]> git.ipfire.org Git - thirdparty/mdadm.git/blame - restripe.c
mdadm: add missing --syslog option to monitor help
[thirdparty/mdadm.git] / restripe.c
CommitLineData
e86c9dd6
NB
1/*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
e736b623 4 * Copyright (C) 2006-2009 Neil Brown <neilb@suse.de>
e86c9dd6
NB
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neilb@suse.de>
23 */
24
25#include "mdadm.h"
a6288483 26#include <stdint.h>
e86c9dd6
NB
27
28/* To restripe, we read from old geometry to a buffer, and
29 * read from buffer to new geometry.
a6288483
N
30 * When reading, we might have missing devices and so could need
31 * to reconstruct.
32 * When writing, we need to create correct parity and Q.
e86c9dd6
NB
33 *
34 */
35
979afcb8 36int geo_map(int block, unsigned long long stripe, int raid_disks,
e0d95aac 37 int level, int layout)
e86c9dd6 38{
48327135 39 /* On the given stripe, find which disk in the array will have
e86c9dd6 40 * block numbered 'block'.
48327135
NB
41 * '-1' means the parity block.
42 * '-2' means the Q syndrome.
e86c9dd6
NB
43 */
44 int pd;
45
b6e317c8
AK
46 /* layout is not relevant for raid0 and raid4 */
47 if ((level == 0) ||
48 (level == 4))
49 layout = 0;
50
e86c9dd6
NB
51 switch(level*100 + layout) {
52 case 000:
53 case 400:
e0d95aac 54 case 500 + ALGORITHM_PARITY_N:
e86c9dd6
NB
55 /* raid 4 isn't messed around by parity blocks */
56 if (block == -1)
57 return raid_disks-1; /* parity block */
58 return block;
59 case 500 + ALGORITHM_LEFT_ASYMMETRIC:
60 pd = (raid_disks-1) - stripe % raid_disks;
61 if (block == -1) return pd;
62 if (block >= pd)
63 block++;
64 return block;
65
66 case 500 + ALGORITHM_RIGHT_ASYMMETRIC:
67 pd = stripe % raid_disks;
68 if (block == -1) return pd;
69 if (block >= pd)
70 block++;
71 return block;
72
73 case 500 + ALGORITHM_LEFT_SYMMETRIC:
74 pd = (raid_disks - 1) - stripe % raid_disks;
75 if (block == -1) return pd;
76 return (pd + 1 + block) % raid_disks;
77
78 case 500 + ALGORITHM_RIGHT_SYMMETRIC:
79 pd = stripe % raid_disks;
80 if (block == -1) return pd;
81 return (pd + 1 + block) % raid_disks;
82
e0d95aac
N
83 case 500 + ALGORITHM_PARITY_0:
84 return block + 1;
85
86
87 case 600 + ALGORITHM_PARITY_N_6:
88 if (block == -2)
89 return raid_disks - 1;
90 if (block == -1)
91 return raid_disks - 2; /* parity block */
92 return block;
93 case 600 + ALGORITHM_LEFT_ASYMMETRIC_6:
94 if (block == -2)
95 return raid_disks - 1;
96 raid_disks--;
97 pd = (raid_disks-1) - stripe % raid_disks;
98 if (block == -1) return pd;
99 if (block >= pd)
100 block++;
101 return block;
102
103 case 600 + ALGORITHM_RIGHT_ASYMMETRIC_6:
104 if (block == -2)
105 return raid_disks - 1;
106 raid_disks--;
107 pd = stripe % raid_disks;
108 if (block == -1) return pd;
109 if (block >= pd)
110 block++;
111 return block;
112
113 case 600 + ALGORITHM_LEFT_SYMMETRIC_6:
114 if (block == -2)
115 return raid_disks - 1;
116 raid_disks--;
117 pd = (raid_disks - 1) - stripe % raid_disks;
118 if (block == -1) return pd;
119 return (pd + 1 + block) % raid_disks;
120
121 case 600 + ALGORITHM_RIGHT_SYMMETRIC_6:
122 if (block == -2)
123 return raid_disks - 1;
124 raid_disks--;
125 pd = stripe % raid_disks;
126 if (block == -1) return pd;
127 return (pd + 1 + block) % raid_disks;
128
129 case 600 + ALGORITHM_PARITY_0_6:
130 if (block == -2)
131 return raid_disks - 1;
132 return block + 1;
133
134
135 case 600 + ALGORITHM_PARITY_0:
136 if (block == -1)
137 return 0;
138 if (block == -2)
139 return 1;
140 return block + 2;
141
e86c9dd6
NB
142 case 600 + ALGORITHM_LEFT_ASYMMETRIC:
143 pd = raid_disks - 1 - (stripe % raid_disks);
144 if (block == -1) return pd;
48327135 145 if (block == -2) return (pd+1) % raid_disks;
e86c9dd6
NB
146 if (pd == raid_disks - 1)
147 return block+1;
148 if (block >= pd)
149 return block+2;
150 return block;
151
e0d95aac
N
152 case 600 + ALGORITHM_ROTATING_ZERO_RESTART:
153 /* Different order for calculating Q, otherwize same as ... */
e86c9dd6
NB
154 case 600 + ALGORITHM_RIGHT_ASYMMETRIC:
155 pd = stripe % raid_disks;
156 if (block == -1) return pd;
48327135 157 if (block == -2) return (pd+1) % raid_disks;
e86c9dd6
NB
158 if (pd == raid_disks - 1)
159 return block+1;
160 if (block >= pd)
161 return block+2;
162 return block;
163
164 case 600 + ALGORITHM_LEFT_SYMMETRIC:
165 pd = raid_disks - 1 - (stripe % raid_disks);
166 if (block == -1) return pd;
48327135 167 if (block == -2) return (pd+1) % raid_disks;
e86c9dd6
NB
168 return (pd + 2 + block) % raid_disks;
169
170 case 600 + ALGORITHM_RIGHT_SYMMETRIC:
171 pd = stripe % raid_disks;
172 if (block == -1) return pd;
48327135 173 if (block == -2) return (pd+1) % raid_disks;
e86c9dd6 174 return (pd + 2 + block) % raid_disks;
e0d95aac
N
175
176
177 case 600 + ALGORITHM_ROTATING_N_RESTART:
178 /* Same a left_asymmetric, by first stripe is
179 * D D D P Q rather than
180 * Q D D D P
181 */
182 pd = raid_disks - 1 - ((stripe + 1) % raid_disks);
183 if (block == -1) return pd;
184 if (block == -2) return (pd+1) % raid_disks;
185 if (pd == raid_disks - 1)
186 return block+1;
187 if (block >= pd)
188 return block+2;
189 return block;
190
191 case 600 + ALGORITHM_ROTATING_N_CONTINUE:
192 /* Same as left_symmetric but Q is before P */
193 pd = raid_disks - 1 - (stripe % raid_disks);
194 if (block == -1) return pd;
195 if (block == -2) return (pd+raid_disks-1) % raid_disks;
196 return (pd + 1 + block) % raid_disks;
e86c9dd6
NB
197 }
198 return -1;
199}
e0d95aac
N
200static int is_ddf(int layout)
201{
202 switch (layout)
203 {
204 default:
205 return 0;
206 case ALGORITHM_ROTATING_N_CONTINUE:
207 case ALGORITHM_ROTATING_N_RESTART:
208 case ALGORITHM_ROTATING_ZERO_RESTART:
209 return 1;
210 }
211}
e86c9dd6
NB
212
213
214static void xor_blocks(char *target, char **sources, int disks, int size)
215{
216 int i, j;
217 /* Amazingly inefficient... */
218 for (i=0; i<size; i++) {
219 char c = 0;
220 for (j=0 ; j<disks; j++)
221 c ^= sources[j][i];
222 target[i] = c;
223 }
224}
225
979afcb8 226void qsyndrome(uint8_t *p, uint8_t *q, uint8_t **sources, int disks, int size)
48327135
NB
227{
228 int d, z;
a6288483 229 uint8_t wq0, wp0, wd0, w10, w20;
48327135
NB
230 for ( d = 0; d < size; d++) {
231 wq0 = wp0 = sources[disks-1][d];
232 for ( z = disks-2 ; z >= 0 ; z-- ) {
233 wd0 = sources[z][d];
234 wp0 ^= wd0;
235 w20 = (wq0&0x80) ? 0xff : 0x00;
236 w10 = (wq0 << 1) & 0xff;
237 w20 &= 0x1d;
238 w10 ^= w20;
239 wq0 = w10 ^ wd0;
240 }
241 p[d] = wp0;
242 q[d] = wq0;
243 }
244}
245
a6288483
N
246
247/*
248 * The following was taken from linux/drivers/md/mktables.c, and modified
249 * to create in-memory tables rather than C code
250 */
251static uint8_t gfmul(uint8_t a, uint8_t b)
252{
253 uint8_t v = 0;
254
255 while (b) {
256 if (b & 1)
257 v ^= a;
258 a = (a << 1) ^ (a & 0x80 ? 0x1d : 0);
259 b >>= 1;
260 }
261
262 return v;
263}
264
265static uint8_t gfpow(uint8_t a, int b)
266{
267 uint8_t v = 1;
268
269 b %= 255;
270 if (b < 0)
271 b += 255;
272
273 while (b) {
274 if (b & 1)
275 v = gfmul(v, a);
276 a = gfmul(a, a);
277 b >>= 1;
278 }
279
280 return v;
281}
282
283int tables_ready = 0;
284uint8_t raid6_gfmul[256][256];
285uint8_t raid6_gfexp[256];
286uint8_t raid6_gfinv[256];
287uint8_t raid6_gfexi[256];
9d0e7840
PS
288uint8_t raid6_gflog[256];
289uint8_t raid6_gfilog[256];
a6288483
N
290void make_tables(void)
291{
292 int i, j;
293 uint8_t v;
9d0e7840 294 uint32_t b, log;
a6288483
N
295
296 /* Compute multiplication table */
297 for (i = 0; i < 256; i++)
298 for (j = 0; j < 256; j++)
299 raid6_gfmul[i][j] = gfmul(i, j);
300
301 /* Compute power-of-2 table (exponent) */
302 v = 1;
303 for (i = 0; i < 256; i++) {
304 raid6_gfexp[i] = v;
305 v = gfmul(v, 2);
306 if (v == 1)
307 v = 0; /* For entry 255, not a real entry */
308 }
309
310 /* Compute inverse table x^-1 == x^254 */
311 for (i = 0; i < 256; i++)
312 raid6_gfinv[i] = gfpow(i, 254);
313
314 /* Compute inv(2^x + 1) (exponent-xor-inverse) table */
315 for (i = 0; i < 256; i ++)
316 raid6_gfexi[i] = raid6_gfinv[raid6_gfexp[i] ^ 1];
317
9d0e7840
PS
318 /* Compute log and inverse log */
319 /* Modified code from:
320 * http://web.eecs.utk.edu/~plank/plank/papers/CS-96-332.html
321 */
322 b = 1;
323 raid6_gflog[0] = 0;
324 raid6_gfilog[255] = 0;
325
326 for (log = 0; log < 255; log++) {
327 raid6_gflog[b] = (uint8_t) log;
328 raid6_gfilog[log] = (uint8_t) b;
329 b = b << 1;
330 if (b & 256) b = b ^ 0435;
331 }
332
a6288483
N
333 tables_ready = 1;
334}
335
336uint8_t *zero;
d47a2925 337int zero_size;
a6288483
N
338/* Following was taken from linux/drivers/md/raid6recov.c */
339
340/* Recover two failed data blocks. */
341void raid6_2data_recov(int disks, size_t bytes, int faila, int failb,
342 uint8_t **ptrs)
343{
344 uint8_t *p, *q, *dp, *dq;
345 uint8_t px, qx, db;
346 const uint8_t *pbmul; /* P multiplier table for B data */
347 const uint8_t *qmul; /* Q multiplier table (for both) */
348
349 p = ptrs[disks-2];
350 q = ptrs[disks-1];
351
352 /* Compute syndrome with zero for the missing data pages
353 Use the dead data pages as temporary storage for
354 delta p and delta q */
355 dp = ptrs[faila];
356 ptrs[faila] = zero;
357 dq = ptrs[failb];
358 ptrs[failb] = zero;
359
360 qsyndrome(dp, dq, ptrs, disks-2, bytes);
361
362 /* Restore pointer table */
363 ptrs[faila] = dp;
364 ptrs[failb] = dq;
365
366 /* Now, pick the proper data tables */
367 pbmul = raid6_gfmul[raid6_gfexi[failb-faila]];
368 qmul = raid6_gfmul[raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]]];
369
370 /* Now do it... */
371 while ( bytes-- ) {
372 px = *p ^ *dp;
373 qx = qmul[*q ^ *dq];
374 *dq++ = db = pbmul[px] ^ qx; /* Reconstructed B */
375 *dp++ = db ^ px; /* Reconstructed A */
376 p++; q++;
377 }
378}
379
380/* Recover failure of one data block plus the P block */
381void raid6_datap_recov(int disks, size_t bytes, int faila, uint8_t **ptrs)
382{
383 uint8_t *p, *q, *dq;
384 const uint8_t *qmul; /* Q multiplier table */
385
386 p = ptrs[disks-2];
387 q = ptrs[disks-1];
388
389 /* Compute syndrome with zero for the missing data page
390 Use the dead data page as temporary storage for delta q */
391 dq = ptrs[faila];
392 ptrs[faila] = zero;
393
394 qsyndrome(p, dq, ptrs, disks-2, bytes);
395
396 /* Restore pointer table */
397 ptrs[faila] = dq;
398
399 /* Now, pick the proper data tables */
400 qmul = raid6_gfmul[raid6_gfinv[raid6_gfexp[faila]]];
401
402 /* Now do it... */
403 while ( bytes-- ) {
404 *p++ ^= *dq = qmul[*q ^ *dq];
405 q++; dq++;
406 }
407}
408
9d0e7840
PS
409/* Try to find out if a specific disk has a problem */
410int raid6_check_disks(int data_disks, int start, int chunk_size,
411 int level, int layout, int diskP, int diskQ,
412 char *p, char *q, char **stripes)
413{
414 int i;
415 int data_id, diskD;
416 uint8_t Px, Qx;
417 int curr_broken_disk = -1;
418 int prev_broken_disk = -1;
419 int broken_status = 0;
420
421 for(i = 0; i < chunk_size; i++) {
422 Px = (uint8_t)stripes[diskP][i] ^ (uint8_t)p[i];
423 Qx = (uint8_t)stripes[diskQ][i] ^ (uint8_t)q[i];
424
425 if((Px != 0) && (Qx == 0))
426 curr_broken_disk = diskP;
427
428
429 if((Px == 0) && (Qx != 0))
430 curr_broken_disk = diskQ;
431
432
433 if((Px != 0) && (Qx != 0)) {
c4db5301
PS
434 data_id = (raid6_gflog[Qx] - raid6_gflog[Px]);
435 if(data_id < 0) data_id += 255;
9d0e7840
PS
436 diskD = geo_map(data_id, start/chunk_size,
437 data_disks + 2, level, layout);
438 curr_broken_disk = diskD;
439 }
440
441 if((Px == 0) && (Qx == 0))
442 curr_broken_disk = curr_broken_disk;
443
c4db5301
PS
444 if(curr_broken_disk >= data_disks + 2)
445 broken_status = 2;
446
9d0e7840
PS
447 switch(broken_status) {
448 case 0:
449 if(curr_broken_disk != -1) {
450 prev_broken_disk = curr_broken_disk;
451 broken_status = 1;
452 }
453 break;
454
455 case 1:
456 if(curr_broken_disk != prev_broken_disk)
457 broken_status = 2;
9d0e7840
PS
458 break;
459
460 case 2:
461 default:
462 curr_broken_disk = prev_broken_disk = -2;
463 break;
464 }
465 }
466
467 return curr_broken_disk;
468}
469
e86c9dd6
NB
470/* Save data:
471 * We are given:
a6288483 472 * A list of 'fds' of the active disks. Some may be absent.
48327135 473 * A geometry: raid_disks, chunk_size, level, layout
e86c9dd6
NB
474 * A list of 'fds' for mirrored targets. They are already seeked to
475 * right (Write) location
a6288483
N
476 * A start and length which must be stripe-aligned
477 * 'buf' is large enough to hold one stripe, and is aligned
e86c9dd6
NB
478 */
479
480int save_stripes(int *source, unsigned long long *offsets,
481 int raid_disks, int chunk_size, int level, int layout,
482 int nwrites, int *dest,
a6288483
N
483 unsigned long long start, unsigned long long length,
484 char *buf)
e86c9dd6 485{
e86c9dd6
NB
486 int len;
487 int data_disks = raid_disks - (level == 0 ? 0 : level <=5 ? 1 : 2);
488 int disk;
a6288483 489 int i;
e86c9dd6 490
a6288483
N
491 if (!tables_ready)
492 make_tables();
493
d47a2925
N
494 if (zero == NULL || chunk_size > zero_size) {
495 if (zero)
496 free(zero);
a6288483 497 zero = malloc(chunk_size);
d47a2925
N
498 if (zero)
499 memset(zero, 0, chunk_size);
500 zero_size = chunk_size;
a6288483
N
501 }
502
503 len = data_disks * chunk_size;
e86c9dd6 504 while (length > 0) {
a6288483
N
505 int failed = 0;
506 int fdisk[3], fblock[3];
507 for (disk = 0; disk < raid_disks ; disk++) {
508 unsigned long long offset;
509 int dnum;
a6288483
N
510
511 offset = (start/chunk_size/data_disks)*chunk_size;
512 dnum = geo_map(disk < data_disks ? disk : data_disks - disk - 1,
513 start/chunk_size/data_disks,
514 raid_disks, level, layout);
7236ee7a 515 if (dnum < 0) abort();
a6288483 516 if (source[dnum] < 0 ||
cc50ccdc 517 lseek64(source[dnum], offsets[dnum]+offset, 0) < 0 ||
7236ee7a
N
518 read(source[dnum], buf+disk * chunk_size, chunk_size)
519 != chunk_size)
a6288483
N
520 if (failed <= 2) {
521 fdisk[failed] = dnum;
522 fblock[failed] = disk;
523 failed++;
524 }
525 }
526 if (failed == 0 || fblock[0] >= data_disks)
527 /* all data disks are good */
528 ;
529 else if (failed == 1 || fblock[1] >= data_disks+1) {
530 /* one failed data disk and good parity */
531 char *bufs[data_disks];
532 for (i=0; i < data_disks; i++)
533 if (fblock[0] == i)
534 bufs[i] = buf + data_disks*chunk_size;
535 else
536 bufs[i] = buf + i*chunk_size;
537
538 xor_blocks(buf + fblock[0]*chunk_size,
539 bufs, data_disks, chunk_size);
540 } else if (failed > 2 || level != 6)
541 /* too much failure */
e86c9dd6 542 return -1;
a6288483
N
543 else {
544 /* RAID6 computations needed. */
545 uint8_t *bufs[data_disks+4];
546 int qdisk;
547 int syndrome_disks;
548 disk = geo_map(-1, start/chunk_size/data_disks,
549 raid_disks, level, layout);
550 qdisk = geo_map(-2, start/chunk_size/data_disks,
551 raid_disks, level, layout);
552 if (is_ddf(layout)) {
553 /* q over 'raid_disks' blocks, in device order.
554 * 'p' and 'q' get to be all zero
555 */
556 for (i = 0; i < raid_disks; i++)
cc50ccdc
N
557 bufs[i] = zero;
558 for (i = 0; i < data_disks; i++) {
559 int dnum = geo_map(i,
560 start/chunk_size/data_disks,
561 raid_disks, level, layout);
562 int snum;
563 /* i is the logical block number, so is index to 'buf'.
564 * dnum is physical disk number
565 * and thus the syndrome number.
566 */
567 snum = dnum;
568 bufs[snum] = (uint8_t*)buf + chunk_size * i;
569 }
a6288483
N
570 syndrome_disks = raid_disks;
571 } else {
572 /* for md, q is over 'data_disks' blocks,
573 * starting immediately after 'q'
1eac9f84
N
574 * Note that for the '_6' variety, the p block
575 * makes a hole that we need to be careful of.
a6288483 576 */
1eac9f84
N
577 int j;
578 int snum = 0;
579 for (j = 0; j < raid_disks; j++) {
580 int dnum = (qdisk + 1 + j) % raid_disks;
581 if (dnum == disk || dnum == qdisk)
582 continue;
583 for (i = 0; i < data_disks; i++)
584 if (geo_map(i,
585 start/chunk_size/data_disks,
586 raid_disks, level, layout) == dnum)
587 break;
cc50ccdc
N
588 /* i is the logical block number, so is index to 'buf'.
589 * dnum is physical disk number
590 * snum is syndrome disk for which 0 is immediately after Q
591 */
cc50ccdc 592 bufs[snum] = (uint8_t*)buf + chunk_size * i;
1eac9f84
N
593
594 if (fblock[0] == i)
595 fdisk[0] = snum;
596 if (fblock[1] == i)
597 fdisk[1] = snum;
598 snum++;
cc50ccdc 599 }
a6288483 600
a6288483
N
601 syndrome_disks = data_disks;
602 }
cc50ccdc
N
603
604 /* Place P and Q blocks at end of bufs */
605 bufs[syndrome_disks] = (uint8_t*)buf + chunk_size * data_disks;
606 bufs[syndrome_disks+1] = (uint8_t*)buf + chunk_size * (data_disks+1);
607
a6288483
N
608 if (fblock[1] == data_disks)
609 /* One data failed, and parity failed */
610 raid6_datap_recov(syndrome_disks+2, chunk_size,
611 fdisk[0], bufs);
cc50ccdc
N
612 else {
613 if (fdisk[0] > fdisk[1]) {
614 int t = fdisk[0];
615 fdisk[0] = fdisk[1];
616 fdisk[1] = t;
617 }
a6288483
N
618 /* Two data blocks failed, P,Q OK */
619 raid6_2data_recov(syndrome_disks+2, chunk_size,
620 fdisk[0], fdisk[1], bufs);
cc50ccdc 621 }
a6288483
N
622 }
623
e86c9dd6
NB
624 for (i=0; i<nwrites; i++)
625 if (write(dest[i], buf, len) != len)
626 return -1;
a6288483 627
e86c9dd6
NB
628 length -= len;
629 start += len;
e86c9dd6
NB
630 }
631 return 0;
632}
633
634/* Restore data:
635 * We are given:
636 * A list of 'fds' of the active disks. Some may be '-1' for not-available.
353632d9 637 * A geometry: raid_disks, chunk_size, level, layout
e86c9dd6
NB
638 * An 'fd' to read from. It is already seeked to the right (Read) location.
639 * A start and length.
640 * The length must be a multiple of the stripe size.
641 *
642 * We build a full stripe in memory and then write it out.
643 * We assume that there are enough working devices.
644 */
645int restore_stripes(int *dest, unsigned long long *offsets,
646 int raid_disks, int chunk_size, int level, int layout,
353632d9 647 int source, unsigned long long read_offset,
e86c9dd6
NB
648 unsigned long long start, unsigned long long length)
649{
e9e43ec3 650 char *stripe_buf;
e86c9dd6
NB
651 char **stripes = malloc(raid_disks * sizeof(char*));
652 char **blocks = malloc(raid_disks * sizeof(char*));
653 int i;
654
a6288483 655 int data_disks = raid_disks - (level == 0 ? 0 : level <= 5 ? 1 : 2);
e86c9dd6 656
fcf57625
N
657 if (posix_memalign((void**)&stripe_buf, 4096, raid_disks * chunk_size))
658 stripe_buf = NULL;
d47a2925
N
659
660 if (zero == NULL || chunk_size > zero_size) {
661 if (zero)
662 free(zero);
a6288483
N
663 zero = malloc(chunk_size);
664 if (zero)
665 memset(zero, 0, chunk_size);
d47a2925 666 zero_size = chunk_size;
a6288483 667 }
d47a2925 668
e0d95aac
N
669 if (stripe_buf == NULL || stripes == NULL || blocks == NULL
670 || zero == NULL) {
e86c9dd6
NB
671 free(stripe_buf);
672 free(stripes);
673 free(blocks);
e0d95aac 674 free(zero);
e86c9dd6
NB
675 return -2;
676 }
677 for (i=0; i<raid_disks; i++)
678 stripes[i] = stripe_buf + i * chunk_size;
679 while (length > 0) {
f21e18ca 680 unsigned int len = data_disks * chunk_size;
e86c9dd6 681 unsigned long long offset;
48327135 682 int disk, qdisk;
a6288483 683 int syndrome_disks;
e86c9dd6
NB
684 if (length < len)
685 return -3;
686 for (i=0; i < data_disks; i++) {
687 int disk = geo_map(i, start/chunk_size/data_disks,
688 raid_disks, level, layout);
f21e18ca
N
689 if ((unsigned long long)lseek64(source, read_offset, 0)
690 != read_offset)
353632d9 691 return -1;
f21e18ca
N
692 if (read(source, stripes[disk],
693 chunk_size) != chunk_size)
e86c9dd6 694 return -1;
353632d9 695 read_offset += chunk_size;
e86c9dd6
NB
696 }
697 /* We have the data, now do the parity */
698 offset = (start/chunk_size/data_disks) * chunk_size;
48327135
NB
699 switch (level) {
700 case 4:
701 case 5:
702 disk = geo_map(-1, start/chunk_size/data_disks,
e86c9dd6 703 raid_disks, level, layout);
e0d95aac
N
704 for (i = 0; i < data_disks; i++)
705 blocks[i] = stripes[(disk+1+i) % raid_disks];
e86c9dd6 706 xor_blocks(stripes[disk], blocks, data_disks, chunk_size);
48327135
NB
707 break;
708 case 6:
709 disk = geo_map(-1, start/chunk_size/data_disks,
710 raid_disks, level, layout);
711 qdisk = geo_map(-2, start/chunk_size/data_disks,
712 raid_disks, level, layout);
e0d95aac
N
713 if (is_ddf(layout)) {
714 /* q over 'raid_disks' blocks, in device order.
715 * 'p' and 'q' get to be all zero
716 */
717 for (i = 0; i < raid_disks; i++)
718 if (i == disk || i == qdisk)
a6288483 719 blocks[i] = (char*)zero;
e0d95aac
N
720 else
721 blocks[i] = stripes[i];
a6288483 722 syndrome_disks = raid_disks;
e0d95aac 723 } else {
a6288483 724 /* for md, q is over 'data_disks' blocks,
e0d95aac
N
725 * starting immediately after 'q'
726 */
727 for (i = 0; i < data_disks; i++)
728 blocks[i] = stripes[(qdisk+1+i) % raid_disks];
48327135 729
a6288483 730 syndrome_disks = data_disks;
e0d95aac 731 }
a6288483
N
732 qsyndrome((uint8_t*)stripes[disk],
733 (uint8_t*)stripes[qdisk],
734 (uint8_t**)blocks,
735 syndrome_disks, chunk_size);
48327135 736 break;
e86c9dd6
NB
737 }
738 for (i=0; i < raid_disks ; i++)
739 if (dest[i] >= 0) {
740 if (lseek64(dest[i], offsets[i]+offset, 0) < 0)
741 return -1;
742 if (write(dest[i], stripes[i], chunk_size) != chunk_size)
743 return -1;
744 }
745 length -= len;
746 start += len;
747 }
748 return 0;
749}
750
751#ifdef MAIN
752
48327135
NB
753int test_stripes(int *source, unsigned long long *offsets,
754 int raid_disks, int chunk_size, int level, int layout,
755 unsigned long long start, unsigned long long length)
756{
757 /* ready the data and p (and q) blocks, and check we got them right */
758 char *stripe_buf = malloc(raid_disks * chunk_size);
759 char **stripes = malloc(raid_disks * sizeof(char*));
760 char **blocks = malloc(raid_disks * sizeof(char*));
761 char *p = malloc(chunk_size);
762 char *q = malloc(chunk_size);
763
764 int i;
9d0e7840 765 int diskP, diskQ;
48327135 766 int data_disks = raid_disks - (level == 5 ? 1: 2);
9d0e7840
PS
767
768 if (!tables_ready)
769 make_tables();
770
48327135
NB
771 for ( i = 0 ; i < raid_disks ; i++)
772 stripes[i] = stripe_buf + i * chunk_size;
773
774 while (length > 0) {
775 int disk;
776
777 for (i = 0 ; i < raid_disks ; i++) {
778 lseek64(source[i], offsets[i]+start, 0);
779 read(source[i], stripes[i], chunk_size);
780 }
781 for (i = 0 ; i < data_disks ; i++) {
782 int disk = geo_map(i, start/chunk_size, raid_disks,
783 level, layout);
784 blocks[i] = stripes[disk];
785 printf("%d->%d\n", i, disk);
786 }
787 switch(level) {
788 case 6:
521f349c 789 qsyndrome(p, q, (uint8_t**)blocks, data_disks, chunk_size);
9d0e7840 790 diskP = geo_map(-1, start/chunk_size, raid_disks,
48327135 791 level, layout);
9d0e7840
PS
792 if (memcmp(p, stripes[diskP], chunk_size) != 0) {
793 printf("P(%d) wrong at %llu\n", diskP,
48327135
NB
794 start / chunk_size);
795 }
9d0e7840 796 diskQ = geo_map(-2, start/chunk_size, raid_disks,
48327135 797 level, layout);
9d0e7840
PS
798 if (memcmp(q, stripes[diskQ], chunk_size) != 0) {
799 printf("Q(%d) wrong at %llu\n", diskQ,
48327135
NB
800 start / chunk_size);
801 }
9d0e7840
PS
802 disk = raid6_check_disks(data_disks, start, chunk_size,
803 level, layout, diskP, diskQ,
804 p, q, stripes);
805 if(disk >= 0) {
806 printf("Possible failed disk: %d\n", disk);
807 }
808 if(disk == -2) {
809 printf("Failure detected, but disk unknown\n");
810 }
48327135
NB
811 break;
812 }
813 length -= chunk_size;
814 start += chunk_size;
815 }
816 return 0;
817}
818
e86c9dd6
NB
819unsigned long long getnum(char *str, char **err)
820{
821 char *e;
822 unsigned long long rv = strtoull(str, &e, 10);
823 if (e==str || *e) {
824 *err = str;
825 return 0;
826 }
827 return rv;
828}
829
830main(int argc, char *argv[])
831{
832 /* save/restore file raid_disks chunk_size level layout start length devices...
833 */
834 int save;
835 int *fds;
836 char *file;
a6288483 837 char *buf;
e86c9dd6
NB
838 int storefd;
839 unsigned long long *offsets;
840 int raid_disks, chunk_size, level, layout;
841 unsigned long long start, length;
842 int i;
843
844 char *err = NULL;
845 if (argc < 10) {
846 fprintf(stderr, "Usage: test_stripe save/restore file raid_disks"
847 " chunk_size level layout start length devices...\n");
848 exit(1);
849 }
850 if (strcmp(argv[1], "save")==0)
851 save = 1;
852 else if (strcmp(argv[1], "restore") == 0)
853 save = 0;
48327135
NB
854 else if (strcmp(argv[1], "test") == 0)
855 save = 2;
e86c9dd6
NB
856 else {
857 fprintf(stderr, "test_stripe: must give 'save' or 'restore'.\n");
858 exit(2);
859 }
860
861 file = argv[2];
862 raid_disks = getnum(argv[3], &err);
863 chunk_size = getnum(argv[4], &err);
864 level = getnum(argv[5], &err);
865 layout = getnum(argv[6], &err);
866 start = getnum(argv[7], &err);
867 length = getnum(argv[8], &err);
868 if (err) {
869 fprintf(stderr, "test_stripe: Bad number: %s\n", err);
870 exit(2);
871 }
872 if (argc != raid_disks + 9) {
873 fprintf(stderr, "test_stripe: wrong number of devices: want %d found %d\n",
874 raid_disks, argc-9);
875 exit(2);
876 }
877 fds = malloc(raid_disks * sizeof(*fds));
878 offsets = malloc(raid_disks * sizeof(*offsets));
879 memset(offsets, 0, raid_disks * sizeof(*offsets));
880
881 storefd = open(file, O_RDWR);
882 if (storefd < 0) {
883 perror(file);
884 fprintf(stderr, "test_stripe: could not open %s.\n", file);
885 exit(3);
886 }
887 for (i=0; i<raid_disks; i++) {
6f38d7ae
PS
888 char *p;
889 p = strchr(argv[9+i], ':');
890
891 if(p != NULL) {
892 *p++ = '\0';
893 offsets[i] = atoll(p) * 512;
894 }
895
e86c9dd6
NB
896 fds[i] = open(argv[9+i], O_RDWR);
897 if (fds[i] < 0) {
898 perror(argv[9+i]);
899 fprintf(stderr,"test_stripe: cannot open %s.\n", argv[9+i]);
900 exit(3);
901 }
902 }
903
a6288483
N
904 buf = malloc(raid_disks * chunk_size);
905
48327135 906 if (save == 1) {
e86c9dd6
NB
907 int rv = save_stripes(fds, offsets,
908 raid_disks, chunk_size, level, layout,
909 1, &storefd,
a6288483 910 start, length, buf);
e86c9dd6 911 if (rv != 0) {
48327135
NB
912 fprintf(stderr,
913 "test_stripe: save_stripes returned %d\n", rv);
914 exit(1);
915 }
916 } else if (save == 2) {
917 int rv = test_stripes(fds, offsets,
918 raid_disks, chunk_size, level, layout,
919 start, length);
920 if (rv != 0) {
921 fprintf(stderr,
922 "test_stripe: test_stripes returned %d\n", rv);
e86c9dd6
NB
923 exit(1);
924 }
925 } else {
926 int rv = restore_stripes(fds, offsets,
927 raid_disks, chunk_size, level, layout,
353632d9 928 storefd, 0ULL,
e86c9dd6
NB
929 start, length);
930 if (rv != 0) {
48327135
NB
931 fprintf(stderr,
932 "test_stripe: restore_stripes returned %d\n",
933 rv);
e86c9dd6
NB
934 exit(1);
935 }
936 }
937 exit(0);
938}
939
940#endif /* MAIN */