]> git.ipfire.org Git - thirdparty/linux.git/blame - lib/bitmap.c
Merge branch 'uaccess.csum' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[thirdparty/linux.git] / lib / bitmap.c
CommitLineData
40b0b3f8 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * lib/bitmap.c
4 * Helper functions for bitmap.h.
1da177e4 5 */
8bc3bcc9
PG
6#include <linux/export.h>
7#include <linux/thread_info.h>
1da177e4
LT
8#include <linux/ctype.h>
9#include <linux/errno.h>
10#include <linux/bitmap.h>
11#include <linux/bitops.h>
50af5ead 12#include <linux/bug.h>
e52bc7c2 13#include <linux/kernel.h>
ce1091d4 14#include <linux/mm.h>
c42b65e3 15#include <linux/slab.h>
e52bc7c2 16#include <linux/string.h>
13d4ea09 17#include <linux/uaccess.h>
5aaba363
SH
18
19#include <asm/page.h>
1da177e4 20
e371c481
YN
21#include "kstrtox.h"
22
7d7363e4
RD
23/**
24 * DOC: bitmap introduction
25 *
1da177e4
LT
26 * bitmaps provide an array of bits, implemented using an an
27 * array of unsigned longs. The number of valid bits in a
28 * given bitmap does _not_ need to be an exact multiple of
29 * BITS_PER_LONG.
30 *
31 * The possible unused bits in the last, partially used word
32 * of a bitmap are 'don't care'. The implementation makes
33 * no particular effort to keep them zero. It ensures that
34 * their value will not affect the results of any operation.
35 * The bitmap operations that return Boolean (bitmap_empty,
36 * for example) or scalar (bitmap_weight, for example) results
37 * carefully filter out these unused bits from impacting their
38 * results.
39 *
1da177e4
LT
40 * The byte ordering of bitmaps is more natural on little
41 * endian architectures. See the big-endian headers
42 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
43 * for the best explanations of this ordering.
44 */
45
1da177e4 46int __bitmap_equal(const unsigned long *bitmap1,
5e068069 47 const unsigned long *bitmap2, unsigned int bits)
1da177e4 48{
5e068069 49 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
50 for (k = 0; k < lim; ++k)
51 if (bitmap1[k] != bitmap2[k])
52 return 0;
53
54 if (bits % BITS_PER_LONG)
55 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
56 return 0;
57
58 return 1;
59}
60EXPORT_SYMBOL(__bitmap_equal);
61
b9fa6442
TG
62bool __bitmap_or_equal(const unsigned long *bitmap1,
63 const unsigned long *bitmap2,
64 const unsigned long *bitmap3,
65 unsigned int bits)
66{
67 unsigned int k, lim = bits / BITS_PER_LONG;
68 unsigned long tmp;
69
70 for (k = 0; k < lim; ++k) {
71 if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
72 return false;
73 }
74
75 if (!(bits % BITS_PER_LONG))
76 return true;
77
78 tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
79 return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
80}
81
3d6684f4 82void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
1da177e4 83{
ca1250bb 84 unsigned int k, lim = BITS_TO_LONGS(bits);
1da177e4
LT
85 for (k = 0; k < lim; ++k)
86 dst[k] = ~src[k];
1da177e4
LT
87}
88EXPORT_SYMBOL(__bitmap_complement);
89
72fd4a35 90/**
1da177e4 91 * __bitmap_shift_right - logical right shift of the bits in a bitmap
05fb6bf0
RD
92 * @dst : destination bitmap
93 * @src : source bitmap
94 * @shift : shift by this many bits
2fbad299 95 * @nbits : bitmap size, in bits
1da177e4
LT
96 *
97 * Shifting right (dividing) means moving bits in the MS -> LS bit
98 * direction. Zeros are fed into the vacated MS positions and the
99 * LS bits shifted off the bottom are lost.
100 */
2fbad299
RV
101void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
102 unsigned shift, unsigned nbits)
1da177e4 103{
cfac1d08 104 unsigned k, lim = BITS_TO_LONGS(nbits);
2fbad299 105 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
cfac1d08 106 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
1da177e4
LT
107 for (k = 0; off + k < lim; ++k) {
108 unsigned long upper, lower;
109
110 /*
111 * If shift is not word aligned, take lower rem bits of
112 * word above and make them the top rem bits of result.
113 */
114 if (!rem || off + k + 1 >= lim)
115 upper = 0;
116 else {
117 upper = src[off + k + 1];
cfac1d08 118 if (off + k + 1 == lim - 1)
1da177e4 119 upper &= mask;
9d8a6b2a 120 upper <<= (BITS_PER_LONG - rem);
1da177e4
LT
121 }
122 lower = src[off + k];
cfac1d08 123 if (off + k == lim - 1)
1da177e4 124 lower &= mask;
9d8a6b2a
RV
125 lower >>= rem;
126 dst[k] = lower | upper;
1da177e4
LT
127 }
128 if (off)
129 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
130}
131EXPORT_SYMBOL(__bitmap_shift_right);
132
133
72fd4a35 134/**
1da177e4 135 * __bitmap_shift_left - logical left shift of the bits in a bitmap
05fb6bf0
RD
136 * @dst : destination bitmap
137 * @src : source bitmap
138 * @shift : shift by this many bits
dba94c25 139 * @nbits : bitmap size, in bits
1da177e4
LT
140 *
141 * Shifting left (multiplying) means moving bits in the LS -> MS
142 * direction. Zeros are fed into the vacated LS bit positions
143 * and those MS bits shifted off the top are lost.
144 */
145
dba94c25
RV
146void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
147 unsigned int shift, unsigned int nbits)
1da177e4 148{
dba94c25 149 int k;
7f590657 150 unsigned int lim = BITS_TO_LONGS(nbits);
dba94c25 151 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
1da177e4
LT
152 for (k = lim - off - 1; k >= 0; --k) {
153 unsigned long upper, lower;
154
155 /*
156 * If shift is not word aligned, take upper rem bits of
157 * word below and make them the bottom rem bits of result.
158 */
159 if (rem && k > 0)
6d874eca 160 lower = src[k - 1] >> (BITS_PER_LONG - rem);
1da177e4
LT
161 else
162 lower = 0;
7f590657 163 upper = src[k] << rem;
6d874eca 164 dst[k + off] = lower | upper;
1da177e4
LT
165 }
166 if (off)
167 memset(dst, 0, off*sizeof(unsigned long));
168}
169EXPORT_SYMBOL(__bitmap_shift_left);
170
20927671
SB
171/**
172 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
173 * @dst: destination bitmap, might overlap with src
174 * @src: source bitmap
175 * @first: start bit of region to be removed
176 * @cut: number of bits to remove
177 * @nbits: bitmap size, in bits
178 *
179 * Set the n-th bit of @dst iff the n-th bit of @src is set and
180 * n is less than @first, or the m-th bit of @src is set for any
181 * m such that @first <= n < nbits, and m = n + @cut.
182 *
183 * In pictures, example for a big-endian 32-bit architecture:
184 *
4642289b 185 * The @src bitmap is::
20927671 186 *
4642289b
MCC
187 * 31 63
188 * | |
189 * 10000000 11000001 11110010 00010101 10000000 11000001 01110010 00010101
190 * | | | |
191 * 16 14 0 32
20927671 192 *
4642289b
MCC
193 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
194 *
195 * 31 63
196 * | |
197 * 10110000 00011000 00110010 00010101 00010000 00011000 00101110 01000010
198 * | | |
199 * 14 (bit 17 0 32
200 * from @src)
20927671
SB
201 *
202 * Note that @dst and @src might overlap partially or entirely.
203 *
204 * This is implemented in the obvious way, with a shift and carry
205 * step for each moved bit. Optimisation is left as an exercise
206 * for the compiler.
207 */
208void bitmap_cut(unsigned long *dst, const unsigned long *src,
209 unsigned int first, unsigned int cut, unsigned int nbits)
210{
211 unsigned int len = BITS_TO_LONGS(nbits);
212 unsigned long keep = 0, carry;
213 int i;
214
215 memmove(dst, src, len * sizeof(*dst));
216
217 if (first % BITS_PER_LONG) {
218 keep = src[first / BITS_PER_LONG] &
219 (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
220 }
221
222 while (cut--) {
223 for (i = first / BITS_PER_LONG; i < len; i++) {
224 if (i < len - 1)
225 carry = dst[i + 1] & 1UL;
226 else
227 carry = 0;
228
229 dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
230 }
231 }
232
233 dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
234 dst[first / BITS_PER_LONG] |= keep;
235}
236EXPORT_SYMBOL(bitmap_cut);
237
f4b0373b 238int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 239 const unsigned long *bitmap2, unsigned int bits)
1da177e4 240{
2f9305eb 241 unsigned int k;
7e5f97d1 242 unsigned int lim = bits/BITS_PER_LONG;
f4b0373b 243 unsigned long result = 0;
1da177e4 244
7e5f97d1 245 for (k = 0; k < lim; k++)
f4b0373b 246 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
7e5f97d1
RV
247 if (bits % BITS_PER_LONG)
248 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
249 BITMAP_LAST_WORD_MASK(bits));
f4b0373b 250 return result != 0;
1da177e4
LT
251}
252EXPORT_SYMBOL(__bitmap_and);
253
254void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 255 const unsigned long *bitmap2, unsigned int bits)
1da177e4 256{
2f9305eb
RV
257 unsigned int k;
258 unsigned int nr = BITS_TO_LONGS(bits);
1da177e4
LT
259
260 for (k = 0; k < nr; k++)
261 dst[k] = bitmap1[k] | bitmap2[k];
262}
263EXPORT_SYMBOL(__bitmap_or);
264
265void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 266 const unsigned long *bitmap2, unsigned int bits)
1da177e4 267{
2f9305eb
RV
268 unsigned int k;
269 unsigned int nr = BITS_TO_LONGS(bits);
1da177e4
LT
270
271 for (k = 0; k < nr; k++)
272 dst[k] = bitmap1[k] ^ bitmap2[k];
273}
274EXPORT_SYMBOL(__bitmap_xor);
275
f4b0373b 276int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 277 const unsigned long *bitmap2, unsigned int bits)
1da177e4 278{
2f9305eb 279 unsigned int k;
74e76531 280 unsigned int lim = bits/BITS_PER_LONG;
f4b0373b 281 unsigned long result = 0;
1da177e4 282
74e76531 283 for (k = 0; k < lim; k++)
f4b0373b 284 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
74e76531
RV
285 if (bits % BITS_PER_LONG)
286 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
287 BITMAP_LAST_WORD_MASK(bits));
f4b0373b 288 return result != 0;
1da177e4
LT
289}
290EXPORT_SYMBOL(__bitmap_andnot);
291
30544ed5
AS
292void __bitmap_replace(unsigned long *dst,
293 const unsigned long *old, const unsigned long *new,
294 const unsigned long *mask, unsigned int nbits)
295{
296 unsigned int k;
297 unsigned int nr = BITS_TO_LONGS(nbits);
298
299 for (k = 0; k < nr; k++)
300 dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
301}
302EXPORT_SYMBOL(__bitmap_replace);
303
1da177e4 304int __bitmap_intersects(const unsigned long *bitmap1,
6dfe9799 305 const unsigned long *bitmap2, unsigned int bits)
1da177e4 306{
6dfe9799 307 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
308 for (k = 0; k < lim; ++k)
309 if (bitmap1[k] & bitmap2[k])
310 return 1;
311
312 if (bits % BITS_PER_LONG)
313 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
314 return 1;
315 return 0;
316}
317EXPORT_SYMBOL(__bitmap_intersects);
318
319int __bitmap_subset(const unsigned long *bitmap1,
5be20213 320 const unsigned long *bitmap2, unsigned int bits)
1da177e4 321{
5be20213 322 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
323 for (k = 0; k < lim; ++k)
324 if (bitmap1[k] & ~bitmap2[k])
325 return 0;
326
327 if (bits % BITS_PER_LONG)
328 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
329 return 0;
330 return 1;
331}
332EXPORT_SYMBOL(__bitmap_subset);
333
877d9f3b 334int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
1da177e4 335{
877d9f3b
RV
336 unsigned int k, lim = bits/BITS_PER_LONG;
337 int w = 0;
1da177e4
LT
338
339 for (k = 0; k < lim; k++)
37d54111 340 w += hweight_long(bitmap[k]);
1da177e4
LT
341
342 if (bits % BITS_PER_LONG)
37d54111 343 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
1da177e4
LT
344
345 return w;
346}
1da177e4
LT
347EXPORT_SYMBOL(__bitmap_weight);
348
e5af323c 349void __bitmap_set(unsigned long *map, unsigned int start, int len)
c1a2a962
AM
350{
351 unsigned long *p = map + BIT_WORD(start);
fb5ac542 352 const unsigned int size = start + len;
c1a2a962
AM
353 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
354 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
355
fb5ac542 356 while (len - bits_to_set >= 0) {
c1a2a962 357 *p |= mask_to_set;
fb5ac542 358 len -= bits_to_set;
c1a2a962
AM
359 bits_to_set = BITS_PER_LONG;
360 mask_to_set = ~0UL;
361 p++;
362 }
fb5ac542 363 if (len) {
c1a2a962
AM
364 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
365 *p |= mask_to_set;
366 }
367}
e5af323c 368EXPORT_SYMBOL(__bitmap_set);
c1a2a962 369
e5af323c 370void __bitmap_clear(unsigned long *map, unsigned int start, int len)
c1a2a962
AM
371{
372 unsigned long *p = map + BIT_WORD(start);
154f5e38 373 const unsigned int size = start + len;
c1a2a962
AM
374 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
375 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
376
154f5e38 377 while (len - bits_to_clear >= 0) {
c1a2a962 378 *p &= ~mask_to_clear;
154f5e38 379 len -= bits_to_clear;
c1a2a962
AM
380 bits_to_clear = BITS_PER_LONG;
381 mask_to_clear = ~0UL;
382 p++;
383 }
154f5e38 384 if (len) {
c1a2a962
AM
385 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
386 *p &= ~mask_to_clear;
387 }
388}
e5af323c 389EXPORT_SYMBOL(__bitmap_clear);
c1a2a962 390
5e19b013
MN
391/**
392 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
c1a2a962
AM
393 * @map: The address to base the search on
394 * @size: The bitmap size in bits
395 * @start: The bitnumber to start searching at
396 * @nr: The number of zeroed bits we're looking for
397 * @align_mask: Alignment mask for zero area
5e19b013 398 * @align_offset: Alignment offset for zero area.
c1a2a962
AM
399 *
400 * The @align_mask should be one less than a power of 2; the effect is that
5e19b013
MN
401 * the bit offset of all zero areas this function finds plus @align_offset
402 * is multiple of that power of 2.
c1a2a962 403 */
5e19b013
MN
404unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
405 unsigned long size,
406 unsigned long start,
407 unsigned int nr,
408 unsigned long align_mask,
409 unsigned long align_offset)
c1a2a962
AM
410{
411 unsigned long index, end, i;
412again:
413 index = find_next_zero_bit(map, size, start);
414
415 /* Align allocation */
5e19b013 416 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
c1a2a962
AM
417
418 end = index + nr;
419 if (end > size)
420 return end;
421 i = find_next_bit(map, end, index);
422 if (i < end) {
423 start = i + 1;
424 goto again;
425 }
426 return index;
427}
5e19b013 428EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
c1a2a962 429
1da177e4 430/*
6d49e352 431 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
1da177e4
LT
432 * second version by Paul Jackson, third by Joe Korty.
433 */
434
01a3ee2b 435/**
9a86e2ba 436 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
01a3ee2b
RC
437 *
438 * @ubuf: pointer to user buffer containing string.
439 * @ulen: buffer size in bytes. If string is smaller than this
440 * then it must be terminated with a \0.
441 * @maskp: pointer to bitmap array that will contain result.
442 * @nmaskbits: size of bitmap, in bits.
01a3ee2b
RC
443 */
444int bitmap_parse_user(const char __user *ubuf,
445 unsigned int ulen, unsigned long *maskp,
446 int nmaskbits)
447{
e66eda06
YN
448 char *buf;
449 int ret;
450
451 buf = memdup_user_nul(ubuf, ulen);
452 if (IS_ERR(buf))
453 return PTR_ERR(buf);
454
2d626158 455 ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits);
b9c321fd 456
e66eda06
YN
457 kfree(buf);
458 return ret;
01a3ee2b
RC
459}
460EXPORT_SYMBOL(bitmap_parse_user);
1da177e4 461
5aaba363
SH
462/**
463 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
464 * @list: indicates whether the bitmap must be list
465 * @buf: page aligned buffer into which string is placed
466 * @maskp: pointer to bitmap to convert
467 * @nmaskbits: size of bitmap, in bits
468 *
469 * Output format is a comma-separated list of decimal numbers and
470 * ranges if list is specified or hex digits grouped into comma-separated
471 * sets of 8 digits/set. Returns the number of characters written to buf.
9cf79d11 472 *
ce1091d4
RV
473 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
474 * area and that sufficient storage remains at @buf to accommodate the
475 * bitmap_print_to_pagebuf() output. Returns the number of characters
476 * actually printed to @buf, excluding terminating '\0'.
5aaba363
SH
477 */
478int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
479 int nmaskbits)
480{
ce1091d4 481 ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
5aaba363 482
8ec3d768
RV
483 return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
484 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
5aaba363
SH
485}
486EXPORT_SYMBOL(bitmap_print_to_pagebuf);
487
e371c481
YN
488/*
489 * Region 9-38:4/10 describes the following bitmap structure:
490 * 0 9 12 18 38
491 * .........****......****......****......
492 * ^ ^ ^ ^
493 * start off group_len end
494 */
495struct region {
496 unsigned int start;
497 unsigned int off;
498 unsigned int group_len;
499 unsigned int end;
500};
501
502static int bitmap_set_region(const struct region *r,
503 unsigned long *bitmap, int nbits)
504{
505 unsigned int start;
506
507 if (r->end >= nbits)
508 return -ERANGE;
509
510 for (start = r->start; start <= r->end; start += r->group_len)
511 bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
512
513 return 0;
514}
515
516static int bitmap_check_region(const struct region *r)
517{
518 if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
519 return -EINVAL;
520
521 return 0;
522}
523
524static const char *bitmap_getnum(const char *str, unsigned int *num)
525{
526 unsigned long long n;
527 unsigned int len;
528
529 len = _parse_integer(str, 10, &n);
530 if (!len)
531 return ERR_PTR(-EINVAL);
532 if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
533 return ERR_PTR(-EOVERFLOW);
534
535 *num = n;
536 return str + len;
537}
538
539static inline bool end_of_str(char c)
540{
541 return c == '\0' || c == '\n';
542}
543
544static inline bool __end_of_region(char c)
545{
546 return isspace(c) || c == ',';
547}
548
549static inline bool end_of_region(char c)
550{
551 return __end_of_region(c) || end_of_str(c);
552}
553
554/*
555 * The format allows commas and whitespases at the beginning
556 * of the region.
557 */
558static const char *bitmap_find_region(const char *str)
559{
560 while (__end_of_region(*str))
561 str++;
562
563 return end_of_str(*str) ? NULL : str;
564}
565
2d626158
YN
566static const char *bitmap_find_region_reverse(const char *start, const char *end)
567{
568 while (start <= end && __end_of_region(*end))
569 end--;
570
571 return end;
572}
573
e371c481
YN
574static const char *bitmap_parse_region(const char *str, struct region *r)
575{
576 str = bitmap_getnum(str, &r->start);
577 if (IS_ERR(str))
578 return str;
579
580 if (end_of_region(*str))
581 goto no_end;
582
583 if (*str != '-')
584 return ERR_PTR(-EINVAL);
585
586 str = bitmap_getnum(str + 1, &r->end);
587 if (IS_ERR(str))
588 return str;
589
590 if (end_of_region(*str))
591 goto no_pattern;
592
593 if (*str != ':')
594 return ERR_PTR(-EINVAL);
595
596 str = bitmap_getnum(str + 1, &r->off);
597 if (IS_ERR(str))
598 return str;
599
600 if (*str != '/')
601 return ERR_PTR(-EINVAL);
602
603 return bitmap_getnum(str + 1, &r->group_len);
604
605no_end:
606 r->end = r->start;
607no_pattern:
608 r->off = r->end + 1;
609 r->group_len = r->end + 1;
610
611 return end_of_str(*str) ? NULL : str;
612}
613
1da177e4 614/**
e371c481
YN
615 * bitmap_parselist - convert list format ASCII string to bitmap
616 * @buf: read user string from this buffer; must be terminated
617 * with a \0 or \n.
6e1907ff 618 * @maskp: write resulting mask here
1da177e4
LT
619 * @nmaskbits: number of bits in mask to be written
620 *
621 * Input format is a comma-separated list of decimal numbers and
622 * ranges. Consecutively set bits are shown as two hyphen-separated
623 * decimal numbers, the smallest and largest bit numbers set in
624 * the range.
2d13e6ca
NC
625 * Optionally each range can be postfixed to denote that only parts of it
626 * should be set. The range will divided to groups of specific size.
627 * From each group will be used only defined amount of bits.
628 * Syntax: range:used_size/group_size
629 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
1da177e4 630 *
40bf19a8
MCC
631 * Returns: 0 on success, -errno on invalid input strings. Error values:
632 *
e371c481 633 * - ``-EINVAL``: wrong region format
40bf19a8
MCC
634 * - ``-EINVAL``: invalid character in string
635 * - ``-ERANGE``: bit number specified too large for mask
e371c481 636 * - ``-EOVERFLOW``: integer overflow in the input parameters
1da177e4 637 */
e371c481 638int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
1da177e4 639{
e371c481
YN
640 struct region r;
641 long ret;
1da177e4
LT
642
643 bitmap_zero(maskp, nmaskbits);
4b060420 644
e371c481
YN
645 while (buf) {
646 buf = bitmap_find_region(buf);
647 if (buf == NULL)
648 return 0;
2d13e6ca 649
e371c481
YN
650 buf = bitmap_parse_region(buf, &r);
651 if (IS_ERR(buf))
652 return PTR_ERR(buf);
2d13e6ca 653
e371c481
YN
654 ret = bitmap_check_region(&r);
655 if (ret)
656 return ret;
4b060420 657
e371c481
YN
658 ret = bitmap_set_region(&r, maskp, nmaskbits);
659 if (ret)
660 return ret;
661 }
4b060420 662
1da177e4
LT
663 return 0;
664}
665EXPORT_SYMBOL(bitmap_parselist);
666
4b060420
MT
667
668/**
669 * bitmap_parselist_user()
670 *
671 * @ubuf: pointer to user buffer containing string.
672 * @ulen: buffer size in bytes. If string is smaller than this
673 * then it must be terminated with a \0.
674 * @maskp: pointer to bitmap array that will contain result.
675 * @nmaskbits: size of bitmap, in bits.
676 *
677 * Wrapper for bitmap_parselist(), providing it with user buffer.
4b060420
MT
678 */
679int bitmap_parselist_user(const char __user *ubuf,
680 unsigned int ulen, unsigned long *maskp,
681 int nmaskbits)
682{
281327c9
YN
683 char *buf;
684 int ret;
685
686 buf = memdup_user_nul(ubuf, ulen);
687 if (IS_ERR(buf))
688 return PTR_ERR(buf);
689
690 ret = bitmap_parselist(buf, maskp, nmaskbits);
691
692 kfree(buf);
693 return ret;
4b060420
MT
694}
695EXPORT_SYMBOL(bitmap_parselist_user);
696
2d626158
YN
697static const char *bitmap_get_x32_reverse(const char *start,
698 const char *end, u32 *num)
699{
700 u32 ret = 0;
701 int c, i;
702
703 for (i = 0; i < 32; i += 4) {
704 c = hex_to_bin(*end--);
705 if (c < 0)
706 return ERR_PTR(-EINVAL);
707
708 ret |= c << i;
709
710 if (start > end || __end_of_region(*end))
711 goto out;
712 }
713
714 if (hex_to_bin(*end--) >= 0)
715 return ERR_PTR(-EOVERFLOW);
716out:
717 *num = ret;
718 return end;
719}
720
721/**
722 * bitmap_parse - convert an ASCII hex string into a bitmap.
723 * @start: pointer to buffer containing string.
724 * @buflen: buffer size in bytes. If string is smaller than this
725 * then it must be terminated with a \0 or \n. In that case,
726 * UINT_MAX may be provided instead of string length.
727 * @maskp: pointer to bitmap array that will contain result.
728 * @nmaskbits: size of bitmap, in bits.
729 *
730 * Commas group hex digits into chunks. Each chunk defines exactly 32
731 * bits of the resultant bitmask. No chunk may specify a value larger
732 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
733 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
734 * characters. Grouping such as "1,,5", ",44", "," or "" is allowed.
735 * Leading, embedded and trailing whitespace accepted.
736 */
737int bitmap_parse(const char *start, unsigned int buflen,
738 unsigned long *maskp, int nmaskbits)
739{
740 const char *end = strnchrnul(start, buflen, '\n') - 1;
741 int chunks = BITS_TO_U32(nmaskbits);
742 u32 *bitmap = (u32 *)maskp;
743 int unset_bit;
744
745 while (1) {
746 end = bitmap_find_region_reverse(start, end);
747 if (start > end)
748 break;
749
750 if (!chunks--)
751 return -EOVERFLOW;
752
753 end = bitmap_get_x32_reverse(start, end, bitmap++);
754 if (IS_ERR(end))
755 return PTR_ERR(end);
756 }
757
758 unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32;
759 if (unset_bit < nmaskbits) {
760 bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit);
761 return 0;
762 }
763
764 if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit)
765 return -EOVERFLOW;
766
767 return 0;
768}
769EXPORT_SYMBOL(bitmap_parse);
770
4b060420 771
cdc90a18 772#ifdef CONFIG_NUMA
72fd4a35 773/**
9a86e2ba 774 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
fb5eeeee 775 * @buf: pointer to a bitmap
df1d80a9
RV
776 * @pos: a bit position in @buf (0 <= @pos < @nbits)
777 * @nbits: number of valid bit positions in @buf
fb5eeeee 778 *
df1d80a9 779 * Map the bit at position @pos in @buf (of length @nbits) to the
fb5eeeee 780 * ordinal of which set bit it is. If it is not set or if @pos
96b7f341 781 * is not a valid bit position, map to -1.
fb5eeeee
PJ
782 *
783 * If for example, just bits 4 through 7 are set in @buf, then @pos
784 * values 4 through 7 will get mapped to 0 through 3, respectively,
a8551748 785 * and other @pos values will get mapped to -1. When @pos value 7
fb5eeeee
PJ
786 * gets mapped to (returns) @ord value 3 in this example, that means
787 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
788 *
789 * The bit positions 0 through @bits are valid positions in @buf.
790 */
df1d80a9 791static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
fb5eeeee 792{
df1d80a9 793 if (pos >= nbits || !test_bit(pos, buf))
96b7f341 794 return -1;
fb5eeeee 795
df1d80a9 796 return __bitmap_weight(buf, pos);
fb5eeeee
PJ
797}
798
799/**
9a86e2ba 800 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
fb5eeeee
PJ
801 * @buf: pointer to bitmap
802 * @ord: ordinal bit position (n-th set bit, n >= 0)
f6a1f5db 803 * @nbits: number of valid bit positions in @buf
fb5eeeee
PJ
804 *
805 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
f6a1f5db
RV
806 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
807 * >= weight(buf), returns @nbits.
fb5eeeee
PJ
808 *
809 * If for example, just bits 4 through 7 are set in @buf, then @ord
810 * values 0 through 3 will get mapped to 4 through 7, respectively,
f6a1f5db 811 * and all other @ord values returns @nbits. When @ord value 3
fb5eeeee
PJ
812 * gets mapped to (returns) @pos value 7 in this example, that means
813 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
814 *
f6a1f5db 815 * The bit positions 0 through @nbits-1 are valid positions in @buf.
fb5eeeee 816 */
f6a1f5db 817unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
fb5eeeee 818{
f6a1f5db 819 unsigned int pos;
fb5eeeee 820
f6a1f5db
RV
821 for (pos = find_first_bit(buf, nbits);
822 pos < nbits && ord;
823 pos = find_next_bit(buf, nbits, pos + 1))
824 ord--;
fb5eeeee
PJ
825
826 return pos;
827}
828
829/**
830 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
fb5eeeee 831 * @dst: remapped result
96b7f341 832 * @src: subset to be remapped
fb5eeeee
PJ
833 * @old: defines domain of map
834 * @new: defines range of map
9814ec13 835 * @nbits: number of bits in each of these bitmaps
fb5eeeee
PJ
836 *
837 * Let @old and @new define a mapping of bit positions, such that
838 * whatever position is held by the n-th set bit in @old is mapped
839 * to the n-th set bit in @new. In the more general case, allowing
840 * for the possibility that the weight 'w' of @new is less than the
841 * weight of @old, map the position of the n-th set bit in @old to
842 * the position of the m-th set bit in @new, where m == n % w.
843 *
96b7f341
PJ
844 * If either of the @old and @new bitmaps are empty, or if @src and
845 * @dst point to the same location, then this routine copies @src
846 * to @dst.
fb5eeeee 847 *
96b7f341
PJ
848 * The positions of unset bits in @old are mapped to themselves
849 * (the identify map).
fb5eeeee
PJ
850 *
851 * Apply the above specified mapping to @src, placing the result in
852 * @dst, clearing any bits previously set in @dst.
853 *
fb5eeeee
PJ
854 * For example, lets say that @old has bits 4 through 7 set, and
855 * @new has bits 12 through 15 set. This defines the mapping of bit
856 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
857 * bit positions unchanged. So if say @src comes into this routine
858 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
859 * 13 and 15 set.
fb5eeeee
PJ
860 */
861void bitmap_remap(unsigned long *dst, const unsigned long *src,
862 const unsigned long *old, const unsigned long *new,
9814ec13 863 unsigned int nbits)
fb5eeeee 864{
9814ec13 865 unsigned int oldbit, w;
fb5eeeee 866
fb5eeeee
PJ
867 if (dst == src) /* following doesn't handle inplace remaps */
868 return;
9814ec13 869 bitmap_zero(dst, nbits);
96b7f341 870
9814ec13
RV
871 w = bitmap_weight(new, nbits);
872 for_each_set_bit(oldbit, src, nbits) {
873 int n = bitmap_pos_to_ord(old, oldbit, nbits);
08564fb7 874
96b7f341
PJ
875 if (n < 0 || w == 0)
876 set_bit(oldbit, dst); /* identity map */
877 else
9814ec13 878 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
fb5eeeee
PJ
879 }
880}
fb5eeeee
PJ
881
882/**
883 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
6e1907ff
RD
884 * @oldbit: bit position to be mapped
885 * @old: defines domain of map
886 * @new: defines range of map
887 * @bits: number of bits in each of these bitmaps
fb5eeeee
PJ
888 *
889 * Let @old and @new define a mapping of bit positions, such that
890 * whatever position is held by the n-th set bit in @old is mapped
891 * to the n-th set bit in @new. In the more general case, allowing
892 * for the possibility that the weight 'w' of @new is less than the
893 * weight of @old, map the position of the n-th set bit in @old to
894 * the position of the m-th set bit in @new, where m == n % w.
895 *
96b7f341
PJ
896 * The positions of unset bits in @old are mapped to themselves
897 * (the identify map).
fb5eeeee
PJ
898 *
899 * Apply the above specified mapping to bit position @oldbit, returning
900 * the new bit position.
901 *
902 * For example, lets say that @old has bits 4 through 7 set, and
903 * @new has bits 12 through 15 set. This defines the mapping of bit
904 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
905 * bit positions unchanged. So if say @oldbit is 5, then this routine
906 * returns 13.
fb5eeeee
PJ
907 */
908int bitmap_bitremap(int oldbit, const unsigned long *old,
909 const unsigned long *new, int bits)
910{
96b7f341
PJ
911 int w = bitmap_weight(new, bits);
912 int n = bitmap_pos_to_ord(old, oldbit, bits);
913 if (n < 0 || w == 0)
914 return oldbit;
915 else
916 return bitmap_ord_to_pos(new, n % w, bits);
fb5eeeee 917}
fb5eeeee 918
7ea931c9
PJ
919/**
920 * bitmap_onto - translate one bitmap relative to another
921 * @dst: resulting translated bitmap
922 * @orig: original untranslated bitmap
923 * @relmap: bitmap relative to which translated
924 * @bits: number of bits in each of these bitmaps
925 *
926 * Set the n-th bit of @dst iff there exists some m such that the
927 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
928 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
929 * (If you understood the previous sentence the first time your
930 * read it, you're overqualified for your current job.)
931 *
932 * In other words, @orig is mapped onto (surjectively) @dst,
da3dae54 933 * using the map { <n, m> | the n-th bit of @relmap is the
7ea931c9
PJ
934 * m-th set bit of @relmap }.
935 *
936 * Any set bits in @orig above bit number W, where W is the
937 * weight of (number of set bits in) @relmap are mapped nowhere.
938 * In particular, if for all bits m set in @orig, m >= W, then
939 * @dst will end up empty. In situations where the possibility
940 * of such an empty result is not desired, one way to avoid it is
941 * to use the bitmap_fold() operator, below, to first fold the
942 * @orig bitmap over itself so that all its set bits x are in the
943 * range 0 <= x < W. The bitmap_fold() operator does this by
944 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
945 *
946 * Example [1] for bitmap_onto():
947 * Let's say @relmap has bits 30-39 set, and @orig has bits
948 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
949 * @dst will have bits 31, 33, 35, 37 and 39 set.
950 *
951 * When bit 0 is set in @orig, it means turn on the bit in
952 * @dst corresponding to whatever is the first bit (if any)
953 * that is turned on in @relmap. Since bit 0 was off in the
954 * above example, we leave off that bit (bit 30) in @dst.
955 *
956 * When bit 1 is set in @orig (as in the above example), it
957 * means turn on the bit in @dst corresponding to whatever
958 * is the second bit that is turned on in @relmap. The second
959 * bit in @relmap that was turned on in the above example was
960 * bit 31, so we turned on bit 31 in @dst.
961 *
962 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
963 * because they were the 4th, 6th, 8th and 10th set bits
964 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
965 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
966 *
967 * When bit 11 is set in @orig, it means turn on the bit in
25985edc 968 * @dst corresponding to whatever is the twelfth bit that is
7ea931c9
PJ
969 * turned on in @relmap. In the above example, there were
970 * only ten bits turned on in @relmap (30..39), so that bit
971 * 11 was set in @orig had no affect on @dst.
972 *
973 * Example [2] for bitmap_fold() + bitmap_onto():
40bf19a8
MCC
974 * Let's say @relmap has these ten bits set::
975 *
7ea931c9 976 * 40 41 42 43 45 48 53 61 74 95
40bf19a8 977 *
7ea931c9
PJ
978 * (for the curious, that's 40 plus the first ten terms of the
979 * Fibonacci sequence.)
980 *
981 * Further lets say we use the following code, invoking
982 * bitmap_fold() then bitmap_onto, as suggested above to
40bf19a8 983 * avoid the possibility of an empty @dst result::
7ea931c9
PJ
984 *
985 * unsigned long *tmp; // a temporary bitmap's bits
986 *
987 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
988 * bitmap_onto(dst, tmp, relmap, bits);
989 *
990 * Then this table shows what various values of @dst would be, for
991 * various @orig's. I list the zero-based positions of each set bit.
992 * The tmp column shows the intermediate result, as computed by
993 * using bitmap_fold() to fold the @orig bitmap modulo ten
40bf19a8 994 * (the weight of @relmap):
7ea931c9 995 *
40bf19a8 996 * =============== ============== =================
7ea931c9
PJ
997 * @orig tmp @dst
998 * 0 0 40
999 * 1 1 41
1000 * 9 9 95
40bf19a8 1001 * 10 0 40 [#f1]_
7ea931c9
PJ
1002 * 1 3 5 7 1 3 5 7 41 43 48 61
1003 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
1004 * 0 9 18 27 0 9 8 7 40 61 74 95
1005 * 0 10 20 30 0 40
1006 * 0 11 22 33 0 1 2 3 40 41 42 43
1007 * 0 12 24 36 0 2 4 6 40 42 45 53
40bf19a8
MCC
1008 * 78 102 211 1 2 8 41 42 74 [#f1]_
1009 * =============== ============== =================
1010 *
1011 * .. [#f1]
7ea931c9 1012 *
40bf19a8 1013 * For these marked lines, if we hadn't first done bitmap_fold()
7ea931c9
PJ
1014 * into tmp, then the @dst result would have been empty.
1015 *
1016 * If either of @orig or @relmap is empty (no set bits), then @dst
1017 * will be returned empty.
1018 *
1019 * If (as explained above) the only set bits in @orig are in positions
1020 * m where m >= W, (where W is the weight of @relmap) then @dst will
1021 * once again be returned empty.
1022 *
1023 * All bits in @dst not set by the above rule are cleared.
1024 */
1025void bitmap_onto(unsigned long *dst, const unsigned long *orig,
eb569883 1026 const unsigned long *relmap, unsigned int bits)
7ea931c9 1027{
eb569883 1028 unsigned int n, m; /* same meaning as in above comment */
7ea931c9
PJ
1029
1030 if (dst == orig) /* following doesn't handle inplace mappings */
1031 return;
1032 bitmap_zero(dst, bits);
1033
1034 /*
1035 * The following code is a more efficient, but less
1036 * obvious, equivalent to the loop:
1037 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
1038 * n = bitmap_ord_to_pos(orig, m, bits);
1039 * if (test_bit(m, orig))
1040 * set_bit(n, dst);
1041 * }
1042 */
1043
1044 m = 0;
08564fb7 1045 for_each_set_bit(n, relmap, bits) {
7ea931c9
PJ
1046 /* m == bitmap_pos_to_ord(relmap, n, bits) */
1047 if (test_bit(m, orig))
1048 set_bit(n, dst);
1049 m++;
1050 }
1051}
7ea931c9
PJ
1052
1053/**
1054 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1055 * @dst: resulting smaller bitmap
1056 * @orig: original larger bitmap
1057 * @sz: specified size
b26ad583 1058 * @nbits: number of bits in each of these bitmaps
7ea931c9
PJ
1059 *
1060 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1061 * Clear all other bits in @dst. See further the comment and
1062 * Example [2] for bitmap_onto() for why and how to use this.
1063 */
1064void bitmap_fold(unsigned long *dst, const unsigned long *orig,
b26ad583 1065 unsigned int sz, unsigned int nbits)
7ea931c9 1066{
b26ad583 1067 unsigned int oldbit;
7ea931c9
PJ
1068
1069 if (dst == orig) /* following doesn't handle inplace mappings */
1070 return;
b26ad583 1071 bitmap_zero(dst, nbits);
7ea931c9 1072
b26ad583 1073 for_each_set_bit(oldbit, orig, nbits)
7ea931c9
PJ
1074 set_bit(oldbit % sz, dst);
1075}
cdc90a18 1076#endif /* CONFIG_NUMA */
7ea931c9 1077
3cf64b93
PJ
1078/*
1079 * Common code for bitmap_*_region() routines.
1080 * bitmap: array of unsigned longs corresponding to the bitmap
1081 * pos: the beginning of the region
1082 * order: region size (log base 2 of number of bits)
1083 * reg_op: operation(s) to perform on that region of bitmap
1da177e4 1084 *
3cf64b93
PJ
1085 * Can set, verify and/or release a region of bits in a bitmap,
1086 * depending on which combination of REG_OP_* flag bits is set.
1da177e4 1087 *
3cf64b93
PJ
1088 * A region of a bitmap is a sequence of bits in the bitmap, of
1089 * some size '1 << order' (a power of two), aligned to that same
1090 * '1 << order' power of two.
1091 *
1092 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1093 * Returns 0 in all other cases and reg_ops.
1da177e4 1094 */
3cf64b93
PJ
1095
1096enum {
1097 REG_OP_ISFREE, /* true if region is all zero bits */
1098 REG_OP_ALLOC, /* set all bits in region */
1099 REG_OP_RELEASE, /* clear all bits in region */
1100};
1101
9279d328 1102static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1da177e4 1103{
3cf64b93
PJ
1104 int nbits_reg; /* number of bits in region */
1105 int index; /* index first long of region in bitmap */
1106 int offset; /* bit offset region in bitmap[index] */
1107 int nlongs_reg; /* num longs spanned by region in bitmap */
74373c6a 1108 int nbitsinlong; /* num bits of region in each spanned long */
3cf64b93 1109 unsigned long mask; /* bitmask for one long of region */
74373c6a 1110 int i; /* scans bitmap by longs */
3cf64b93 1111 int ret = 0; /* return value */
74373c6a 1112
3cf64b93
PJ
1113 /*
1114 * Either nlongs_reg == 1 (for small orders that fit in one long)
1115 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1116 */
1117 nbits_reg = 1 << order;
1118 index = pos / BITS_PER_LONG;
1119 offset = pos - (index * BITS_PER_LONG);
1120 nlongs_reg = BITS_TO_LONGS(nbits_reg);
1121 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1da177e4 1122
3cf64b93
PJ
1123 /*
1124 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1125 * overflows if nbitsinlong == BITS_PER_LONG.
1126 */
74373c6a 1127 mask = (1UL << (nbitsinlong - 1));
1da177e4 1128 mask += mask - 1;
3cf64b93 1129 mask <<= offset;
1da177e4 1130
3cf64b93
PJ
1131 switch (reg_op) {
1132 case REG_OP_ISFREE:
1133 for (i = 0; i < nlongs_reg; i++) {
1134 if (bitmap[index + i] & mask)
1135 goto done;
1136 }
1137 ret = 1; /* all bits in region free (zero) */
1138 break;
1139
1140 case REG_OP_ALLOC:
1141 for (i = 0; i < nlongs_reg; i++)
1142 bitmap[index + i] |= mask;
1143 break;
1144
1145 case REG_OP_RELEASE:
1146 for (i = 0; i < nlongs_reg; i++)
1147 bitmap[index + i] &= ~mask;
1148 break;
1da177e4 1149 }
3cf64b93
PJ
1150done:
1151 return ret;
1152}
1153
1154/**
1155 * bitmap_find_free_region - find a contiguous aligned mem region
1156 * @bitmap: array of unsigned longs corresponding to the bitmap
1157 * @bits: number of bits in the bitmap
1158 * @order: region size (log base 2 of number of bits) to find
1159 *
1160 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1161 * allocate them (set them to one). Only consider regions of length
1162 * a power (@order) of two, aligned to that power of two, which
1163 * makes the search algorithm much faster.
1164 *
1165 * Return the bit offset in bitmap of the allocated region,
1166 * or -errno on failure.
1167 */
9279d328 1168int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
3cf64b93 1169{
9279d328 1170 unsigned int pos, end; /* scans bitmap by regions of size order */
aa8e4fc6 1171
9279d328 1172 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
aa8e4fc6
LT
1173 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1174 continue;
1175 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1176 return pos;
1177 }
1178 return -ENOMEM;
1da177e4
LT
1179}
1180EXPORT_SYMBOL(bitmap_find_free_region);
1181
1182/**
87e24802 1183 * bitmap_release_region - release allocated bitmap region
3cf64b93
PJ
1184 * @bitmap: array of unsigned longs corresponding to the bitmap
1185 * @pos: beginning of bit region to release
1186 * @order: region size (log base 2 of number of bits) to release
1da177e4 1187 *
72fd4a35 1188 * This is the complement to __bitmap_find_free_region() and releases
1da177e4 1189 * the found region (by clearing it in the bitmap).
3cf64b93
PJ
1190 *
1191 * No return value.
1da177e4 1192 */
9279d328 1193void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1da177e4 1194{
3cf64b93 1195 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1da177e4
LT
1196}
1197EXPORT_SYMBOL(bitmap_release_region);
1198
87e24802
PJ
1199/**
1200 * bitmap_allocate_region - allocate bitmap region
3cf64b93
PJ
1201 * @bitmap: array of unsigned longs corresponding to the bitmap
1202 * @pos: beginning of bit region to allocate
1203 * @order: region size (log base 2 of number of bits) to allocate
87e24802
PJ
1204 *
1205 * Allocate (set bits in) a specified region of a bitmap.
3cf64b93 1206 *
6e1907ff 1207 * Return 0 on success, or %-EBUSY if specified region wasn't
87e24802
PJ
1208 * free (not all bits were zero).
1209 */
9279d328 1210int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1da177e4 1211{
3cf64b93
PJ
1212 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1213 return -EBUSY;
2ac521d3 1214 return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1da177e4
LT
1215}
1216EXPORT_SYMBOL(bitmap_allocate_region);
ccbe329b
DV
1217
1218/**
1219 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1220 * @dst: destination buffer
1221 * @src: bitmap to copy
1222 * @nbits: number of bits in the bitmap
1223 *
1224 * Require nbits % BITS_PER_LONG == 0.
1225 */
e8f24278 1226#ifdef __BIG_ENDIAN
9b6c2d2e 1227void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
ccbe329b 1228{
9b6c2d2e 1229 unsigned int i;
ccbe329b
DV
1230
1231 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1232 if (BITS_PER_LONG == 64)
9b6c2d2e 1233 dst[i] = cpu_to_le64(src[i]);
ccbe329b 1234 else
9b6c2d2e 1235 dst[i] = cpu_to_le32(src[i]);
ccbe329b
DV
1236 }
1237}
1238EXPORT_SYMBOL(bitmap_copy_le);
e8f24278 1239#endif
c724f193 1240
c42b65e3
AS
1241unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1242{
1243 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1244 flags);
1245}
1246EXPORT_SYMBOL(bitmap_alloc);
1247
1248unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1249{
1250 return bitmap_alloc(nbits, flags | __GFP_ZERO);
1251}
1252EXPORT_SYMBOL(bitmap_zalloc);
1253
1254void bitmap_free(const unsigned long *bitmap)
1255{
1256 kfree(bitmap);
1257}
1258EXPORT_SYMBOL(bitmap_free);
1259
c724f193
YN
1260#if BITS_PER_LONG == 64
1261/**
1262 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1263 * @bitmap: array of unsigned longs, the destination bitmap
1264 * @buf: array of u32 (in host byte order), the source bitmap
1265 * @nbits: number of bits in @bitmap
1266 */
ccf7a6d4 1267void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
c724f193
YN
1268{
1269 unsigned int i, halfwords;
1270
c724f193
YN
1271 halfwords = DIV_ROUND_UP(nbits, 32);
1272 for (i = 0; i < halfwords; i++) {
1273 bitmap[i/2] = (unsigned long) buf[i];
1274 if (++i < halfwords)
1275 bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1276 }
1277
1278 /* Clear tail bits in last word beyond nbits. */
1279 if (nbits % BITS_PER_LONG)
1280 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1281}
1282EXPORT_SYMBOL(bitmap_from_arr32);
1283
1284/**
1285 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1286 * @buf: array of u32 (in host byte order), the dest bitmap
1287 * @bitmap: array of unsigned longs, the source bitmap
1288 * @nbits: number of bits in @bitmap
1289 */
1290void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1291{
1292 unsigned int i, halfwords;
1293
c724f193
YN
1294 halfwords = DIV_ROUND_UP(nbits, 32);
1295 for (i = 0; i < halfwords; i++) {
1296 buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1297 if (++i < halfwords)
1298 buf[i] = (u32) (bitmap[i/2] >> 32);
1299 }
1300
1301 /* Clear tail bits in last element of array beyond nbits. */
1302 if (nbits % BITS_PER_LONG)
1303 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1304}
1305EXPORT_SYMBOL(bitmap_to_arr32);
1306
1307#endif