]> git.ipfire.org Git - thirdparty/man-pages.git/blob - man8/zdump.8
share/mk/: build-html: Don't build mbind.2 and set_mempolicy.2
[thirdparty/man-pages.git] / man8 / zdump.8
1 .\" %%%LICENSE_START(PUBLIC_DOMAIN)
2 .\" This page is in the public domain
3 .\" %%%LICENSE_END
4 .\"
5 .TH ZDUMP 8 2019-03-06 "" "Linux System Administration"
6 .SH NAME
7 zdump \- timezone dumper
8 .SH SYNOPSIS
9 .B zdump
10 [
11 .I option
12 \&... ] [
13 .I timezone
14 \&... ]
15 .SH DESCRIPTION
16 .ie '\(lq'' .ds lq \&"\"
17 .el .ds lq \(lq\"
18 .ie '\(rq'' .ds rq \&"\"
19 .el .ds rq \(rq\"
20 .de q
21 \\$3\*(lq\\$1\*(rq\\$2
22 ..
23 .ie \n(.g .ds - \f(CW-\fP
24 .el ds - \-
25 The
26 .B zdump
27 program prints the current time in each
28 .I timezone
29 named on the command line.
30 .SH OPTIONS
31 .TP
32 .B \*-\*-version
33 Output version information and exit.
34 .TP
35 .B \*-\*-help
36 Output short usage message and exit.
37 .TP
38 .B \*-i
39 Output a description of time intervals. For each
40 .I timezone
41 on the command line, output an interval-format description of the
42 timezone. See
43 .q "INTERVAL FORMAT"
44 below.
45 .TP
46 .B \*-v
47 Output a verbose description of time intervals.
48 For each
49 .I timezone
50 on the command line,
51 print the time at the lowest possible time value,
52 the time one day after the lowest possible time value,
53 the times both one second before and exactly at
54 each detected time discontinuity,
55 the time at one day less than the highest possible time value,
56 and the time at the highest possible time value.
57 Each line is followed by
58 .BI isdst= D
59 where
60 .I D
61 is positive, zero, or negative depending on whether
62 the given time is daylight saving time, standard time,
63 or an unknown time type, respectively.
64 Each line is also followed by
65 .BI gmtoff= N
66 if the given local time is known to be
67 .I N
68 seconds east of Greenwich.
69 .TP
70 .B \*-V
71 Like
72 .BR \*-v ,
73 except omit the times relative to the extreme time values.
74 This generates output that is easier to compare to that of
75 implementations with different time representations.
76 .TP
77 .BI "\*-c " \fR[\fIloyear , \fR]\fIhiyear
78 Cut off interval output at the given year(s).
79 Cutoff times are computed using the proleptic Gregorian calendar with year 0
80 and with Universal Time (UT) ignoring leap seconds.
81 The lower bound is exclusive and the upper is inclusive; for example, a
82 .I loyear
83 of 1970 excludes a transition occurring at 1970-01-01 00:00:00 UTC but a
84 .I hiyear
85 of 1970 includes the transition.
86 The default cutoff is
87 .BR \*-500,2500 .
88 .TP
89 .BI "\*-t " \fR[\fIlotime , \fR]\fIhitime
90 Cut off interval output at the given time(s),
91 given in decimal seconds since 1970-01-01 00:00:00
92 Coordinated Universal Time (UTC).
93 The
94 .I timezone
95 determines whether the count includes leap seconds.
96 As with
97 .BR \*-c ,
98 the cutoff's lower bound is exclusive and its upper bound is inclusive.
99 .SH "INTERVAL FORMAT"
100 The interval format is a compact text representation that is intended
101 to be both human- and machine-readable. It consists of an empty line,
102 then a line
103 .q "TZ=\fIstring\fP"
104 where
105 .I string
106 is a double-quoted string giving the timezone, a second line
107 .q "\*- \*- \fIinterval\fP"
108 describing the time interval before the first transition if any, and
109 zero or more following lines
110 .q "\fIdate time interval\fP",
111 one line for each transition time and following interval. Fields are
112 separated by single tabs.
113 .PP
114 Dates are in
115 .IR yyyy - mm - dd
116 format and times are in 24-hour
117 .IR hh : mm : ss
118 format where
119 .IR hh <24.
120 Times are in local time immediately after the transition. A
121 time interval description consists of a UT offset in signed
122 .RI \(+- hhmmss
123 format, a time zone abbreviation, and an isdst flag. An abbreviation
124 that equals the UT offset is omitted; other abbreviations are
125 double-quoted strings unless they consist of one or more alphabetic
126 characters. An isdst flag is omitted for standard time, and otherwise
127 is a decimal integer that is unsigned and positive (typically 1) for
128 daylight saving time and negative for unknown.
129 .PP
130 In times and in UT offsets with absolute value less than 100 hours,
131 the seconds are omitted if they are zero, and
132 the minutes are also omitted if they are also zero. Positive UT
133 offsets are east of Greenwich. The UT offset \*-00 denotes a UT
134 placeholder in areas where the actual offset is unspecified; by
135 convention, this occurs when the UT offset is zero and the time zone
136 abbreviation begins with
137 .q "\*-"
138 or is
139 .q "zzz".
140 .PP
141 In double-quoted strings, escape sequences represent unusual
142 characters. The escape sequences are \es for space, and \e", \e\e,
143 \ef, \en, \er, \et, and \ev with their usual meaning in the C
144 programming language. E.g., the double-quoted string
145 \*(lq"CET\es\e"\e\e"\*(rq represents the character sequence \*(lqCET
146 "\e\*(rq.\""
147 .PP
148 .ne 9
149 Here is an example of the output, with the leading empty line omitted.
150 (This example is shown with tab stops set far enough apart so that the
151 tabbed columns line up.)
152 .nf
153 .sp
154 .if \n(.g .ft CW
155 .if t .in +.5i
156 .if n .in +2
157 .nr w \w'1896-01-13 'u
158 .ta \nwu +\nwu +\nwu +\nwu
159 TZ="Pacific/Honolulu"
160 - - -10:31:26 LMT
161 1896-01-13 12:01:26 -10:30 HST
162 1933-04-30 03 -09:30 HDT 1
163 1933-05-21 11 -10:30 HST
164 1942-02-09 03 -09:30 HDT 1
165 1945-09-30 01 -10:30 HST
166 1947-06-08 02:30 -10 HST
167 .in
168 .if \n(.g .ft
169 .sp
170 .fi
171 Here, local time begins 10 hours, 31 minutes and 26 seconds west of
172 UT, and is a standard time abbreviated LMT. Immediately after the
173 first transition, the date is 1896-01-13 and the time is 12:01:26, and
174 the following time interval is 10.5 hours west of UT, a standard time
175 abbreviated HST. Immediately after the second transition, the date is
176 1933-04-30 and the time is 03:00:00 and the following time interval is
177 9.5 hours west of UT, is abbreviated HDT, and is daylight saving time.
178 Immediately after the last transition the date is 1947-06-08 and the
179 time is 02:30:00, and the following time interval is 10 hours west of
180 UT, a standard time abbreviated HST.
181 .PP
182 .ne 10
183 Here are excerpts from another example:
184 .nf
185 .sp
186 .if \n(.g .ft CW
187 .if t .in +.5i
188 .if n .in +2
189 TZ="Europe/Astrakhan"
190 - - +03:12:12 LMT
191 1924-04-30 23:47:48 +03
192 1930-06-21 01 +04
193 1981-04-01 01 +05 1
194 1981-09-30 23 +04
195 \&...
196 2014-10-26 01 +03
197 2016-03-27 03 +04
198 .in
199 .if \n(.g .ft
200 .sp
201 .fi
202 This time zone is east of UT, so its UT offsets are positive. Also,
203 many of its time zone abbreviations are omitted since they duplicate
204 the text of the UT offset.
205 .SH LIMITATIONS
206 Time discontinuities are found by sampling the results returned by localtime
207 at twelve-hour intervals.
208 This works in all real-world cases;
209 one can construct artificial time zones for which this fails.
210 .PP
211 In the
212 .B \*-v
213 and
214 .B \*-V
215 output,
216 .q "UT"
217 denotes the value returned by
218 .BR gmtime (3),
219 which uses UTC for modern timestamps and some other UT flavor for
220 timestamps that predate the introduction of UTC.
221 No attempt is currently made to have the output use
222 .q "UTC"
223 for newer and
224 .q "UT"
225 for older timestamps, partly because the exact date of the
226 introduction of UTC is problematic.
227 .SH SEE ALSO
228 .BR tzfile (5),
229 .BR zic (8)
230 .\" This file is in the public domain, so clarified as of
231 .\" 2009-05-17 by Arthur David Olson.