct bnx2x_fastpath *to_fp = &bp->fp[to];
91 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
92 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
93 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
94 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
95 int old_max_eth_txqs, new_max_eth_txqs;
96 int old_txdata_index = 0, new_txdata_index = 0;
97 struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info;
98
99 /* Copy the NAPI object as it has been already initialized */
100 from_fp->napi = to_fp->napi;
101
102 /* Move bnx2x_fastpath contents */
103 memcpy(to_fp, from_fp, sizeof(*to_fp));
104 to_fp->index = to;
105
106 /* Retain the tpa_info of the original `to' version as we don't want
107 * 2 FPs to contain the same tpa_info pointer.
108 */
109 to_fp->tpa_info = old_tpa_info;
110
111 /* move sp_objs contents as well, as their indices match fp ones */
112 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
113
114 /* move fp_stats contents as well, as their indices match fp ones */
115 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
116
117 /* Update txdata pointers in fp and move txdata content accordingly:
118 * Each fp consumes 'max_cos' txdata structures, so the index should be
119 * decremented by max_cos x delta.
120 */
121
122 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
123 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
124 (bp)->max_cos;
125 if (from == FCOE_IDX(bp)) {
126 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
127 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
128 }
129
130 memcpy(&bp->bnx2x_txq[new_txdata_index],
131 &bp->bnx2x_txq[old_txdata_index],
132 sizeof(struct bnx2x_fp_txdata));
133 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
134 }
135
136 /**
137 * bnx2x_fill_fw_str - Fill buffer with FW version string.
138 *
139 * @bp: driver handle
140 * @buf: character buffer to fill with the fw name
141 * @buf_len: length of the above buffer
142 *
143 */
144 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
145 {
146 if (IS_PF(bp)) {
147 u8 phy_fw_ver[PHY_FW_VER_LEN];
148
149 phy_fw_ver[0] = '\0';
150 bnx2x_get_ext_phy_fw_version(&bp->link_params,
151 phy_fw_ver, PHY_FW_VER_LEN);
152 strlcpy(buf, bp->fw_ver, buf_len);
153 snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
154 "bc %d.%d.%d%s%s",
155 (bp->common.bc_ver & 0xff0000) >> 16,
156 (bp->common.bc_ver & 0xff00) >> 8,
157 (bp->common.bc_ver & 0xff),
158 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
159 } else {
160 bnx2x_vf_fill_fw_str(bp, buf, buf_len);
161 }
162 }
163
164 /**
165 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
166 *
167 * @bp: driver handle
168 * @delta: number of eth queues which were not allocated
169 */
170 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
171 {
172 int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
173
174 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer
175 * backward along the array could cause memory to be overridden
176 */
177 for (cos = 1; cos < bp->max_cos; cos++) {
178 for (i = 0; i < old_eth_num - delta; i++) {
179 struct bnx2x_fastpath *fp = &bp->fp[i];
180 int new_idx = cos * (old_eth_num - delta) + i;
181
182 memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
183 sizeof(struct bnx2x_fp_txdata));
184 fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
185 }
186 }
187 }
188
189 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
190
191 /* free skb in the packet ring at pos idx
192 * return idx of last bd freed
193 */
194 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
195 u16 idx, unsigned int *pkts_compl,
196 unsigned int *bytes_compl)
197 {
198 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
199 struct eth_tx_start_bd *tx_start_bd;
200 struct eth_tx_bd *tx_data_bd;
201 struct sk_buff *skb = tx_buf->skb;
202 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
203 int nbd;
204 u16 split_bd_len = 0;
205
206 /* prefetch skb end pointer to speedup dev_kfree_skb() */
207 prefetch(&skb->end);
208
209 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n",
210 txdata->txq_index, idx, tx_buf, skb);
211
212 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
213
214 nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
215 #ifdef BNX2X_STOP_ON_ERROR
216 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
217 BNX2X_ERR("BAD nbd!\n");
218 bnx2x_panic();
219 }
220 #endif
221 new_cons = nbd + tx_buf->first_bd;
222
223 /* Get the next bd */
224 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
225
226 /* Skip a parse bd... */
227 --nbd;
228 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
229
230 if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) {
231 /* Skip second parse bd... */
232 --nbd;
233 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
234 }
235
236 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
237 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
238 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
239 split_bd_len = BD_UNMAP_LEN(tx_data_bd);
240 --nbd;
241 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
242 }
243
244 /* unmap first bd */
245 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
246 BD_UNMAP_LEN(tx_start_bd) + split_bd_len,
247 DMA_TO_DEVICE);
248
249 /* now free frags */
250 while (nbd > 0) {
251
252 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
253 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
254 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
255 if (--nbd)
256 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
257 }
258
259 /* release skb */
260 WARN_ON(!skb);
261 if (likely(skb)) {
262 (*pkts_compl)++;
263 (*bytes_compl) += skb->len;
264 dev_kfree_skb_any(skb);
265 }
266
267 tx_buf->first_bd = 0;
268 tx_buf->skb = NULL;
269
270 return new_cons;
271 }
272
273 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
274 {
275 struct netdev_queue *txq;
276 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
277 unsigned int pkts_compl = 0, bytes_compl = 0;
278
279 #ifdef BNX2X_STOP_ON_ERROR
280 if (unlikely(bp->panic))
281 return -1;
282 #endif
283
284 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
285 hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
286 sw_cons = txdata->tx_pkt_cons;
287
288 /* Ensure subsequent loads occur after hw_cons */
289 smp_rmb();
290
291 while (sw_cons != hw_cons) {
292 u16 pkt_cons;
293
294 pkt_cons = TX_BD(sw_cons);
295
296 DP(NETIF_MSG_TX_DONE,
297 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n",
298 txdata->txq_index, hw_cons, sw_cons, pkt_cons);
299
300 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
301 &pkts_compl, &bytes_compl);
302
303 sw_cons++;
304 }
305
306 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
307
308 txdata->tx_pkt_cons = sw_cons;
309 txdata->tx_bd_cons = bd_cons;
310
311 /* Need to make the tx_bd_cons update visible to start_xmit()
312 * before checking for netif_tx_queue_stopped(). Without the
313 * memory barrier, there is a small possibility that
314 * start_xmit() will miss it and cause the queue to be stopped
315 * forever.
316 * On the other hand we need an rmb() here to ensure the proper
317 * ordering of bit testing in the following
318 * netif_tx_queue_stopped(txq) call.
319 */
320 smp_mb();
321
322 if (unlikely(netif_tx_queue_stopped(txq))) {
323 /* Taking tx_lock() is needed to prevent re-enabling the queue
324 * while it's empty. This could have happen if rx_action() gets
325 * suspended in bnx2x_tx_int() after the condition before
326 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
327 *
328 * stops the queue->sees fresh tx_bd_cons->releases the queue->
329 * sends some packets consuming the whole queue again->
330 * stops the queue
331 */
332
333 __netif_tx_lock(txq, smp_processor_id());
334
335 if ((netif_tx_queue_stopped(txq)) &&
336 (bp->state == BNX2X_STATE_OPEN) &&
337 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
338 netif_tx_wake_queue(txq);
339
340 __netif_tx_unlock(txq);
341 }
342 return 0;
343 }
344
345 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
346 u16 idx)
347 {
348 u16 last_max = fp->last_max_sge;
349
350 if (SUB_S16(idx, last_max) > 0)
351 fp->last_max_sge = idx;
352 }
353
354 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
355 u16 sge_len,
356 struct eth_end_agg_rx_cqe *cqe)
357 {
358 struct bnx2x *bp = fp->bp;
359 u16 last_max, last_elem, first_elem;
360 u16 delta = 0;
361 u16 i;
362
363 if (!sge_len)
364 return;
365
366 /* First mark all used pages */
367 for (i = 0; i < sge_len; i++)
368 BIT_VEC64_CLEAR_BIT(fp->sge_mask,
369 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
370
371 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
372 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
373
374 /* Here we assume that the last SGE index is the biggest */
375 prefetch((void *)(fp->sge_mask));
376 bnx2x_update_last_max_sge(fp,
377 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
378
379 last_max = RX_SGE(fp->last_max_sge);
380 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
381 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
382
383 /* If ring is not full */
384 if (last_elem + 1 != first_elem)
385 last_elem++;
386
387 /* Now update the prod */
388 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
389 if (likely(fp->sge_mask[i]))
390 break;
391
392 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
393 delta += BIT_VEC64_ELEM_SZ;
394 }
395
396 if (delta > 0) {
397 fp->rx_sge_prod += delta;
398 /* clear page-end entries */
399 bnx2x_clear_sge_mask_next_elems(fp);
400 }
401
402 DP(NETIF_MSG_RX_STATUS,
403 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n",
404 fp->last_max_sge, fp->rx_sge_prod);
405 }
406
407 /* Get Toeplitz hash value in the skb using the value from the
408 * CQE (calculated by HW).
409 */
410 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
411 const struct eth_fast_path_rx_cqe *cqe,
412 enum pkt_hash_types *rxhash_type)
413 {
414 /* Get Toeplitz hash from CQE */
415 if ((bp->dev->features & NETIF_F_RXHASH) &&
416 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
417 enum eth_rss_hash_type htype;
418
419 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
420 *rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) ||
421 (htype == TCP_IPV6_HASH_TYPE)) ?
422 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
423
424 return le32_to_cpu(cqe->rss_hash_result);
425 }
426 *rxhash_type = PKT_HASH_TYPE_NONE;
427 return 0;
428 }
429
430 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
431 u16 cons, u16 prod,
432 struct eth_fast_path_rx_cqe *cqe)
433 {
434 struct bnx2x *bp = fp->bp;
435 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
436 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
437 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
438 dma_addr_t mapping;
439 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
440 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
441
442 /* print error if current state != stop */
443 if (tpa_info->tpa_state != BNX2X_TPA_STOP)
444 BNX2X_ERR("start of bin not in stop [%d]\n", queue);
445
446 /* Try to map an empty data buffer from the aggregation info */
447 mapping = dma_map_single(&bp->pdev->dev,
448 first_buf->data + NET_SKB_PAD,
449 fp->rx_buf_size, DMA_FROM_DEVICE);
450 /*
451 * ...if it fails - move the skb from the consumer to the producer
452 * and set the current aggregation state as ERROR to drop it
453 * when TPA_STOP arrives.
454 */
455
456 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
457 /* Move the BD from the consumer to the producer */
458 bnx2x_reuse_rx_data(fp, cons, prod);
459 tpa_info->tpa_state = BNX2X_TPA_ERROR;
460 return;
461 }
462
463 /* move empty data from pool to prod */
464 prod_rx_buf->data = first_buf->data;
465 dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
466 /* point prod_bd to new data */
467 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
468 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
469
470 /* move partial skb from cons to pool (don't unmap yet) */
471 *first_buf = *cons_rx_buf;
472
473 /* mark bin state as START */
474 tpa_info->parsing_flags =
475 le16_to_cpu(cqe->pars_flags.flags);
476 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
477 tpa_info->tpa_state = BNX2X_TPA_START;
478 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
479 tpa_info->placement_offset = cqe->placement_offset;
480 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type);
481 if (fp->mode == TPA_MODE_GRO) {
482 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
483 tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
484 tpa_info->gro_size = gro_size;
485 }
486
487 #ifdef BNX2X_STOP_ON_ERROR
488 fp->tpa_queue_used |= (1 << queue);
489 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
490 fp->tpa_queue_used);
491 #endif
492 }
493
494 /* Timestamp option length allowed for TPA aggregation:
495 *
496 * nop nop kind length echo val
497 */
498 #define TPA_TSTAMP_OPT_LEN 12
499 /**
500 * bnx2x_set_gro_params - compute GRO values
501 *
502 * @skb: packet skb
503 * @parsing_flags: parsing flags from the START CQE
504 * @len_on_bd: total length of the first packet for the
505 * aggregation.
506 * @pkt_len: length of all segments
507 *
508 * Approximate value of the MSS for this aggregation calculated using
509 * the first packet of it.
510 * Compute number of aggregated segments, and gso_type.
511 */
512 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
513 u16 len_on_bd, unsigned int pkt_len,
514 u16 num_of_coalesced_segs)
515 {
516 /* TPA aggregation won't have either IP options or TCP options
517 * other than timestamp or IPv6 extension headers.
518 */
519 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
520
521 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
522 PRS_FLAG_OVERETH_IPV6) {
523 hdrs_len += sizeof(struct ipv6hdr);
524 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
525 } else {
526 hdrs_len += sizeof(struct iphdr);
527 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
528 }
529
530 /* Check if there was a TCP timestamp, if there is it's will
531 * always be 12 bytes length: nop nop kind length echo val.
532 *
533 * Otherwise FW would close the aggregation.
534 */
535 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
536 hdrs_len += TPA_TSTAMP_OPT_LEN;
537
538 skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
539
540 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
541 * to skb_shinfo(skb)->gso_segs
542 */
543 NAPI_GRO_CB(skb)->count = num_of_coalesced_segs;
544 }
545
546 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp,
547 u16 index, gfp_t gfp_mask)
548 {
549 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
550 struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
551 struct bnx2x_alloc_pool *pool = &fp->page_pool;
552 dma_addr_t mapping;
553
554 if (!pool->page) {
555 pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT);
556 if (unlikely(!pool->page))
557 return -ENOMEM;
558
559 pool->offset = 0;
560 }
561
562 mapping = dma_map_page(&bp->pdev->dev, pool->page,
563 pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE);
564 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
565 BNX2X_ERR("Can't map sge\n");
566 return -ENOMEM;
567 }
568
569 sw_buf->page = pool->page;
570 sw_buf->offset = pool->offset;
571
572 dma_unmap_addr_set(sw_buf, mapping, mapping);
573
574 sge->addr_hi = cpu_to_le32(U64_HI(mapping));
575 sge->addr_lo = cpu_to_le32(U64_LO(mapping));
576
577 pool->offset += SGE_PAGE_SIZE;
578 if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE)
579 get_page(pool->page);
580 else
581 pool->page = NULL;
582 return 0;
583 }
584
585 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
586 struct bnx2x_agg_info *tpa_info,
587 u16 pages,
588 struct sk_buff *skb,
589 struct eth_end_agg_rx_cqe *cqe,
590 u16 cqe_idx)
591 {
592 struct sw_rx_page *rx_pg, old_rx_pg;
593 u32 i, frag_len, frag_size;
594 int err, j, frag_id = 0;
595 u16 len_on_bd = tpa_info->len_on_bd;
596 u16 full_page = 0, gro_size = 0;
597
598 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
599
600 if (fp->mode == TPA_MODE_GRO) {
601 gro_size = tpa_info->gro_size;
602 full_page = tpa_info->full_page;
603 }
604
605 /* This is needed in order to enable forwarding support */
606 if (frag_size)
607 bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
608 le16_to_cpu(cqe->pkt_len),
609 le16_to_cpu(cqe->num_of_coalesced_segs));
610
611 #ifdef BNX2X_STOP_ON_ERROR
612 if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
613 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
614 pages, cqe_idx);
615 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
616 bnx2x_panic();
617 return -EINVAL;
618 }
619 #endif
620
621 /* Run through the SGL and compose the fragmented skb */
622 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
623 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
624
625 /* FW gives the indices of the SGE as if the ring is an array
626 (meaning that "next" element will consume 2 indices) */
627 if (fp->mode == TPA_MODE_GRO)
628 frag_len = min_t(u32, frag_size, (u32)full_page);
629 else /* LRO */
630 frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
631
632 rx_pg = &fp->rx_page_ring[sge_idx];
633 old_rx_pg = *rx_pg;
634
635 /* If we fail to allocate a substitute page, we simply stop
636 where we are and drop the whole packet */
637 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC);
638 if (unlikely(err)) {
639 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
640 return err;
641 }
642
643 dma_unmap_page(&bp->pdev->dev,
644 dma_unmap_addr(&old_rx_pg, mapping),
645 SGE_PAGE_SIZE, DMA_FROM_DEVICE);
646 /* Add one frag and update the appropriate fields in the skb */
647 if (fp->mode == TPA_MODE_LRO)
648 skb_fill_page_desc(skb, j, old_rx_pg.page,
649 old_rx_pg.offset, frag_len);
650 else { /* GRO */
651 int rem;
652 int offset = 0;
653 for (rem = frag_len; rem > 0; rem -= gro_size) {
654 int len = rem > gro_size ? gro_size : rem;
655 skb_fill_page_desc(skb, frag_id++,
656 old_rx_pg.page,
657 old_rx_pg.offset + offset,
658 len);
659 if (offset)
660 get_page(old_rx_pg.page);
661 offset += len;
662 }
663 }
664
665 skb->data_len += frag_len;
666 skb->truesize += SGE_PAGES;
667 skb->len += frag_len;
668
669 frag_size -= frag_len;
670 }
671
672 return 0;
673 }
674
675 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
676 {
677 if (fp->rx_frag_size)
678 skb_free_frag(data);
679 else
680 kfree(data);
681 }
682
683 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask)
684 {
685 if (fp->rx_frag_size) {
686 /* GFP_KERNEL allocations are used only during initialization */
687 if (unlikely(gfpflags_allow_blocking(gfp_mask)))
688 return (void *)__get_free_page(gfp_mask);
689
690 return netdev_alloc_frag(fp->rx_frag_size);
691 }
692
693 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask);
694 }
695
696 #ifdef CONFIG_INET
697 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
698 {
699 const struct iphdr *iph = ip_hdr(skb);
700 struct tcphdr *th;
701
702 skb_set_transport_header(skb, sizeof(struct iphdr));
703 th = tcp_hdr(skb);
704
705 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
706 iph->saddr, iph->daddr, 0);
707 }
708
709 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
710 {
711 struct ipv6hdr *iph = ipv6_hdr(skb);
712 struct tcphdr *th;
713
714 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
715 th = tcp_hdr(skb);
716
717 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
718 &iph->saddr, &iph->daddr, 0);
719 }
720
721 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb,
722 void (*gro_func)(struct bnx2x*, struct sk_buff*))
723 {
724 skb_reset_network_header(skb);
725 gro_func(bp, skb);
726 tcp_gro_complete(skb);
727 }
728 #endif
729
730 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
731 struct sk_buff *skb)
732 {
733 #ifdef CONFIG_INET
734 if (skb_shinfo(skb)->gso_size) {
735 switch (be16_to_cpu(skb->protocol)) {
736 case ETH_P_IP:
737 bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum);
738 break;
739 case ETH_P_IPV6:
740 bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum);
741 break;
742 default:
743 netdev_WARN_ONCE(bp->dev,
744 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
745 be16_to_cpu(skb->protocol));
746 }
747 }
748 #endif
749 skb_record_rx_queue(skb, fp->rx_queue);
750 napi_gro_receive(&fp->napi, skb);
751 }
752
753 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
754 struct bnx2x_agg_info *tpa_info,
755 u16 pages,
756 struct eth_end_agg_rx_cqe *cqe,
757 u16 cqe_idx)
758 {
759 struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
760 u8 pad = tpa_info->placement_offset;
761 u16 len = tpa_info->len_on_bd;
762 struct sk_buff *skb = NULL;
763 u8 *new_data, *data = rx_buf->data;
764 u8 old_tpa_state = tpa_info->tpa_state;
765
766 tpa_info->tpa_state = BNX2X_TPA_STOP;
767
768 /* If we there was an error during the handling of the TPA_START -
769 * drop this aggregation.
770 */
771 if (old_tpa_state == BNX2X_TPA_ERROR)
772 goto drop;
773
774 /* Try to allocate the new data */
775 new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC);
776 /* Unmap skb in the pool anyway, as we are going to change
777 pool entry status to BNX2X_TPA_STOP even if new skb allocation
778 fails. */
779 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
780 fp->rx_buf_size, DMA_FROM_DEVICE);
781 if (likely(new_data))
782 skb = build_skb(data, fp->rx_frag_size);
783
784 if (likely(skb)) {
785 #ifdef BNX2X_STOP_ON_ERROR
786 if (pad + len > fp->rx_buf_size) {
787 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n",
788 pad, len, fp->rx_buf_size);
789 bnx2x_panic();
790 return;
791 }
792 #endif
793
794 skb_reserve(skb, pad + NET_SKB_PAD);
795 skb_put(skb, len);
796 skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type);
797
798 skb->protocol = eth_type_trans(skb, bp->dev);
799 skb->ip_summed = CHECKSUM_UNNECESSARY;
800
801 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
802 skb, cqe, cqe_idx)) {
803 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
804 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag);
805 bnx2x_gro_receive(bp, fp, skb);
806 } else {
807 DP(NETIF_MSG_RX_STATUS,
808 "Failed to allocate new pages - dropping packet!\n");
809 dev_kfree_skb_any(skb);
810 }
811
812 /* put new data in bin */
813 rx_buf->data = new_data;
814
815 return;
816 }
817 if (new_data)
818 bnx2x_frag_free(fp, new_data);
819 drop:
820 /* drop the packet and keep the buffer in the bin */
821 DP(NETIF_MSG_RX_STATUS,
822 "Failed to allocate or map a new skb - dropping packet!\n");
823 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
824 }
825
826 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp,
827 u16 index, gfp_t gfp_mask)
828 {
829 u8 *data;
830 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
831 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
832 dma_addr_t mapping;
833
834 data = bnx2x_frag_alloc(fp, gfp_mask);
835 if (unlikely(data == NULL))
836 return -ENOMEM;
837
838 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
839 fp->rx_buf_size,
840 DMA_FROM_DEVICE);
841 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
842 bnx2x_frag_free(fp, data);
843 BNX2X_ERR("Can't map rx data\n");
844 return -ENOMEM;
845 }
846
847 rx_buf->data = data;
848 dma_unmap_addr_set(rx_buf, mapping, mapping);
849
850 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
851 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
852
853 return 0;
854 }
855
856 static
857 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
858 struct bnx2x_fastpath *fp,
859 struct bnx2x_eth_q_stats *qstats)
860 {
861 /* Do nothing if no L4 csum validation was done.
862 * We do not check whether IP csum was validated. For IPv4 we assume
863 * that if the card got as far as validating the L4 csum, it also
864 * validated the IP csum. IPv6 has no IP csum.
865 */
866 if (cqe->fast_path_cqe.status_flags &
867 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
868 return;
869
870 /* If L4 validation was done, check if an error was found. */
871
872 if (cqe->fast_path_cqe.type_error_flags &
873 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
874 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
875 qstats->hw_csum_err++;
876 else
877 skb->ip_summed = CHECKSUM_UNNECESSARY;
878 }
879
880 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
881 {
882 struct bnx2x *bp = fp->bp;
883 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
884 u16 sw_comp_cons, sw_comp_prod;
885 int rx_pkt = 0;
886 union eth_rx_cqe *cqe;
887 struct eth_fast_path_rx_cqe *cqe_fp;
888
889 #ifdef BNX2X_STOP_ON_ERROR
890 if (unlikely(bp->panic))
891 return 0;
892 #endif
893 if (budget <= 0)
894 return rx_pkt;
895
896 bd_cons = fp->rx_bd_cons;
897 bd_prod = fp->rx_bd_prod;
898 bd_prod_fw = bd_prod;
899 sw_comp_cons = fp->rx_comp_cons;
900 sw_comp_prod = fp->rx_comp_prod;
901
902 comp_ring_cons = RCQ_BD(sw_comp_cons);
903 cqe = &fp->rx_comp_ring[comp_ring_cons];
904 cqe_fp = &cqe->fast_path_cqe;
905
906 DP(NETIF_MSG_RX_STATUS,
907 "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons);
908
909 while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) {
910 struct sw_rx_bd *rx_buf = NULL;
911 struct sk_buff *skb;
912 u8 cqe_fp_flags;
913 enum eth_rx_cqe_type cqe_fp_type;
914 u16 len, pad, queue;
915 u8 *data;
916 u32 rxhash;
917 enum pkt_hash_types rxhash_type;
918
919 #ifdef BNX2X_STOP_ON_ERROR
920 if (unlikely(bp->panic))
921 return 0;
922 #endif
923
924 bd_prod = RX_BD(bd_prod);
925 bd_cons = RX_BD(bd_cons);
926
927 /* A rmb() is required to ensure that the CQE is not read
928 * before it is written by the adapter DMA. PCI ordering
929 * rules will make sure the other fields are written before
930 * the marker at the end of struct eth_fast_path_rx_cqe
931 * but without rmb() a weakly ordered processor can process
932 * stale data. Without the barrier TPA state-machine might
933 * enter inconsistent state and kernel stack might be
934 * provided with incorrect packet description - these lead
935 * to various kernel crashed.
936 */
937 rmb();
938
939 cqe_fp_flags = cqe_fp->type_error_flags;
940 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
941
942 DP(NETIF_MSG_RX_STATUS,
943 "CQE type %x err %x status %x queue %x vlan %x len %u\n",
944 CQE_TYPE(cqe_fp_flags),
945 cqe_fp_flags, cqe_fp->status_flags,
946 le32_to_cpu(cqe_fp->rss_hash_result),
947 le16_to_cpu(cqe_fp->vlan_tag),
948 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
949
950 /* is this a slowpath msg? */
951 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
952 bnx2x_sp_event(fp, cqe);
953 goto next_cqe;
954 }
955
956 rx_buf = &fp->rx_buf_ring[bd_cons];
957 data = rx_buf->data;
958
959 if (!CQE_TYPE_FAST(cqe_fp_type)) {
960 struct bnx2x_agg_info *tpa_info;
961 u16 frag_size, pages;
962 #ifdef BNX2X_STOP_ON_ERROR
963 /* sanity check */
964 if (fp->mode == TPA_MODE_DISABLED &&
965 (CQE_TYPE_START(cqe_fp_type) ||
966 CQE_TYPE_STOP(cqe_fp_type)))
967 BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
968 CQE_TYPE(cqe_fp_type));
969 #endif
970
971 if (CQE_TYPE_START(cqe_fp_type)) {
972 u16 queue = cqe_fp->queue_index;
973 DP(NETIF_MSG_RX_STATUS,
974 "calling tpa_start on queue %d\n",
975 queue);
976
977 bnx2x_tpa_start(fp, queue,
978 bd_cons, bd_prod,
979 cqe_fp);
980
981 goto next_rx;
982 }
983 queue = cqe->end_agg_cqe.queue_index;
984 tpa_info = &fp->tpa_info[queue];
985 DP(NETIF_MSG_RX_STATUS,
986 "calling tpa_stop on queue %d\n",
987 queue);
988
989 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
990 tpa_info->len_on_bd;
991
992 if (fp->mode == TPA_MODE_GRO)
993 pages = (frag_size + tpa_info->full_page - 1) /
994 tpa_info->full_page;
995 else
996 pages = SGE_PAGE_ALIGN(frag_size) >>
997 SGE_PAGE_SHIFT;
998
999 bnx2x_tpa_stop(bp, fp, tpa_info, pages,
1000 &cqe->end_agg_cqe, comp_ring_cons);
1001 #ifdef BNX2X_STOP_ON_ERROR
1002 if (bp->panic)
1003 return 0;
1004 #endif
1005
1006 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
1007 goto next_cqe;
1008 }
1009 /* non TPA */
1010 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
1011 pad = cqe_fp->placement_offset;
1012 dma_sync_single_for_cpu(&bp->pdev->dev,
1013 dma_unmap_addr(rx_buf, mapping),
1014 pad + RX_COPY_THRESH,
1015 DMA_FROM_DEVICE);
1016 pad += NET_SKB_PAD;
1017 prefetch(data + pad); /* speedup eth_type_trans() */
1018 /* is this an error packet? */
1019 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
1020 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1021 "ERROR flags %x rx packet %u\n",
1022 cqe_fp_flags, sw_comp_cons);
1023 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
1024 goto reuse_rx;
1025 }
1026
1027 /* Since we don't have a jumbo ring
1028 * copy small packets if mtu > 1500
1029 */
1030 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
1031 (len <= RX_COPY_THRESH)) {
1032 skb = napi_alloc_skb(&fp->napi, len);
1033 if (skb == NULL) {
1034 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1035 "ERROR packet dropped because of alloc failure\n");
1036 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1037 goto reuse_rx;
1038 }
1039 memcpy(skb->data, data + pad, len);
1040 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1041 } else {
1042 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod,
1043 GFP_ATOMIC) == 0)) {
1044 dma_unmap_single(&bp->pdev->dev,
1045 dma_unmap_addr(rx_buf, mapping),
1046 fp->rx_buf_size,
1047 DMA_FROM_DEVICE);
1048 skb = build_skb(data, fp->rx_frag_size);
1049 if (unlikely(!skb)) {
1050 bnx2x_frag_free(fp, data);
1051 bnx2x_fp_qstats(bp, fp)->
1052 rx_skb_alloc_failed++;
1053 goto next_rx;
1054 }
1055 skb_reserve(skb, pad);
1056 } else {
1057 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1058 "ERROR packet dropped because of alloc failure\n");
1059 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1060 reuse_rx:
1061 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1062 goto next_rx;
1063 }
1064 }
1065
1066 skb_put(skb, len);
1067 skb->protocol = eth_type_trans(skb, bp->dev);
1068
1069 /* Set Toeplitz hash for a none-LRO skb */
1070 rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type);
1071 skb_set_hash(skb, rxhash, rxhash_type);
1072
1073 skb_checksum_none_assert(skb);
1074
1075 if (bp->dev->features & NETIF_F_RXCSUM)
1076 bnx2x_csum_validate(skb, cqe, fp,
1077 bnx2x_fp_qstats(bp, fp));
1078
1079 skb_record_rx_queue(skb, fp->rx_queue);
1080
1081 /* Check if this packet was timestamped */
1082 if (unlikely(cqe->fast_path_cqe.type_error_flags &
1083 (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT)))
1084 bnx2x_set_rx_ts(bp, skb);
1085
1086 if (le16_to_cpu(cqe_fp->pars_flags.flags) &
1087 PARSING_FLAGS_VLAN)
1088 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1089 le16_to_cpu(cqe_fp->vlan_tag));
1090
1091 napi_gro_receive(&fp->napi, skb);
1092 next_rx:
1093 rx_buf->data = NULL;
1094
1095 bd_cons = NEXT_RX_IDX(bd_cons);
1096 bd_prod = NEXT_RX_IDX(bd_prod);
1097 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1098 rx_pkt++;
1099 next_cqe:
1100 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1101 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1102
1103 /* mark CQE as free */
1104 BNX2X_SEED_CQE(cqe_fp);
1105
1106 if (rx_pkt == budget)
1107 break;
1108
1109 comp_ring_cons = RCQ_BD(sw_comp_cons);
1110 cqe = &fp->rx_comp_ring[comp_ring_cons];
1111 cqe_fp = &cqe->fast_path_cqe;
1112 } /* while */
1113
1114 fp->rx_bd_cons = bd_cons;
1115 fp->rx_bd_prod = bd_prod_fw;
1116 fp->rx_comp_cons = sw_comp_cons;
1117 fp->rx_comp_prod = sw_comp_prod;
1118
1119 /* Update producers */
1120 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1121 fp->rx_sge_prod);
1122
1123 return rx_pkt;
1124 }
1125
1126 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1127 {
1128 struct bnx2x_fastpath *fp = fp_cookie;
1129 struct bnx2x *bp = fp->bp;
1130 u8 cos;
1131
1132 DP(NETIF_MSG_INTR,
1133 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1134 fp->index, fp->fw_sb_id, fp->igu_sb_id);
1135
1136 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1137
1138 #ifdef BNX2X_STOP_ON_ERROR
1139 if (unlikely(bp->panic))
1140 return IRQ_HANDLED;
1141 #endif
1142
1143 /* Handle Rx and Tx according to MSI-X vector */
1144 for_each_cos_in_tx_queue(fp, cos)
1145 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1146
1147 prefetch(&fp->sb_running_index[SM_RX_ID]);
1148 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1149
1150 return IRQ_HANDLED;
1151 }
1152
1153 /* HW Lock for shared dual port PHYs */
1154 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1155 {
1156 mutex_lock(&bp->port.phy_mutex);
1157
1158 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1159 }
1160
1161 void bnx2x_release_phy_lock(struct bnx2x *bp)
1162 {
1163 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1164
1165 mutex_unlock(&bp->port.phy_mutex);
1166 }
1167
1168 /* calculates MF speed according to current linespeed and MF configuration */
1169 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1170 {
1171 u16 line_speed = bp->link_vars.line_speed;
1172 if (IS_MF(bp)) {
1173 u16 maxCfg = bnx2x_extract_max_cfg(bp,
1174 bp->mf_config[BP_VN(bp)]);
1175
1176 /* Calculate the current MAX line speed limit for the MF
1177 * devices
1178 */
1179 if (IS_MF_PERCENT_BW(bp))
1180 line_speed = (line_speed * maxCfg) / 100;
1181 else { /* SD mode */
1182 u16 vn_max_rate = maxCfg * 100;
1183
1184 if (vn_max_rate < line_speed)
1185 line_speed = vn_max_rate;
1186 }
1187 }
1188
1189 return line_speed;
1190 }
1191
1192 /**
1193 * bnx2x_fill_report_data - fill link report data to report
1194 *
1195 * @bp: driver handle
1196 * @data: link state to update
1197 *
1198 * It uses a none-atomic bit operations because is called under the mutex.
1199 */
1200 static void bnx2x_fill_report_data(struct bnx2x *bp,
1201 struct bnx2x_link_report_data *data)
1202 {
1203 memset(data, 0, sizeof(*data));
1204
1205 if (IS_PF(bp)) {
1206 /* Fill the report data: effective line speed */
1207 data->line_speed = bnx2x_get_mf_speed(bp);
1208
1209 /* Link is down */
1210 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1211 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1212 &data->link_report_flags);
1213
1214 if (!BNX2X_NUM_ETH_QUEUES(bp))
1215 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1216 &data->link_report_flags);
1217
1218 /* Full DUPLEX */
1219 if (bp->link_vars.duplex == DUPLEX_FULL)
1220 __set_bit(BNX2X_LINK_REPORT_FD,
1221 &data->link_report_flags);
1222
1223 /* Rx Flow Control is ON */
1224 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1225 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1226 &data->link_report_flags);
1227
1228 /* Tx Flow Control is ON */
1229 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1230 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1231 &data->link_report_flags);
1232 } else { /* VF */
1233 *data = bp->vf_link_vars;
1234 }
1235 }
1236
1237 /**
1238 * bnx2x_link_report - report link status to OS.
1239 *
1240 * @bp: driver handle
1241 *
1242 * Calls the __bnx2x_link_report() under the same locking scheme
1243 * as a link/PHY state managing code to ensure a consistent link
1244 * reporting.
1245 */
1246
1247 void bnx2x_link_report(struct bnx2x *bp)
1248 {
1249 bnx2x_acquire_phy_lock(bp);
1250 __bnx2x_link_report(bp);
1251 bnx2x_release_phy_lock(bp);
1252 }
1253
1254 /**
1255 * __bnx2x_link_report - report link status to OS.
1256 *
1257 * @bp: driver handle
1258 *
1259 * None atomic implementation.
1260 * Should be called under the phy_lock.
1261 */
1262 void __bnx2x_link_report(struct bnx2x *bp)
1263 {
1264 struct bnx2x_link_report_data cur_data;
1265
1266 if (bp->force_link_down) {
1267 bp->link_vars.link_up = 0;
1268 return;
1269 }
1270
1271 /* reread mf_cfg */
1272 if (IS_PF(bp) && !CHIP_IS_E1(bp))
1273 bnx2x_read_mf_cfg(bp);
1274
1275 /* Read the current link report info */
1276 bnx2x_fill_report_data(bp, &cur_data);
1277
1278 /* Don't report link down or exactly the same link status twice */
1279 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1280 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1281 &bp->last_reported_link.link_report_flags) &&
1282 test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1283 &cur_data.link_report_flags)))
1284 return;
1285
1286 bp->link_cnt++;
1287
1288 /* We are going to report a new link parameters now -
1289 * remember the current data for the next time.
1290 */
1291 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1292
1293 /* propagate status to VFs */
1294 if (IS_PF(bp))
1295 bnx2x_iov_link_update(bp);
1296
1297 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1298 &cur_data.link_report_flags)) {
1299 netif_carrier_off(bp->dev);
1300 netdev_err(bp->dev, "NIC Link is Down\n");
1301 return;
1302 } else {
1303 const char *duplex;
1304 const char *flow;
1305
1306 netif_carrier_on(bp->dev);
1307
1308 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1309 &cur_data.link_report_flags))
1310 duplex = "full";
1311 else
1312 duplex = "half";
1313
1314 /* Handle the FC at the end so that only these flags would be
1315 * possibly set. This way we may easily check if there is no FC
1316 * enabled.
1317 */
1318 if (cur_data.link_report_flags) {
1319 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1320 &cur_data.link_report_flags)) {
1321 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1322 &cur_data.link_report_flags))
1323 flow = "ON - receive & transmit";
1324 else
1325 flow = "ON - receive";
1326 } else {
1327 flow = "ON - transmit";
1328 }
1329 } else {
1330 flow = "none";
1331 }
1332 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1333 cur_data.line_speed, duplex, flow);
1334 }
1335 }
1336
1337 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1338 {
1339 int i;
1340
1341 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1342 struct eth_rx_sge *sge;
1343
1344 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1345 sge->addr_hi =
1346 cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1347 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1348
1349 sge->addr_lo =
1350 cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1351 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1352 }
1353 }
1354
1355 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1356 struct bnx2x_fastpath *fp, int last)
1357 {
1358 int i;
1359
1360 for (i = 0; i < last; i++) {
1361 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1362 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1363 u8 *data = first_buf->data;
1364
1365 if (data == NULL) {
1366 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1367 continue;
1368 }
1369 if (tpa_info->tpa_state == BNX2X_TPA_START)
1370 dma_unmap_single(&bp->pdev->dev,
1371 dma_unmap_addr(first_buf, mapping),
1372 fp->rx_buf_size, DMA_FROM_DEVICE);
1373 bnx2x_frag_free(fp, data);
1374 first_buf->data = NULL;
1375 }
1376 }
1377
1378 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1379 {
1380 int j;
1381
1382 for_each_rx_queue_cnic(bp, j) {
1383 struct bnx2x_fastpath *fp = &bp->fp[j];
1384
1385 fp->rx_bd_cons = 0;
1386
1387 /* Activate BD ring */
1388 /* Warning!
1389 * this will generate an interrupt (to the TSTORM)
1390 * must only be done after chip is initialized
1391 */
1392 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1393 fp->rx_sge_prod);
1394 }
1395 }
1396
1397 void bnx2x_init_rx_rings(struct bnx2x *bp)
1398 {
1399 int func = BP_FUNC(bp);
1400 u16 ring_prod;
1401 int i, j;
1402
1403 /* Allocate TPA resources */
1404 for_each_eth_queue(bp, j) {
1405 struct bnx2x_fastpath *fp = &bp->fp[j];
1406
1407 DP(NETIF_MSG_IFUP,
1408 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1409
1410 if (fp->mode != TPA_MODE_DISABLED) {
1411 /* Fill the per-aggregation pool */
1412 for (i = 0; i < MAX_AGG_QS(bp); i++) {
1413 struct bnx2x_agg_info *tpa_info =
1414 &fp->tpa_info[i];
1415 struct sw_rx_bd *first_buf =
1416 &tpa_info->first_buf;
1417
1418 first_buf->data =
1419 bnx2x_frag_alloc(fp, GFP_KERNEL);
1420 if (!first_buf->data) {
1421 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1422 j);
1423 bnx2x_free_tpa_pool(bp, fp, i);
1424 fp->mode = TPA_MODE_DISABLED;
1425 break;
1426 }
1427 dma_unmap_addr_set(first_buf, mapping, 0);
1428 tpa_info->tpa_state = BNX2X_TPA_STOP;
1429 }
1430
1431 /* "next page" elements initialization */
1432 bnx2x_set_next_page_sgl(fp);
1433
1434 /* set SGEs bit mask */
1435 bnx2x_init_sge_ring_bit_mask(fp);
1436
1437 /* Allocate SGEs and initialize the ring elements */
1438 for (i = 0, ring_prod = 0;
1439 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1440
1441 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod,
1442 GFP_KERNEL) < 0) {
1443 BNX2X_ERR("was only able to allocate %d rx sges\n",
1444 i);
1445 BNX2X_ERR("disabling TPA for queue[%d]\n",
1446 j);
1447 /* Cleanup already allocated elements */
1448 bnx2x_free_rx_sge_range(bp, fp,
1449 ring_prod);
1450 bnx2x_free_tpa_pool(bp, fp,
1451 MAX_AGG_QS(bp));
1452 fp->mode = TPA_MODE_DISABLED;
1453 ring_prod = 0;
1454 break;
1455 }
1456 ring_prod = NEXT_SGE_IDX(ring_prod);
1457 }
1458
1459 fp->rx_sge_prod = ring_prod;
1460 }
1461 }
1462
1463 for_each_eth_queue(bp, j) {
1464 struct bnx2x_fastpath *fp = &bp->fp[j];
1465
1466 fp->rx_bd_cons = 0;
1467
1468 /* Activate BD ring */
1469 /* Warning!
1470 * this will generate an interrupt (to the TSTORM)
1471 * must only be done after chip is initialized
1472 */
1473 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1474 fp->rx_sge_prod);
1475
1476 if (j != 0)
1477 continue;
1478
1479 if (CHIP_IS_E1(bp)) {
1480 REG_WR(bp, BAR_USTRORM_INTMEM +
1481 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1482 U64_LO(fp->rx_comp_mapping));
1483 REG_WR(bp, BAR_USTRORM_INTMEM +
1484 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1485 U64_HI(fp->rx_comp_mapping));
1486 }
1487 }
1488 }
1489
1490 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1491 {
1492 u8 cos;
1493 struct bnx2x *bp = fp->bp;
1494
1495 for_each_cos_in_tx_queue(fp, cos) {
1496 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1497 unsigned pkts_compl = 0, bytes_compl = 0;
1498
1499 u16 sw_prod = txdata->tx_pkt_prod;
1500 u16 sw_cons = txdata->tx_pkt_cons;
1501
1502 while (sw_cons != sw_prod) {
1503 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1504 &pkts_compl, &bytes_compl);
1505 sw_cons++;
1506 }
1507
1508 netdev_tx_reset_queue(
1509 netdev_get_tx_queue(bp->dev,
1510 txdata->txq_index));
1511 }
1512 }
1513
1514 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1515 {
1516 int i;
1517
1518 for_each_tx_queue_cnic(bp, i) {
1519 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1520 }
1521 }
1522
1523 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1524 {
1525 int i;
1526
1527 for_each_eth_queue(bp, i) {
1528 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1529 }
1530 }
1531
1532 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1533 {
1534 struct bnx2x *bp = fp->bp;
1535 int i;
1536
1537 /* ring wasn't allocated */
1538 if (fp->rx_buf_ring == NULL)
1539 return;
1540
1541 for (i = 0; i < NUM_RX_BD; i++) {
1542 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1543 u8 *data = rx_buf->data;
1544
1545 if (data == NULL)
1546 continue;
1547 dma_unmap_single(&bp->pdev->dev,
1548 dma_unmap_addr(rx_buf, mapping),
1549 fp->rx_buf_size, DMA_FROM_DEVICE);
1550
1551 rx_buf->data = NULL;
1552 bnx2x_frag_free(fp, data);
1553 }
1554 }
1555
1556 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1557 {
1558 int j;
1559
1560 for_each_rx_queue_cnic(bp, j) {
1561 bnx2x_free_rx_bds(&bp->fp[j]);
1562 }
1563 }
1564
1565 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1566 {
1567 int j;
1568
1569 for_each_eth_queue(bp, j) {
1570 struct bnx2x_fastpath *fp = &bp->fp[j];
1571
1572 bnx2x_free_rx_bds(fp);
1573
1574 if (fp->mode != TPA_MODE_DISABLED)
1575 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1576 }
1577 }
1578
1579 static void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1580 {
1581 bnx2x_free_tx_skbs_cnic(bp);
1582 bnx2x_free_rx_skbs_cnic(bp);
1583 }
1584
1585 void bnx2x_free_skbs(struct bnx2x *bp)
1586 {
1587 bnx2x_free_tx_skbs(bp);
1588 bnx2x_free_rx_skbs(bp);
1589 }
1590
1591 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1592 {
1593 /* load old values */
1594 u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1595
1596 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1597 /* leave all but MAX value */
1598 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1599
1600 /* set new MAX value */
1601 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1602 & FUNC_MF_CFG_MAX_BW_MASK;
1603
1604 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1605 }
1606 }
1607
1608 /**
1609 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1610 *
1611 * @bp: driver handle
1612 * @nvecs: number of vectors to be released
1613 */
1614 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1615 {
1616 int i, offset = 0;
1617
1618 if (nvecs == offset)
1619 return;
1620
1621 /* VFs don't have a default SB */
1622 if (IS_PF(bp)) {
1623 free_irq(bp->msix_table[offset].vector, bp->dev);
1624 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1625 bp->msix_table[offset].vector);
1626 offset++;
1627 }
1628
1629 if (CNIC_SUPPORT(bp)) {
1630 if (nvecs == offset)
1631 return;
1632 offset++;
1633 }
1634
1635 for_each_eth_queue(bp, i) {
1636 if (nvecs == offset)
1637 return;
1638 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1639 i, bp->msix_table[offset].vector);
1640
1641 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1642 }
1643 }
1644
1645 void bnx2x_free_irq(struct bnx2x *bp)
1646 {
1647 if (bp->flags & USING_MSIX_FLAG &&
1648 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1649 int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1650
1651 /* vfs don't have a default status block */
1652 if (IS_PF(bp))
1653 nvecs++;
1654
1655 bnx2x_free_msix_irqs(bp, nvecs);
1656 } else {
1657 free_irq(bp->dev->irq, bp->dev);
1658 }
1659 }
1660
1661 int bnx2x_enable_msix(struct bnx2x *bp)
1662 {
1663 int msix_vec = 0, i, rc;
1664
1665 /* VFs don't have a default status block */
1666 if (IS_PF(bp)) {
1667 bp->msix_table[msix_vec].entry = msix_vec;
1668 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1669 bp->msix_table[0].entry);
1670 msix_vec++;
1671 }
1672
1673 /* Cnic requires an msix vector for itself */
1674 if (CNIC_SUPPORT(bp)) {
1675 bp->msix_table[msix_vec].entry = msix_vec;
1676 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1677 msix_vec, bp->msix_table[msix_vec].entry);
1678 msix_vec++;
1679 }
1680
1681 /* We need separate vectors for ETH queues only (not FCoE) */
1682 for_each_eth_queue(bp, i) {
1683 bp->msix_table[msix_vec].entry = msix_vec;
1684 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1685 msix_vec, msix_vec, i);
1686 msix_vec++;
1687 }
1688
1689 DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1690 msix_vec);
1691
1692 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0],
1693 BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec);
1694 /*
1695 * reconfigure number of tx/rx queues according to available
1696 * MSI-X vectors
1697 */
1698 if (rc == -ENOSPC) {
1699 /* Get by with single vector */
1700 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1);
1701 if (rc < 0) {
1702 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1703 rc);
1704 goto no_msix;
1705 }
1706
1707 BNX2X_DEV_INFO("Using single MSI-X vector\n");
1708 bp->flags |= USING_SINGLE_MSIX_FLAG;
1709
1710 BNX2X_DEV_INFO("set number of queues to 1\n");
1711 bp->num_ethernet_queues = 1;
1712 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1713 } else if (rc < 0) {
1714 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1715 goto no_msix;
1716 } else if (rc < msix_vec) {
1717 /* how less vectors we will have? */
1718 int diff = msix_vec - rc;
1719
1720 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1721
1722 /*
1723 * decrease number of queues by number of unallocated entries
1724 */
1725 bp->num_ethernet_queues -= diff;
1726 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1727
1728 BNX2X_DEV_INFO("New queue configuration set: %d\n",
1729 bp->num_queues);
1730 }
1731
1732 bp->flags |= USING_MSIX_FLAG;
1733
1734 return 0;
1735
1736 no_msix:
1737 /* fall to INTx if not enough memory */
1738 if (rc == -ENOMEM)
1739 bp->flags |= DISABLE_MSI_FLAG;
1740
1741 return rc;
1742 }
1743
1744 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1745 {
1746 int i, rc, offset = 0;
1747
1748 /* no default status block for vf */
1749 if (IS_PF(bp)) {
1750 rc = request_irq(bp->msix_table[offset++].vector,
1751 bnx2x_msix_sp_int, 0,
1752 bp->dev->name, bp->dev);
1753 if (rc) {
1754 BNX2X_ERR("request sp irq failed\n");
1755 return -EBUSY;
1756 }
1757 }
1758
1759 if (CNIC_SUPPORT(bp))
1760 offset++;
1761
1762 for_each_eth_queue(bp, i) {
1763 struct bnx2x_fastpath *fp = &bp->fp[i];
1764 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1765 bp->dev->name, i);
1766
1767 rc = request_irq(bp->msix_table[offset].vector,
1768 bnx2x_msix_fp_int, 0, fp->name, fp);
1769 if (rc) {
1770 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i,
1771 bp->msix_table[offset].vector, rc);
1772 bnx2x_free_msix_irqs(bp, offset);
1773 return -EBUSY;
1774 }
1775
1776 offset++;
1777 }
1778
1779 i = BNX2X_NUM_ETH_QUEUES(bp);
1780 if (IS_PF(bp)) {
1781 offset = 1 + CNIC_SUPPORT(bp);
1782 netdev_info(bp->dev,
1783 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n",
1784 bp->msix_table[0].vector,
1785 0, bp->msix_table[offset].vector,
1786 i - 1, bp->msix_table[offset + i - 1].vector);
1787 } else {
1788 offset = CNIC_SUPPORT(bp);
1789 netdev_info(bp->dev,
1790 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n",
1791 0, bp->msix_table[offset].vector,
1792 i - 1, bp->msix_table[offset + i - 1].vector);
1793 }
1794 return 0;
1795 }
1796
1797 int bnx2x_enable_msi(struct bnx2x *bp)
1798 {
1799 int rc;
1800
1801 rc = pci_enable_msi(bp->pdev);
1802 if (rc) {
1803 BNX2X_DEV_INFO("MSI is not attainable\n");
1804 return -1;
1805 }
1806 bp->flags |= USING_MSI_FLAG;
1807
1808 return 0;
1809 }
1810
1811 static int bnx2x_req_irq(struct bnx2x *bp)
1812 {
1813 unsigned long flags;
1814 unsigned int irq;
1815
1816 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1817 flags = 0;
1818 else
1819 flags = IRQF_SHARED;
1820
1821 if (bp->flags & USING_MSIX_FLAG)
1822 irq = bp->msix_table[0].vector;
1823 else
1824 irq = bp->pdev->irq;
1825
1826 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1827 }
1828
1829 static int bnx2x_setup_irqs(struct bnx2x *bp)
1830 {
1831 int rc = 0;
1832 if (bp->flags & USING_MSIX_FLAG &&
1833 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1834 rc = bnx2x_req_msix_irqs(bp);
1835 if (rc)
1836 return rc;
1837 } else {
1838 rc = bnx2x_req_irq(bp);
1839 if (rc) {
1840 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc);
1841 return rc;
1842 }
1843 if (bp->flags & USING_MSI_FLAG) {
1844 bp->dev->irq = bp->pdev->irq;
1845 netdev_info(bp->dev, "using MSI IRQ %d\n",
1846 bp->dev->irq);
1847 }
1848 if (bp->flags & USING_MSIX_FLAG) {
1849 bp->dev->irq = bp->msix_table[0].vector;
1850 netdev_info(bp->dev, "using MSIX IRQ %d\n",
1851 bp->dev->irq);
1852 }
1853 }
1854
1855 return 0;
1856 }
1857
1858 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1859 {
1860 int i;
1861
1862 for_each_rx_queue_cnic(bp, i) {
1863 napi_enable(&bnx2x_fp(bp, i, napi));
1864 }
1865 }
1866
1867 static void bnx2x_napi_enable(struct bnx2x *bp)
1868 {
1869 int i;
1870
1871 for_each_eth_queue(bp, i) {
1872 napi_enable(&bnx2x_fp(bp, i, napi));
1873 }
1874 }
1875
1876 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1877 {
1878 int i;
1879
1880 for_each_rx_queue_cnic(bp, i) {
1881 napi_disable(&bnx2x_fp(bp, i, napi));
1882 }
1883 }
1884
1885 static void bnx2x_napi_disable(struct bnx2x *bp)
1886 {
1887 int i;
1888
1889 for_each_eth_queue(bp, i) {
1890 napi_disable(&bnx2x_fp(bp, i, napi));
1891 }
1892 }
1893
1894 void bnx2x_netif_start(struct bnx2x *bp)
1895 {
1896 if (netif_running(bp->dev)) {
1897 bnx2x_napi_enable(bp);
1898 if (CNIC_LOADED(bp))
1899 bnx2x_napi_enable_cnic(bp);
1900 bnx2x_int_enable(bp);
1901 if (bp->state == BNX2X_STATE_OPEN)
1902 netif_tx_wake_all_queues(bp->dev);
1903 }
1904 }
1905
1906 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1907 {
1908 bnx2x_int_disable_sync(bp, disable_hw);
1909 bnx2x_napi_disable(bp);
1910 if (CNIC_LOADED(bp))
1911 bnx2x_napi_disable_cnic(bp);
1912 }
1913
1914 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb,
1915 struct net_device *sb_dev,
1916 select_queue_fallback_t fallback)
1917 {
1918 struct bnx2x *bp = netdev_priv(dev);
1919
1920 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1921 struct ethhdr *hdr = (struct ethhdr *)skb->data;
1922 u16 ether_type = ntohs(hdr->h_proto);
1923
1924 /* Skip VLAN tag if present */
1925 if (ether_type == ETH_P_8021Q) {
1926 struct vlan_ethhdr *vhdr =
1927 (struct vlan_ethhdr *)skb->data;
1928
1929 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1930 }
1931
1932 /* If ethertype is FCoE or FIP - use FCoE ring */
1933 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1934 return bnx2x_fcoe_tx(bp, txq_index);
1935 }
1936
1937 /* select a non-FCoE queue */
1938 return fallback(dev, skb, NULL) %
1939 (BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos);
1940 }
1941
1942 void bnx2x_set_num_queues(struct bnx2x *bp)
1943 {
1944 /* RSS queues */
1945 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1946
1947 /* override in STORAGE SD modes */
1948 if (IS_MF_STORAGE_ONLY(bp))
1949 bp->num_ethernet_queues = 1;
1950
1951 /* Add special queues */
1952 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1953 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1954
1955 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1956 }
1957
1958 /**
1959 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1960 *
1961 * @bp: Driver handle
1962 *
1963 * We currently support for at most 16 Tx queues for each CoS thus we will
1964 * allocate a multiple of 16 for ETH L2 rings according to the value of the
1965 * bp->max_cos.
1966 *
1967 * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1968 * index after all ETH L2 indices.
1969 *
1970 * If the actual number of Tx queues (for each CoS) is less than 16 then there
1971 * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1972 * 16..31,...) with indices that are not coupled with any real Tx queue.
1973 *
1974 * The proper configuration of skb->queue_mapping is handled by
1975 * bnx2x_select_queue() and __skb_tx_hash().
1976 *
1977 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1978 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1979 */
1980 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1981 {
1982 int rc, tx, rx;
1983
1984 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1985 rx = BNX2X_NUM_ETH_QUEUES(bp);
1986
1987 /* account for fcoe queue */
1988 if (include_cnic && !NO_FCOE(bp)) {
1989 rx++;
1990 tx++;
1991 }
1992
1993 rc = netif_set_real_num_tx_queues(bp->dev, tx);
1994 if (rc) {
1995 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
1996 return rc;
1997 }
1998 rc = netif_set_real_num_rx_queues(bp->dev, rx);
1999 if (rc) {
2000 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
2001 return rc;
2002 }
2003
2004 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
2005 tx, rx);
2006
2007 return rc;
2008 }
2009
2010 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
2011 {
2012 int i;
2013
2014 for_each_queue(bp, i) {
2015 struct bnx2x_fastpath *fp = &bp->fp[i];
2016 u32 mtu;
2017
2018 /* Always use a mini-jumbo MTU for the FCoE L2 ring */
2019 if (IS_FCOE_IDX(i))
2020 /*
2021 * Although there are no IP frames expected to arrive to
2022 * this ring we still want to add an
2023 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2024 * overrun attack.
2025 */
2026 mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2027 else
2028 mtu = bp->dev->mtu;
2029 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
2030 IP_HEADER_ALIGNMENT_PADDING +
2031 ETH_OVERHEAD +
2032 mtu +
2033 BNX2X_FW_RX_ALIGN_END;
2034 fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size);
2035 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2036 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
2037 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
2038 else
2039 fp->rx_frag_size = 0;
2040 }
2041 }
2042
2043 static int bnx2x_init_rss(struct bnx2x *bp)
2044 {
2045 int i;
2046 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
2047
2048 /* Prepare the initial contents for the indirection table if RSS is
2049 * enabled
2050 */
2051 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
2052 bp->rss_conf_obj.ind_table[i] =
2053 bp->fp->cl_id +
2054 ethtool_rxfh_indir_default(i, num_eth_queues);
2055
2056 /*
2057 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2058 * per-port, so if explicit configuration is needed , do it only
2059 * for a PMF.
2060 *
2061 * For 57712 and newer on the other hand it's a per-function
2062 * configuration.
2063 */
2064 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
2065 }
2066
2067 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
2068 bool config_hash, bool enable)
2069 {
2070 struct bnx2x_config_rss_params params = {NULL};
2071
2072 /* Although RSS is meaningless when there is a single HW queue we
2073 * still need it enabled in order to have HW Rx hash generated.
2074 *
2075 * if (!is_eth_multi(bp))
2076 * bp->multi_mode = ETH_RSS_MODE_DISABLED;
2077 */
2078
2079 params.rss_obj = rss_obj;
2080
2081 __set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
2082
2083 if (enable) {
2084 __set_bit(BNX2X_RSS_MODE_REGULAR, &params.rss_flags);
2085
2086 /* RSS configuration */
2087 __set_bit(BNX2X_RSS_IPV4, &params.rss_flags);
2088 __set_bit(BNX2X_RSS_IPV4_TCP, &params.rss_flags);
2089 __set_bit(BNX2X_RSS_IPV6, &params.rss_flags);
2090 __set_bit(BNX2X_RSS_IPV6_TCP, &params.rss_flags);
2091 if (rss_obj->udp_rss_v4)
2092 __set_bit(BNX2X_RSS_IPV4_UDP, &params.rss_flags);
2093 if (rss_obj->udp_rss_v6)
2094 __set_bit(BNX2X_RSS_IPV6_UDP, &params.rss_flags);
2095
2096 if (!CHIP_IS_E1x(bp)) {
2097 /* valid only for TUNN_MODE_VXLAN tunnel mode */
2098 __set_bit(BNX2X_RSS_IPV4_VXLAN, &params.rss_flags);
2099 __set_bit(BNX2X_RSS_IPV6_VXLAN, &params.rss_flags);
2100
2101 /* valid only for TUNN_MODE_GRE tunnel mode */
2102 __set_bit(BNX2X_RSS_TUNN_INNER_HDRS, &params.rss_flags);
2103 }
2104 } else {
2105 __set_bit(BNX2X_RSS_MODE_DISABLED, &params.rss_flags);
2106 }
2107
2108 /* Hash bits */
2109 params.rss_result_mask = MULTI_MASK;
2110
2111 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
2112
2113 if (config_hash) {
2114 /* RSS keys */
2115 netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4);
2116 __set_bit(BNX2X_RSS_SET_SRCH, &params.rss_flags);
2117 }
2118
2119 if (IS_PF(bp))
2120 return bnx2x_config_rss(bp, &params);
2121 else
2122 return bnx2x_vfpf_config_rss(bp, &params);
2123 }
2124
2125 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
2126 {
2127 struct bnx2x_func_state_params func_params = {NULL};
2128
2129 /* Prepare parameters for function state transitions */
2130 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2131
2132 func_params.f_obj = &bp->func_obj;
2133 func_params.cmd = BNX2X_F_CMD_HW_INIT;
2134
2135 func_params.params.hw_init.load_phase = load_code;
2136
2137 return bnx2x_func_state_change(bp, &func_params);
2138 }
2139
2140 /*
2141 * Cleans the object that have internal lists without sending
2142 * ramrods. Should be run when interrupts are disabled.
2143 */
2144 void bnx2x_squeeze_objects(struct bnx2x *bp)
2145 {
2146 int rc;
2147 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2148 struct bnx2x_mcast_ramrod_params rparam = {NULL};
2149 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2150
2151 /***************** Cleanup MACs' object first *************************/
2152
2153 /* Wait for completion of requested */
2154 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2155 /* Perform a dry cleanup */
2156 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2157
2158 /* Clean ETH primary MAC */
2159 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2160 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2161 &ramrod_flags);
2162 if (rc != 0)
2163 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2164
2165 /* Cleanup UC list */
2166 vlan_mac_flags = 0;
2167 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2168 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2169 &ramrod_flags);
2170 if (rc != 0)
2171 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2172
2173 /***************** Now clean mcast object *****************************/
2174 rparam.mcast_obj = &bp->mcast_obj;
2175 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2176
2177 /* Add a DEL command... - Since we're doing a driver cleanup only,
2178 * we take a lock surrounding both the initial send and the CONTs,
2179 * as we don't want a true completion to disrupt us in the middle.
2180 */
2181 netif_addr_lock_bh(bp->dev);
2182 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2183 if (rc < 0)
2184 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2185 rc);
2186
2187 /* ...and wait until all pending commands are cleared */
2188 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2189 while (rc != 0) {
2190 if (rc < 0) {
2191 BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2192 rc);
2193 netif_addr_unlock_bh(bp->dev);
2194 return;
2195 }
2196
2197 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2198 }
2199 netif_addr_unlock_bh(bp->dev);
2200 }
2201
2202 #ifndef BNX2X_STOP_ON_ERROR
2203 #define LOAD_ERROR_EXIT(bp, label) \
2204 do { \
2205 (bp)->state = BNX2X_STATE_ERROR; \
2206 goto label; \
2207 } while (0)
2208
2209 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2210 do { \
2211 bp->cnic_loaded = false; \
2212 goto label; \
2213 } while (0)
2214 #else /*BNX2X_STOP_ON_ERROR*/
2215 #define LOAD_ERROR_EXIT(bp, label) \
2216 do { \
2217 (bp)->state = BNX2X_STATE_ERROR; \
2218 (bp)->panic = 1; \
2219 return -EBUSY; \
2220 } while (0)
2221 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2222 do { \
2223 bp->cnic_loaded = false; \
2224 (bp)->panic = 1; \
2225 return -EBUSY; \
2226 } while (0)
2227 #endif /*BNX2X_STOP_ON_ERROR*/
2228
2229 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2230 {
2231 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2232 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2233 return;
2234 }
2235
2236 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2237 {
2238 int num_groups, vf_headroom = 0;
2239 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2240
2241 /* number of queues for statistics is number of eth queues + FCoE */
2242 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2243
2244 /* Total number of FW statistics requests =
2245 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2246 * and fcoe l2 queue) stats + num of queues (which includes another 1
2247 * for fcoe l2 queue if applicable)
2248 */
2249 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2250
2251 /* vf stats appear in the request list, but their data is allocated by
2252 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2253 * it is used to determine where to place the vf stats queries in the
2254 * request struct
2255 */
2256 if (IS_SRIOV(bp))
2257 vf_headroom = bnx2x_vf_headroom(bp);
2258
2259 /* Request is built from stats_query_header and an array of
2260 * stats_query_cmd_group each of which contains
2261 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2262 * configured in the stats_query_header.
2263 */
2264 num_groups =
2265 (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2266 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2267 1 : 0));
2268
2269 DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2270 bp->fw_stats_num, vf_headroom, num_groups);
2271 bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2272 num_groups * sizeof(struct stats_query_cmd_group);
2273
2274 /* Data for statistics requests + stats_counter
2275 * stats_counter holds per-STORM counters that are incremented
2276 * when STORM has finished with the current request.
2277 * memory for FCoE offloaded statistics are counted anyway,
2278 * even if they will not be sent.
2279 * VF stats are not accounted for here as the data of VF stats is stored
2280 * in memory allocated by the VF, not here.
2281 */
2282 bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2283 sizeof(struct per_pf_stats) +
2284 sizeof(struct fcoe_statistics_params) +
2285 sizeof(struct per_queue_stats) * num_queue_stats +
2286 sizeof(struct stats_counter);
2287
2288 bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping,
2289 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2290 if (!bp->fw_stats)
2291 goto alloc_mem_err;
2292
2293 /* Set shortcuts */
2294 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2295 bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2296 bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2297 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2298 bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2299 bp->fw_stats_req_sz;
2300
2301 DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n",
2302 U64_HI(bp->fw_stats_req_mapping),
2303 U64_LO(bp->fw_stats_req_mapping));
2304 DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n",
2305 U64_HI(bp->fw_stats_data_mapping),
2306 U64_LO(bp->fw_stats_data_mapping));
2307 return 0;
2308
2309 alloc_mem_err:
2310 bnx2x_free_fw_stats_mem(bp);
2311 BNX2X_ERR("Can't allocate FW stats memory\n");
2312 return -ENOMEM;
2313 }
2314
2315 /* send load request to mcp and analyze response */
2316 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2317 {
2318 u32 param;
2319
2320 /* init fw_seq */
2321 bp->fw_seq =
2322 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2323 DRV_MSG_SEQ_NUMBER_MASK);
2324 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2325
2326 /* Get current FW pulse sequence */
2327 bp->fw_drv_pulse_wr_seq =
2328 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2329 DRV_PULSE_SEQ_MASK);
2330 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2331
2332 param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA;
2333
2334 if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp))
2335 param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA;
2336
2337 /* load request */
2338 (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param);
2339
2340 /* if mcp fails to respond we must abort */
2341 if (!(*load_code)) {
2342 BNX2X_ERR("MCP response failure, aborting\n");
2343 return -EBUSY;
2344 }
2345
2346 /* If mcp refused (e.g. other port is in diagnostic mode) we
2347 * must abort
2348 */
2349 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2350 BNX2X_ERR("MCP refused load request, aborting\n");
2351 return -EBUSY;
2352 }
2353 return 0;
2354 }
2355
2356 /* check whether another PF has already loaded FW to chip. In
2357 * virtualized environments a pf from another VM may have already
2358 * initialized the device including loading FW
2359 */
2360 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err)
2361 {
2362 /* is another pf loaded on this engine? */
2363 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2364 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2365 /* build my FW version dword */
2366 u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) +
2367 (BCM_5710_FW_MINOR_VERSION << 8) +
2368 (BCM_5710_FW_REVISION_VERSION << 16) +
2369 (BCM_5710_FW_ENGINEERING_VERSION << 24);
2370
2371 /* read loaded FW from chip */
2372 u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2373
2374 DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n",
2375 loaded_fw, my_fw);
2376
2377 /* abort nic load if version mismatch */
2378 if (my_fw != loaded_fw) {
2379 if (print_err)
2380 BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n",
2381 loaded_fw, my_fw);
2382 else
2383 BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n",
2384 loaded_fw, my_fw);
2385 return -EBUSY;
2386 }
2387 }
2388 return 0;
2389 }
2390
2391 /* returns the "mcp load_code" according to global load_count array */
2392 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2393 {
2394 int path = BP_PATH(bp);
2395
2396 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n",
2397 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2398 bnx2x_load_count[path][2]);
2399 bnx2x_load_count[path][0]++;
2400 bnx2x_load_count[path][1 + port]++;
2401 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n",
2402 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2403 bnx2x_load_count[path][2]);
2404 if (bnx2x_load_count[path][0] == 1)
2405 return FW_MSG_CODE_DRV_LOAD_COMMON;
2406 else if (bnx2x_load_count[path][1 + port] == 1)
2407 return FW_MSG_CODE_DRV_LOAD_PORT;
2408 else
2409 return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2410 }
2411
2412 /* mark PMF if applicable */
2413 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2414 {
2415 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2416 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2417 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2418 bp->port.pmf = 1;
2419 /* We need the barrier to ensure the ordering between the
2420 * writing to bp->port.pmf here and reading it from the
2421 * bnx2x_periodic_task().
2422 */
2423 smp_mb();
2424 } else {
2425 bp->port.pmf = 0;
2426 }
2427
2428 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2429 }
2430
2431 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2432 {
2433 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2434 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2435 (bp->common.shmem2_base)) {
2436 if (SHMEM2_HAS(bp, dcc_support))
2437 SHMEM2_WR(bp, dcc_support,
2438 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2439 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2440 if (SHMEM2_HAS(bp, afex_driver_support))
2441 SHMEM2_WR(bp, afex_driver_support,
2442 SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2443 }
2444
2445 /* Set AFEX default VLAN tag to an invalid value */
2446 bp->afex_def_vlan_tag = -1;
2447 }
2448
2449 /**
2450 * bnx2x_bz_fp - zero content of the fastpath structure.
2451 *
2452 * @bp: driver handle
2453 * @index: fastpath index to be zeroed
2454 *
2455 * Makes sure the contents of the bp->fp[index].napi is kept
2456 * intact.
2457 */
2458 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2459 {
2460 struct bnx2x_fastpath *fp = &bp->fp[index];
2461 int cos;
2462 struct napi_struct orig_napi = fp->napi;
2463 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2464
2465 /* bzero bnx2x_fastpath contents */
2466 if (fp->tpa_info)
2467 memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2468 sizeof(struct bnx2x_agg_info));
2469 memset(fp, 0, sizeof(*fp));
2470
2471 /* Restore the NAPI object as it has been already initialized */
2472 fp->napi = orig_napi;
2473 fp->tpa_info = orig_tpa_info;
2474 fp->bp = bp;
2475 fp->index = index;
2476 if (IS_ETH_FP(fp))
2477 fp->max_cos = bp->max_cos;
2478 else
2479 /* Special queues support only one CoS */
2480 fp->max_cos = 1;
2481
2482 /* Init txdata pointers */
2483 if (IS_FCOE_FP(fp))
2484 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2485 if (IS_ETH_FP(fp))
2486 for_each_cos_in_tx_queue(fp, cos)
2487 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2488 BNX2X_NUM_ETH_QUEUES(bp) + index];
2489
2490 /* set the tpa flag for each queue. The tpa flag determines the queue
2491 * minimal size so it must be set prior to queue memory allocation
2492 */
2493 if (bp->dev->features & NETIF_F_LRO)
2494 fp->mode = TPA_MODE_LRO;
2495 else if (bp->dev->features & NETIF_F_GRO_HW)
2496 fp->mode = TPA_MODE_GRO;
2497 else
2498 fp->mode = TPA_MODE_DISABLED;
2499
2500 /* We don't want TPA if it's disabled in bp
2501 * or if this is an FCoE L2 ring.
2502 */
2503 if (bp->disable_tpa || IS_FCOE_FP(fp))
2504 fp->mode = TPA_MODE_DISABLED;
2505 }
2506
2507 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state)
2508 {
2509 u32 cur;
2510
2511 if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp))
2512 return;
2513
2514 cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]);
2515 DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n",
2516 cur, state);
2517
2518 SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state);
2519 }
2520
2521 int bnx2x_load_cnic(struct bnx2x *bp)
2522 {
2523 int i, rc, port = BP_PORT(bp);
2524
2525 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2526
2527 mutex_init(&bp->cnic_mutex);
2528
2529 if (IS_PF(bp)) {
2530 rc = bnx2x_alloc_mem_cnic(bp);
2531 if (rc) {
2532 BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2533 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2534 }
2535 }
2536
2537 rc = bnx2x_alloc_fp_mem_cnic(bp);
2538 if (rc) {
2539 BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2540 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2541 }
2542
2543 /* Update the number of queues with the cnic queues */
2544 rc = bnx2x_set_real_num_queues(bp, 1);
2545 if (rc) {
2546 BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2547 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2548 }
2549
2550 /* Add all CNIC NAPI objects */
2551 bnx2x_add_all_napi_cnic(bp);
2552 DP(NETIF_MSG_IFUP, "cnic napi added\n");
2553 bnx2x_napi_enable_cnic(bp);
2554
2555 rc = bnx2x_init_hw_func_cnic(bp);
2556 if (rc)
2557 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2558
2559 bnx2x_nic_init_cnic(bp);
2560
2561 if (IS_PF(bp)) {
2562 /* Enable Timer scan */
2563 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2564
2565 /* setup cnic queues */
2566 for_each_cnic_queue(bp, i) {
2567 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2568 if (rc) {
2569 BNX2X_ERR("Queue setup failed\n");
2570 LOAD_ERROR_EXIT(bp, load_error_cnic2);
2571 }
2572 }
2573 }
2574
2575 /* Initialize Rx filter. */
2576 bnx2x_set_rx_mode_inner(bp);
2577
2578 /* re-read iscsi info */
2579 bnx2x_get_iscsi_info(bp);
2580 bnx2x_setup_cnic_irq_info(bp);
2581 bnx2x_setup_cnic_info(bp);
2582 bp->cnic_loaded = true;
2583 if (bp->state == BNX2X_STATE_OPEN)
2584 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2585
2586 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2587
2588 return 0;
2589
2590 #ifndef BNX2X_STOP_ON_ERROR
2591 load_error_cnic2:
2592 /* Disable Timer scan */
2593 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2594
2595 load_error_cnic1:
2596 bnx2x_napi_disable_cnic(bp);
2597 /* Update the number of queues without the cnic queues */
2598 if (bnx2x_set_real_num_queues(bp, 0))
2599 BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2600 load_error_cnic0:
2601 BNX2X_ERR("CNIC-related load failed\n");
2602 bnx2x_free_fp_mem_cnic(bp);
2603 bnx2x_free_mem_cnic(bp);
2604 return rc;
2605 #endif /* ! BNX2X_STOP_ON_ERROR */
2606 }
2607
2608 /* must be called with rtnl_lock */
2609 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2610 {
2611 int port = BP_PORT(bp);
2612 int i, rc = 0, load_code = 0;
2613
2614 DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2615 DP(NETIF_MSG_IFUP,
2616 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2617
2618 #ifdef BNX2X_STOP_ON_ERROR
2619 if (unlikely(bp->panic)) {
2620 BNX2X_ERR("Can't load NIC when there is panic\n");
2621 return -EPERM;
2622 }
2623 #endif
2624
2625 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2626
2627 /* zero the structure w/o any lock, before SP handler is initialized */
2628 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2629 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2630 &bp->last_reported_link.link_report_flags);
2631
2632 if (IS_PF(bp))
2633 /* must be called before memory allocation and HW init */
2634 bnx2x_ilt_set_info(bp);
2635
2636 /*
2637 * Zero fastpath structures preserving invariants like napi, which are
2638 * allocated only once, fp index, max_cos, bp pointer.
2639 * Also set fp->mode and txdata_ptr.
2640 */
2641 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2642 for_each_queue(bp, i)
2643 bnx2x_bz_fp(bp, i);
2644 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2645 bp->num_cnic_queues) *
2646 sizeof(struct bnx2x_fp_txdata));
2647
2648 bp->fcoe_init = false;
2649
2650 /* Set the receive queues buffer size */
2651 bnx2x_set_rx_buf_size(bp);
2652
2653 if (IS_PF(bp)) {
2654 rc = bnx2x_alloc_mem(bp);
2655 if (rc) {
2656 BNX2X_ERR("Unable to allocate bp memory\n");
2657 return rc;
2658 }
2659 }
2660
2661 /* need to be done after alloc mem, since it's self adjusting to amount
2662 * of memory available for RSS queues
2663 */
2664 rc = bnx2x_alloc_fp_mem(bp);
2665 if (rc) {
2666 BNX2X_ERR("Unable to allocate memory for fps\n");
2667 LOAD_ERROR_EXIT(bp, load_error0);
2668 }
2669
2670 /* Allocated memory for FW statistics */
2671 if (bnx2x_alloc_fw_stats_mem(bp))
2672 LOAD_ERROR_EXIT(bp, load_error0);
2673
2674 /* request pf to initialize status blocks */
2675 if (IS_VF(bp)) {
2676 rc = bnx2x_vfpf_init(bp);
2677 if (rc)
2678 LOAD_ERROR_EXIT(bp, load_error0);
2679 }
2680
2681 /* As long as bnx2x_alloc_mem() may possibly update
2682 * bp->num_queues, bnx2x_set_real_num_queues() should always
2683 * come after it. At this stage cnic queues are not counted.
2684 */
2685 rc = bnx2x_set_real_num_queues(bp, 0);
2686 if (rc) {
2687 BNX2X_ERR("Unable to set real_num_queues\n");
2688 LOAD_ERROR_EXIT(bp, load_error0);
2689 }
2690
2691 /* configure multi cos mappings in kernel.
2692 * this configuration may be overridden by a multi class queue
2693 * discipline or by a dcbx negotiation result.
2694 */
2695 bnx2x_setup_tc(bp->dev, bp->max_cos);
2696
2697 /* Add all NAPI objects */
2698 bnx2x_add_all_napi(bp);
2699 DP(NETIF_MSG_IFUP, "napi added\n");
2700 bnx2x_napi_enable(bp);
2701
2702 if (IS_PF(bp)) {
2703 /* set pf load just before approaching the MCP */
2704 bnx2x_set_pf_load(bp);
2705
2706 /* if mcp exists send load request and analyze response */
2707 if (!BP_NOMCP(bp)) {
2708 /* attempt to load pf */
2709 rc = bnx2x_nic_load_request(bp, &load_code);
2710 if (rc)
2711 LOAD_ERROR_EXIT(bp, load_error1);
2712
2713 /* what did mcp say? */
2714 rc = bnx2x_compare_fw_ver(bp, load_code, true);
2715 if (rc) {
2716 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2717 LOAD_ERROR_EXIT(bp, load_error2);
2718 }
2719 } else {
2720 load_code = bnx2x_nic_load_no_mcp(bp, port);
2721 }
2722
2723 /* mark pmf if applicable */
2724 bnx2x_nic_load_pmf(bp, load_code);
2725
2726 /* Init Function state controlling object */
2727 bnx2x__init_func_obj(bp);
2728
2729 /* Initialize HW */
2730 rc = bnx2x_init_hw(bp, load_code);
2731 if (rc) {
2732 BNX2X_ERR("HW init failed, aborting\n");
2733 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2734 LOAD_ERROR_EXIT(bp, load_error2);
2735 }
2736 }
2737
2738 bnx2x_pre_irq_nic_init(bp);
2739
2740 /* Connect to IRQs */
2741 rc = bnx2x_setup_irqs(bp);
2742 if (rc) {
2743 BNX2X_ERR("setup irqs failed\n");
2744 if (IS_PF(bp))
2745 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2746 LOAD_ERROR_EXIT(bp, load_error2);
2747 }
2748
2749 /* Init per-function objects */
2750 if (IS_PF(bp)) {
2751 /* Setup NIC internals and enable interrupts */
2752 bnx2x_post_irq_nic_init(bp, load_code);
2753
2754 bnx2x_init_bp_objs(bp);
2755 bnx2x_iov_nic_init(bp);
2756
2757 /* Set AFEX default VLAN tag to an invalid value */
2758 bp->afex_def_vlan_tag = -1;
2759 bnx2x_nic_load_afex_dcc(bp, load_code);
2760 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2761 rc = bnx2x_func_start(bp);
2762 if (rc) {
2763 BNX2X_ERR("Function start failed!\n");
2764 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2765
2766 LOAD_ERROR_EXIT(bp, load_error3);
2767 }
2768
2769 /* Send LOAD_DONE command to MCP */
2770 if (!BP_NOMCP(bp)) {
2771 load_code = bnx2x_fw_command(bp,
2772 DRV_MSG_CODE_LOAD_DONE, 0);
2773 if (!load_code) {
2774 BNX2X_ERR("MCP response failure, aborting\n");
2775 rc = -EBUSY;
2776 LOAD_ERROR_EXIT(bp, load_error3);
2777 }
2778 }
2779
2780 /* initialize FW coalescing state machines in RAM */
2781 bnx2x_update_coalesce(bp);
2782 }
2783
2784 /* setup the leading queue */
2785 rc = bnx2x_setup_leading(bp);
2786 if (rc) {
2787 BNX2X_ERR("Setup leading failed!\n");
2788 LOAD_ERROR_EXIT(bp, load_error3);
2789 }
2790
2791 /* set up the rest of the queues */
2792 for_each_nondefault_eth_queue(bp, i) {
2793 if (IS_PF(bp))
2794 rc = bnx2x_setup_queue(bp, &bp->fp[i], false);
2795 else /* VF */
2796 rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false);
2797 if (rc) {
2798 BNX2X_ERR("Queue %d setup failed\n", i);
2799 LOAD_ERROR_EXIT(bp, load_error3);
2800 }
2801 }
2802
2803 /* setup rss */
2804 rc = bnx2x_init_rss(bp);
2805 if (rc) {
2806 BNX2X_ERR("PF RSS init failed\n");
2807 LOAD_ERROR_EXIT(bp, load_error3);
2808 }
2809
2810 /* Now when Clients are configured we are ready to work */
2811 bp->state = BNX2X_STATE_OPEN;
2812
2813 /* Configure a ucast MAC */
2814 if (IS_PF(bp))
2815 rc = bnx2x_set_eth_mac(bp, true);
2816 else /* vf */
2817 rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index,
2818 true);
2819 if (rc) {
2820 BNX2X_ERR("Setting Ethernet MAC failed\n");
2821 LOAD_ERROR_EXIT(bp, load_error3);
2822 }
2823
2824 if (IS_PF(bp) && bp->pending_max) {
2825 bnx2x_update_max_mf_config(bp, bp->pending_max);
2826 bp->pending_max = 0;
2827 }
2828
2829 bp->force_link_down = false;
2830 if (bp->port.pmf) {
2831 rc = bnx2x_initial_phy_init(bp, load_mode);
2832 if (rc)
2833 LOAD_ERROR_EXIT(bp, load_error3);
2834 }
2835 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2836
2837 /* Start fast path */
2838
2839 /* Re-configure vlan filters */
2840 rc = bnx2x_vlan_reconfigure_vid(bp);
2841 if (rc)
2842 LOAD_ERROR_EXIT(bp, load_error3);
2843
2844 /* Initialize Rx filter. */
2845 bnx2x_set_rx_mode_inner(bp);
2846
2847 if (bp->flags & PTP_SUPPORTED) {
2848 bnx2x_register_phc(bp);
2849 bnx2x_init_ptp(bp);
2850 bnx2x_configure_ptp_filters(bp);
2851 }
2852 /* Start Tx */
2853 switch (load_mode) {
2854 case LOAD_NORMAL:
2855 /* Tx queue should be only re-enabled */
2856 netif_tx_wake_all_queues(bp->dev);
2857 break;
2858
2859 case LOAD_OPEN:
2860 netif_tx_start_all_queues(bp->dev);
2861 smp_mb__after_atomic();
2862 break;
2863
2864 case LOAD_DIAG:
2865 case LOAD_LOOPBACK_EXT:
2866 bp->state = BNX2X_STATE_DIAG;
2867 break;
2868
2869 default:
2870 break;
2871 }
2872
2873 if (bp->port.pmf)
2874 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2875 else
2876 bnx2x__link_status_update(bp);
2877
2878 /* start the timer */
2879 mod_timer(&bp->timer, jiffies + bp->current_interval);
2880
2881 if (CNIC_ENABLED(bp))
2882 bnx2x_load_cnic(bp);
2883
2884 if (IS_PF(bp))
2885 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
2886
2887 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2888 /* mark driver is loaded in shmem2 */
2889 u32 val;
2890 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2891 val &= ~DRV_FLAGS_MTU_MASK;
2892 val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT);
2893 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2894 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2895 DRV_FLAGS_CAPABILITIES_LOADED_L2);
2896 }
2897
2898 /* Wait for all pending SP commands to complete */
2899 if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2900 BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2901 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2902 return -EBUSY;
2903 }
2904
2905 /* Update driver data for On-Chip MFW dump. */
2906 if (IS_PF(bp))
2907 bnx2x_update_mfw_dump(bp);
2908
2909 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2910 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2911 bnx2x_dcbx_init(bp, false);
2912
2913 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2914 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE);
2915
2916 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2917
2918 return 0;
2919
2920 #ifndef BNX2X_STOP_ON_ERROR
2921 load_error3:
2922 if (IS_PF(bp)) {
2923 bnx2x_int_disable_sync(bp, 1);
2924
2925 /* Clean queueable objects */
2926 bnx2x_squeeze_objects(bp);
2927 }
2928
2929 /* Free SKBs, SGEs, TPA pool and driver internals */
2930 bnx2x_free_skbs(bp);
2931 for_each_rx_queue(bp, i)
2932 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2933
2934 /* Release IRQs */
2935 bnx2x_free_irq(bp);
2936 load_error2:
2937 if (IS_PF(bp) && !BP_NOMCP(bp)) {
2938 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2939 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2940 }
2941
2942 bp->port.pmf = 0;
2943 load_error1:
2944 bnx2x_napi_disable(bp);
2945 bnx2x_del_all_napi(bp);
2946
2947 /* clear pf_load status, as it was already set */
2948 if (IS_PF(bp))
2949 bnx2x_clear_pf_load(bp);
2950 load_error0:
2951 bnx2x_free_fw_stats_mem(bp);
2952 bnx2x_free_fp_mem(bp);
2953 bnx2x_free_mem(bp);
2954
2955 return rc;
2956 #endif /* ! BNX2X_STOP_ON_ERROR */
2957 }
2958
2959 int bnx2x_drain_tx_queues(struct bnx2x *bp)
2960 {
2961 u8 rc = 0, cos, i;
2962
2963 /* Wait until tx fastpath tasks complete */
2964 for_each_tx_queue(bp, i) {
2965 struct bnx2x_fastpath *fp = &bp->fp[i];
2966
2967 for_each_cos_in_tx_queue(fp, cos)
2968 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2969 if (rc)
2970 return rc;
2971 }
2972 return 0;
2973 }
2974
2975 /* must be called with rtnl_lock */
2976 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2977 {
2978 int i;
2979 bool global = false;
2980
2981 DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
2982
2983 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2984 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
2985
2986 /* mark driver is unloaded in shmem2 */
2987 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2988 u32 val;
2989 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2990 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2991 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2992 }
2993
2994 if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
2995 (bp->state == BNX2X_STATE_CLOSED ||
2996 bp->state == BNX2X_STATE_ERROR)) {
2997 /* We can get here if the driver has been unloaded
2998 * during parity error recovery and is either waiting for a
2999 * leader to complete or for other functions to unload and
3000 * then ifdown has been issued. In this case we want to
3001 * unload and let other functions to complete a recovery
3002 * process.
3003 */
3004 bp->recovery_state = BNX2X_RECOVERY_DONE;
3005 bp->is_leader = 0;
3006 bnx2x_release_leader_lock(bp);
3007 smp_mb();
3008
3009 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
3010 BNX2X_ERR("Can't unload in closed or error state\n");
3011 return -EINVAL;
3012 }
3013
3014 /* Nothing to do during unload if previous bnx2x_nic_load()
3015 * have not completed successfully - all resources are released.
3016 *
3017 * we can get here only after unsuccessful ndo_* callback, during which
3018 * dev->IFF_UP flag is still on.
3019 */
3020 if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
3021 return 0;
3022
3023 /* It's important to set the bp->state to the value different from
3024 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3025 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3026 */
3027 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
3028 smp_mb();
3029
3030 /* indicate to VFs that the PF is going down */
3031 bnx2x_iov_channel_down(bp);
3032
3033 if (CNIC_LOADED(bp))
3034 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
3035
3036 /* Stop Tx */
3037 bnx2x_tx_disable(bp);
3038 netdev_reset_tc(bp->dev);
3039
3040 bp->rx_mode = BNX2X_RX_MODE_NONE;
3041
3042 del_timer_sync(&bp->timer);
3043
3044 if (IS_PF(bp) && !BP_NOMCP(bp)) {
3045 /* Set ALWAYS_ALIVE bit in shmem */
3046 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
3047 bnx2x_drv_pulse(bp);
3048 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
3049 bnx2x_save_statistics(bp);
3050 }
3051
3052 /* wait till consumers catch up with producers in all queues.
3053 * If we're recovering, FW can't write to host so no reason
3054 * to wait for the queues to complete all Tx.
3055 */
3056 if (unload_mode != UNLOAD_RECOVERY)
3057 bnx2x_drain_tx_queues(bp);
3058
3059 /* if VF indicate to PF this function is going down (PF will delete sp
3060 * elements and clear initializations
3061 */
3062 if (IS_VF(bp))
3063 bnx2x_vfpf_close_vf(bp);
3064 else if (unload_mode != UNLOAD_RECOVERY)
3065 /* if this is a normal/close unload need to clean up chip*/
3066 bnx2x_chip_cleanup(bp, unload_mode, keep_link);
3067 else {
3068 /* Send the UNLOAD_REQUEST to the MCP */
3069 bnx2x_send_unload_req(bp, unload_mode);
3070
3071 /* Prevent transactions to host from the functions on the
3072 * engine that doesn't reset global blocks in case of global
3073 * attention once global blocks are reset and gates are opened
3074 * (the engine which leader will perform the recovery
3075 * last).
3076 */
3077 if (!CHIP_IS_E1x(bp))
3078 bnx2x_pf_disable(bp);
3079
3080 /* Disable HW interrupts, NAPI */
3081 bnx2x_netif_stop(bp, 1);
3082 /* Delete all NAPI objects */
3083 bnx2x_del_all_napi(bp);
3084 if (CNIC_LOADED(bp))
3085 bnx2x_del_all_napi_cnic(bp);
3086 /* Release IRQs */
3087 bnx2x_free_irq(bp);
3088
3089 /* Report UNLOAD_DONE to MCP */
3090 bnx2x_send_unload_done(bp, false);
3091 }
3092
3093 /*
3094 * At this stage no more interrupts will arrive so we may safely clean
3095 * the queueable objects here in case they failed to get cleaned so far.
3096 */
3097 if (IS_PF(bp))
3098 bnx2x_squeeze_objects(bp);
3099
3100 /* There should be no more pending SP commands at this stage */
3101 bp->sp_state = 0;
3102
3103 bp->port.pmf = 0;
3104
3105 /* clear pending work in rtnl task */
3106 bp->sp_rtnl_state = 0;
3107 smp_mb();
3108
3109 /* Free SKBs, SGEs, TPA pool and driver internals */
3110 bnx2x_free_skbs(bp);
3111 if (CNIC_LOADED(bp))
3112 bnx2x_free_skbs_cnic(bp);
3113 for_each_rx_queue(bp, i)
3114 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
3115
3116 bnx2x_free_fp_mem(bp);
3117 if (CNIC_LOADED(bp))
3118 bnx2x_free_fp_mem_cnic(bp);
3119
3120 if (IS_PF(bp)) {
3121 if (CNIC_LOADED(bp))
3122 bnx2x_free_mem_cnic(bp);
3123 }
3124 bnx2x_free_mem(bp);
3125
3126 bp->state = BNX2X_STATE_CLOSED;
3127 bp->cnic_loaded = false;
3128
3129 /* Clear driver version indication in shmem */
3130 if (IS_PF(bp) && !BP_NOMCP(bp))
3131 bnx2x_update_mng_version(bp);
3132
3133 /* Check if there are pending parity attentions. If there are - set
3134 * RECOVERY_IN_PROGRESS.
3135 */
3136 if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
3137 bnx2x_set_reset_in_progress(bp);
3138
3139 /* Set RESET_IS_GLOBAL if needed */
3140 if (global)
3141 bnx2x_set_reset_global(bp);
3142 }
3143
3144 /* The last driver must disable a "close the gate" if there is no
3145 * parity attention or "process kill" pending.
3146 */
3147 if (IS_PF(bp) &&
3148 !bnx2x_clear_pf_load(bp) &&
3149 bnx2x_reset_is_done(bp, BP_PATH(bp)))
3150 bnx2x_disable_close_the_gate(bp);
3151
3152 DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
3153
3154 return 0;
3155 }
3156
3157 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
3158 {
3159 u16 pmcsr;
3160
3161 /* If there is no power capability, silently succeed */
3162 if (!bp->pdev->pm_cap) {
3163 BNX2X_DEV_INFO("No power capability. Breaking.\n");
3164 return 0;
3165 }
3166
3167 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
3168
3169 switch (state) {
3170 case PCI_D0:
3171 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3172 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3173 PCI_PM_CTRL_PME_STATUS));
3174
3175 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3176 /* delay required during transition out of D3hot */
3177 msleep(20);
3178 break;
3179
3180 case PCI_D3hot:
3181 /* If there are other clients above don't
3182 shut down the power */
3183 if (atomic_read(&bp->pdev->enable_cnt) != 1)
3184 return 0;
3185 /* Don't shut down the power for emulation and FPGA */
3186 if (CHIP_REV_IS_SLOW(bp))
3187 return 0;
3188
3189 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3190 pmcsr |= 3;
3191
3192 if (bp->wol)
3193 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3194
3195 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3196 pmcsr);
3197
3198 /* No more memory access after this point until
3199 * device is brought back to D0.
3200 */
3201 break;
3202
3203 default:
3204 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3205 return -EINVAL;
3206 }
3207 return 0;
3208 }
3209
3210 /*
3211 * net_device service functions
3212 */
3213 static int bnx2x_poll(struct napi_struct *napi, int budget)
3214 {
3215 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3216 napi);
3217 struct bnx2x *bp = fp->bp;
3218 int rx_work_done;
3219 u8 cos;
3220
3221 #ifdef BNX2X_STOP_ON_ERROR
3222 if (unlikely(bp->panic)) {
3223 napi_complete(napi);
3224 return 0;
3225 }
3226 #endif
3227 for_each_cos_in_tx_queue(fp, cos)
3228 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3229 bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3230
3231 rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0;
3232
3233 if (rx_work_done < budget) {
3234 /* No need to update SB for FCoE L2 ring as long as
3235 * it's connected to the default SB and the SB
3236 * has been updated when NAPI was scheduled.
3237 */
3238 if (IS_FCOE_FP(fp)) {
3239 napi_complete_done(napi, rx_work_done);
3240 } else {
3241 bnx2x_update_fpsb_idx(fp);
3242 /* bnx2x_has_rx_work() reads the status block,
3243 * thus we need to ensure that status block indices
3244 * have been actually read (bnx2x_update_fpsb_idx)
3245 * prior to this check (bnx2x_has_rx_work) so that
3246 * we won't write the "newer" value of the status block
3247 * to IGU (if there was a DMA right after
3248 * bnx2x_has_rx_work and if there is no rmb, the memory
3249 * reading (bnx2x_update_fpsb_idx) may be postponed
3250 * to right before bnx2x_ack_sb). In this case there
3251 * will never be another interrupt until there is
3252 * another update of the status block, while there
3253 * is still unhandled work.
3254 */
3255 rmb();
3256
3257 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3258 if (napi_complete_done(napi, rx_work_done)) {
3259 /* Re-enable interrupts */
3260 DP(NETIF_MSG_RX_STATUS,
3261 "Update index to %d\n", fp->fp_hc_idx);
3262 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3263 le16_to_cpu(fp->fp_hc_idx),
3264 IGU_INT_ENABLE, 1);
3265 }
3266 } else {
3267 rx_work_done = budget;
3268 }
3269 }
3270 }
3271
3272 return rx_work_done;
3273 }
3274
3275 /* we split the first BD into headers and data BDs
3276 * to ease the pain of our fellow microcode engineers
3277 * we use one mapping for both BDs
3278 */
3279 static u16 bnx2x_tx_split(struct bnx2x *bp,
3280 struct bnx2x_fp_txdata *txdata,
3281 struct sw_tx_bd *tx_buf,
3282 struct eth_tx_start_bd **tx_bd, u16 hlen,
3283 u16 bd_prod)
3284 {
3285 struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3286 struct eth_tx_bd *d_tx_bd;
3287 dma_addr_t mapping;
3288 int old_len = le16_to_cpu(h_tx_bd->nbytes);
3289
3290 /* first fix first BD */
3291 h_tx_bd->nbytes = cpu_to_le16(hlen);
3292
3293 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n",
3294 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo);
3295
3296 /* now get a new data BD
3297 * (after the pbd) and fill it */
3298 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3299 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3300
3301 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3302 le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3303
3304 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3305 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3306 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3307
3308 /* this marks the BD as one that has no individual mapping */
3309 tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3310
3311 DP(NETIF_MSG_TX_QUEUED,
3312 "TSO split data size is %d (%x:%x)\n",
3313 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3314
3315 /* update tx_bd */
3316 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3317
3318 return bd_prod;
3319 }
3320
3321 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3322 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
3323 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3324 {
3325 __sum16 tsum = (__force __sum16) csum;
3326
3327 if (fix > 0)
3328 tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3329 csum_partial(t_header - fix, fix, 0)));
3330
3331 else if (fix < 0)
3332 tsum = ~csum_fold(csum_add((__force __wsum) csum,
3333 csum_partial(t_header, -fix, 0)));
3334
3335 return bswab16(tsum);
3336 }
3337
3338 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3339 {
3340 u32 rc;
3341 __u8 prot = 0;
3342 __be16 protocol;
3343
3344 if (skb->ip_summed != CHECKSUM_PARTIAL)
3345 return XMIT_PLAIN;
3346
3347 protocol = vlan_get_protocol(skb);
3348 if (protocol == htons(ETH_P_IPV6)) {
3349 rc = XMIT_CSUM_V6;
3350 prot = ipv6_hdr(skb)->nexthdr;
3351 } else {
3352 rc = XMIT_CSUM_V4;
3353 prot = ip_hdr(skb)->protocol;
3354 }
3355
3356 if (!CHIP_IS_E1x(bp) && skb->encapsulation) {
3357 if (inner_ip_hdr(skb)->version == 6) {
3358 rc |= XMIT_CSUM_ENC_V6;
3359 if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3360 rc |= XMIT_CSUM_TCP;
3361 } else {
3362 rc |= XMIT_CSUM_ENC_V4;
3363 if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP)
3364 rc |= XMIT_CSUM_TCP;
3365 }
3366 }
3367 if (prot == IPPROTO_TCP)
3368 rc |= XMIT_CSUM_TCP;
3369
3370 if (skb_is_gso(skb)) {
3371 if (skb_is_gso_v6(skb)) {
3372 rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP);
3373 if (rc & XMIT_CSUM_ENC)
3374 rc |= XMIT_GSO_ENC_V6;
3375 } else {
3376 rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP);
3377 if (rc & XMIT_CSUM_ENC)
3378 rc |= XMIT_GSO_ENC_V4;
3379 }
3380 }
3381
3382 return rc;
3383 }
3384
3385 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */
3386 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS 4
3387
3388 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3389 #define BNX2X_NUM_TSO_WIN_SUB_BDS 3
3390
3391 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3392 /* check if packet requires linearization (packet is too fragmented)
3393 no need to check fragmentation if page size > 8K (there will be no
3394 violation to FW restrictions) */
3395 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3396 u32 xmit_type)
3397 {
3398 int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS;
3399 int to_copy = 0, hlen = 0;
3400
3401 if (xmit_type & XMIT_GSO_ENC)
3402 num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS;
3403
3404 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) {
3405 if (xmit_type & XMIT_GSO) {
3406 unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3407 int wnd_size = MAX_FETCH_BD - num_tso_win_sub;
3408 /* Number of windows to check */
3409 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3410 int wnd_idx = 0;
3411 int frag_idx = 0;
3412 u32 wnd_sum = 0;
3413
3414 /* Headers length */
3415 if (xmit_type & XMIT_GSO_ENC)
3416 hlen = (int)(skb_inner_transport_header(skb) -
3417 skb->data) +
3418 inner_tcp_hdrlen(skb);
3419 else
3420 hlen = (int)(skb_transport_header(skb) -
3421 skb->data) + tcp_hdrlen(skb);
3422
3423 /* Amount of data (w/o headers) on linear part of SKB*/
3424 first_bd_sz = skb_headlen(skb) - hlen;
3425
3426 wnd_sum = first_bd_sz;
3427
3428 /* Calculate the first sum - it's special */
3429 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3430 wnd_sum +=
3431 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3432
3433 /* If there was data on linear skb data - check it */
3434 if (first_bd_sz > 0) {
3435 if (unlikely(wnd_sum < lso_mss)) {
3436 to_copy = 1;
3437 goto exit_lbl;
3438 }
3439
3440 wnd_sum -= first_bd_sz;
3441 }
3442
3443 /* Others are easier: run through the frag list and
3444 check all windows */
3445 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3446 wnd_sum +=
3447 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3448
3449 if (unlikely(wnd_sum < lso_mss)) {
3450 to_copy = 1;
3451 break;
3452 }
3453 wnd_sum -=
3454 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3455 }
3456 } else {
3457 /* in non-LSO too fragmented packet should always
3458 be linearized */
3459 to_copy = 1;
3460 }
3461 }
3462
3463 exit_lbl:
3464 if (unlikely(to_copy))
3465 DP(NETIF_MSG_TX_QUEUED,
3466 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n",
3467 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3468 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3469
3470 return to_copy;
3471 }
3472 #endif
3473
3474 /**
3475 * bnx2x_set_pbd_gso - update PBD in GSO case.
3476 *
3477 * @skb: packet skb
3478 * @pbd: parse BD
3479 * @xmit_type: xmit flags
3480 */
3481 static void bnx2x_set_pbd_gso(struct sk_buff *skb,
3482 struct eth_tx_parse_bd_e1x *pbd,
3483 u32 xmit_type)
3484 {
3485 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3486 pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3487 pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb));
3488
3489 if (xmit_type & XMIT_GSO_V4) {
3490 pbd->ip_id = bswab16(ip_hdr(skb)->id);
3491 pbd->tcp_pseudo_csum =
3492 bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3493 ip_hdr(skb)->daddr,
3494 0, IPPROTO_TCP, 0));
3495 } else {
3496 pbd->tcp_pseudo_csum =
3497 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3498 &ipv6_hdr(skb)->daddr,
3499 0, IPPROTO_TCP, 0));
3500 }
3501
3502 pbd->global_data |=
3503 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3504 }
3505
3506 /**
3507 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3508 *
3509 * @bp: driver handle
3510 * @skb: packet skb
3511 * @parsing_data: data to be updated
3512 * @xmit_type: xmit flags
3513 *
3514 * 57712/578xx related, when skb has encapsulation
3515 */
3516 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb,
3517 u32 *parsing_data, u32 xmit_type)
3518 {
3519 *parsing_data |=
3520 ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) <<
3521 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3522 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3523
3524 if (xmit_type & XMIT_CSUM_TCP) {
3525 *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) <<
3526 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3527 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3528
3529 return skb_inner_transport_header(skb) +
3530 inner_tcp_hdrlen(skb) - skb->data;
3531 }
3532
3533 /* We support checksum offload for TCP and UDP only.
3534 * No need to pass the UDP header length - it's a constant.
3535 */
3536 return skb_inner_transport_header(skb) +
3537 sizeof(struct udphdr) - skb->data;
3538 }
3539
3540 /**
3541 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3542 *
3543 * @bp: driver handle
3544 * @skb: packet skb
3545 * @parsing_data: data to be updated
3546 * @xmit_type: xmit flags
3547 *
3548 * 57712/578xx related
3549 */
3550 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3551 u32 *parsing_data, u32 xmit_type)
3552 {
3553 *parsing_data |=
3554 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3555 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3556 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3557
3558 if (xmit_type & XMIT_CSUM_TCP) {
3559 *parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3560 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3561 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3562
3563 return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data;
3564 }
3565 /* We support checksum offload for TCP and UDP only.
3566 * No need to pass the UDP header length - it's a constant.
3567 */
3568 return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data;
3569 }
3570
3571 /* set FW indication according to inner or outer protocols if tunneled */
3572 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3573 struct eth_tx_start_bd *tx_start_bd,
3574 u32 xmit_type)
3575 {
3576 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3577
3578 if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6))
3579 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6;
3580
3581 if (!(xmit_type & XMIT_CSUM_TCP))
3582 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3583 }
3584
3585 /**
3586 * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3587 *
3588 * @bp: driver handle
3589 * @skb: packet skb
3590 * @pbd: parse BD to be updated
3591 * @xmit_type: xmit flags
3592 */
3593 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3594 struct eth_tx_parse_bd_e1x *pbd,
3595 u32 xmit_type)
3596 {
3597 u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
3598
3599 /* for now NS flag is not used in Linux */
3600 pbd->global_data =
3601 cpu_to_le16(hlen |
3602 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3603 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3604
3605 pbd->ip_hlen_w = (skb_transport_header(skb) -
3606 skb_network_header(skb)) >> 1;
3607
3608 hlen += pbd->ip_hlen_w;
3609
3610 /* We support checksum offload for TCP and UDP only */
3611 if (xmit_type & XMIT_CSUM_TCP)
3612 hlen += tcp_hdrlen(skb) / 2;
3613 else
3614 hlen += sizeof(struct udphdr) / 2;
3615
3616 pbd->total_hlen_w = cpu_to_le16(hlen);
3617 hlen = hlen*2;
3618
3619 if (xmit_type & XMIT_CSUM_TCP) {
3620 pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3621
3622 } else {
3623 s8 fix = SKB_CS_OFF(skb); /* signed! */
3624
3625 DP(NETIF_MSG_TX_QUEUED,
3626 "hlen %d fix %d csum before fix %x\n",
3627 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3628
3629 /* HW bug: fixup the CSUM */
3630 pbd->tcp_pseudo_csum =
3631 bnx2x_csum_fix(skb_transport_header(skb),
3632 SKB_CS(skb), fix);
3633
3634 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3635 pbd->tcp_pseudo_csum);
3636 }
3637
3638 return hlen;
3639 }
3640
3641 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb,
3642 struct eth_tx_parse_bd_e2 *pbd_e2,
3643 struct eth_tx_parse_2nd_bd *pbd2,
3644 u16 *global_data,
3645 u32 xmit_type)
3646 {
3647 u16 hlen_w = 0;
3648 u8 outerip_off, outerip_len = 0;
3649
3650 /* from outer IP to transport */
3651 hlen_w = (skb_inner_transport_header(skb) -
3652 skb_network_header(skb)) >> 1;
3653
3654 /* transport len */
3655 hlen_w += inner_tcp_hdrlen(skb) >> 1;
3656
3657 pbd2->fw_ip_hdr_to_payload_w = hlen_w;
3658
3659 /* outer IP header info */
3660 if (xmit_type & XMIT_CSUM_V4) {
3661 struct iphdr *iph = ip_hdr(skb);
3662 u32 csum = (__force u32)(~iph->check) -
3663 (__force u32)iph->tot_len -
3664 (__force u32)iph->frag_off;
3665
3666 outerip_len = iph->ihl << 1;
3667
3668 pbd2->fw_ip_csum_wo_len_flags_frag =
3669 bswab16(csum_fold((__force __wsum)csum));
3670 } else {
3671 pbd2->fw_ip_hdr_to_payload_w =
3672 hlen_w - ((sizeof(struct ipv6hdr)) >> 1);
3673 pbd_e2->data.tunnel_data.flags |=
3674 ETH_TUNNEL_DATA_IPV6_OUTER;
3675 }
3676
3677 pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq);
3678
3679 pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb));
3680
3681 /* inner IP header info */
3682 if (xmit_type & XMIT_CSUM_ENC_V4) {
3683 pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id);
3684
3685 pbd_e2->data.tunnel_data.pseudo_csum =
3686 bswab16(~csum_tcpudp_magic(
3687 inner_ip_hdr(skb)->saddr,
3688 inner_ip_hdr(skb)->daddr,
3689 0, IPPROTO_TCP, 0));
3690 } else {
3691 pbd_e2->data.tunnel_data.pseudo_csum =
3692 bswab16(~csum_ipv6_magic(
3693 &inner_ipv6_hdr(skb)->saddr,
3694 &inner_ipv6_hdr(skb)->daddr,
3695 0, IPPROTO_TCP, 0));
3696 }
3697
3698 outerip_off = (skb_network_header(skb) - skb->data) >> 1;
3699
3700 *global_data |=
3701 outerip_off |
3702 (outerip_len <<
3703 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) |
3704 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3705 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT);
3706
3707 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
3708 SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1);
3709 pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1;
3710 }
3711 }
3712
3713 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data,
3714 u32 xmit_type)
3715 {
3716 struct ipv6hdr *ipv6;
3717
3718 if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6)))
3719 return;
3720
3721 if (xmit_type & XMIT_GSO_ENC_V6)
3722 ipv6 = inner_ipv6_hdr(skb);
3723 else /* XMIT_GSO_V6 */
3724 ipv6 = ipv6_hdr(skb);
3725
3726 if (ipv6->nexthdr == NEXTHDR_IPV6)
3727 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3728 }
3729
3730 /* called with netif_tx_lock
3731 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3732 * netif_wake_queue()
3733 */
3734 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3735 {
3736 struct bnx2x *bp = netdev_priv(dev);
3737
3738 struct netdev_queue *txq;
3739 struct bnx2x_fp_txdata *txdata;
3740 struct sw_tx_bd *tx_buf;
3741 struct eth_tx_start_bd *tx_start_bd, *first_bd;
3742 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3743 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3744 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3745 struct eth_tx_parse_2nd_bd *pbd2 = NULL;
3746 u32 pbd_e2_parsing_data = 0;
3747 u16 pkt_prod, bd_prod;
3748 int nbd, txq_index;
3749 dma_addr_t mapping;
3750 u32 xmit_type = bnx2x_xmit_type(bp, skb);
3751 int i;
3752 u8 hlen = 0;
3753 __le16 pkt_size = 0;
3754 struct ethhdr *eth;
3755 u8 mac_type = UNICAST_ADDRESS;
3756
3757 #ifdef BNX2X_STOP_ON_ERROR
3758 if (unlikely(bp->panic))
3759 return NETDEV_TX_BUSY;
3760 #endif
3761
3762 txq_index = skb_get_queue_mapping(skb);
3763 txq = netdev_get_tx_queue(dev, txq_index);
3764
3765 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3766
3767 txdata = &bp->bnx2x_txq[txq_index];
3768
3769 /* enable this debug print to view the transmission queue being used
3770 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3771 txq_index, fp_index, txdata_index); */
3772
3773 /* enable this debug print to view the transmission details
3774 DP(NETIF_MSG_TX_QUEUED,
3775 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3776 txdata->cid, fp_index, txdata_index, txdata, fp); */
3777
3778 if (unlikely(bnx2x_tx_avail(bp, txdata) <
3779 skb_shinfo(skb)->nr_frags +
3780 BDS_PER_TX_PKT +
3781 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3782 /* Handle special storage cases separately */
3783 if (txdata->tx_ring_size == 0) {
3784 struct bnx2x_eth_q_stats *q_stats =
3785 bnx2x_fp_qstats(bp, txdata->parent_fp);
3786 q_stats->driver_filtered_tx_pkt++;
3787 dev_kfree_skb(skb);
3788 return NETDEV_TX_OK;
3789 }
3790 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3791 netif_tx_stop_queue(txq);
3792 BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3793
3794 return NETDEV_TX_BUSY;
3795 }
3796
3797 DP(NETIF_MSG_TX_QUEUED,
3798 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n",
3799 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3800 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3801 skb->len);
3802
3803 eth = (struct ethhdr *)skb->data;
3804
3805 /* set flag according to packet type (UNICAST_ADDRESS is default)*/
3806 if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3807 if (is_broadcast_ether_addr(eth->h_dest))
3808 mac_type = BROADCAST_ADDRESS;
3809 else
3810 mac_type = MULTICAST_ADDRESS;
3811 }
3812
3813 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3814 /* First, check if we need to linearize the skb (due to FW
3815 restrictions). No need to check fragmentation if page size > 8K
3816 (there will be no violation to FW restrictions) */
3817 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3818 /* Statistics of linearization */
3819 bp->lin_cnt++;
3820 if (skb_linearize(skb) != 0) {
3821 DP(NETIF_MSG_TX_QUEUED,
3822 "SKB linearization failed - silently dropping this SKB\n");
3823 dev_kfree_skb_any(skb);
3824 return NETDEV_TX_OK;
3825 }
3826 }
3827 #endif
3828 /* Map skb linear data for DMA */
3829 mapping = dma_map_single(&bp->pdev->dev, skb->data,
3830 skb_headlen(skb), DMA_TO_DEVICE);
3831 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3832 DP(NETIF_MSG_TX_QUEUED,
3833 "SKB mapping failed - silently dropping this SKB\n");
3834 dev_kfree_skb_any(skb);
3835 return NETDEV_TX_OK;
3836 }
3837 /*
3838 Please read carefully. First we use one BD which we mark as start,
3839 then we have a parsing info BD (used for TSO or xsum),
3840 and only then we have the rest of the TSO BDs.
3841 (don't forget to mark the last one as last,
3842 and to unmap only AFTER you write to the BD ...)
3843 And above all, all pdb sizes are in words - NOT DWORDS!
3844 */
3845
3846 /* get current pkt produced now - advance it just before sending packet
3847 * since mapping of pages may fail and cause packet to be dropped
3848 */
3849 pkt_prod = txdata->tx_pkt_prod;
3850 bd_prod = TX_BD(txdata->tx_bd_prod);
3851
3852 /* get a tx_buf and first BD
3853 * tx_start_bd may be changed during SPLIT,
3854 * but first_bd will always stay first
3855 */
3856 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3857 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3858 first_bd = tx_start_bd;
3859
3860 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3861
3862 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3863 if (!(bp->flags & TX_TIMESTAMPING_EN)) {
3864 bp->eth_stats.ptp_skip_tx_ts++;
3865 BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3866 } else if (bp->ptp_tx_skb) {
3867 bp->eth_stats.ptp_skip_tx_ts++;
3868 netdev_err_once(bp->dev,
3869 "Device supports only a single outstanding packet to timestamp, this packet won't be timestamped\n");
3870 } else {
3871 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3872 /* schedule check for Tx timestamp */
3873 bp->ptp_tx_skb = skb_get(skb);
3874 bp->ptp_tx_start = jiffies;
3875 schedule_work(&bp->ptp_task);
3876 }
3877 }
3878
3879 /* header nbd: indirectly zero other flags! */
3880 tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT;
3881
3882 /* remember the first BD of the packet */
3883 tx_buf->first_bd = txdata->tx_bd_prod;
3884 tx_buf->skb = skb;
3885 tx_buf->flags = 0;
3886
3887 DP(NETIF_MSG_TX_QUEUED,
3888 "sending pkt %u @%p next_idx %u bd %u @%p\n",
3889 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3890
3891 if (skb_vlan_tag_present(skb)) {
3892 tx_start_bd->vlan_or_ethertype =
3893 cpu_to_le16(skb_vlan_tag_get(skb));
3894 tx_start_bd->bd_flags.as_bitfield |=
3895 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3896 } else {
3897 /* when transmitting in a vf, start bd must hold the ethertype
3898 * for fw to enforce it
3899 */
3900 u16 vlan_tci = 0;
3901 #ifndef BNX2X_STOP_ON_ERROR
3902 if (IS_VF(bp)) {
3903 #endif
3904 /* Still need to consider inband vlan for enforced */
3905 if (__vlan_get_tag(skb, &vlan_tci)) {
3906 tx_start_bd->vlan_or_ethertype =
3907 cpu_to_le16(ntohs(eth->h_proto));
3908 } else {
3909 tx_start_bd->bd_flags.as_bitfield |=
3910 (X_ETH_INBAND_VLAN <<
3911 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3912 tx_start_bd->vlan_or_ethertype =
3913 cpu_to_le16(vlan_tci);
3914 }
3915 #ifndef BNX2X_STOP_ON_ERROR
3916 } else {
3917 /* used by FW for packet accounting */
3918 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3919 }
3920 #endif
3921 }
3922
3923 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3924
3925 /* turn on parsing and get a BD */
3926 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3927
3928 if (xmit_type & XMIT_CSUM)
3929 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3930
3931 if (!CHIP_IS_E1x(bp)) {
3932 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3933 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3934
3935 if (xmit_type & XMIT_CSUM_ENC) {
3936 u16 global_data = 0;
3937
3938 /* Set PBD in enc checksum offload case */
3939 hlen = bnx2x_set_pbd_csum_enc(bp, skb,
3940 &pbd_e2_parsing_data,
3941 xmit_type);
3942
3943 /* turn on 2nd parsing and get a BD */
3944 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3945
3946 pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd;
3947
3948 memset(pbd2, 0, sizeof(*pbd2));
3949
3950 pbd_e2->data.tunnel_data.ip_hdr_start_inner_w =
3951 (skb_inner_network_header(skb) -
3952 skb->data) >> 1;
3953
3954 if (xmit_type & XMIT_GSO_ENC)
3955 bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2,
3956 &global_data,
3957 xmit_type);
3958
3959 pbd2->global_data = cpu_to_le16(global_data);
3960
3961 /* add addition parse BD indication to start BD */
3962 SET_FLAG(tx_start_bd->general_data,
3963 ETH_TX_START_BD_PARSE_NBDS, 1);
3964 /* set encapsulation flag in start BD */
3965 SET_FLAG(tx_start_bd->general_data,
3966 ETH_TX_START_BD_TUNNEL_EXIST, 1);
3967
3968 tx_buf->flags |= BNX2X_HAS_SECOND_PBD;
3969
3970 nbd++;
3971 } else if (xmit_type & XMIT_CSUM) {
3972 /* Set PBD in checksum offload case w/o encapsulation */
3973 hlen = bnx2x_set_pbd_csum_e2(bp, skb,
3974 &pbd_e2_parsing_data,
3975 xmit_type);
3976 }
3977
3978 bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type);
3979 /* Add the macs to the parsing BD if this is a vf or if
3980 * Tx Switching is enabled.
3981 */
3982 if (IS_VF(bp)) {
3983 /* override GRE parameters in BD */
3984 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3985 &pbd_e2->data.mac_addr.src_mid,
3986 &pbd_e2->data.mac_addr.src_lo,
3987 eth->h_source);
3988
3989 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
3990 &pbd_e2->data.mac_addr.dst_mid,
3991 &pbd_e2->data.mac_addr.dst_lo,
3992 eth->h_dest);
3993 } else {
3994 if (bp->flags & TX_SWITCHING)
3995 bnx2x_set_fw_mac_addr(
3996 &pbd_e2->data.mac_addr.dst_hi,
3997 &pbd_e2->data.mac_addr.dst_mid,
3998 &pbd_e2->data.mac_addr.dst_lo,
3999 eth->h_dest);
4000 #ifdef BNX2X_STOP_ON_ERROR
4001 /* Enforce security is always set in Stop on Error -
4002 * source mac should be present in the parsing BD
4003 */
4004 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
4005 &pbd_e2->data.mac_addr.src_mid,
4006 &pbd_e2->data.mac_addr.src_lo,
4007 eth->h_source);
4008 #endif
4009 }
4010
4011 SET_FLAG(pbd_e2_parsing_data,
4012 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
4013 } else {
4014 u16 global_data = 0;
4015 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
4016 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
4017 /* Set PBD in checksum offload case */
4018 if (xmit_type & XMIT_CSUM)
4019 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
4020
4021 SET_FLAG(global_data,
4022 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
4023 pbd_e1x->global_data |= cpu_to_le16(global_data);
4024 }
4025
4026 /* Setup the data pointer of the first BD of the packet */
4027 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4028 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4029 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
4030 pkt_size = tx_start_bd->nbytes;
4031
4032 DP(NETIF_MSG_TX_QUEUED,
4033 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n",
4034 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
4035 le16_to_cpu(tx_start_bd->nbytes),
4036 tx_start_bd->bd_flags.as_bitfield,
4037 le16_to_cpu(tx_start_bd->vlan_or_ethertype));
4038
4039 if (xmit_type & XMIT_GSO) {
4040
4041 DP(NETIF_MSG_TX_QUEUED,
4042 "TSO packet len %d hlen %d total len %d tso size %d\n",
4043 skb->len, hlen, skb_headlen(skb),
4044 skb_shinfo(skb)->gso_size);
4045
4046 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
4047
4048 if (unlikely(skb_headlen(skb) > hlen)) {
4049 nbd++;
4050 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
4051 &tx_start_bd, hlen,
4052 bd_prod);
4053 }
4054 if (!CHIP_IS_E1x(bp))
4055 pbd_e2_parsing_data |=
4056 (skb_shinfo(skb)->gso_size <<
4057 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
4058 ETH_TX_PARSE_BD_E2_LSO_MSS;
4059 else
4060 bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
4061 }
4062
4063 /* Set the PBD's parsing_data field if not zero
4064 * (for the chips newer than 57711).
4065 */
4066 if (pbd_e2_parsing_data)
4067 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
4068
4069 tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
4070
4071 /* Handle fragmented skb */
4072 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4073 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4074
4075 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
4076 skb_frag_size(frag), DMA_TO_DEVICE);
4077 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
4078 unsigned int pkts_compl = 0, bytes_compl = 0;
4079
4080 DP(NETIF_MSG_TX_QUEUED,
4081 "Unable to map page - dropping packet...\n");
4082
4083 /* we need unmap all buffers already mapped
4084 * for this SKB;
4085 * first_bd->nbd need to be properly updated
4086 * before call to bnx2x_free_tx_pkt
4087 */
4088 first_bd->nbd = cpu_to_le16(nbd);
4089 bnx2x_free_tx_pkt(bp, txdata,
4090 TX_BD(txdata->tx_pkt_prod),
4091 &pkts_compl, &bytes_compl);
4092 return NETDEV_TX_OK;
4093 }
4094
4095 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4096 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4097 if (total_pkt_bd == NULL)
4098 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4099
4100 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4101 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4102 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
4103 le16_add_cpu(&pkt_size, skb_frag_size(frag));
4104 nbd++;
4105
4106 DP(NETIF_MSG_TX_QUEUED,
4107 "frag %d bd @%p addr (%x:%x) nbytes %d\n",
4108 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
4109 le16_to_cpu(tx_data_bd->nbytes));
4110 }
4111
4112 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
4113
4114 /* update with actual num BDs */
4115 first_bd->nbd = cpu_to_le16(nbd);
4116
4117 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4118
4119 /* now send a tx doorbell, counting the next BD
4120 * if the packet contains or ends with it
4121 */
4122 if (TX_BD_POFF(bd_prod) < nbd)
4123 nbd++;
4124
4125 /* total_pkt_bytes should be set on the first data BD if
4126 * it's not an LSO packet and there is more than one
4127 * data BD. In this case pkt_size is limited by an MTU value.
4128 * However we prefer to set it for an LSO packet (while we don't
4129 * have to) in order to save some CPU cycles in a none-LSO
4130 * case, when we much more care about them.
4131 */
4132 if (total_pkt_bd != NULL)
4133 total_pkt_bd->total_pkt_bytes = pkt_size;
4134
4135 if (pbd_e1x)
4136 DP(NETIF_MSG_TX_QUEUED,
4137 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n",
4138 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
4139 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
4140 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
4141 le16_to_cpu(pbd_e1x->total_hlen_w));
4142 if (pbd_e2)
4143 DP(NETIF_MSG_TX_QUEUED,
4144 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n",
4145 pbd_e2,
4146 pbd_e2->data.mac_addr.dst_hi,
4147 pbd_e2->data.mac_addr.dst_mid,
4148 pbd_e2->data.mac_addr.dst_lo,
4149 pbd_e2->data.mac_addr.src_hi,
4150 pbd_e2->data.mac_addr.src_mid,
4151 pbd_e2->data.mac_addr.src_lo,
4152 pbd_e2->parsing_data);
4153 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod);
4154
4155 netdev_tx_sent_queue(txq, skb->len);
4156
4157 skb_tx_timestamp(skb);
4158
4159 txdata->tx_pkt_prod++;
4160 /*
4161 * Make sure that the BD data is updated before updating the producer
4162 * since FW might read the BD right after the producer is updated.
4163 * This is only applicable for weak-ordered memory model archs such
4164 * as IA-64. The following barrier is also mandatory since FW will
4165 * assumes packets must have BDs.
4166 */
4167 wmb();
4168
4169 txdata->tx_db.data.prod += nbd;
4170 /* make sure descriptor update is observed by HW */
4171 wmb();
4172
4173 DOORBELL_RELAXED(bp, txdata->cid, txdata->tx_db.raw);
4174
4175 mmiowb();
4176
4177 txdata->tx_bd_prod += nbd;
4178
4179 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
4180 netif_tx_stop_queue(txq);
4181
4182 /* paired memory barrier is in bnx2x_tx_int(), we have to keep
4183 * ordering of set_bit() in netif_tx_stop_queue() and read of
4184 * fp->bd_tx_cons */
4185 smp_mb();
4186
4187 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
4188 if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
4189 netif_tx_wake_queue(txq);
4190 }
4191 txdata->tx_pkt++;
4192
4193 return NETDEV_TX_OK;
4194 }
4195
4196 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default)
4197 {
4198 int mfw_vn = BP_FW_MB_IDX(bp);
4199 u32 tmp;
4200
4201 /* If the shmem shouldn't affect configuration, reflect */
4202 if (!IS_MF_BD(bp)) {
4203 int i;
4204
4205 for (i = 0; i < BNX2X_MAX_PRIORITY; i++)
4206 c2s_map[i] = i;
4207 *c2s_default = 0;
4208
4209 return;
4210 }
4211
4212 tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]);
4213 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4214 c2s_map[0] = tmp & 0xff;
4215 c2s_map[1] = (tmp >> 8) & 0xff;
4216 c2s_map[2] = (tmp >> 16) & 0xff;
4217 c2s_map[3] = (tmp >> 24) & 0xff;
4218
4219 tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]);
4220 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4221 c2s_map[4] = tmp & 0xff;
4222 c2s_map[5] = (tmp >> 8) & 0xff;
4223 c2s_map[6] = (tmp >> 16) & 0xff;
4224 c2s_map[7] = (tmp >> 24) & 0xff;
4225
4226 tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]);
4227 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4228 *c2s_default = (tmp >> (8 * mfw_vn)) & 0xff;
4229 }
4230
4231 /**
4232 * bnx2x_setup_tc - routine to configure net_device for multi tc
4233 *
4234 * @netdev: net device to configure
4235 * @tc: number of traffic classes to enable
4236 *
4237 * callback connected to the ndo_setup_tc function pointer
4238 */
4239 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
4240 {
4241 struct bnx2x *bp = netdev_priv(dev);
4242 u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def;
4243 int cos, prio, count, offset;
4244
4245 /* setup tc must be called under rtnl lock */
4246 ASSERT_RTNL();
4247
4248 /* no traffic classes requested. Aborting */
4249 if (!num_tc) {
4250 netdev_reset_tc(dev);
4251 return 0;
4252 }
4253
4254 /* requested to support too many traffic classes */
4255 if (num_tc > bp->max_cos) {
4256 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4257 num_tc, bp->max_cos);
4258 return -EINVAL;
4259 }
4260
4261 /* declare amount of supported traffic classes */
4262 if (netdev_set_num_tc(dev, num_tc)) {
4263 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
4264 return -EINVAL;
4265 }
4266
4267 bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def);
4268
4269 /* configure priority to traffic class mapping */
4270 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
4271 int outer_prio = c2s_map[prio];
4272
4273 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]);
4274 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4275 "mapping priority %d to tc %d\n",
4276 outer_prio, bp->prio_to_cos[outer_prio]);
4277 }
4278
4279 /* Use this configuration to differentiate tc0 from other COSes
4280 This can be used for ets or pfc, and save the effort of setting
4281 up a multio class queue disc or negotiating DCBX with a switch
4282 netdev_set_prio_tc_map(dev, 0, 0);
4283 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4284 for (prio = 1; prio < 16; prio++) {
4285 netdev_set_prio_tc_map(dev, prio, 1);
4286 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4287 } */
4288
4289 /* configure traffic class to transmission queue mapping */
4290 for (cos = 0; cos < bp->max_cos; cos++) {
4291 count = BNX2X_NUM_ETH_QUEUES(bp);
4292 offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
4293 netdev_set_tc_queue(dev, cos, count, offset);
4294 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4295 "mapping tc %d to offset %d count %d\n",
4296 cos, offset, count);
4297 }
4298
4299 return 0;
4300 }
4301
4302 int __bnx2x_setup_tc(struct net_device *dev, enum tc_setup_type type,
4303 void *type_data)
4304 {
4305 struct tc_mqprio_qopt *mqprio = type_data;
4306
4307 if (type != TC_SETUP_QDISC_MQPRIO)
4308 return -EOPNOTSUPP;
4309
4310 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
4311
4312 return bnx2x_setup_tc(dev, mqprio->num_tc);
4313 }
4314
4315 /* called with rtnl_lock */
4316 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
4317 {
4318 struct sockaddr *addr = p;
4319 struct bnx2x *bp = netdev_priv(dev);
4320 int rc = 0;
4321
4322 if (!is_valid_ether_addr(addr->sa_data)) {
4323 BNX2X_ERR("Requested MAC address is not valid\n");
4324 return -EINVAL;
4325 }
4326
4327 if (IS_MF_STORAGE_ONLY(bp)) {
4328 BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4329 return -EINVAL;
4330 }
4331
4332 if (netif_running(dev)) {
4333 rc = bnx2x_set_eth_mac(bp, false);
4334 if (rc)
4335 return rc;
4336 }
4337
4338 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4339
4340 if (netif_running(dev))
4341 rc = bnx2x_set_eth_mac(bp, true);
4342
4343 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4344 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4345
4346 return rc;
4347 }
4348
4349 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
4350 {
4351 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
4352 struct bnx2x_fastpath *fp = &bp->fp[fp_index];
4353 u8 cos;
4354
4355 /* Common */
4356
4357 if (IS_FCOE_IDX(fp_index)) {
4358 memset(sb, 0, sizeof(union host_hc_status_block));
4359 fp->status_blk_mapping = 0;
4360 } else {
4361 /* status blocks */
4362 if (!CHIP_IS_E1x(bp))
4363 BNX2X_PCI_FREE(sb->e2_sb,
4364 bnx2x_fp(bp, fp_index,
4365 status_blk_mapping),
4366 sizeof(struct host_hc_status_block_e2));
4367 else
4368 BNX2X_PCI_FREE(sb->e1x_sb,
4369 bnx2x_fp(bp, fp_index,
4370 status_blk_mapping),
4371 sizeof(struct host_hc_status_block_e1x));
4372 }
4373
4374 /* Rx */
4375 if (!skip_rx_queue(bp, fp_index)) {
4376 bnx2x_free_rx_bds(fp);
4377
4378 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4379 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
4380 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
4381 bnx2x_fp(bp, fp_index, rx_desc_mapping),
4382 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4383
4384 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
4385 bnx2x_fp(bp, fp_index, rx_comp_mapping),
4386 sizeof(struct eth_fast_path_rx_cqe) *
4387 NUM_RCQ_BD);
4388
4389 /* SGE ring */
4390 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
4391 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
4392 bnx2x_fp(bp, fp_index, rx_sge_mapping),
4393 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4394 }
4395
4396 /* Tx */
4397 if (!skip_tx_queue(bp, fp_index)) {
4398 /* fastpath tx rings: tx_buf tx_desc */
4399 for_each_cos_in_tx_queue(fp, cos) {
4400 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4401
4402 DP(NETIF_MSG_IFDOWN,
4403 "freeing tx memory of fp %d cos %d cid %d\n",
4404 fp_index, cos, txdata->cid);
4405
4406 BNX2X_FREE(txdata->tx_buf_ring);
4407 BNX2X_PCI_FREE(txdata->tx_desc_ring,
4408 txdata->tx_desc_mapping,
4409 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4410 }
4411 }
4412 /* end of fastpath */
4413 }
4414
4415 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
4416 {
4417 int i;
4418 for_each_cnic_queue(bp, i)
4419 bnx2x_free_fp_mem_at(bp, i);
4420 }
4421
4422 void bnx2x_free_fp_mem(struct bnx2x *bp)
4423 {
4424 int i;
4425 for_each_eth_queue(bp, i)
4426 bnx2x_free_fp_mem_at(bp, i);
4427 }
4428
4429 static void set_sb_shortcuts(struct bnx2x *bp, int index)
4430 {
4431 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
4432 if (!CHIP_IS_E1x(bp)) {
4433 bnx2x_fp(bp, index, sb_index_values) =
4434 (__le16 *)status_blk.e2_sb->sb.index_values;
4435 bnx2x_fp(bp, index, sb_running_index) =
4436 (__le16 *)status_blk.e2_sb->sb.running_index;
4437 } else {
4438 bnx2x_fp(bp, index, sb_index_values) =
4439 (__le16 *)status_blk.e1x_sb->sb.index_values;
4440 bnx2x_fp(bp, index, sb_running_index) =
4441 (__le16 *)status_blk.e1x_sb->sb.running_index;
4442 }
4443 }
4444
4445 /* Returns the number of actually allocated BDs */
4446 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
4447 int rx_ring_size)
4448 {
4449 struct bnx2x *bp = fp->bp;
4450 u16 ring_prod, cqe_ring_prod;
4451 int i, failure_cnt = 0;
4452
4453 fp->rx_comp_cons = 0;
4454 cqe_ring_prod = ring_prod = 0;
4455
4456 /* This routine is called only during fo init so
4457 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4458 */
4459 for (i = 0; i < rx_ring_size; i++) {
4460 if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) {
4461 failure_cnt++;
4462 continue;
4463 }
4464 ring_prod = NEXT_RX_IDX(ring_prod);
4465 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
4466 WARN_ON(ring_prod <= (i - failure_cnt));
4467 }
4468
4469 if (failure_cnt)
4470 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4471 i - failure_cnt, fp->index);
4472
4473 fp->rx_bd_prod = ring_prod;
4474 /* Limit the CQE producer by the CQE ring size */
4475 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4476 cqe_ring_prod);
4477
4478 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4479
4480 return i - failure_cnt;
4481 }
4482
4483 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4484 {
4485 int i;
4486
4487 for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4488 struct eth_rx_cqe_next_page *nextpg;
4489
4490 nextpg = (struct eth_rx_cqe_next_page *)
4491 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4492 nextpg->addr_hi =
4493 cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4494 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4495 nextpg->addr_lo =
4496 cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4497 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4498 }
4499 }
4500
4501 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4502 {
4503 union host_hc_status_block *sb;
4504 struct bnx2x_fastpath *fp = &bp->fp[index];
4505 int ring_size = 0;
4506 u8 cos;
4507 int rx_ring_size = 0;
4508
4509 if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) {
4510 rx_ring_size = MIN_RX_SIZE_NONTPA;
4511 bp->rx_ring_size = rx_ring_size;
4512 } else if (!bp->rx_ring_size) {
4513 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4514
4515 if (CHIP_IS_E3(bp)) {
4516 u32 cfg = SHMEM_RD(bp,
4517 dev_info.port_hw_config[BP_PORT(bp)].
4518 default_cfg);
4519
4520 /* Decrease ring size for 1G functions */
4521 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4522 PORT_HW_CFG_NET_SERDES_IF_SGMII)
4523 rx_ring_size /= 10;
4524 }
4525
4526 /* allocate at least number of buffers required by FW */
4527 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4528 MIN_RX_SIZE_TPA, rx_ring_size);
4529
4530 bp->rx_ring_size = rx_ring_size;
4531 } else /* if rx_ring_size specified - use it */
4532 rx_ring_size = bp->rx_ring_size;
4533
4534 DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4535
4536 /* Common */
4537 sb = &bnx2x_fp(bp, index, status_blk);
4538
4539 if (!IS_FCOE_IDX(index)) {
4540 /* status blocks */
4541 if (!CHIP_IS_E1x(bp)) {
4542 sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4543 sizeof(struct host_hc_status_block_e2));
4544 if (!sb->e2_sb)
4545 goto alloc_mem_err;
4546 } else {
4547 sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4548 sizeof(struct host_hc_status_block_e1x));
4549 if (!sb->e1x_sb)
4550 goto alloc_mem_err;
4551 }
4552 }
4553
4554 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4555 * set shortcuts for it.
4556 */
4557 if (!IS_FCOE_IDX(index))
4558 set_sb_shortcuts(bp, index);
4559
4560 /* Tx */
4561 if (!skip_tx_queue(bp, index)) {
4562 /* fastpath tx rings: tx_buf tx_desc */
4563 for_each_cos_in_tx_queue(fp, cos) {
4564 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4565
4566 DP(NETIF_MSG_IFUP,
4567 "allocating tx memory of fp %d cos %d\n",
4568 index, cos);
4569
4570 txdata->tx_buf_ring = kcalloc(NUM_TX_BD,
4571 sizeof(struct sw_tx_bd),
4572 GFP_KERNEL);
4573 if (!txdata->tx_buf_ring)
4574 goto alloc_mem_err;
4575 txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping,
4576 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4577 if (!txdata->tx_desc_ring)
4578 goto alloc_mem_err;
4579 }
4580 }
4581
4582 /* Rx */
4583 if (!skip_rx_queue(bp, index)) {
4584 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4585 bnx2x_fp(bp, index, rx_buf_ring) =
4586 kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL);
4587 if (!bnx2x_fp(bp, index, rx_buf_ring))
4588 goto alloc_mem_err;
4589 bnx2x_fp(bp, index, rx_desc_ring) =
4590 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping),
4591 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4592 if (!bnx2x_fp(bp, index, rx_desc_ring))
4593 goto alloc_mem_err;
4594
4595 /* Seed all CQEs by 1s */
4596 bnx2x_fp(bp, index, rx_comp_ring) =
4597 BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping),
4598 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD);
4599 if (!bnx2x_fp(bp, index, rx_comp_ring))
4600 goto alloc_mem_err;
4601
4602 /* SGE ring */
4603 bnx2x_fp(bp, index, rx_page_ring) =
4604 kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page),
4605 GFP_KERNEL);
4606 if (!bnx2x_fp(bp, index, rx_page_ring))
4607 goto alloc_mem_err;
4608 bnx2x_fp(bp, index, rx_sge_ring) =
4609 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping),
4610 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4611 if (!bnx2x_fp(bp, index, rx_sge_ring))
4612 goto alloc_mem_err;
4613 /* RX BD ring */
4614 bnx2x_set_next_page_rx_bd(fp);
4615
4616 /* CQ ring */
4617 bnx2x_set_next_page_rx_cq(fp);
4618
4619 /* BDs */
4620 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4621 if (ring_size < rx_ring_size)
4622 goto alloc_mem_err;
4623 }
4624
4625 return 0;
4626
4627 /* handles low memory cases */
4628 alloc_mem_err:
4629 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4630 index, ring_size);
4631 /* FW will drop all packets if queue is not big enough,
4632 * In these cases we disable the queue
4633 * Min size is different for OOO, TPA and non-TPA queues
4634 */
4635 if (ring_size < (fp->mode == TPA_MODE_DISABLED ?
4636 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4637 /* release memory allocated for this queue */
4638 bnx2x_free_fp_mem_at(bp, index);
4639 return -ENOMEM;
4640 }
4641 return 0;
4642 }
4643
4644 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4645 {
4646 if (!NO_FCOE(bp))
4647 /* FCoE */
4648 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4649 /* we will fail load process instead of mark
4650 * NO_FCOE_FLAG
4651 */
4652 return -ENOMEM;
4653
4654 return 0;
4655 }
4656
4657 static int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4658 {
4659 int i;
4660
4661 /* 1. Allocate FP for leading - fatal if error
4662 * 2. Allocate RSS - fix number of queues if error
4663 */
4664
4665 /* leading */
4666 if (bnx2x_alloc_fp_mem_at(bp, 0))
4667 return -ENOMEM;
4668
4669 /* RSS */
4670 for_each_nondefault_eth_queue(bp, i)
4671 if (bnx2x_alloc_fp_mem_at(bp, i))
4672 break;
4673
4674 /* handle memory failures */
4675 if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4676 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4677
4678 WARN_ON(delta < 0);
4679 bnx2x_shrink_eth_fp(bp, delta);
4680 if (CNIC_SUPPORT(bp))
4681 /* move non eth FPs next to last eth FP
4682 * must be done in that order
4683 * FCOE_IDX < FWD_IDX < OOO_IDX
4684 */
4685
4686 /* move FCoE fp even NO_FCOE_FLAG is on */
4687 bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4688 bp->num_ethernet_queues -= delta;
4689 bp->num_queues = bp->num_ethernet_queues +
4690 bp->num_cnic_queues;
4691 BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4692 bp->num_queues + delta, bp->num_queues);
4693 }
4694
4695 return 0;
4696 }
4697
4698 void bnx2x_free_mem_bp(struct bnx2x *bp)
4699 {
4700 int i;
4701
4702 for (i = 0; i < bp->fp_array_size; i++)
4703 kfree(bp->fp[i].tpa_info);
4704 kfree(bp->fp);
4705 kfree(bp->sp_objs);
4706 kfree(bp->fp_stats);
4707 kfree(bp->bnx2x_txq);
4708 kfree(bp->msix_table);
4709 kfree(bp->ilt);
4710 }
4711
4712 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4713 {
4714 struct bnx2x_fastpath *fp;
4715 struct msix_entry *tbl;
4716 struct bnx2x_ilt *ilt;
4717 int msix_table_size = 0;
4718 int fp_array_size, txq_array_size;
4719 int i;
4720
4721 /*
4722 * The biggest MSI-X table we might need is as a maximum number of fast
4723 * path IGU SBs plus default SB (for PF only).
4724 */
4725 msix_table_size = bp->igu_sb_cnt;
4726 if (IS_PF(bp))
4727 msix_table_size++;
4728 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4729
4730 /* fp array: RSS plus CNIC related L2 queues */
4731 fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4732 bp->fp_array_size = fp_array_size;
4733 BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4734
4735 fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4736 if (!fp)
4737 goto alloc_err;
4738 for (i = 0; i < bp->fp_array_size; i++) {
4739 fp[i].tpa_info =
4740 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4741 sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4742 if (!(fp[i].tpa_info))
4743 goto alloc_err;
4744 }
4745
4746 bp->fp = fp;
4747
4748 /* allocate sp objs */
4749 bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4750 GFP_KERNEL);
4751 if (!bp->sp_objs)
4752 goto alloc_err;
4753
4754 /* allocate fp_stats */
4755 bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4756 GFP_KERNEL);
4757 if (!bp->fp_stats)
4758 goto alloc_err;
4759
4760 /* Allocate memory for the transmission queues array */
4761 txq_array_size =
4762 BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4763 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4764
4765 bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4766 GFP_KERNEL);
4767 if (!bp->bnx2x_txq)
4768 goto alloc_err;
4769
4770 /* msix table */
4771 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4772 if (!tbl)
4773 goto alloc_err;
4774 bp->msix_table = tbl;
4775
4776 /* ilt */
4777 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4778 if (!ilt)
4779 goto alloc_err;
4780 bp->ilt = ilt;
4781
4782 return 0;
4783 alloc_err:
4784 bnx2x_free_mem_bp(bp);
4785 return -ENOMEM;
4786 }
4787
4788 int bnx2x_reload_if_running(struct net_device *dev)
4789 {
4790 struct bnx2x *bp = netdev_priv(dev);
4791
4792 if (unlikely(!netif_running(dev)))
4793 return 0;
4794
4795 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4796 return bnx2x_nic_load(bp, LOAD_NORMAL);
4797 }
4798
4799 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4800 {
4801 u32 sel_phy_idx = 0;
4802 if (bp->link_params.num_phys <= 1)
4803 return INT_PHY;
4804
4805 if (bp->link_vars.link_up) {
4806 sel_phy_idx = EXT_PHY1;
4807 /* In case link is SERDES, check if the EXT_PHY2 is the one */
4808 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4809 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4810 sel_phy_idx = EXT_PHY2;
4811 } else {
4812
4813 switch (bnx2x_phy_selection(&bp->link_params)) {
4814 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4815 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4816 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4817 sel_phy_idx = EXT_PHY1;
4818 break;
4819 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4820 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4821 sel_phy_idx = EXT_PHY2;
4822 break;
4823 }
4824 }
4825
4826 return sel_phy_idx;
4827 }
4828 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4829 {
4830 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4831 /*
4832 * The selected activated PHY is always after swapping (in case PHY
4833 * swapping is enabled). So when swapping is enabled, we need to reverse
4834 * the configuration
4835 */
4836
4837 if (bp->link_params.multi_phy_config &
4838 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4839 if (sel_phy_idx == EXT_PHY1)
4840 sel_phy_idx = EXT_PHY2;
4841 else if (sel_phy_idx == EXT_PHY2)
4842 sel_phy_idx = EXT_PHY1;
4843 }
4844 return LINK_CONFIG_IDX(sel_phy_idx);
4845 }
4846
4847 #ifdef NETDEV_FCOE_WWNN
4848 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4849 {
4850 struct bnx2x *bp = netdev_priv(dev);
4851 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4852
4853 switch (type) {
4854 case NETDEV_FCOE_WWNN:
4855 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4856 cp->fcoe_wwn_node_name_lo);
4857 break;
4858 case NETDEV_FCOE_WWPN:
4859 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4860 cp->fcoe_wwn_port_name_lo);
4861 break;
4862 default:
4863 BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4864 return -EINVAL;
4865 }
4866
4867 return 0;
4868 }
4869 #endif
4870
4871 /* called with rtnl_lock */
4872 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4873 {
4874 struct bnx2x *bp = netdev_priv(dev);
4875
4876 if (pci_num_vf(bp->pdev)) {
4877 DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n");
4878 return -EPERM;
4879 }
4880
4881 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4882 BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4883 return -EAGAIN;
4884 }
4885
4886 /* This does not race with packet allocation
4887 * because the actual alloc size is
4888 * only updated as part of load
4889 */
4890 dev->mtu = new_mtu;
4891
4892 if (!bnx2x_mtu_allows_gro(new_mtu))
4893 dev->features &= ~NETIF_F_GRO_HW;
4894
4895 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4896 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4897
4898 return bnx2x_reload_if_running(dev);
4899 }
4900
4901 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4902 netdev_features_t features)
4903 {
4904 struct bnx2x *bp = netdev_priv(dev);
4905
4906 if (pci_num_vf(bp->pdev)) {
4907 netdev_features_t changed = dev->features ^ features;
4908
4909 /* Revert the requested changes in features if they
4910 * would require internal reload of PF in bnx2x_set_features().
4911 */
4912 if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) {
4913 features &= ~NETIF_F_RXCSUM;
4914 features |= dev->features & NETIF_F_RXCSUM;
4915 }
4916
4917 if (changed & NETIF_F_LOOPBACK) {
4918 features &= ~NETIF_F_LOOPBACK;
4919 features |= dev->features & NETIF_F_LOOPBACK;
4920 }
4921 }
4922
4923 /* TPA requires Rx CSUM offloading */
4924 if (!(features & NETIF_F_RXCSUM))
4925 features &= ~NETIF_F_LRO;
4926
4927 if (!(features & NETIF_F_GRO) || !bnx2x_mtu_allows_gro(dev->mtu))
4928 features &= ~NETIF_F_GRO_HW;
4929 if (features & NETIF_F_GRO_HW)
4930 features &= ~NETIF_F_LRO;
4931
4932 return features;
4933 }
4934
4935 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4936 {
4937 struct bnx2x *bp = netdev_priv(dev);
4938 netdev_features_t changes = features ^ dev->features;
4939 bool bnx2x_reload = false;
4940 int rc;
4941
4942 /* VFs or non SRIOV PFs should be able to change loopback feature */
4943 if (!pci_num_vf(bp->pdev)) {
4944 if (features & NETIF_F_LOOPBACK) {
4945 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4946 bp->link_params.loopback_mode = LOOPBACK_BMAC;
4947 bnx2x_reload = true;
4948 }
4949 } else {
4950 if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4951 bp->link_params.loopback_mode = LOOPBACK_NONE;
4952 bnx2x_reload = true;
4953 }
4954 }
4955 }
4956
4957 /* Don't care about GRO changes */
4958 changes &= ~NETIF_F_GRO;
4959
4960 if (changes)
4961 bnx2x_reload = true;
4962
4963 if (bnx2x_reload) {
4964 if (bp->recovery_state == BNX2X_RECOVERY_DONE) {
4965 dev->features = features;
4966 rc = bnx2x_reload_if_running(dev);
4967 return rc ? rc : 1;
4968 }
4969 /* else: bnx2x_nic_load() will be called at end of recovery */
4970 }
4971
4972 return 0;
4973 }
4974
4975 void bnx2x_tx_timeout(struct net_device *dev)
4976 {
4977 struct bnx2x *bp = netdev_priv(dev);
4978
4979 /* We want the information of the dump logged,
4980 * but calling bnx2x_panic() would kill all chances of recovery.
4981 */
4982 if (!bp->panic)
4983 #ifndef BNX2X_STOP_ON_ERROR
4984 bnx2x_panic_dump(bp, false);
4985 #else
4986 bnx2x_panic();
4987 #endif
4988
4989 /* This allows the netif to be shutdown gracefully before resetting */
4990 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0);
4991 }
4992
4993 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state)
4994 {
4995 struct net_device *dev = pci_get_drvdata(pdev);
4996 struct bnx2x *bp;
4997
4998 if (!dev) {
4999 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5000 return -ENODEV;
5001 }
5002 bp = netdev_priv(dev);
5003
5004 rtnl_lock();
5005
5006 pci_save_state(pdev);
5007
5008 if (!netif_running(dev)) {
5009 rtnl_unlock();
5010 return 0;
5011 }
5012
5013 netif_device_detach(dev);
5014
5015 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
5016
5017 bnx2x_set_power_state(bp, pci_choose_state(pdev, state));
5018
5019 rtnl_unlock();
5020
5021 return 0;
5022 }
5023
5024 int bnx2x_resume(struct pci_dev *pdev)
5025 {
5026 struct net_device *dev = pci_get_drvdata(pdev);
5027 struct bnx2x *bp;
5028 int rc;
5029
5030 if (!dev) {
5031 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5032 return -ENODEV;
5033 }
5034 bp = netdev_priv(dev);
5035
5036 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
5037 BNX2X_ERR("Handling parity error recovery. Try again later\n");
5038 return -EAGAIN;
5039 }
5040
5041 rtnl_lock();
5042
5043 pci_restore_state(pdev);
5044
5045 if (!netif_running(dev)) {
5046 rtnl_unlock();
5047 return 0;
5048 }
5049
5050 bnx2x_set_power_state(bp, PCI_D0);
5051 netif_device_attach(dev);
5052
5053 rc = bnx2x_nic_load(bp, LOAD_OPEN);
5054
5055 rtnl_unlock();
5056
5057 return rc;
5058 }
5059
5060 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
5061 u32 cid)
5062 {
5063 if (!cxt) {
5064 BNX2X_ERR("bad context pointer %p\n", cxt);
5065 return;
5066 }
5067
5068 /* ustorm cxt validation */
5069 cxt->ustorm_ag_context.cdu_usage =
5070 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5071 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
5072 /* xcontext validation */
5073 cxt->xstorm_ag_context.cdu_reserved =
5074 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5075 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
5076 }
5077
5078 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
5079 u8 fw_sb_id, u8 sb_index,
5080 u8 ticks)
5081 {
5082 u32 addr = BAR_CSTRORM_INTMEM +
5083 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
5084 REG_WR8(bp, addr, ticks);
5085 DP(NETIF_MSG_IFUP,
5086 "port %x fw_sb_id %d sb_index %d ticks %d\n",
5087 port, fw_sb_id, sb_index, ticks);
5088 }
5089
5090 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
5091 u16 fw_sb_id, u8 sb_index,
5092 u8 disable)
5093 {
5094 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
5095 u32 addr = BAR_CSTRORM_INTMEM +
5096 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
5097 u8 flags = REG_RD8(bp, addr);
5098 /* clear and set */
5099 flags &= ~HC_INDEX_DATA_HC_ENABLED;
5100 flags |= enable_flag;
5101 REG_WR8(bp, addr, flags);
5102 DP(NETIF_MSG_IFUP,
5103 "port %x fw_sb_id %d sb_index %d disable %d\n",
5104 port, fw_sb_id, sb_index, disable);
5105 }
5106
5107 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
5108 u8 sb_index, u8 disable, u16 usec)
5109 {
5110 int port = BP_PORT(bp);
5111 u8 ticks = usec / BNX2X_BTR;
5112
5113 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
5114
5115 disable = disable ? 1 : (usec ? 0 : 1);
5116 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
5117 }
5118
5119 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag,
5120 u32 verbose)
5121 {
5122 smp_mb__before_atomic();
5123 set_bit(flag, &bp->sp_rtnl_state);
5124 smp_mb__after_atomic();
5125 DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n",
5126 flag);
5127 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5128 }