]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
Fix for NULL pointer dereference.
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb
DW
43
44#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
45#define MPB_ATTRIB_PM __cpu_to_le32(0x40000000)
46#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
47#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
48#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
51#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
52#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
53
c2c087e6
DW
54#define MPB_SECTOR_CNT 418
55#define IMSM_RESERVED_SECTORS 4096
979d38be 56#define SECT_PER_MB_SHIFT 11
cdddbdbc
DW
57
58/* Disk configuration info. */
59#define IMSM_MAX_DEVICES 255
60struct imsm_disk {
61 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
62 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
63 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
64#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
65#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
66#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
cdddbdbc 67 __u32 status; /* 0xF0 - 0xF3 */
fe7ed8cb
DW
68 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
69#define IMSM_DISK_FILLERS 4
cdddbdbc
DW
70 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
71};
72
73/* RAID map configuration infos. */
74struct imsm_map {
75 __u32 pba_of_lba0; /* start address of partition */
76 __u32 blocks_per_member;/* blocks per member */
77 __u32 num_data_stripes; /* number of data stripes */
78 __u16 blocks_per_strip;
79 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
80#define IMSM_T_STATE_NORMAL 0
81#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
82#define IMSM_T_STATE_DEGRADED 2
83#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
84 __u8 raid_level;
85#define IMSM_T_RAID0 0
86#define IMSM_T_RAID1 1
87#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
88 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
89 __u8 num_domains; /* number of parity domains */
90 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 91 __u8 ddf;
cdddbdbc 92 __u32 filler[7]; /* expansion area */
7eef0453 93#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 94 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
95 * top byte contains some flags
96 */
cdddbdbc
DW
97} __attribute__ ((packed));
98
99struct imsm_vol {
f8f603f1 100 __u32 curr_migr_unit;
fe7ed8cb 101 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 102 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
103#define MIGR_INIT 0
104#define MIGR_REBUILD 1
105#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
106#define MIGR_GEN_MIGR 3
107#define MIGR_STATE_CHANGE 4
1484e727 108#define MIGR_REPAIR 5
cdddbdbc
DW
109 __u8 migr_type; /* Initializing, Rebuilding, ... */
110 __u8 dirty;
fe7ed8cb
DW
111 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
112 __u16 verify_errors; /* number of mismatches */
113 __u16 bad_blocks; /* number of bad blocks during verify */
114 __u32 filler[4];
cdddbdbc
DW
115 struct imsm_map map[1];
116 /* here comes another one if migr_state */
117} __attribute__ ((packed));
118
119struct imsm_dev {
fe7ed8cb 120 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
121 __u32 size_low;
122 __u32 size_high;
fe7ed8cb
DW
123#define DEV_BOOTABLE __cpu_to_le32(0x01)
124#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
125#define DEV_READ_COALESCING __cpu_to_le32(0x04)
126#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
127#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
128#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
129#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
130#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
131#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
132#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
133#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
134#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
135#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
136 __u32 status; /* Persistent RaidDev status */
137 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
138 __u8 migr_priority;
139 __u8 num_sub_vols;
140 __u8 tid;
141 __u8 cng_master_disk;
142 __u16 cache_policy;
143 __u8 cng_state;
144 __u8 cng_sub_state;
145#define IMSM_DEV_FILLERS 10
cdddbdbc
DW
146 __u32 filler[IMSM_DEV_FILLERS];
147 struct imsm_vol vol;
148} __attribute__ ((packed));
149
150struct imsm_super {
151 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
152 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
153 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
154 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
155 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
156 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
157 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
158 __u8 num_disks; /* 0x38 Number of configured disks */
159 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
160 __u8 error_log_pos; /* 0x3A */
161 __u8 fill[1]; /* 0x3B */
162 __u32 cache_size; /* 0x3c - 0x40 in mb */
163 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
164 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
165 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
166#define IMSM_FILLERS 35
167 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
168 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
169 /* here comes imsm_dev[num_raid_devs] */
604b746f 170 /* here comes BBM logs */
cdddbdbc
DW
171} __attribute__ ((packed));
172
604b746f
JD
173#define BBM_LOG_MAX_ENTRIES 254
174
175struct bbm_log_entry {
176 __u64 defective_block_start;
177#define UNREADABLE 0xFFFFFFFF
178 __u32 spare_block_offset;
179 __u16 remapped_marked_count;
180 __u16 disk_ordinal;
181} __attribute__ ((__packed__));
182
183struct bbm_log {
184 __u32 signature; /* 0xABADB10C */
185 __u32 entry_count;
186 __u32 reserved_spare_block_count; /* 0 */
187 __u32 reserved; /* 0xFFFF */
188 __u64 first_spare_lba;
189 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
190} __attribute__ ((__packed__));
191
192
cdddbdbc
DW
193#ifndef MDASSEMBLE
194static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
195#endif
196
1484e727
DW
197static __u8 migr_type(struct imsm_dev *dev)
198{
199 if (dev->vol.migr_type == MIGR_VERIFY &&
200 dev->status & DEV_VERIFY_AND_FIX)
201 return MIGR_REPAIR;
202 else
203 return dev->vol.migr_type;
204}
205
206static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
207{
208 /* for compatibility with older oroms convert MIGR_REPAIR, into
209 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
210 */
211 if (migr_type == MIGR_REPAIR) {
212 dev->vol.migr_type = MIGR_VERIFY;
213 dev->status |= DEV_VERIFY_AND_FIX;
214 } else {
215 dev->vol.migr_type = migr_type;
216 dev->status &= ~DEV_VERIFY_AND_FIX;
217 }
218}
219
87eb16df 220static unsigned int sector_count(__u32 bytes)
cdddbdbc 221{
87eb16df
DW
222 return ((bytes + (512-1)) & (~(512-1))) / 512;
223}
cdddbdbc 224
87eb16df
DW
225static unsigned int mpb_sectors(struct imsm_super *mpb)
226{
227 return sector_count(__le32_to_cpu(mpb->mpb_size));
cdddbdbc
DW
228}
229
ba2de7ba
DW
230struct intel_dev {
231 struct imsm_dev *dev;
232 struct intel_dev *next;
233 int index;
234};
235
cdddbdbc
DW
236/* internal representation of IMSM metadata */
237struct intel_super {
238 union {
949c47a0
DW
239 void *buf; /* O_DIRECT buffer for reading/writing metadata */
240 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 241 };
949c47a0 242 size_t len; /* size of the 'buf' allocation */
4d7b1503
DW
243 void *next_buf; /* for realloc'ing buf from the manager */
244 size_t next_len;
c2c087e6
DW
245 int updates_pending; /* count of pending updates for mdmon */
246 int creating_imsm; /* flag to indicate container creation */
bf5a934a 247 int current_vol; /* index of raid device undergoing creation */
0dcecb2e 248 __u32 create_offset; /* common start for 'current_vol' */
148acb7b 249 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 250 struct intel_dev *devlist;
cdddbdbc
DW
251 struct dl {
252 struct dl *next;
253 int index;
254 __u8 serial[MAX_RAID_SERIAL_LEN];
255 int major, minor;
256 char *devname;
b9f594fe 257 struct imsm_disk disk;
cdddbdbc 258 int fd;
0dcecb2e
DW
259 int extent_cnt;
260 struct extent *e; /* for determining freespace @ create */
efb30e7f 261 int raiddisk; /* slot to fill in autolayout */
cdddbdbc 262 } *disks;
43dad3d6 263 struct dl *add; /* list of disks to add while mdmon active */
47ee5a45 264 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 265 struct bbm_log *bbm_log;
88c32bb1
DW
266 const char *hba; /* device path of the raid controller for this metadata */
267 const struct imsm_orom *orom; /* platform firmware support */
a2b97981
DW
268 struct intel_super *next; /* (temp) list for disambiguating family_num */
269};
270
271struct intel_disk {
272 struct imsm_disk disk;
273 #define IMSM_UNKNOWN_OWNER (-1)
274 int owner;
275 struct intel_disk *next;
cdddbdbc
DW
276};
277
c2c087e6
DW
278struct extent {
279 unsigned long long start, size;
280};
281
88758e9d
DW
282/* definition of messages passed to imsm_process_update */
283enum imsm_update_type {
284 update_activate_spare,
8273f55e 285 update_create_array,
43dad3d6 286 update_add_disk,
88758e9d
DW
287};
288
289struct imsm_update_activate_spare {
290 enum imsm_update_type type;
d23fe947 291 struct dl *dl;
88758e9d
DW
292 int slot;
293 int array;
294 struct imsm_update_activate_spare *next;
295};
296
54c2c1ea
DW
297struct disk_info {
298 __u8 serial[MAX_RAID_SERIAL_LEN];
299};
300
8273f55e
DW
301struct imsm_update_create_array {
302 enum imsm_update_type type;
8273f55e 303 int dev_idx;
6a3e913e 304 struct imsm_dev dev;
8273f55e
DW
305};
306
43dad3d6
DW
307struct imsm_update_add_disk {
308 enum imsm_update_type type;
309};
310
cdddbdbc
DW
311static struct supertype *match_metadata_desc_imsm(char *arg)
312{
313 struct supertype *st;
314
315 if (strcmp(arg, "imsm") != 0 &&
316 strcmp(arg, "default") != 0
317 )
318 return NULL;
319
320 st = malloc(sizeof(*st));
ef609477 321 memset(st, 0, sizeof(*st));
cdddbdbc
DW
322 st->ss = &super_imsm;
323 st->max_devs = IMSM_MAX_DEVICES;
324 st->minor_version = 0;
325 st->sb = NULL;
326 return st;
327}
328
0e600426 329#ifndef MDASSEMBLE
cdddbdbc
DW
330static __u8 *get_imsm_version(struct imsm_super *mpb)
331{
332 return &mpb->sig[MPB_SIG_LEN];
333}
0e600426 334#endif
cdddbdbc 335
949c47a0
DW
336/* retrieve a disk directly from the anchor when the anchor is known to be
337 * up-to-date, currently only at load time
338 */
339static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 340{
949c47a0 341 if (index >= mpb->num_disks)
cdddbdbc
DW
342 return NULL;
343 return &mpb->disk[index];
344}
345
0e600426 346#ifndef MDASSEMBLE
b9f594fe 347/* retrieve a disk from the parsed metadata */
949c47a0
DW
348static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
349{
b9f594fe
DW
350 struct dl *d;
351
352 for (d = super->disks; d; d = d->next)
353 if (d->index == index)
354 return &d->disk;
355
356 return NULL;
949c47a0 357}
0e600426 358#endif
949c47a0
DW
359
360/* generate a checksum directly from the anchor when the anchor is known to be
361 * up-to-date, currently only at load or write_super after coalescing
362 */
363static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
364{
365 __u32 end = mpb->mpb_size / sizeof(end);
366 __u32 *p = (__u32 *) mpb;
367 __u32 sum = 0;
368
97f734fd
N
369 while (end--) {
370 sum += __le32_to_cpu(*p);
371 p++;
372 }
cdddbdbc
DW
373
374 return sum - __le32_to_cpu(mpb->check_sum);
375}
376
a965f303
DW
377static size_t sizeof_imsm_map(struct imsm_map *map)
378{
379 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
380}
381
382struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 383{
a965f303
DW
384 struct imsm_map *map = &dev->vol.map[0];
385
386 if (second_map && !dev->vol.migr_state)
387 return NULL;
388 else if (second_map) {
389 void *ptr = map;
390
391 return ptr + sizeof_imsm_map(map);
392 } else
393 return map;
394
395}
cdddbdbc 396
3393c6af
DW
397/* return the size of the device.
398 * migr_state increases the returned size if map[0] were to be duplicated
399 */
400static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
401{
402 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
403 sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
404
405 /* migrating means an additional map */
a965f303
DW
406 if (dev->vol.migr_state)
407 size += sizeof_imsm_map(get_imsm_map(dev, 1));
3393c6af
DW
408 else if (migr_state)
409 size += sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
410
411 return size;
412}
413
54c2c1ea
DW
414#ifndef MDASSEMBLE
415/* retrieve disk serial number list from a metadata update */
416static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
417{
418 void *u = update;
419 struct disk_info *inf;
420
421 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
422 sizeof_imsm_dev(&update->dev, 0);
423
424 return inf;
425}
426#endif
427
949c47a0 428static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
429{
430 int offset;
431 int i;
432 void *_mpb = mpb;
433
949c47a0 434 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
435 return NULL;
436
437 /* devices start after all disks */
438 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
439
440 for (i = 0; i <= index; i++)
441 if (i == index)
442 return _mpb + offset;
443 else
3393c6af 444 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
445
446 return NULL;
447}
448
949c47a0
DW
449static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
450{
ba2de7ba
DW
451 struct intel_dev *dv;
452
949c47a0
DW
453 if (index >= super->anchor->num_raid_devs)
454 return NULL;
ba2de7ba
DW
455 for (dv = super->devlist; dv; dv = dv->next)
456 if (dv->index == index)
457 return dv->dev;
458 return NULL;
949c47a0
DW
459}
460
7eef0453
DW
461static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev, int slot)
462{
463 struct imsm_map *map;
464
465 if (dev->vol.migr_state)
7eef0453 466 map = get_imsm_map(dev, 1);
fb9bf0d3
DW
467 else
468 map = get_imsm_map(dev, 0);
7eef0453 469
ff077194
DW
470 /* top byte identifies disk under rebuild */
471 return __le32_to_cpu(map->disk_ord_tbl[slot]);
472}
473
474#define ord_to_idx(ord) (((ord) << 8) >> 8)
475static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot)
476{
477 __u32 ord = get_imsm_ord_tbl_ent(dev, slot);
478
479 return ord_to_idx(ord);
7eef0453
DW
480}
481
be73972f
DW
482static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
483{
484 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
485}
486
620b1713
DW
487static int get_imsm_disk_slot(struct imsm_map *map, int idx)
488{
489 int slot;
490 __u32 ord;
491
492 for (slot = 0; slot < map->num_members; slot++) {
493 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
494 if (ord_to_idx(ord) == idx)
495 return slot;
496 }
497
498 return -1;
499}
500
cdddbdbc
DW
501static int get_imsm_raid_level(struct imsm_map *map)
502{
503 if (map->raid_level == 1) {
504 if (map->num_members == 2)
505 return 1;
506 else
507 return 10;
508 }
509
510 return map->raid_level;
511}
512
c2c087e6
DW
513static int cmp_extent(const void *av, const void *bv)
514{
515 const struct extent *a = av;
516 const struct extent *b = bv;
517 if (a->start < b->start)
518 return -1;
519 if (a->start > b->start)
520 return 1;
521 return 0;
522}
523
0dcecb2e 524static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 525{
c2c087e6 526 int memberships = 0;
620b1713 527 int i;
c2c087e6 528
949c47a0
DW
529 for (i = 0; i < super->anchor->num_raid_devs; i++) {
530 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 531 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 532
620b1713
DW
533 if (get_imsm_disk_slot(map, dl->index) >= 0)
534 memberships++;
c2c087e6 535 }
0dcecb2e
DW
536
537 return memberships;
538}
539
540static struct extent *get_extents(struct intel_super *super, struct dl *dl)
541{
542 /* find a list of used extents on the given physical device */
543 struct extent *rv, *e;
620b1713 544 int i;
0dcecb2e
DW
545 int memberships = count_memberships(dl, super);
546 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
547
c2c087e6
DW
548 rv = malloc(sizeof(struct extent) * (memberships + 1));
549 if (!rv)
550 return NULL;
551 e = rv;
552
949c47a0
DW
553 for (i = 0; i < super->anchor->num_raid_devs; i++) {
554 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 555 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 556
620b1713
DW
557 if (get_imsm_disk_slot(map, dl->index) >= 0) {
558 e->start = __le32_to_cpu(map->pba_of_lba0);
559 e->size = __le32_to_cpu(map->blocks_per_member);
560 e++;
c2c087e6
DW
561 }
562 }
563 qsort(rv, memberships, sizeof(*rv), cmp_extent);
564
14e8215b
DW
565 /* determine the start of the metadata
566 * when no raid devices are defined use the default
567 * ...otherwise allow the metadata to truncate the value
568 * as is the case with older versions of imsm
569 */
570 if (memberships) {
571 struct extent *last = &rv[memberships - 1];
572 __u32 remainder;
573
574 remainder = __le32_to_cpu(dl->disk.total_blocks) -
575 (last->start + last->size);
dda5855f
DW
576 /* round down to 1k block to satisfy precision of the kernel
577 * 'size' interface
578 */
579 remainder &= ~1UL;
580 /* make sure remainder is still sane */
581 if (remainder < ROUND_UP(super->len, 512) >> 9)
582 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
583 if (reservation > remainder)
584 reservation = remainder;
585 }
586 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
c2c087e6
DW
587 e->size = 0;
588 return rv;
589}
590
14e8215b
DW
591/* try to determine how much space is reserved for metadata from
592 * the last get_extents() entry, otherwise fallback to the
593 * default
594 */
595static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
596{
597 struct extent *e;
598 int i;
599 __u32 rv;
600
601 /* for spares just return a minimal reservation which will grow
602 * once the spare is picked up by an array
603 */
604 if (dl->index == -1)
605 return MPB_SECTOR_CNT;
606
607 e = get_extents(super, dl);
608 if (!e)
609 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
610
611 /* scroll to last entry */
612 for (i = 0; e[i].size; i++)
613 continue;
614
615 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
616
617 free(e);
618
619 return rv;
620}
621
25ed7e59
DW
622static int is_spare(struct imsm_disk *disk)
623{
624 return (disk->status & SPARE_DISK) == SPARE_DISK;
625}
626
627static int is_configured(struct imsm_disk *disk)
628{
629 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
630}
631
632static int is_failed(struct imsm_disk *disk)
633{
634 return (disk->status & FAILED_DISK) == FAILED_DISK;
635}
636
1799c9e8 637#ifndef MDASSEMBLE
44470971 638static void print_imsm_dev(struct imsm_dev *dev, char *uuid, int disk_idx)
cdddbdbc
DW
639{
640 __u64 sz;
641 int slot;
a965f303 642 struct imsm_map *map = get_imsm_map(dev, 0);
b10b37b8 643 __u32 ord;
cdddbdbc
DW
644
645 printf("\n");
1e7bc0ed 646 printf("[%.16s]:\n", dev->volume);
44470971 647 printf(" UUID : %s\n", uuid);
cdddbdbc
DW
648 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
649 printf(" Members : %d\n", map->num_members);
620b1713
DW
650 slot = get_imsm_disk_slot(map, disk_idx);
651 if (slot >= 0) {
b10b37b8
DW
652 ord = get_imsm_ord_tbl_ent(dev, slot);
653 printf(" This Slot : %d%s\n", slot,
654 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
655 } else
cdddbdbc
DW
656 printf(" This Slot : ?\n");
657 sz = __le32_to_cpu(dev->size_high);
658 sz <<= 32;
659 sz += __le32_to_cpu(dev->size_low);
660 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
661 human_size(sz * 512));
662 sz = __le32_to_cpu(map->blocks_per_member);
663 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
664 human_size(sz * 512));
665 printf(" Sector Offset : %u\n",
666 __le32_to_cpu(map->pba_of_lba0));
667 printf(" Num Stripes : %u\n",
668 __le32_to_cpu(map->num_data_stripes));
669 printf(" Chunk Size : %u KiB\n",
670 __le16_to_cpu(map->blocks_per_strip) / 2);
671 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1484e727
DW
672 printf(" Migrate State : %s", dev->vol.migr_state ? "migrating" : "idle\n");
673 if (dev->vol.migr_state) {
674 if (migr_type(dev) == MIGR_INIT)
675 printf(": initializing\n");
676 else if (migr_type(dev) == MIGR_REBUILD)
677 printf(": rebuilding\n");
678 else if (migr_type(dev) == MIGR_VERIFY)
679 printf(": check\n");
680 else if (migr_type(dev) == MIGR_GEN_MIGR)
681 printf(": general migration\n");
682 else if (migr_type(dev) == MIGR_STATE_CHANGE)
683 printf(": state change\n");
684 else if (migr_type(dev) == MIGR_REPAIR)
685 printf(": repair\n");
686 else
687 printf(": <unknown:%d>\n", migr_type(dev));
688 }
3393c6af
DW
689 printf(" Map State : %s", map_state_str[map->map_state]);
690 if (dev->vol.migr_state) {
691 struct imsm_map *map = get_imsm_map(dev, 1);
b10b37b8 692 printf(" <-- %s", map_state_str[map->map_state]);
3393c6af
DW
693 }
694 printf("\n");
cdddbdbc 695 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
cdddbdbc
DW
696}
697
14e8215b 698static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
cdddbdbc 699{
949c47a0 700 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
1f24f035 701 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
702 __u64 sz;
703
e9d82038
DW
704 if (index < 0)
705 return;
706
cdddbdbc 707 printf("\n");
1f24f035 708 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
cdddbdbc 709 printf(" Disk%02d Serial : %s\n", index, str);
25ed7e59
DW
710 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
711 is_configured(disk) ? " active" : "",
712 is_failed(disk) ? " failed" : "");
cdddbdbc 713 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
14e8215b 714 sz = __le32_to_cpu(disk->total_blocks) - reserved;
cdddbdbc
DW
715 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
716 human_size(sz * 512));
717}
718
44470971
DW
719static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info);
720
cdddbdbc
DW
721static void examine_super_imsm(struct supertype *st, char *homehost)
722{
723 struct intel_super *super = st->sb;
949c47a0 724 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
725 char str[MAX_SIGNATURE_LENGTH];
726 int i;
27fd6274
DW
727 struct mdinfo info;
728 char nbuf[64];
cdddbdbc 729 __u32 sum;
14e8215b 730 __u32 reserved = imsm_reserved_sectors(super, super->disks);
cdddbdbc 731
27fd6274 732
cdddbdbc
DW
733 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
734 printf(" Magic : %s\n", str);
735 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
736 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 737 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
738 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
739 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
27fd6274 740 getinfo_super_imsm(st, &info);
ae2bfd4e 741 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 742 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
743 sum = __le32_to_cpu(mpb->check_sum);
744 printf(" Checksum : %08x %s\n", sum,
949c47a0 745 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
87eb16df 746 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
cdddbdbc
DW
747 printf(" Disks : %d\n", mpb->num_disks);
748 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
14e8215b 749 print_imsm_disk(mpb, super->disks->index, reserved);
604b746f
JD
750 if (super->bbm_log) {
751 struct bbm_log *log = super->bbm_log;
752
753 printf("\n");
754 printf("Bad Block Management Log:\n");
755 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
756 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
757 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
758 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
13a3b65d
N
759 printf(" First Spare : %llx\n",
760 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
604b746f 761 }
44470971
DW
762 for (i = 0; i < mpb->num_raid_devs; i++) {
763 struct mdinfo info;
764 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
765
766 super->current_vol = i;
767 getinfo_super_imsm(st, &info);
ae2bfd4e 768 fname_from_uuid(st, &info, nbuf, ':');
44470971
DW
769 print_imsm_dev(dev, nbuf + 5, super->disks->index);
770 }
cdddbdbc
DW
771 for (i = 0; i < mpb->num_disks; i++) {
772 if (i == super->disks->index)
773 continue;
14e8215b 774 print_imsm_disk(mpb, i, reserved);
cdddbdbc
DW
775 }
776}
777
061f2c6a 778static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 779{
27fd6274 780 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
781 struct mdinfo info;
782 char nbuf[64];
1e7bc0ed 783 struct intel_super *super = st->sb;
1e7bc0ed 784
0d5a423f
DW
785 if (!super->anchor->num_raid_devs) {
786 printf("ARRAY metadata=imsm\n");
1e7bc0ed 787 return;
0d5a423f 788 }
ff54de6e 789
4737ae25
N
790 getinfo_super_imsm(st, &info);
791 fname_from_uuid(st, &info, nbuf, ':');
792 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
793}
794
795static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
796{
797 /* We just write a generic IMSM ARRAY entry */
798 struct mdinfo info;
799 char nbuf[64];
800 char nbuf1[64];
801 struct intel_super *super = st->sb;
802 int i;
803
804 if (!super->anchor->num_raid_devs)
805 return;
806
ff54de6e 807 getinfo_super_imsm(st, &info);
ae2bfd4e 808 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
809 for (i = 0; i < super->anchor->num_raid_devs; i++) {
810 struct imsm_dev *dev = get_imsm_dev(super, i);
811
812 super->current_vol = i;
813 getinfo_super_imsm(st, &info);
ae2bfd4e 814 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 815 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 816 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 817 }
cdddbdbc
DW
818}
819
9d84c8ea
DW
820static void export_examine_super_imsm(struct supertype *st)
821{
822 struct intel_super *super = st->sb;
823 struct imsm_super *mpb = super->anchor;
824 struct mdinfo info;
825 char nbuf[64];
826
827 getinfo_super_imsm(st, &info);
828 fname_from_uuid(st, &info, nbuf, ':');
829 printf("MD_METADATA=imsm\n");
830 printf("MD_LEVEL=container\n");
831 printf("MD_UUID=%s\n", nbuf+5);
832 printf("MD_DEVICES=%u\n", mpb->num_disks);
833}
834
cdddbdbc
DW
835static void detail_super_imsm(struct supertype *st, char *homehost)
836{
3ebe00a1
DW
837 struct mdinfo info;
838 char nbuf[64];
839
840 getinfo_super_imsm(st, &info);
ae2bfd4e 841 fname_from_uuid(st, &info, nbuf, ':');
3ebe00a1 842 printf("\n UUID : %s\n", nbuf + 5);
cdddbdbc
DW
843}
844
845static void brief_detail_super_imsm(struct supertype *st)
846{
ff54de6e
N
847 struct mdinfo info;
848 char nbuf[64];
849 getinfo_super_imsm(st, &info);
ae2bfd4e 850 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 851 printf(" UUID=%s", nbuf + 5);
cdddbdbc 852}
d665cc31
DW
853
854static int imsm_read_serial(int fd, char *devname, __u8 *serial);
855static void fd2devname(int fd, char *name);
856
857static int imsm_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
858{
859 /* dump an unsorted list of devices attached to ahci, as well as
860 * non-connected ports
861 */
862 int hba_len = strlen(hba_path) + 1;
863 struct dirent *ent;
864 DIR *dir;
865 char *path = NULL;
866 int err = 0;
867 unsigned long port_mask = (1 << port_count) - 1;
868
869 if (port_count > sizeof(port_mask) * 8) {
870 if (verbose)
871 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
872 return 2;
873 }
874
875 /* scroll through /sys/dev/block looking for devices attached to
876 * this hba
877 */
878 dir = opendir("/sys/dev/block");
879 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
880 int fd;
881 char model[64];
882 char vendor[64];
883 char buf[1024];
884 int major, minor;
885 char *device;
886 char *c;
887 int port;
888 int type;
889
890 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
891 continue;
892 path = devt_to_devpath(makedev(major, minor));
893 if (!path)
894 continue;
895 if (!path_attached_to_hba(path, hba_path)) {
896 free(path);
897 path = NULL;
898 continue;
899 }
900
901 /* retrieve the scsi device type */
902 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
903 if (verbose)
904 fprintf(stderr, Name ": failed to allocate 'device'\n");
905 err = 2;
906 break;
907 }
908 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
909 if (load_sys(device, buf) != 0) {
910 if (verbose)
911 fprintf(stderr, Name ": failed to read device type for %s\n",
912 path);
913 err = 2;
914 free(device);
915 break;
916 }
917 type = strtoul(buf, NULL, 10);
918
919 /* if it's not a disk print the vendor and model */
920 if (!(type == 0 || type == 7 || type == 14)) {
921 vendor[0] = '\0';
922 model[0] = '\0';
923 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
924 if (load_sys(device, buf) == 0) {
925 strncpy(vendor, buf, sizeof(vendor));
926 vendor[sizeof(vendor) - 1] = '\0';
927 c = (char *) &vendor[sizeof(vendor) - 1];
928 while (isspace(*c) || *c == '\0')
929 *c-- = '\0';
930
931 }
932 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
933 if (load_sys(device, buf) == 0) {
934 strncpy(model, buf, sizeof(model));
935 model[sizeof(model) - 1] = '\0';
936 c = (char *) &model[sizeof(model) - 1];
937 while (isspace(*c) || *c == '\0')
938 *c-- = '\0';
939 }
940
941 if (vendor[0] && model[0])
942 sprintf(buf, "%.64s %.64s", vendor, model);
943 else
944 switch (type) { /* numbers from hald/linux/device.c */
945 case 1: sprintf(buf, "tape"); break;
946 case 2: sprintf(buf, "printer"); break;
947 case 3: sprintf(buf, "processor"); break;
948 case 4:
949 case 5: sprintf(buf, "cdrom"); break;
950 case 6: sprintf(buf, "scanner"); break;
951 case 8: sprintf(buf, "media_changer"); break;
952 case 9: sprintf(buf, "comm"); break;
953 case 12: sprintf(buf, "raid"); break;
954 default: sprintf(buf, "unknown");
955 }
956 } else
957 buf[0] = '\0';
958 free(device);
959
960 /* chop device path to 'host%d' and calculate the port number */
961 c = strchr(&path[hba_len], '/');
962 *c = '\0';
963 if (sscanf(&path[hba_len], "host%d", &port) == 1)
964 port -= host_base;
965 else {
966 if (verbose) {
967 *c = '/'; /* repair the full string */
968 fprintf(stderr, Name ": failed to determine port number for %s\n",
969 path);
970 }
971 err = 2;
972 break;
973 }
974
975 /* mark this port as used */
976 port_mask &= ~(1 << port);
977
978 /* print out the device information */
979 if (buf[0]) {
980 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
981 continue;
982 }
983
984 fd = dev_open(ent->d_name, O_RDONLY);
985 if (fd < 0)
986 printf(" Port%d : - disk info unavailable -\n", port);
987 else {
988 fd2devname(fd, buf);
989 printf(" Port%d : %s", port, buf);
990 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
991 printf(" (%s)\n", buf);
992 else
993 printf("()\n");
994 }
995 close(fd);
996 free(path);
997 path = NULL;
998 }
999 if (path)
1000 free(path);
1001 if (dir)
1002 closedir(dir);
1003 if (err == 0) {
1004 int i;
1005
1006 for (i = 0; i < port_count; i++)
1007 if (port_mask & (1 << i))
1008 printf(" Port%d : - no device attached -\n", i);
1009 }
1010
1011 return err;
1012}
1013
5615172f 1014static int detail_platform_imsm(int verbose, int enumerate_only)
d665cc31
DW
1015{
1016 /* There are two components to imsm platform support, the ahci SATA
1017 * controller and the option-rom. To find the SATA controller we
1018 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1019 * controller with the Intel vendor id is present. This approach
1020 * allows mdadm to leverage the kernel's ahci detection logic, with the
1021 * caveat that if ahci.ko is not loaded mdadm will not be able to
1022 * detect platform raid capabilities. The option-rom resides in a
1023 * platform "Adapter ROM". We scan for its signature to retrieve the
1024 * platform capabilities. If raid support is disabled in the BIOS the
1025 * option-rom capability structure will not be available.
1026 */
1027 const struct imsm_orom *orom;
1028 struct sys_dev *list, *hba;
1029 DIR *dir;
1030 struct dirent *ent;
1031 const char *hba_path;
1032 int host_base = 0;
1033 int port_count = 0;
1034
5615172f
DW
1035 if (enumerate_only) {
1036 if (check_env("IMSM_NO_PLATFORM") || find_imsm_orom())
1037 return 0;
1038 return 2;
1039 }
1040
d665cc31
DW
1041 list = find_driver_devices("pci", "ahci");
1042 for (hba = list; hba; hba = hba->next)
1043 if (devpath_to_vendor(hba->path) == 0x8086)
1044 break;
1045
1046 if (!hba) {
1047 if (verbose)
1048 fprintf(stderr, Name ": unable to find active ahci controller\n");
1049 free_sys_dev(&list);
1050 return 2;
1051 } else if (verbose)
1052 fprintf(stderr, Name ": found Intel SATA AHCI Controller\n");
1053 hba_path = hba->path;
1054 hba->path = NULL;
1055 free_sys_dev(&list);
1056
1057 orom = find_imsm_orom();
1058 if (!orom) {
1059 if (verbose)
1060 fprintf(stderr, Name ": imsm option-rom not found\n");
1061 return 2;
1062 }
1063
1064 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1065 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1066 orom->hotfix_ver, orom->build);
1067 printf(" RAID Levels :%s%s%s%s%s\n",
1068 imsm_orom_has_raid0(orom) ? " raid0" : "",
1069 imsm_orom_has_raid1(orom) ? " raid1" : "",
1070 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1071 imsm_orom_has_raid10(orom) ? " raid10" : "",
1072 imsm_orom_has_raid5(orom) ? " raid5" : "");
8be094f0
DW
1073 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1074 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1075 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1076 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1077 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1078 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1079 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1080 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1081 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1082 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1083 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1084 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1085 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1086 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1087 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1088 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1089 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
d665cc31
DW
1090 printf(" Max Disks : %d\n", orom->tds);
1091 printf(" Max Volumes : %d\n", orom->vpa);
1092 printf(" I/O Controller : %s\n", hba_path);
1093
1094 /* find the smallest scsi host number to determine a port number base */
1095 dir = opendir(hba_path);
1096 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1097 int host;
1098
1099 if (sscanf(ent->d_name, "host%d", &host) != 1)
1100 continue;
1101 if (port_count == 0)
1102 host_base = host;
1103 else if (host < host_base)
1104 host_base = host;
1105
1106 if (host + 1 > port_count + host_base)
1107 port_count = host + 1 - host_base;
1108
1109 }
1110 if (dir)
1111 closedir(dir);
1112
1113 if (!port_count || imsm_enumerate_ports(hba_path, port_count,
1114 host_base, verbose) != 0) {
1115 if (verbose)
1116 fprintf(stderr, Name ": failed to enumerate ports\n");
1117 return 2;
1118 }
1119
1120 return 0;
1121}
cdddbdbc
DW
1122#endif
1123
1124static int match_home_imsm(struct supertype *st, char *homehost)
1125{
5115ca67
DW
1126 /* the imsm metadata format does not specify any host
1127 * identification information. We return -1 since we can never
1128 * confirm nor deny whether a given array is "meant" for this
148acb7b 1129 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
1130 * exclude member disks that do not belong, and we rely on
1131 * mdadm.conf to specify the arrays that should be assembled.
1132 * Auto-assembly may still pick up "foreign" arrays.
1133 */
cdddbdbc 1134
9362c1c8 1135 return -1;
cdddbdbc
DW
1136}
1137
1138static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1139{
51006d85
N
1140 /* The uuid returned here is used for:
1141 * uuid to put into bitmap file (Create, Grow)
1142 * uuid for backup header when saving critical section (Grow)
1143 * comparing uuids when re-adding a device into an array
1144 * In these cases the uuid required is that of the data-array,
1145 * not the device-set.
1146 * uuid to recognise same set when adding a missing device back
1147 * to an array. This is a uuid for the device-set.
1148 *
1149 * For each of these we can make do with a truncated
1150 * or hashed uuid rather than the original, as long as
1151 * everyone agrees.
1152 * In each case the uuid required is that of the data-array,
1153 * not the device-set.
43dad3d6 1154 */
51006d85
N
1155 /* imsm does not track uuid's so we synthesis one using sha1 on
1156 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 1157 * - the orig_family_num of the container
51006d85
N
1158 * - the index number of the volume
1159 * - the 'serial' number of the volume.
1160 * Hopefully these are all constant.
1161 */
1162 struct intel_super *super = st->sb;
43dad3d6 1163
51006d85
N
1164 char buf[20];
1165 struct sha1_ctx ctx;
1166 struct imsm_dev *dev = NULL;
148acb7b 1167 __u32 family_num;
51006d85 1168
148acb7b
DW
1169 /* some mdadm versions failed to set ->orig_family_num, in which
1170 * case fall back to ->family_num. orig_family_num will be
1171 * fixed up with the first metadata update.
1172 */
1173 family_num = super->anchor->orig_family_num;
1174 if (family_num == 0)
1175 family_num = super->anchor->family_num;
51006d85 1176 sha1_init_ctx(&ctx);
92bd8f8d 1177 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 1178 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
1179 if (super->current_vol >= 0)
1180 dev = get_imsm_dev(super, super->current_vol);
1181 if (dev) {
1182 __u32 vol = super->current_vol;
1183 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1184 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1185 }
1186 sha1_finish_ctx(&ctx, buf);
1187 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
1188}
1189
0d481d37 1190#if 0
4f5bc454
DW
1191static void
1192get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 1193{
cdddbdbc
DW
1194 __u8 *v = get_imsm_version(mpb);
1195 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1196 char major[] = { 0, 0, 0 };
1197 char minor[] = { 0 ,0, 0 };
1198 char patch[] = { 0, 0, 0 };
1199 char *ver_parse[] = { major, minor, patch };
1200 int i, j;
1201
1202 i = j = 0;
1203 while (*v != '\0' && v < end) {
1204 if (*v != '.' && j < 2)
1205 ver_parse[i][j++] = *v;
1206 else {
1207 i++;
1208 j = 0;
1209 }
1210 v++;
1211 }
1212
4f5bc454
DW
1213 *m = strtol(minor, NULL, 0);
1214 *p = strtol(patch, NULL, 0);
1215}
0d481d37 1216#endif
4f5bc454 1217
c2c087e6
DW
1218static int imsm_level_to_layout(int level)
1219{
1220 switch (level) {
1221 case 0:
1222 case 1:
1223 return 0;
1224 case 5:
1225 case 6:
a380c027 1226 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 1227 case 10:
c92a2527 1228 return 0x102;
c2c087e6 1229 }
a18a888e 1230 return UnSet;
c2c087e6
DW
1231}
1232
bf5a934a
DW
1233static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
1234{
1235 struct intel_super *super = st->sb;
949c47a0 1236 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
a965f303 1237 struct imsm_map *map = get_imsm_map(dev, 0);
efb30e7f 1238 struct dl *dl;
bf5a934a 1239
efb30e7f
DW
1240 for (dl = super->disks; dl; dl = dl->next)
1241 if (dl->raiddisk == info->disk.raid_disk)
1242 break;
bf5a934a
DW
1243 info->container_member = super->current_vol;
1244 info->array.raid_disks = map->num_members;
1245 info->array.level = get_imsm_raid_level(map);
1246 info->array.layout = imsm_level_to_layout(info->array.level);
1247 info->array.md_minor = -1;
1248 info->array.ctime = 0;
1249 info->array.utime = 0;
301406c9
DW
1250 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
1251 info->array.state = !dev->vol.dirty;
da9b4a62
DW
1252 info->custom_array_size = __le32_to_cpu(dev->size_high);
1253 info->custom_array_size <<= 32;
1254 info->custom_array_size |= __le32_to_cpu(dev->size_low);
301406c9
DW
1255
1256 info->disk.major = 0;
1257 info->disk.minor = 0;
efb30e7f
DW
1258 if (dl) {
1259 info->disk.major = dl->major;
1260 info->disk.minor = dl->minor;
1261 }
bf5a934a
DW
1262
1263 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
1264 info->component_size = __le32_to_cpu(map->blocks_per_member);
301406c9 1265 memset(info->uuid, 0, sizeof(info->uuid));
bf5a934a 1266
f8f603f1 1267 if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty)
301406c9 1268 info->resync_start = 0;
f8f603f1 1269 else if (dev->vol.migr_state)
da188789
DW
1270 /* FIXME add curr_migr_unit to resync_start conversion */
1271 info->resync_start = 0;
301406c9
DW
1272 else
1273 info->resync_start = ~0ULL;
1274
1275 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
1276 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 1277
f35f2525
N
1278 info->array.major_version = -1;
1279 info->array.minor_version = -2;
bf5a934a
DW
1280 sprintf(info->text_version, "/%s/%d",
1281 devnum2devname(st->container_dev),
1282 info->container_member);
a67dd8cc 1283 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 1284 uuid_from_super_imsm(st, info->uuid);
bf5a934a
DW
1285}
1286
7a70e8aa
DW
1287/* check the config file to see if we can return a real uuid for this spare */
1288static void fixup_container_spare_uuid(struct mdinfo *inf)
1289{
1290 struct mddev_ident_s *array_list;
1291
1292 if (inf->array.level != LEVEL_CONTAINER ||
1293 memcmp(inf->uuid, uuid_match_any, sizeof(int[4])) != 0)
1294 return;
1295
1296 array_list = conf_get_ident(NULL);
1297
1298 for (; array_list; array_list = array_list->next) {
1299 if (array_list->uuid_set) {
1300 struct supertype *_sst; /* spare supertype */
1301 struct supertype *_cst; /* container supertype */
1302
1303 _cst = array_list->st;
7e8545e9
DW
1304 if (_cst)
1305 _sst = _cst->ss->match_metadata_desc(inf->text_version);
1306 else
1307 _sst = NULL;
1308
7a70e8aa
DW
1309 if (_sst) {
1310 memcpy(inf->uuid, array_list->uuid, sizeof(int[4]));
1311 free(_sst);
1312 break;
1313 }
1314 }
1315 }
1316}
bf5a934a 1317
4f5bc454
DW
1318static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
1319{
1320 struct intel_super *super = st->sb;
4f5bc454 1321 struct imsm_disk *disk;
4f5bc454 1322
bf5a934a
DW
1323 if (super->current_vol >= 0) {
1324 getinfo_super_imsm_volume(st, info);
1325 return;
1326 }
d23fe947
DW
1327
1328 /* Set raid_disks to zero so that Assemble will always pull in valid
1329 * spares
1330 */
1331 info->array.raid_disks = 0;
cdddbdbc
DW
1332 info->array.level = LEVEL_CONTAINER;
1333 info->array.layout = 0;
1334 info->array.md_minor = -1;
c2c087e6 1335 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
1336 info->array.utime = 0;
1337 info->array.chunk_size = 0;
1338
1339 info->disk.major = 0;
1340 info->disk.minor = 0;
cdddbdbc 1341 info->disk.raid_disk = -1;
c2c087e6 1342 info->reshape_active = 0;
f35f2525
N
1343 info->array.major_version = -1;
1344 info->array.minor_version = -2;
c2c087e6 1345 strcpy(info->text_version, "imsm");
a67dd8cc 1346 info->safe_mode_delay = 0;
c2c087e6
DW
1347 info->disk.number = -1;
1348 info->disk.state = 0;
c5afc314 1349 info->name[0] = 0;
c2c087e6 1350
4a04ec6c 1351 if (super->disks) {
14e8215b
DW
1352 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1353
b9f594fe 1354 disk = &super->disks->disk;
14e8215b
DW
1355 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
1356 info->component_size = reserved;
25ed7e59 1357 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
1358 /* we don't change info->disk.raid_disk here because
1359 * this state will be finalized in mdmon after we have
1360 * found the 'most fresh' version of the metadata
1361 */
25ed7e59
DW
1362 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
1363 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
cdddbdbc 1364 }
a575e2a7
DW
1365
1366 /* only call uuid_from_super_imsm when this disk is part of a populated container,
1367 * ->compare_super may have updated the 'num_raid_devs' field for spares
1368 */
1369 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 1370 uuid_from_super_imsm(st, info->uuid);
7a70e8aa 1371 else {
032e9e29 1372 memcpy(info->uuid, uuid_match_any, sizeof(int[4]));
7a70e8aa
DW
1373 fixup_container_spare_uuid(info);
1374 }
cdddbdbc
DW
1375}
1376
cdddbdbc
DW
1377static int update_super_imsm(struct supertype *st, struct mdinfo *info,
1378 char *update, char *devname, int verbose,
1379 int uuid_set, char *homehost)
1380{
f352c545
DW
1381 /* For 'assemble' and 'force' we need to return non-zero if any
1382 * change was made. For others, the return value is ignored.
1383 * Update options are:
1384 * force-one : This device looks a bit old but needs to be included,
1385 * update age info appropriately.
1386 * assemble: clear any 'faulty' flag to allow this device to
1387 * be assembled.
1388 * force-array: Array is degraded but being forced, mark it clean
1389 * if that will be needed to assemble it.
1390 *
1391 * newdev: not used ????
1392 * grow: Array has gained a new device - this is currently for
1393 * linear only
1394 * resync: mark as dirty so a resync will happen.
1395 * name: update the name - preserving the homehost
6e46bf34 1396 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
1397 *
1398 * Following are not relevant for this imsm:
1399 * sparc2.2 : update from old dodgey metadata
1400 * super-minor: change the preferred_minor number
1401 * summaries: update redundant counters.
f352c545
DW
1402 * homehost: update the recorded homehost
1403 * _reshape_progress: record new reshape_progress position.
1404 */
6e46bf34
DW
1405 int rv = 1;
1406 struct intel_super *super = st->sb;
1407 struct imsm_super *mpb;
f352c545 1408
6e46bf34
DW
1409 /* we can only update container info */
1410 if (!super || super->current_vol >= 0 || !super->anchor)
1411 return 1;
1412
1413 mpb = super->anchor;
1414
1415 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
1416 fprintf(stderr,
1417 Name ": '--uuid' not supported for imsm metadata\n");
1418 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
1419 mpb->orig_family_num = *((__u32 *) info->update_private);
1420 rv = 0;
1421 } else if (strcmp(update, "uuid") == 0) {
1422 __u32 *new_family = malloc(sizeof(*new_family));
1423
1424 /* update orig_family_number with the incoming random
1425 * data, report the new effective uuid, and store the
1426 * new orig_family_num for future updates.
1427 */
1428 if (new_family) {
1429 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
1430 uuid_from_super_imsm(st, info->uuid);
1431 *new_family = mpb->orig_family_num;
1432 info->update_private = new_family;
1433 rv = 0;
1434 }
1435 } else if (strcmp(update, "assemble") == 0)
1436 rv = 0;
1437 else
1438 fprintf(stderr,
1439 Name ": '--update=%s' not supported for imsm metadata\n",
1440 update);
f352c545 1441
6e46bf34
DW
1442 /* successful update? recompute checksum */
1443 if (rv == 0)
1444 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
1445
1446 return rv;
cdddbdbc
DW
1447}
1448
c2c087e6 1449static size_t disks_to_mpb_size(int disks)
cdddbdbc 1450{
c2c087e6 1451 size_t size;
cdddbdbc 1452
c2c087e6
DW
1453 size = sizeof(struct imsm_super);
1454 size += (disks - 1) * sizeof(struct imsm_disk);
1455 size += 2 * sizeof(struct imsm_dev);
1456 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
1457 size += (4 - 2) * sizeof(struct imsm_map);
1458 /* 4 possible disk_ord_tbl's */
1459 size += 4 * (disks - 1) * sizeof(__u32);
1460
1461 return size;
1462}
1463
1464static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
1465{
1466 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
1467 return 0;
1468
1469 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
1470}
1471
ba2de7ba
DW
1472static void free_devlist(struct intel_super *super)
1473{
1474 struct intel_dev *dv;
1475
1476 while (super->devlist) {
1477 dv = super->devlist->next;
1478 free(super->devlist->dev);
1479 free(super->devlist);
1480 super->devlist = dv;
1481 }
1482}
1483
1484static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
1485{
1486 memcpy(dest, src, sizeof_imsm_dev(src, 0));
1487}
1488
cdddbdbc
DW
1489static int compare_super_imsm(struct supertype *st, struct supertype *tst)
1490{
1491 /*
1492 * return:
1493 * 0 same, or first was empty, and second was copied
1494 * 1 second had wrong number
1495 * 2 wrong uuid
1496 * 3 wrong other info
1497 */
1498 struct intel_super *first = st->sb;
1499 struct intel_super *sec = tst->sb;
1500
1501 if (!first) {
1502 st->sb = tst->sb;
1503 tst->sb = NULL;
1504 return 0;
1505 }
1506
d23fe947
DW
1507 /* if an anchor does not have num_raid_devs set then it is a free
1508 * floating spare
1509 */
1510 if (first->anchor->num_raid_devs > 0 &&
1511 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
1512 /* Determine if these disks might ever have been
1513 * related. Further disambiguation can only take place
1514 * in load_super_imsm_all
1515 */
1516 __u32 first_family = first->anchor->orig_family_num;
1517 __u32 sec_family = sec->anchor->orig_family_num;
1518
f796af5d
DW
1519 if (memcmp(first->anchor->sig, sec->anchor->sig,
1520 MAX_SIGNATURE_LENGTH) != 0)
1521 return 3;
1522
a2b97981
DW
1523 if (first_family == 0)
1524 first_family = first->anchor->family_num;
1525 if (sec_family == 0)
1526 sec_family = sec->anchor->family_num;
1527
1528 if (first_family != sec_family)
d23fe947 1529 return 3;
f796af5d 1530
d23fe947 1531 }
cdddbdbc 1532
f796af5d 1533
3e372e5a
DW
1534 /* if 'first' is a spare promote it to a populated mpb with sec's
1535 * family number
1536 */
1537 if (first->anchor->num_raid_devs == 0 &&
1538 sec->anchor->num_raid_devs > 0) {
78d30f94 1539 int i;
ba2de7ba
DW
1540 struct intel_dev *dv;
1541 struct imsm_dev *dev;
78d30f94
DW
1542
1543 /* we need to copy raid device info from sec if an allocation
1544 * fails here we don't associate the spare
1545 */
1546 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
ba2de7ba
DW
1547 dv = malloc(sizeof(*dv));
1548 if (!dv)
1549 break;
1550 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
1551 if (!dev) {
1552 free(dv);
1553 break;
78d30f94 1554 }
ba2de7ba
DW
1555 dv->dev = dev;
1556 dv->index = i;
1557 dv->next = first->devlist;
1558 first->devlist = dv;
78d30f94 1559 }
709743c5 1560 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
1561 /* allocation failure */
1562 free_devlist(first);
1563 fprintf(stderr, "imsm: failed to associate spare\n");
1564 return 3;
78d30f94 1565 }
3e372e5a 1566 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 1567 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 1568 first->anchor->family_num = sec->anchor->family_num;
709743c5
DW
1569 for (i = 0; i < sec->anchor->num_raid_devs; i++)
1570 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
1571 }
1572
cdddbdbc
DW
1573 return 0;
1574}
1575
0030e8d6
DW
1576static void fd2devname(int fd, char *name)
1577{
1578 struct stat st;
1579 char path[256];
1580 char dname[100];
1581 char *nm;
1582 int rv;
1583
1584 name[0] = '\0';
1585 if (fstat(fd, &st) != 0)
1586 return;
1587 sprintf(path, "/sys/dev/block/%d:%d",
1588 major(st.st_rdev), minor(st.st_rdev));
1589
1590 rv = readlink(path, dname, sizeof(dname));
1591 if (rv <= 0)
1592 return;
1593
1594 dname[rv] = '\0';
1595 nm = strrchr(dname, '/');
1596 nm++;
1597 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
1598}
1599
cdddbdbc
DW
1600extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
1601
1602static int imsm_read_serial(int fd, char *devname,
1603 __u8 serial[MAX_RAID_SERIAL_LEN])
1604{
1605 unsigned char scsi_serial[255];
cdddbdbc
DW
1606 int rv;
1607 int rsp_len;
1f24f035 1608 int len;
316e2bf4
DW
1609 char *dest;
1610 char *src;
1611 char *rsp_buf;
1612 int i;
cdddbdbc
DW
1613
1614 memset(scsi_serial, 0, sizeof(scsi_serial));
cdddbdbc 1615
f9ba0ff1
DW
1616 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
1617
40ebbb9c 1618 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
1619 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1620 fd2devname(fd, (char *) serial);
0030e8d6
DW
1621 return 0;
1622 }
1623
cdddbdbc
DW
1624 if (rv != 0) {
1625 if (devname)
1626 fprintf(stderr,
1627 Name ": Failed to retrieve serial for %s\n",
1628 devname);
1629 return rv;
1630 }
1631
1632 rsp_len = scsi_serial[3];
03cd4cc8
DW
1633 if (!rsp_len) {
1634 if (devname)
1635 fprintf(stderr,
1636 Name ": Failed to retrieve serial for %s\n",
1637 devname);
1638 return 2;
1639 }
1f24f035 1640 rsp_buf = (char *) &scsi_serial[4];
5c3db629 1641
316e2bf4
DW
1642 /* trim all whitespace and non-printable characters and convert
1643 * ':' to ';'
1644 */
1645 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
1646 src = &rsp_buf[i];
1647 if (*src > 0x20) {
1648 /* ':' is reserved for use in placeholder serial
1649 * numbers for missing disks
1650 */
1651 if (*src == ':')
1652 *dest++ = ';';
1653 else
1654 *dest++ = *src;
1655 }
1656 }
1657 len = dest - rsp_buf;
1658 dest = rsp_buf;
1659
1660 /* truncate leading characters */
1661 if (len > MAX_RAID_SERIAL_LEN) {
1662 dest += len - MAX_RAID_SERIAL_LEN;
1f24f035 1663 len = MAX_RAID_SERIAL_LEN;
316e2bf4 1664 }
5c3db629 1665
5c3db629 1666 memset(serial, 0, MAX_RAID_SERIAL_LEN);
316e2bf4 1667 memcpy(serial, dest, len);
cdddbdbc
DW
1668
1669 return 0;
1670}
1671
1f24f035
DW
1672static int serialcmp(__u8 *s1, __u8 *s2)
1673{
1674 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
1675}
1676
1677static void serialcpy(__u8 *dest, __u8 *src)
1678{
1679 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
1680}
1681
1799c9e8 1682#ifndef MDASSEMBLE
54c2c1ea
DW
1683static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
1684{
1685 struct dl *dl;
1686
1687 for (dl = super->disks; dl; dl = dl->next)
1688 if (serialcmp(dl->serial, serial) == 0)
1689 break;
1690
1691 return dl;
1692}
1799c9e8 1693#endif
54c2c1ea 1694
a2b97981
DW
1695static struct imsm_disk *
1696__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
1697{
1698 int i;
1699
1700 for (i = 0; i < mpb->num_disks; i++) {
1701 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
1702
1703 if (serialcmp(disk->serial, serial) == 0) {
1704 if (idx)
1705 *idx = i;
1706 return disk;
1707 }
1708 }
1709
1710 return NULL;
1711}
1712
cdddbdbc
DW
1713static int
1714load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
1715{
a2b97981 1716 struct imsm_disk *disk;
cdddbdbc
DW
1717 struct dl *dl;
1718 struct stat stb;
cdddbdbc 1719 int rv;
a2b97981 1720 char name[40];
d23fe947
DW
1721 __u8 serial[MAX_RAID_SERIAL_LEN];
1722
1723 rv = imsm_read_serial(fd, devname, serial);
1724
1725 if (rv != 0)
1726 return 2;
1727
a2b97981 1728 dl = calloc(1, sizeof(*dl));
b9f594fe 1729 if (!dl) {
cdddbdbc
DW
1730 if (devname)
1731 fprintf(stderr,
1732 Name ": failed to allocate disk buffer for %s\n",
1733 devname);
1734 return 2;
1735 }
cdddbdbc 1736
a2b97981
DW
1737 fstat(fd, &stb);
1738 dl->major = major(stb.st_rdev);
1739 dl->minor = minor(stb.st_rdev);
1740 dl->next = super->disks;
1741 dl->fd = keep_fd ? fd : -1;
1742 assert(super->disks == NULL);
1743 super->disks = dl;
1744 serialcpy(dl->serial, serial);
1745 dl->index = -2;
1746 dl->e = NULL;
1747 fd2devname(fd, name);
1748 if (devname)
1749 dl->devname = strdup(devname);
1750 else
1751 dl->devname = strdup(name);
cdddbdbc 1752
d23fe947 1753 /* look up this disk's index in the current anchor */
a2b97981
DW
1754 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
1755 if (disk) {
1756 dl->disk = *disk;
1757 /* only set index on disks that are a member of a
1758 * populated contianer, i.e. one with raid_devs
1759 */
1760 if (is_failed(&dl->disk))
3f6efecc 1761 dl->index = -2;
a2b97981
DW
1762 else if (is_spare(&dl->disk))
1763 dl->index = -1;
3f6efecc
DW
1764 }
1765
949c47a0
DW
1766 return 0;
1767}
1768
0e600426 1769#ifndef MDASSEMBLE
0c046afd
DW
1770/* When migrating map0 contains the 'destination' state while map1
1771 * contains the current state. When not migrating map0 contains the
1772 * current state. This routine assumes that map[0].map_state is set to
1773 * the current array state before being called.
1774 *
1775 * Migration is indicated by one of the following states
1776 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 1777 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 1778 * map1state=unitialized)
1484e727 1779 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 1780 * map1state=normal)
e3bba0e0 1781 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd
DW
1782 * map1state=degraded)
1783 */
0556e1a2 1784static void migrate(struct imsm_dev *dev, __u8 to_state, int migr_type)
3393c6af 1785{
0c046afd 1786 struct imsm_map *dest;
3393c6af
DW
1787 struct imsm_map *src = get_imsm_map(dev, 0);
1788
0c046afd 1789 dev->vol.migr_state = 1;
1484e727 1790 set_migr_type(dev, migr_type);
f8f603f1 1791 dev->vol.curr_migr_unit = 0;
0c046afd
DW
1792 dest = get_imsm_map(dev, 1);
1793
0556e1a2 1794 /* duplicate and then set the target end state in map[0] */
3393c6af 1795 memcpy(dest, src, sizeof_imsm_map(src));
0556e1a2
DW
1796 if (migr_type == MIGR_REBUILD) {
1797 __u32 ord;
1798 int i;
1799
1800 for (i = 0; i < src->num_members; i++) {
1801 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
1802 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
1803 }
1804 }
1805
0c046afd 1806 src->map_state = to_state;
949c47a0 1807}
f8f603f1
DW
1808
1809static void end_migration(struct imsm_dev *dev, __u8 map_state)
1810{
1811 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2
DW
1812 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
1813 int i;
1814
1815 /* merge any IMSM_ORD_REBUILD bits that were not successfully
1816 * completed in the last migration.
1817 *
1818 * FIXME add support for online capacity expansion and
1819 * raid-level-migration
1820 */
1821 for (i = 0; i < prev->num_members; i++)
1822 map->disk_ord_tbl[i] |= prev->disk_ord_tbl[i];
f8f603f1
DW
1823
1824 dev->vol.migr_state = 0;
1825 dev->vol.curr_migr_unit = 0;
1826 map->map_state = map_state;
1827}
0e600426 1828#endif
949c47a0
DW
1829
1830static int parse_raid_devices(struct intel_super *super)
1831{
1832 int i;
1833 struct imsm_dev *dev_new;
4d7b1503
DW
1834 size_t len, len_migr;
1835 size_t space_needed = 0;
1836 struct imsm_super *mpb = super->anchor;
949c47a0
DW
1837
1838 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1839 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 1840 struct intel_dev *dv;
949c47a0 1841
4d7b1503
DW
1842 len = sizeof_imsm_dev(dev_iter, 0);
1843 len_migr = sizeof_imsm_dev(dev_iter, 1);
1844 if (len_migr > len)
1845 space_needed += len_migr - len;
1846
ba2de7ba
DW
1847 dv = malloc(sizeof(*dv));
1848 if (!dv)
1849 return 1;
4d7b1503 1850 dev_new = malloc(len_migr);
ba2de7ba
DW
1851 if (!dev_new) {
1852 free(dv);
949c47a0 1853 return 1;
ba2de7ba 1854 }
949c47a0 1855 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
1856 dv->dev = dev_new;
1857 dv->index = i;
1858 dv->next = super->devlist;
1859 super->devlist = dv;
949c47a0 1860 }
cdddbdbc 1861
4d7b1503
DW
1862 /* ensure that super->buf is large enough when all raid devices
1863 * are migrating
1864 */
1865 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
1866 void *buf;
1867
1868 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
1869 if (posix_memalign(&buf, 512, len) != 0)
1870 return 1;
1871
1f45a8ad
DW
1872 memcpy(buf, super->buf, super->len);
1873 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
1874 free(super->buf);
1875 super->buf = buf;
1876 super->len = len;
1877 }
1878
cdddbdbc
DW
1879 return 0;
1880}
1881
604b746f
JD
1882/* retrieve a pointer to the bbm log which starts after all raid devices */
1883struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
1884{
1885 void *ptr = NULL;
1886
1887 if (__le32_to_cpu(mpb->bbm_log_size)) {
1888 ptr = mpb;
1889 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
1890 }
1891
1892 return ptr;
1893}
1894
d23fe947 1895static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 1896
cdddbdbc
DW
1897/* load_imsm_mpb - read matrix metadata
1898 * allocates super->mpb to be freed by free_super
1899 */
1900static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
1901{
1902 unsigned long long dsize;
cdddbdbc
DW
1903 unsigned long long sectors;
1904 struct stat;
6416d527 1905 struct imsm_super *anchor;
cdddbdbc
DW
1906 __u32 check_sum;
1907
cdddbdbc
DW
1908 get_dev_size(fd, NULL, &dsize);
1909
1910 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
1911 if (devname)
1912 fprintf(stderr,
1913 Name ": Cannot seek to anchor block on %s: %s\n",
1914 devname, strerror(errno));
1915 return 1;
1916 }
1917
949c47a0 1918 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
ad97895e
DW
1919 if (devname)
1920 fprintf(stderr,
1921 Name ": Failed to allocate imsm anchor buffer"
1922 " on %s\n", devname);
1923 return 1;
1924 }
949c47a0 1925 if (read(fd, anchor, 512) != 512) {
cdddbdbc
DW
1926 if (devname)
1927 fprintf(stderr,
1928 Name ": Cannot read anchor block on %s: %s\n",
1929 devname, strerror(errno));
6416d527 1930 free(anchor);
cdddbdbc
DW
1931 return 1;
1932 }
1933
6416d527 1934 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc
DW
1935 if (devname)
1936 fprintf(stderr,
1937 Name ": no IMSM anchor on %s\n", devname);
6416d527 1938 free(anchor);
cdddbdbc
DW
1939 return 2;
1940 }
1941
d23fe947 1942 __free_imsm(super, 0);
949c47a0
DW
1943 super->len = ROUND_UP(anchor->mpb_size, 512);
1944 if (posix_memalign(&super->buf, 512, super->len) != 0) {
cdddbdbc
DW
1945 if (devname)
1946 fprintf(stderr,
1947 Name ": unable to allocate %zu byte mpb buffer\n",
949c47a0 1948 super->len);
6416d527 1949 free(anchor);
cdddbdbc
DW
1950 return 2;
1951 }
949c47a0 1952 memcpy(super->buf, anchor, 512);
cdddbdbc 1953
6416d527
NB
1954 sectors = mpb_sectors(anchor) - 1;
1955 free(anchor);
949c47a0 1956 if (!sectors) {
ecf45690
DW
1957 check_sum = __gen_imsm_checksum(super->anchor);
1958 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
1959 if (devname)
1960 fprintf(stderr,
1961 Name ": IMSM checksum %x != %x on %s\n",
1962 check_sum,
1963 __le32_to_cpu(super->anchor->check_sum),
1964 devname);
1965 return 2;
1966 }
1967
a2b97981 1968 return 0;
949c47a0 1969 }
cdddbdbc
DW
1970
1971 /* read the extended mpb */
1972 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
1973 if (devname)
1974 fprintf(stderr,
1975 Name ": Cannot seek to extended mpb on %s: %s\n",
1976 devname, strerror(errno));
1977 return 1;
1978 }
1979
949c47a0 1980 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
cdddbdbc
DW
1981 if (devname)
1982 fprintf(stderr,
1983 Name ": Cannot read extended mpb on %s: %s\n",
1984 devname, strerror(errno));
1985 return 2;
1986 }
1987
949c47a0
DW
1988 check_sum = __gen_imsm_checksum(super->anchor);
1989 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc
DW
1990 if (devname)
1991 fprintf(stderr,
1992 Name ": IMSM checksum %x != %x on %s\n",
949c47a0 1993 check_sum, __le32_to_cpu(super->anchor->check_sum),
cdddbdbc 1994 devname);
db575f3b 1995 return 3;
cdddbdbc
DW
1996 }
1997
604b746f
JD
1998 /* FIXME the BBM log is disk specific so we cannot use this global
1999 * buffer for all disks. Ok for now since we only look at the global
2000 * bbm_log_size parameter to gate assembly
2001 */
2002 super->bbm_log = __get_imsm_bbm_log(super->anchor);
2003
a2b97981
DW
2004 return 0;
2005}
2006
2007static int
2008load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
2009{
2010 int err;
2011
2012 err = load_imsm_mpb(fd, super, devname);
2013 if (err)
2014 return err;
2015 err = load_imsm_disk(fd, super, devname, keep_fd);
2016 if (err)
2017 return err;
2018 err = parse_raid_devices(super);
4d7b1503 2019
a2b97981 2020 return err;
cdddbdbc
DW
2021}
2022
ae6aad82
DW
2023static void __free_imsm_disk(struct dl *d)
2024{
2025 if (d->fd >= 0)
2026 close(d->fd);
2027 if (d->devname)
2028 free(d->devname);
0dcecb2e
DW
2029 if (d->e)
2030 free(d->e);
ae6aad82
DW
2031 free(d);
2032
2033}
cdddbdbc
DW
2034static void free_imsm_disks(struct intel_super *super)
2035{
47ee5a45 2036 struct dl *d;
cdddbdbc 2037
47ee5a45
DW
2038 while (super->disks) {
2039 d = super->disks;
cdddbdbc 2040 super->disks = d->next;
ae6aad82 2041 __free_imsm_disk(d);
cdddbdbc 2042 }
47ee5a45
DW
2043 while (super->missing) {
2044 d = super->missing;
2045 super->missing = d->next;
2046 __free_imsm_disk(d);
2047 }
2048
cdddbdbc
DW
2049}
2050
9ca2c81c 2051/* free all the pieces hanging off of a super pointer */
d23fe947 2052static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 2053{
9ca2c81c 2054 if (super->buf) {
949c47a0 2055 free(super->buf);
9ca2c81c
DW
2056 super->buf = NULL;
2057 }
d23fe947
DW
2058 if (free_disks)
2059 free_imsm_disks(super);
ba2de7ba 2060 free_devlist(super);
88c32bb1
DW
2061 if (super->hba) {
2062 free((void *) super->hba);
2063 super->hba = NULL;
2064 }
cdddbdbc
DW
2065}
2066
9ca2c81c
DW
2067static void free_imsm(struct intel_super *super)
2068{
d23fe947 2069 __free_imsm(super, 1);
9ca2c81c
DW
2070 free(super);
2071}
cdddbdbc
DW
2072
2073static void free_super_imsm(struct supertype *st)
2074{
2075 struct intel_super *super = st->sb;
2076
2077 if (!super)
2078 return;
2079
2080 free_imsm(super);
2081 st->sb = NULL;
2082}
2083
c2c087e6
DW
2084static struct intel_super *alloc_super(int creating_imsm)
2085{
2086 struct intel_super *super = malloc(sizeof(*super));
2087
2088 if (super) {
2089 memset(super, 0, sizeof(*super));
2090 super->creating_imsm = creating_imsm;
bf5a934a 2091 super->current_vol = -1;
0dcecb2e 2092 super->create_offset = ~((__u32 ) 0);
88c32bb1
DW
2093 if (!check_env("IMSM_NO_PLATFORM"))
2094 super->orom = find_imsm_orom();
cceebc67 2095 if (super->orom && !check_env("IMSM_TEST_OROM")) {
88c32bb1
DW
2096 struct sys_dev *list, *ent;
2097
2098 /* find the first intel ahci controller */
2099 list = find_driver_devices("pci", "ahci");
2100 for (ent = list; ent; ent = ent->next)
2101 if (devpath_to_vendor(ent->path) == 0x8086)
2102 break;
2103 if (ent) {
2104 super->hba = ent->path;
2105 ent->path = NULL;
2106 }
2107 free_sys_dev(&list);
2108 }
c2c087e6
DW
2109 }
2110
2111 return super;
2112}
2113
cdddbdbc 2114#ifndef MDASSEMBLE
47ee5a45
DW
2115/* find_missing - helper routine for load_super_imsm_all that identifies
2116 * disks that have disappeared from the system. This routine relies on
2117 * the mpb being uptodate, which it is at load time.
2118 */
2119static int find_missing(struct intel_super *super)
2120{
2121 int i;
2122 struct imsm_super *mpb = super->anchor;
2123 struct dl *dl;
2124 struct imsm_disk *disk;
47ee5a45
DW
2125
2126 for (i = 0; i < mpb->num_disks; i++) {
2127 disk = __get_imsm_disk(mpb, i);
54c2c1ea 2128 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
2129 if (dl)
2130 continue;
47ee5a45
DW
2131
2132 dl = malloc(sizeof(*dl));
2133 if (!dl)
2134 return 1;
2135 dl->major = 0;
2136 dl->minor = 0;
2137 dl->fd = -1;
2138 dl->devname = strdup("missing");
2139 dl->index = i;
2140 serialcpy(dl->serial, disk->serial);
2141 dl->disk = *disk;
689c9bf3 2142 dl->e = NULL;
47ee5a45
DW
2143 dl->next = super->missing;
2144 super->missing = dl;
2145 }
2146
2147 return 0;
2148}
2149
a2b97981
DW
2150static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
2151{
2152 struct intel_disk *idisk = disk_list;
2153
2154 while (idisk) {
2155 if (serialcmp(idisk->disk.serial, serial) == 0)
2156 break;
2157 idisk = idisk->next;
2158 }
2159
2160 return idisk;
2161}
2162
2163static int __prep_thunderdome(struct intel_super **table, int tbl_size,
2164 struct intel_super *super,
2165 struct intel_disk **disk_list)
2166{
2167 struct imsm_disk *d = &super->disks->disk;
2168 struct imsm_super *mpb = super->anchor;
2169 int i, j;
2170
2171 for (i = 0; i < tbl_size; i++) {
2172 struct imsm_super *tbl_mpb = table[i]->anchor;
2173 struct imsm_disk *tbl_d = &table[i]->disks->disk;
2174
2175 if (tbl_mpb->family_num == mpb->family_num) {
2176 if (tbl_mpb->check_sum == mpb->check_sum) {
2177 dprintf("%s: mpb from %d:%d matches %d:%d\n",
2178 __func__, super->disks->major,
2179 super->disks->minor,
2180 table[i]->disks->major,
2181 table[i]->disks->minor);
2182 break;
2183 }
2184
2185 if (((is_configured(d) && !is_configured(tbl_d)) ||
2186 is_configured(d) == is_configured(tbl_d)) &&
2187 tbl_mpb->generation_num < mpb->generation_num) {
2188 /* current version of the mpb is a
2189 * better candidate than the one in
2190 * super_table, but copy over "cross
2191 * generational" status
2192 */
2193 struct intel_disk *idisk;
2194
2195 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
2196 __func__, super->disks->major,
2197 super->disks->minor,
2198 table[i]->disks->major,
2199 table[i]->disks->minor);
2200
2201 idisk = disk_list_get(tbl_d->serial, *disk_list);
2202 if (idisk && is_failed(&idisk->disk))
2203 tbl_d->status |= FAILED_DISK;
2204 break;
2205 } else {
2206 struct intel_disk *idisk;
2207 struct imsm_disk *disk;
2208
2209 /* tbl_mpb is more up to date, but copy
2210 * over cross generational status before
2211 * returning
2212 */
2213 disk = __serial_to_disk(d->serial, mpb, NULL);
2214 if (disk && is_failed(disk))
2215 d->status |= FAILED_DISK;
2216
2217 idisk = disk_list_get(d->serial, *disk_list);
2218 if (idisk) {
2219 idisk->owner = i;
2220 if (disk && is_configured(disk))
2221 idisk->disk.status |= CONFIGURED_DISK;
2222 }
2223
2224 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
2225 __func__, super->disks->major,
2226 super->disks->minor,
2227 table[i]->disks->major,
2228 table[i]->disks->minor);
2229
2230 return tbl_size;
2231 }
2232 }
2233 }
2234
2235 if (i >= tbl_size)
2236 table[tbl_size++] = super;
2237 else
2238 table[i] = super;
2239
2240 /* update/extend the merged list of imsm_disk records */
2241 for (j = 0; j < mpb->num_disks; j++) {
2242 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
2243 struct intel_disk *idisk;
2244
2245 idisk = disk_list_get(disk->serial, *disk_list);
2246 if (idisk) {
2247 idisk->disk.status |= disk->status;
2248 if (is_configured(&idisk->disk) ||
2249 is_failed(&idisk->disk))
2250 idisk->disk.status &= ~(SPARE_DISK);
2251 } else {
2252 idisk = calloc(1, sizeof(*idisk));
2253 if (!idisk)
2254 return -1;
2255 idisk->owner = IMSM_UNKNOWN_OWNER;
2256 idisk->disk = *disk;
2257 idisk->next = *disk_list;
2258 *disk_list = idisk;
2259 }
2260
2261 if (serialcmp(idisk->disk.serial, d->serial) == 0)
2262 idisk->owner = i;
2263 }
2264
2265 return tbl_size;
2266}
2267
2268static struct intel_super *
2269validate_members(struct intel_super *super, struct intel_disk *disk_list,
2270 const int owner)
2271{
2272 struct imsm_super *mpb = super->anchor;
2273 int ok_count = 0;
2274 int i;
2275
2276 for (i = 0; i < mpb->num_disks; i++) {
2277 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2278 struct intel_disk *idisk;
2279
2280 idisk = disk_list_get(disk->serial, disk_list);
2281 if (idisk) {
2282 if (idisk->owner == owner ||
2283 idisk->owner == IMSM_UNKNOWN_OWNER)
2284 ok_count++;
2285 else
2286 dprintf("%s: '%.16s' owner %d != %d\n",
2287 __func__, disk->serial, idisk->owner,
2288 owner);
2289 } else {
2290 dprintf("%s: unknown disk %x [%d]: %.16s\n",
2291 __func__, __le32_to_cpu(mpb->family_num), i,
2292 disk->serial);
2293 break;
2294 }
2295 }
2296
2297 if (ok_count == mpb->num_disks)
2298 return super;
2299 return NULL;
2300}
2301
2302static void show_conflicts(__u32 family_num, struct intel_super *super_list)
2303{
2304 struct intel_super *s;
2305
2306 for (s = super_list; s; s = s->next) {
2307 if (family_num != s->anchor->family_num)
2308 continue;
2309 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
2310 __le32_to_cpu(family_num), s->disks->devname);
2311 }
2312}
2313
2314static struct intel_super *
2315imsm_thunderdome(struct intel_super **super_list, int len)
2316{
2317 struct intel_super *super_table[len];
2318 struct intel_disk *disk_list = NULL;
2319 struct intel_super *champion, *spare;
2320 struct intel_super *s, **del;
2321 int tbl_size = 0;
2322 int conflict;
2323 int i;
2324
2325 memset(super_table, 0, sizeof(super_table));
2326 for (s = *super_list; s; s = s->next)
2327 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
2328
2329 for (i = 0; i < tbl_size; i++) {
2330 struct imsm_disk *d;
2331 struct intel_disk *idisk;
2332 struct imsm_super *mpb = super_table[i]->anchor;
2333
2334 s = super_table[i];
2335 d = &s->disks->disk;
2336
2337 /* 'd' must appear in merged disk list for its
2338 * configuration to be valid
2339 */
2340 idisk = disk_list_get(d->serial, disk_list);
2341 if (idisk && idisk->owner == i)
2342 s = validate_members(s, disk_list, i);
2343 else
2344 s = NULL;
2345
2346 if (!s)
2347 dprintf("%s: marking family: %#x from %d:%d offline\n",
2348 __func__, mpb->family_num,
2349 super_table[i]->disks->major,
2350 super_table[i]->disks->minor);
2351 super_table[i] = s;
2352 }
2353
2354 /* This is where the mdadm implementation differs from the Windows
2355 * driver which has no strict concept of a container. We can only
2356 * assemble one family from a container, so when returning a prodigal
2357 * array member to this system the code will not be able to disambiguate
2358 * the container contents that should be assembled ("foreign" versus
2359 * "local"). It requires user intervention to set the orig_family_num
2360 * to a new value to establish a new container. The Windows driver in
2361 * this situation fixes up the volume name in place and manages the
2362 * foreign array as an independent entity.
2363 */
2364 s = NULL;
2365 spare = NULL;
2366 conflict = 0;
2367 for (i = 0; i < tbl_size; i++) {
2368 struct intel_super *tbl_ent = super_table[i];
2369 int is_spare = 0;
2370
2371 if (!tbl_ent)
2372 continue;
2373
2374 if (tbl_ent->anchor->num_raid_devs == 0) {
2375 spare = tbl_ent;
2376 is_spare = 1;
2377 }
2378
2379 if (s && !is_spare) {
2380 show_conflicts(tbl_ent->anchor->family_num, *super_list);
2381 conflict++;
2382 } else if (!s && !is_spare)
2383 s = tbl_ent;
2384 }
2385
2386 if (!s)
2387 s = spare;
2388 if (!s) {
2389 champion = NULL;
2390 goto out;
2391 }
2392 champion = s;
2393
2394 if (conflict)
2395 fprintf(stderr, "Chose family %#x on '%s', "
2396 "assemble conflicts to new container with '--update=uuid'\n",
2397 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
2398
2399 /* collect all dl's onto 'champion', and update them to
2400 * champion's version of the status
2401 */
2402 for (s = *super_list; s; s = s->next) {
2403 struct imsm_super *mpb = champion->anchor;
2404 struct dl *dl = s->disks;
2405
2406 if (s == champion)
2407 continue;
2408
2409 for (i = 0; i < mpb->num_disks; i++) {
2410 struct imsm_disk *disk;
2411
2412 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
2413 if (disk) {
2414 dl->disk = *disk;
2415 /* only set index on disks that are a member of
2416 * a populated contianer, i.e. one with
2417 * raid_devs
2418 */
2419 if (is_failed(&dl->disk))
2420 dl->index = -2;
2421 else if (is_spare(&dl->disk))
2422 dl->index = -1;
2423 break;
2424 }
2425 }
2426
2427 if (i >= mpb->num_disks) {
2428 struct intel_disk *idisk;
2429
2430 idisk = disk_list_get(dl->serial, disk_list);
2431 if (is_spare(&idisk->disk) &&
2432 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
2433 dl->index = -1;
2434 else {
2435 dl->index = -2;
2436 continue;
2437 }
2438 }
2439
2440 dl->next = champion->disks;
2441 champion->disks = dl;
2442 s->disks = NULL;
2443 }
2444
2445 /* delete 'champion' from super_list */
2446 for (del = super_list; *del; ) {
2447 if (*del == champion) {
2448 *del = (*del)->next;
2449 break;
2450 } else
2451 del = &(*del)->next;
2452 }
2453 champion->next = NULL;
2454
2455 out:
2456 while (disk_list) {
2457 struct intel_disk *idisk = disk_list;
2458
2459 disk_list = disk_list->next;
2460 free(idisk);
2461 }
2462
2463 return champion;
2464}
2465
cdddbdbc
DW
2466static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
2467 char *devname, int keep_fd)
2468{
2469 struct mdinfo *sra;
a2b97981
DW
2470 struct intel_super *super_list = NULL;
2471 struct intel_super *super = NULL;
db575f3b 2472 int devnum = fd2devnum(fd);
a2b97981 2473 struct mdinfo *sd;
db575f3b 2474 int retry;
a2b97981
DW
2475 int err = 0;
2476 int i;
dab4a513 2477 enum sysfs_read_flags flags;
cdddbdbc 2478
dab4a513
DW
2479 flags = GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE;
2480 if (mdmon_running(devnum))
2481 flags |= SKIP_GONE_DEVS;
2482
2483 /* check if 'fd' an opened container */
2484 sra = sysfs_read(fd, 0, flags);
cdddbdbc
DW
2485 if (!sra)
2486 return 1;
2487
2488 if (sra->array.major_version != -1 ||
2489 sra->array.minor_version != -2 ||
2490 strcmp(sra->text_version, "imsm") != 0)
2491 return 1;
2492
a2b97981
DW
2493 /* load all mpbs */
2494 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
2495 struct intel_super *s = alloc_super(0);
2496 char nm[20];
2497 int dfd;
2498
2499 err = 1;
2500 if (!s)
2501 goto error;
2502 s->next = super_list;
2503 super_list = s;
cdddbdbc 2504
a2b97981 2505 err = 2;
cdddbdbc
DW
2506 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2507 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
a2b97981
DW
2508 if (dfd < 0)
2509 goto error;
2510
2511 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
db575f3b
DW
2512
2513 /* retry the load if we might have raced against mdmon */
a2b97981 2514 if (err == 3 && mdmon_running(devnum))
db575f3b
DW
2515 for (retry = 0; retry < 3; retry++) {
2516 usleep(3000);
a2b97981
DW
2517 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
2518 if (err != 3)
db575f3b
DW
2519 break;
2520 }
cdddbdbc
DW
2521 if (!keep_fd)
2522 close(dfd);
a2b97981
DW
2523 if (err)
2524 goto error;
cdddbdbc
DW
2525 }
2526
a2b97981
DW
2527 /* all mpbs enter, maybe one leaves */
2528 super = imsm_thunderdome(&super_list, i);
2529 if (!super) {
2530 err = 1;
2531 goto error;
cdddbdbc
DW
2532 }
2533
47ee5a45
DW
2534 if (find_missing(super) != 0) {
2535 free_imsm(super);
a2b97981
DW
2536 err = 2;
2537 goto error;
47ee5a45
DW
2538 }
2539
f7e7067b 2540 if (st->subarray[0]) {
949c47a0 2541 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
bf5a934a 2542 super->current_vol = atoi(st->subarray);
af99d9ca
DW
2543 else {
2544 free_imsm(super);
a2b97981
DW
2545 err = 1;
2546 goto error;
af99d9ca 2547 }
f7e7067b 2548 }
a2b97981
DW
2549 err = 0;
2550
2551 error:
2552 while (super_list) {
2553 struct intel_super *s = super_list;
2554
2555 super_list = super_list->next;
2556 free_imsm(s);
2557 }
2558
2559 if (err)
2560 return err;
f7e7067b 2561
cdddbdbc 2562 *sbp = super;
db575f3b 2563 st->container_dev = devnum;
a2b97981 2564 if (err == 0 && st->ss == NULL) {
bf5a934a 2565 st->ss = &super_imsm;
cdddbdbc
DW
2566 st->minor_version = 0;
2567 st->max_devs = IMSM_MAX_DEVICES;
2568 }
352452c3 2569 st->loaded_container = 1;
cdddbdbc
DW
2570
2571 return 0;
2572}
2573#endif
2574
2575static int load_super_imsm(struct supertype *st, int fd, char *devname)
2576{
2577 struct intel_super *super;
2578 int rv;
2579
2580#ifndef MDASSEMBLE
3dbccbcf 2581 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
cdddbdbc
DW
2582 return 0;
2583#endif
2584
37424f13
DW
2585 free_super_imsm(st);
2586
c2c087e6 2587 super = alloc_super(0);
cdddbdbc
DW
2588 if (!super) {
2589 fprintf(stderr,
2590 Name ": malloc of %zu failed.\n",
2591 sizeof(*super));
2592 return 1;
2593 }
2594
a2b97981 2595 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc
DW
2596
2597 if (rv) {
2598 if (devname)
2599 fprintf(stderr,
2600 Name ": Failed to load all information "
2601 "sections on %s\n", devname);
2602 free_imsm(super);
2603 return rv;
2604 }
2605
af99d9ca
DW
2606 if (st->subarray[0]) {
2607 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
2608 super->current_vol = atoi(st->subarray);
2609 else {
2610 free_imsm(super);
2611 return 1;
2612 }
2613 }
2614
cdddbdbc
DW
2615 st->sb = super;
2616 if (st->ss == NULL) {
2617 st->ss = &super_imsm;
2618 st->minor_version = 0;
2619 st->max_devs = IMSM_MAX_DEVICES;
2620 }
352452c3 2621 st->loaded_container = 0;
cdddbdbc
DW
2622
2623 return 0;
2624}
2625
ef6ffade
DW
2626static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
2627{
2628 if (info->level == 1)
2629 return 128;
2630 return info->chunk_size >> 9;
2631}
2632
ff596308 2633static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
ef6ffade
DW
2634{
2635 __u32 num_stripes;
2636
2637 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
ff596308 2638 num_stripes /= num_domains;
ef6ffade
DW
2639
2640 return num_stripes;
2641}
2642
fcfd9599
DW
2643static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
2644{
4025c288
DW
2645 if (info->level == 1)
2646 return info->size * 2;
2647 else
2648 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
2649}
2650
4d1313e9
DW
2651static void imsm_update_version_info(struct intel_super *super)
2652{
2653 /* update the version and attributes */
2654 struct imsm_super *mpb = super->anchor;
2655 char *version;
2656 struct imsm_dev *dev;
2657 struct imsm_map *map;
2658 int i;
2659
2660 for (i = 0; i < mpb->num_raid_devs; i++) {
2661 dev = get_imsm_dev(super, i);
2662 map = get_imsm_map(dev, 0);
2663 if (__le32_to_cpu(dev->size_high) > 0)
2664 mpb->attributes |= MPB_ATTRIB_2TB;
2665
2666 /* FIXME detect when an array spans a port multiplier */
2667 #if 0
2668 mpb->attributes |= MPB_ATTRIB_PM;
2669 #endif
2670
2671 if (mpb->num_raid_devs > 1 ||
2672 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
2673 version = MPB_VERSION_ATTRIBS;
2674 switch (get_imsm_raid_level(map)) {
2675 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
2676 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
2677 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
2678 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
2679 }
2680 } else {
2681 if (map->num_members >= 5)
2682 version = MPB_VERSION_5OR6_DISK_ARRAY;
2683 else if (dev->status == DEV_CLONE_N_GO)
2684 version = MPB_VERSION_CNG;
2685 else if (get_imsm_raid_level(map) == 5)
2686 version = MPB_VERSION_RAID5;
2687 else if (map->num_members >= 3)
2688 version = MPB_VERSION_3OR4_DISK_ARRAY;
2689 else if (get_imsm_raid_level(map) == 1)
2690 version = MPB_VERSION_RAID1;
2691 else
2692 version = MPB_VERSION_RAID0;
2693 }
2694 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
2695 }
2696}
2697
8b353278
DW
2698static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
2699 unsigned long long size, char *name,
2700 char *homehost, int *uuid)
cdddbdbc 2701{
c2c087e6
DW
2702 /* We are creating a volume inside a pre-existing container.
2703 * so st->sb is already set.
2704 */
2705 struct intel_super *super = st->sb;
949c47a0 2706 struct imsm_super *mpb = super->anchor;
ba2de7ba 2707 struct intel_dev *dv;
c2c087e6
DW
2708 struct imsm_dev *dev;
2709 struct imsm_vol *vol;
2710 struct imsm_map *map;
2711 int idx = mpb->num_raid_devs;
2712 int i;
2713 unsigned long long array_blocks;
2c092cad 2714 size_t size_old, size_new;
ff596308 2715 __u32 num_data_stripes;
cdddbdbc 2716
88c32bb1 2717 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
c2c087e6 2718 fprintf(stderr, Name": This imsm-container already has the "
88c32bb1 2719 "maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
2720 return 0;
2721 }
2722
2c092cad
DW
2723 /* ensure the mpb is large enough for the new data */
2724 size_old = __le32_to_cpu(mpb->mpb_size);
2725 size_new = disks_to_mpb_size(info->nr_disks);
2726 if (size_new > size_old) {
2727 void *mpb_new;
2728 size_t size_round = ROUND_UP(size_new, 512);
2729
2730 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
2731 fprintf(stderr, Name": could not allocate new mpb\n");
2732 return 0;
2733 }
2734 memcpy(mpb_new, mpb, size_old);
2735 free(mpb);
2736 mpb = mpb_new;
949c47a0 2737 super->anchor = mpb_new;
2c092cad
DW
2738 mpb->mpb_size = __cpu_to_le32(size_new);
2739 memset(mpb_new + size_old, 0, size_round - size_old);
2740 }
bf5a934a 2741 super->current_vol = idx;
d23fe947
DW
2742 /* when creating the first raid device in this container set num_disks
2743 * to zero, i.e. delete this spare and add raid member devices in
2744 * add_to_super_imsm_volume()
2745 */
2746 if (super->current_vol == 0)
2747 mpb->num_disks = 0;
5a038140
DW
2748
2749 for (i = 0; i < super->current_vol; i++) {
2750 dev = get_imsm_dev(super, i);
2751 if (strncmp((char *) dev->volume, name,
2752 MAX_RAID_SERIAL_LEN) == 0) {
2753 fprintf(stderr, Name": '%s' is already defined for this container\n",
2754 name);
2755 return 0;
2756 }
2757 }
2758
bf5a934a 2759 sprintf(st->subarray, "%d", idx);
ba2de7ba
DW
2760 dv = malloc(sizeof(*dv));
2761 if (!dv) {
2762 fprintf(stderr, Name ": failed to allocate device list entry\n");
2763 return 0;
2764 }
949c47a0
DW
2765 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
2766 if (!dev) {
ba2de7ba 2767 free(dv);
949c47a0
DW
2768 fprintf(stderr, Name": could not allocate raid device\n");
2769 return 0;
2770 }
c2c087e6 2771 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
03bcbc65
DW
2772 if (info->level == 1)
2773 array_blocks = info_to_blocks_per_member(info);
2774 else
2775 array_blocks = calc_array_size(info->level, info->raid_disks,
2776 info->layout, info->chunk_size,
2777 info->size*2);
979d38be
DW
2778 /* round array size down to closest MB */
2779 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
2780
c2c087e6
DW
2781 dev->size_low = __cpu_to_le32((__u32) array_blocks);
2782 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
2783 dev->status = __cpu_to_le32(0);
2784 dev->reserved_blocks = __cpu_to_le32(0);
2785 vol = &dev->vol;
2786 vol->migr_state = 0;
1484e727 2787 set_migr_type(dev, MIGR_INIT);
c2c087e6 2788 vol->dirty = 0;
f8f603f1 2789 vol->curr_migr_unit = 0;
a965f303 2790 map = get_imsm_map(dev, 0);
0dcecb2e 2791 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
fcfd9599 2792 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
ef6ffade 2793 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 2794 map->failed_disk_num = ~0;
c2c087e6
DW
2795 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
2796 IMSM_T_STATE_NORMAL;
252d23c0 2797 map->ddf = 1;
ef6ffade
DW
2798
2799 if (info->level == 1 && info->raid_disks > 2) {
2800 fprintf(stderr, Name": imsm does not support more than 2 disks"
2801 "in a raid1 volume\n");
2802 return 0;
2803 }
81062a36
DW
2804
2805 map->raid_level = info->level;
4d1313e9 2806 if (info->level == 10) {
c2c087e6 2807 map->raid_level = 1;
4d1313e9 2808 map->num_domains = info->raid_disks / 2;
81062a36
DW
2809 } else if (info->level == 1)
2810 map->num_domains = info->raid_disks;
2811 else
ff596308 2812 map->num_domains = 1;
81062a36 2813
ff596308
DW
2814 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
2815 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
ef6ffade 2816
c2c087e6
DW
2817 map->num_members = info->raid_disks;
2818 for (i = 0; i < map->num_members; i++) {
2819 /* initialized in add_to_super */
be73972f 2820 set_imsm_ord_tbl_ent(map, i, 0);
c2c087e6 2821 }
949c47a0 2822 mpb->num_raid_devs++;
ba2de7ba
DW
2823
2824 dv->dev = dev;
2825 dv->index = super->current_vol;
2826 dv->next = super->devlist;
2827 super->devlist = dv;
c2c087e6 2828
4d1313e9
DW
2829 imsm_update_version_info(super);
2830
c2c087e6 2831 return 1;
cdddbdbc
DW
2832}
2833
bf5a934a
DW
2834static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
2835 unsigned long long size, char *name,
2836 char *homehost, int *uuid)
2837{
2838 /* This is primarily called by Create when creating a new array.
2839 * We will then get add_to_super called for each component, and then
2840 * write_init_super called to write it out to each device.
2841 * For IMSM, Create can create on fresh devices or on a pre-existing
2842 * array.
2843 * To create on a pre-existing array a different method will be called.
2844 * This one is just for fresh drives.
2845 */
2846 struct intel_super *super;
2847 struct imsm_super *mpb;
2848 size_t mpb_size;
4d1313e9 2849 char *version;
bf5a934a 2850
bf5a934a 2851 if (st->sb)
e683ca88
DW
2852 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
2853
2854 if (info)
2855 mpb_size = disks_to_mpb_size(info->nr_disks);
2856 else
2857 mpb_size = 512;
bf5a934a
DW
2858
2859 super = alloc_super(1);
e683ca88 2860 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
bf5a934a 2861 free(super);
e683ca88
DW
2862 super = NULL;
2863 }
2864 if (!super) {
2865 fprintf(stderr, Name
2866 ": %s could not allocate superblock\n", __func__);
bf5a934a
DW
2867 return 0;
2868 }
e683ca88 2869 memset(super->buf, 0, mpb_size);
ef649044 2870 mpb = super->buf;
e683ca88
DW
2871 mpb->mpb_size = __cpu_to_le32(mpb_size);
2872 st->sb = super;
2873
2874 if (info == NULL) {
2875 /* zeroing superblock */
2876 return 0;
2877 }
bf5a934a 2878
4d1313e9
DW
2879 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
2880
2881 version = (char *) mpb->sig;
2882 strcpy(version, MPB_SIGNATURE);
2883 version += strlen(MPB_SIGNATURE);
2884 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 2885
bf5a934a
DW
2886 return 1;
2887}
2888
0e600426 2889#ifndef MDASSEMBLE
f20c3968 2890static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
2891 int fd, char *devname)
2892{
2893 struct intel_super *super = st->sb;
d23fe947 2894 struct imsm_super *mpb = super->anchor;
bf5a934a
DW
2895 struct dl *dl;
2896 struct imsm_dev *dev;
2897 struct imsm_map *map;
bf5a934a 2898
949c47a0 2899 dev = get_imsm_dev(super, super->current_vol);
a965f303 2900 map = get_imsm_map(dev, 0);
bf5a934a 2901
208933a7
N
2902 if (! (dk->state & (1<<MD_DISK_SYNC))) {
2903 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
2904 devname);
2905 return 1;
2906 }
2907
efb30e7f
DW
2908 if (fd == -1) {
2909 /* we're doing autolayout so grab the pre-marked (in
2910 * validate_geometry) raid_disk
2911 */
2912 for (dl = super->disks; dl; dl = dl->next)
2913 if (dl->raiddisk == dk->raid_disk)
2914 break;
2915 } else {
2916 for (dl = super->disks; dl ; dl = dl->next)
2917 if (dl->major == dk->major &&
2918 dl->minor == dk->minor)
2919 break;
2920 }
d23fe947 2921
208933a7
N
2922 if (!dl) {
2923 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
f20c3968 2924 return 1;
208933a7 2925 }
bf5a934a 2926
d23fe947
DW
2927 /* add a pristine spare to the metadata */
2928 if (dl->index < 0) {
2929 dl->index = super->anchor->num_disks;
2930 super->anchor->num_disks++;
2931 }
be73972f 2932 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
ee5aad5a 2933 dl->disk.status = CONFIGURED_DISK;
d23fe947
DW
2934
2935 /* if we are creating the first raid device update the family number */
2936 if (super->current_vol == 0) {
2937 __u32 sum;
2938 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
2939 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
2940
2941 *_dev = *dev;
2942 *_disk = dl->disk;
148acb7b
DW
2943 sum = random32();
2944 sum += __gen_imsm_checksum(mpb);
d23fe947 2945 mpb->family_num = __cpu_to_le32(sum);
148acb7b 2946 mpb->orig_family_num = mpb->family_num;
d23fe947 2947 }
f20c3968
DW
2948
2949 return 0;
bf5a934a
DW
2950}
2951
f20c3968 2952static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
cdddbdbc
DW
2953 int fd, char *devname)
2954{
c2c087e6 2955 struct intel_super *super = st->sb;
c2c087e6
DW
2956 struct dl *dd;
2957 unsigned long long size;
f2f27e63 2958 __u32 id;
c2c087e6
DW
2959 int rv;
2960 struct stat stb;
2961
88c32bb1
DW
2962 /* if we are on an RAID enabled platform check that the disk is
2963 * attached to the raid controller
2964 */
2965 if (super->hba && !disk_attached_to_hba(fd, super->hba)) {
2966 fprintf(stderr,
2967 Name ": %s is not attached to the raid controller: %s\n",
2968 devname ? : "disk", super->hba);
2969 return 1;
2970 }
2971
f20c3968
DW
2972 if (super->current_vol >= 0)
2973 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 2974
c2c087e6
DW
2975 fstat(fd, &stb);
2976 dd = malloc(sizeof(*dd));
b9f594fe 2977 if (!dd) {
c2c087e6
DW
2978 fprintf(stderr,
2979 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
f20c3968 2980 return 1;
c2c087e6
DW
2981 }
2982 memset(dd, 0, sizeof(*dd));
2983 dd->major = major(stb.st_rdev);
2984 dd->minor = minor(stb.st_rdev);
b9f594fe 2985 dd->index = -1;
c2c087e6 2986 dd->devname = devname ? strdup(devname) : NULL;
c2c087e6 2987 dd->fd = fd;
689c9bf3 2988 dd->e = NULL;
c2c087e6
DW
2989 rv = imsm_read_serial(fd, devname, dd->serial);
2990 if (rv) {
2991 fprintf(stderr,
0030e8d6 2992 Name ": failed to retrieve scsi serial, aborting\n");
949c47a0 2993 free(dd);
0030e8d6 2994 abort();
c2c087e6
DW
2995 }
2996
c2c087e6
DW
2997 get_dev_size(fd, NULL, &size);
2998 size /= 512;
1f24f035 2999 serialcpy(dd->disk.serial, dd->serial);
b9f594fe 3000 dd->disk.total_blocks = __cpu_to_le32(size);
ee5aad5a 3001 dd->disk.status = SPARE_DISK;
c2c087e6 3002 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 3003 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 3004 else
b9f594fe 3005 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
3006
3007 if (st->update_tail) {
3008 dd->next = super->add;
3009 super->add = dd;
3010 } else {
3011 dd->next = super->disks;
3012 super->disks = dd;
3013 }
f20c3968
DW
3014
3015 return 0;
cdddbdbc
DW
3016}
3017
f796af5d
DW
3018static int store_imsm_mpb(int fd, struct imsm_super *mpb);
3019
3020static union {
3021 char buf[512];
3022 struct imsm_super anchor;
3023} spare_record __attribute__ ((aligned(512)));
c2c087e6 3024
d23fe947
DW
3025/* spare records have their own family number and do not have any defined raid
3026 * devices
3027 */
3028static int write_super_imsm_spares(struct intel_super *super, int doclose)
3029{
d23fe947 3030 struct imsm_super *mpb = super->anchor;
f796af5d 3031 struct imsm_super *spare = &spare_record.anchor;
d23fe947
DW
3032 __u32 sum;
3033 struct dl *d;
3034
f796af5d
DW
3035 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
3036 spare->generation_num = __cpu_to_le32(1UL),
3037 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
3038 spare->num_disks = 1,
3039 spare->num_raid_devs = 0,
3040 spare->cache_size = mpb->cache_size,
3041 spare->pwr_cycle_count = __cpu_to_le32(1),
3042
3043 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
3044 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947
DW
3045
3046 for (d = super->disks; d; d = d->next) {
8796fdc4 3047 if (d->index != -1)
d23fe947
DW
3048 continue;
3049
f796af5d
DW
3050 spare->disk[0] = d->disk;
3051 sum = __gen_imsm_checksum(spare);
3052 spare->family_num = __cpu_to_le32(sum);
3053 spare->orig_family_num = 0;
3054 sum = __gen_imsm_checksum(spare);
3055 spare->check_sum = __cpu_to_le32(sum);
d23fe947 3056
f796af5d 3057 if (store_imsm_mpb(d->fd, spare)) {
d23fe947
DW
3058 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3059 __func__, d->major, d->minor, strerror(errno));
e74255d9 3060 return 1;
d23fe947
DW
3061 }
3062 if (doclose) {
3063 close(d->fd);
3064 d->fd = -1;
3065 }
3066 }
3067
e74255d9 3068 return 0;
d23fe947
DW
3069}
3070
c2c087e6 3071static int write_super_imsm(struct intel_super *super, int doclose)
cdddbdbc 3072{
949c47a0 3073 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
3074 struct dl *d;
3075 __u32 generation;
3076 __u32 sum;
d23fe947 3077 int spares = 0;
949c47a0 3078 int i;
a48ac0a8 3079 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
cdddbdbc 3080
c2c087e6
DW
3081 /* 'generation' is incremented everytime the metadata is written */
3082 generation = __le32_to_cpu(mpb->generation_num);
3083 generation++;
3084 mpb->generation_num = __cpu_to_le32(generation);
3085
148acb7b
DW
3086 /* fix up cases where previous mdadm releases failed to set
3087 * orig_family_num
3088 */
3089 if (mpb->orig_family_num == 0)
3090 mpb->orig_family_num = mpb->family_num;
3091
1ee1e9fc 3092 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
d23fe947 3093 for (d = super->disks; d; d = d->next) {
8796fdc4 3094 if (d->index == -1)
d23fe947 3095 spares++;
1ee1e9fc 3096 else
d23fe947 3097 mpb->disk[d->index] = d->disk;
d23fe947 3098 }
47ee5a45
DW
3099 for (d = super->missing; d; d = d->next)
3100 mpb->disk[d->index] = d->disk;
b9f594fe 3101
949c47a0
DW
3102 for (i = 0; i < mpb->num_raid_devs; i++) {
3103 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3104
ba2de7ba 3105 imsm_copy_dev(dev, get_imsm_dev(super, i));
a48ac0a8 3106 mpb_size += sizeof_imsm_dev(dev, 0);
949c47a0 3107 }
a48ac0a8
DW
3108 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
3109 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 3110
c2c087e6 3111 /* recalculate checksum */
949c47a0 3112 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
3113 mpb->check_sum = __cpu_to_le32(sum);
3114
d23fe947 3115 /* write the mpb for disks that compose raid devices */
c2c087e6 3116 for (d = super->disks; d ; d = d->next) {
d23fe947
DW
3117 if (d->index < 0)
3118 continue;
f796af5d 3119 if (store_imsm_mpb(d->fd, mpb))
c2c087e6
DW
3120 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3121 __func__, d->major, d->minor, strerror(errno));
c2c087e6
DW
3122 if (doclose) {
3123 close(d->fd);
3124 d->fd = -1;
3125 }
3126 }
3127
d23fe947
DW
3128 if (spares)
3129 return write_super_imsm_spares(super, doclose);
3130
e74255d9 3131 return 0;
c2c087e6
DW
3132}
3133
0e600426 3134
9b1fb677 3135static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
3136{
3137 size_t len;
3138 struct imsm_update_create_array *u;
3139 struct intel_super *super = st->sb;
9b1fb677 3140 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
54c2c1ea
DW
3141 struct imsm_map *map = get_imsm_map(dev, 0);
3142 struct disk_info *inf;
3143 struct imsm_disk *disk;
3144 int i;
43dad3d6 3145
54c2c1ea
DW
3146 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
3147 sizeof(*inf) * map->num_members;
43dad3d6
DW
3148 u = malloc(len);
3149 if (!u) {
3150 fprintf(stderr, "%s: failed to allocate update buffer\n",
3151 __func__);
3152 return 1;
3153 }
3154
3155 u->type = update_create_array;
9b1fb677 3156 u->dev_idx = dev_idx;
43dad3d6 3157 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
3158 inf = get_disk_info(u);
3159 for (i = 0; i < map->num_members; i++) {
9b1fb677
DW
3160 int idx = get_imsm_disk_idx(dev, i);
3161
54c2c1ea
DW
3162 disk = get_imsm_disk(super, idx);
3163 serialcpy(inf[i].serial, disk->serial);
3164 }
43dad3d6
DW
3165 append_metadata_update(st, u, len);
3166
3167 return 0;
3168}
3169
7801ac20 3170static int _add_disk(struct supertype *st)
43dad3d6
DW
3171{
3172 struct intel_super *super = st->sb;
3173 size_t len;
3174 struct imsm_update_add_disk *u;
3175
3176 if (!super->add)
3177 return 0;
3178
3179 len = sizeof(*u);
3180 u = malloc(len);
3181 if (!u) {
3182 fprintf(stderr, "%s: failed to allocate update buffer\n",
3183 __func__);
3184 return 1;
3185 }
3186
3187 u->type = update_add_disk;
3188 append_metadata_update(st, u, len);
3189
3190 return 0;
3191}
3192
c2c087e6
DW
3193static int write_init_super_imsm(struct supertype *st)
3194{
9b1fb677
DW
3195 struct intel_super *super = st->sb;
3196 int current_vol = super->current_vol;
3197
3198 /* we are done with current_vol reset it to point st at the container */
3199 super->current_vol = -1;
3200
8273f55e 3201 if (st->update_tail) {
43dad3d6
DW
3202 /* queue the recently created array / added disk
3203 * as a metadata update */
8273f55e 3204 struct dl *d;
43dad3d6 3205 int rv;
8273f55e 3206
43dad3d6 3207 /* determine if we are creating a volume or adding a disk */
9b1fb677 3208 if (current_vol < 0) {
43dad3d6
DW
3209 /* in the add disk case we are running in mdmon
3210 * context, so don't close fd's
3211 */
7801ac20 3212 return _add_disk(st);
43dad3d6 3213 } else
9b1fb677 3214 rv = create_array(st, current_vol);
8273f55e
DW
3215
3216 for (d = super->disks; d ; d = d->next) {
3217 close(d->fd);
3218 d->fd = -1;
3219 }
3220
43dad3d6 3221 return rv;
8273f55e
DW
3222 } else
3223 return write_super_imsm(st->sb, 1);
cdddbdbc 3224}
0e600426 3225#endif
cdddbdbc 3226
e683ca88 3227static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 3228{
e683ca88
DW
3229 struct intel_super *super = st->sb;
3230 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 3231
e683ca88 3232 if (!mpb)
ad97895e
DW
3233 return 1;
3234
1799c9e8 3235#ifndef MDASSEMBLE
e683ca88 3236 return store_imsm_mpb(fd, mpb);
1799c9e8
N
3237#else
3238 return 1;
3239#endif
cdddbdbc
DW
3240}
3241
0e600426
N
3242static int imsm_bbm_log_size(struct imsm_super *mpb)
3243{
3244 return __le32_to_cpu(mpb->bbm_log_size);
3245}
3246
3247#ifndef MDASSEMBLE
cdddbdbc
DW
3248static int validate_geometry_imsm_container(struct supertype *st, int level,
3249 int layout, int raiddisks, int chunk,
c2c087e6 3250 unsigned long long size, char *dev,
2c514b71
NB
3251 unsigned long long *freesize,
3252 int verbose)
cdddbdbc 3253{
c2c087e6
DW
3254 int fd;
3255 unsigned long long ldsize;
88c32bb1 3256 const struct imsm_orom *orom;
cdddbdbc 3257
c2c087e6
DW
3258 if (level != LEVEL_CONTAINER)
3259 return 0;
3260 if (!dev)
3261 return 1;
3262
88c32bb1
DW
3263 if (check_env("IMSM_NO_PLATFORM"))
3264 orom = NULL;
3265 else
3266 orom = find_imsm_orom();
3267 if (orom && raiddisks > orom->tds) {
3268 if (verbose)
3269 fprintf(stderr, Name ": %d exceeds maximum number of"
3270 " platform supported disks: %d\n",
3271 raiddisks, orom->tds);
3272 return 0;
3273 }
3274
c2c087e6
DW
3275 fd = open(dev, O_RDONLY|O_EXCL, 0);
3276 if (fd < 0) {
2c514b71
NB
3277 if (verbose)
3278 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
3279 dev, strerror(errno));
c2c087e6
DW
3280 return 0;
3281 }
3282 if (!get_dev_size(fd, dev, &ldsize)) {
3283 close(fd);
3284 return 0;
3285 }
3286 close(fd);
3287
3288 *freesize = avail_size_imsm(st, ldsize >> 9);
3289
3290 return 1;
cdddbdbc
DW
3291}
3292
0dcecb2e
DW
3293static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
3294{
3295 const unsigned long long base_start = e[*idx].start;
3296 unsigned long long end = base_start + e[*idx].size;
3297 int i;
3298
3299 if (base_start == end)
3300 return 0;
3301
3302 *idx = *idx + 1;
3303 for (i = *idx; i < num_extents; i++) {
3304 /* extend overlapping extents */
3305 if (e[i].start >= base_start &&
3306 e[i].start <= end) {
3307 if (e[i].size == 0)
3308 return 0;
3309 if (e[i].start + e[i].size > end)
3310 end = e[i].start + e[i].size;
3311 } else if (e[i].start > end) {
3312 *idx = i;
3313 break;
3314 }
3315 }
3316
3317 return end - base_start;
3318}
3319
3320static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
3321{
3322 /* build a composite disk with all known extents and generate a new
3323 * 'maxsize' given the "all disks in an array must share a common start
3324 * offset" constraint
3325 */
3326 struct extent *e = calloc(sum_extents, sizeof(*e));
3327 struct dl *dl;
3328 int i, j;
3329 int start_extent;
3330 unsigned long long pos;
b9d77223 3331 unsigned long long start = 0;
0dcecb2e
DW
3332 unsigned long long maxsize;
3333 unsigned long reserve;
3334
3335 if (!e)
3336 return ~0ULL; /* error */
3337
3338 /* coalesce and sort all extents. also, check to see if we need to
3339 * reserve space between member arrays
3340 */
3341 j = 0;
3342 for (dl = super->disks; dl; dl = dl->next) {
3343 if (!dl->e)
3344 continue;
3345 for (i = 0; i < dl->extent_cnt; i++)
3346 e[j++] = dl->e[i];
3347 }
3348 qsort(e, sum_extents, sizeof(*e), cmp_extent);
3349
3350 /* merge extents */
3351 i = 0;
3352 j = 0;
3353 while (i < sum_extents) {
3354 e[j].start = e[i].start;
3355 e[j].size = find_size(e, &i, sum_extents);
3356 j++;
3357 if (e[j-1].size == 0)
3358 break;
3359 }
3360
3361 pos = 0;
3362 maxsize = 0;
3363 start_extent = 0;
3364 i = 0;
3365 do {
3366 unsigned long long esize;
3367
3368 esize = e[i].start - pos;
3369 if (esize >= maxsize) {
3370 maxsize = esize;
3371 start = pos;
3372 start_extent = i;
3373 }
3374 pos = e[i].start + e[i].size;
3375 i++;
3376 } while (e[i-1].size);
3377 free(e);
3378
3379 if (start_extent > 0)
3380 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
3381 else
3382 reserve = 0;
3383
3384 if (maxsize < reserve)
3385 return ~0ULL;
3386
3387 super->create_offset = ~((__u32) 0);
3388 if (start + reserve > super->create_offset)
3389 return ~0ULL; /* start overflows create_offset */
3390 super->create_offset = start + reserve;
3391
3392 return maxsize - reserve;
3393}
3394
88c32bb1
DW
3395static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
3396{
3397 if (level < 0 || level == 6 || level == 4)
3398 return 0;
3399
3400 /* if we have an orom prevent invalid raid levels */
3401 if (orom)
3402 switch (level) {
3403 case 0: return imsm_orom_has_raid0(orom);
3404 case 1:
3405 if (raiddisks > 2)
3406 return imsm_orom_has_raid1e(orom);
1c556e92
DW
3407 return imsm_orom_has_raid1(orom) && raiddisks == 2;
3408 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
3409 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
3410 }
3411 else
3412 return 1; /* not on an Intel RAID platform so anything goes */
3413
3414 return 0;
3415}
3416
35f81cbb 3417#define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
c2c087e6
DW
3418/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
3419 * FIX ME add ahci details
3420 */
8b353278
DW
3421static int validate_geometry_imsm_volume(struct supertype *st, int level,
3422 int layout, int raiddisks, int chunk,
c2c087e6 3423 unsigned long long size, char *dev,
2c514b71
NB
3424 unsigned long long *freesize,
3425 int verbose)
cdddbdbc 3426{
c2c087e6
DW
3427 struct stat stb;
3428 struct intel_super *super = st->sb;
d10d56fe 3429 struct imsm_super *mpb;
c2c087e6
DW
3430 struct dl *dl;
3431 unsigned long long pos = 0;
3432 unsigned long long maxsize;
3433 struct extent *e;
3434 int i;
cdddbdbc 3435
88c32bb1
DW
3436 /* We must have the container info already read in. */
3437 if (!super)
c2c087e6 3438 return 0;
d10d56fe 3439 mpb = super->anchor;
c2c087e6 3440
88c32bb1 3441 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
1c556e92
DW
3442 pr_vrb(": platform does not support raid%d with %d disk%s\n",
3443 level, raiddisks, raiddisks > 1 ? "s" : "");
c2c087e6
DW
3444 return 0;
3445 }
78757ce8
DW
3446 if (super->orom && level != 1 &&
3447 !imsm_orom_has_chunk(super->orom, chunk)) {
35f81cbb 3448 pr_vrb(": platform does not support a chunk size of: %d\n", chunk);
c2c087e6 3449 return 0;
88c32bb1
DW
3450 }
3451 if (layout != imsm_level_to_layout(level)) {
3452 if (level == 5)
35f81cbb 3453 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
88c32bb1 3454 else if (level == 10)
35f81cbb 3455 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
88c32bb1 3456 else
35f81cbb 3457 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
88c32bb1 3458 layout, level);
c2c087e6 3459 return 0;
88c32bb1 3460 }
c2c087e6
DW
3461
3462 if (!dev) {
3463 /* General test: make sure there is space for
2da8544a
DW
3464 * 'raiddisks' device extents of size 'size' at a given
3465 * offset
c2c087e6 3466 */
e46273eb 3467 unsigned long long minsize = size;
2da8544a 3468 unsigned long long start_offset = ~0ULL;
c2c087e6
DW
3469 int dcnt = 0;
3470 if (minsize == 0)
3471 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
3472 for (dl = super->disks; dl ; dl = dl->next) {
3473 int found = 0;
3474
bf5a934a 3475 pos = 0;
c2c087e6
DW
3476 i = 0;
3477 e = get_extents(super, dl);
3478 if (!e) continue;
3479 do {
3480 unsigned long long esize;
3481 esize = e[i].start - pos;
3482 if (esize >= minsize)
3483 found = 1;
2da8544a
DW
3484 if (found && start_offset == ~0ULL) {
3485 start_offset = pos;
3486 break;
3487 } else if (found && pos != start_offset) {
3488 found = 0;
3489 break;
3490 }
c2c087e6
DW
3491 pos = e[i].start + e[i].size;
3492 i++;
3493 } while (e[i-1].size);
3494 if (found)
3495 dcnt++;
3496 free(e);
3497 }
3498 if (dcnt < raiddisks) {
2c514b71
NB
3499 if (verbose)
3500 fprintf(stderr, Name ": imsm: Not enough "
3501 "devices with space for this array "
3502 "(%d < %d)\n",
3503 dcnt, raiddisks);
c2c087e6
DW
3504 return 0;
3505 }
3506 return 1;
3507 }
0dcecb2e 3508
c2c087e6
DW
3509 /* This device must be a member of the set */
3510 if (stat(dev, &stb) < 0)
3511 return 0;
3512 if ((S_IFMT & stb.st_mode) != S_IFBLK)
3513 return 0;
3514 for (dl = super->disks ; dl ; dl = dl->next) {
3515 if (dl->major == major(stb.st_rdev) &&
3516 dl->minor == minor(stb.st_rdev))
3517 break;
3518 }
3519 if (!dl) {
2c514b71
NB
3520 if (verbose)
3521 fprintf(stderr, Name ": %s is not in the "
3522 "same imsm set\n", dev);
c2c087e6 3523 return 0;
a20d2ba5
DW
3524 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
3525 /* If a volume is present then the current creation attempt
3526 * cannot incorporate new spares because the orom may not
3527 * understand this configuration (all member disks must be
3528 * members of each array in the container).
3529 */
3530 fprintf(stderr, Name ": %s is a spare and a volume"
3531 " is already defined for this container\n", dev);
3532 fprintf(stderr, Name ": The option-rom requires all member"
3533 " disks to be a member of all volumes\n");
3534 return 0;
c2c087e6 3535 }
0dcecb2e
DW
3536
3537 /* retrieve the largest free space block */
c2c087e6
DW
3538 e = get_extents(super, dl);
3539 maxsize = 0;
3540 i = 0;
0dcecb2e
DW
3541 if (e) {
3542 do {
3543 unsigned long long esize;
3544
3545 esize = e[i].start - pos;
3546 if (esize >= maxsize)
3547 maxsize = esize;
3548 pos = e[i].start + e[i].size;
3549 i++;
3550 } while (e[i-1].size);
3551 dl->e = e;
3552 dl->extent_cnt = i;
3553 } else {
3554 if (verbose)
3555 fprintf(stderr, Name ": unable to determine free space for: %s\n",
3556 dev);
3557 return 0;
3558 }
3559 if (maxsize < size) {
3560 if (verbose)
3561 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
3562 dev, maxsize, size);
3563 return 0;
3564 }
3565
3566 /* count total number of extents for merge */
3567 i = 0;
3568 for (dl = super->disks; dl; dl = dl->next)
3569 if (dl->e)
3570 i += dl->extent_cnt;
3571
3572 maxsize = merge_extents(super, i);
3573 if (maxsize < size) {
3574 if (verbose)
3575 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
3576 maxsize, size);
3577 return 0;
3578 } else if (maxsize == ~0ULL) {
3579 if (verbose)
3580 fprintf(stderr, Name ": failed to merge %d extents\n", i);
3581 return 0;
3582 }
3583
c2c087e6
DW
3584 *freesize = maxsize;
3585
3586 return 1;
cdddbdbc
DW
3587}
3588
efb30e7f
DW
3589static int reserve_space(struct supertype *st, int raiddisks,
3590 unsigned long long size, int chunk,
3591 unsigned long long *freesize)
3592{
3593 struct intel_super *super = st->sb;
3594 struct imsm_super *mpb = super->anchor;
3595 struct dl *dl;
3596 int i;
3597 int extent_cnt;
3598 struct extent *e;
3599 unsigned long long maxsize;
3600 unsigned long long minsize;
3601 int cnt;
3602 int used;
3603
3604 /* find the largest common start free region of the possible disks */
3605 used = 0;
3606 extent_cnt = 0;
3607 cnt = 0;
3608 for (dl = super->disks; dl; dl = dl->next) {
3609 dl->raiddisk = -1;
3610
3611 if (dl->index >= 0)
3612 used++;
3613
3614 /* don't activate new spares if we are orom constrained
3615 * and there is already a volume active in the container
3616 */
3617 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
3618 continue;
3619
3620 e = get_extents(super, dl);
3621 if (!e)
3622 continue;
3623 for (i = 1; e[i-1].size; i++)
3624 ;
3625 dl->e = e;
3626 dl->extent_cnt = i;
3627 extent_cnt += i;
3628 cnt++;
3629 }
3630
3631 maxsize = merge_extents(super, extent_cnt);
3632 minsize = size;
3633 if (size == 0)
3634 minsize = chunk;
3635
3636 if (cnt < raiddisks ||
3637 (super->orom && used && used != raiddisks) ||
3638 maxsize < minsize) {
3639 fprintf(stderr, Name ": not enough devices with space to create array.\n");
3640 return 0; /* No enough free spaces large enough */
3641 }
3642
3643 if (size == 0) {
3644 size = maxsize;
3645 if (chunk) {
3646 size /= chunk;
3647 size *= chunk;
3648 }
3649 }
3650
3651 cnt = 0;
3652 for (dl = super->disks; dl; dl = dl->next)
3653 if (dl->e)
3654 dl->raiddisk = cnt++;
3655
3656 *freesize = size;
3657
3658 return 1;
3659}
3660
bf5a934a
DW
3661static int validate_geometry_imsm(struct supertype *st, int level, int layout,
3662 int raiddisks, int chunk, unsigned long long size,
3663 char *dev, unsigned long long *freesize,
3664 int verbose)
3665{
3666 int fd, cfd;
3667 struct mdinfo *sra;
20cbe8d2 3668 int is_member = 0;
bf5a934a
DW
3669
3670 /* if given unused devices create a container
3671 * if given given devices in a container create a member volume
3672 */
3673 if (level == LEVEL_CONTAINER) {
3674 /* Must be a fresh device to add to a container */
3675 return validate_geometry_imsm_container(st, level, layout,
3676 raiddisks, chunk, size,
3677 dev, freesize,
3678 verbose);
3679 }
3680
8592f29d
N
3681 if (!dev) {
3682 if (st->sb && freesize) {
efb30e7f
DW
3683 /* we are being asked to automatically layout a
3684 * new volume based on the current contents of
3685 * the container. If the the parameters can be
3686 * satisfied reserve_space will record the disks,
3687 * start offset, and size of the volume to be
3688 * created. add_to_super and getinfo_super
3689 * detect when autolayout is in progress.
3690 */
3691 return reserve_space(st, raiddisks, size, chunk, freesize);
8592f29d
N
3692 }
3693 return 1;
3694 }
bf5a934a
DW
3695 if (st->sb) {
3696 /* creating in a given container */
3697 return validate_geometry_imsm_volume(st, level, layout,
3698 raiddisks, chunk, size,
3699 dev, freesize, verbose);
3700 }
3701
3702 /* limit creation to the following levels */
3703 if (!dev)
3704 switch (level) {
3705 case 0:
3706 case 1:
3707 case 10:
3708 case 5:
b42f577a 3709 return 0;
bf5a934a 3710 default:
b42f577a
N
3711 if (verbose)
3712 fprintf(stderr, Name
3713 ": IMSM only supports levels 0,1,5,10\n");
bf5a934a
DW
3714 return 1;
3715 }
3716
3717 /* This device needs to be a device in an 'imsm' container */
3718 fd = open(dev, O_RDONLY|O_EXCL, 0);
3719 if (fd >= 0) {
3720 if (verbose)
3721 fprintf(stderr,
3722 Name ": Cannot create this array on device %s\n",
3723 dev);
3724 close(fd);
3725 return 0;
3726 }
3727 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
3728 if (verbose)
3729 fprintf(stderr, Name ": Cannot open %s: %s\n",
3730 dev, strerror(errno));
3731 return 0;
3732 }
3733 /* Well, it is in use by someone, maybe an 'imsm' container. */
3734 cfd = open_container(fd);
20cbe8d2 3735 close(fd);
bf5a934a 3736 if (cfd < 0) {
bf5a934a
DW
3737 if (verbose)
3738 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
3739 dev);
3740 return 0;
3741 }
3742 sra = sysfs_read(cfd, 0, GET_VERSION);
bf5a934a 3743 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
3744 strcmp(sra->text_version, "imsm") == 0)
3745 is_member = 1;
3746 sysfs_free(sra);
3747 if (is_member) {
bf5a934a
DW
3748 /* This is a member of a imsm container. Load the container
3749 * and try to create a volume
3750 */
3751 struct intel_super *super;
3752
3753 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
3754 st->sb = super;
3755 st->container_dev = fd2devnum(cfd);
3756 close(cfd);
3757 return validate_geometry_imsm_volume(st, level, layout,
3758 raiddisks, chunk,
3759 size, dev,
3760 freesize, verbose);
3761 }
20cbe8d2 3762 }
bf5a934a 3763
20cbe8d2
AW
3764 if (verbose)
3765 fprintf(stderr, Name ": failed container membership check\n");
3766
3767 close(cfd);
3768 return 0;
bf5a934a 3769}
0e600426 3770#endif /* MDASSEMBLE */
bf5a934a 3771
cdddbdbc
DW
3772static struct mdinfo *container_content_imsm(struct supertype *st)
3773{
4f5bc454
DW
3774 /* Given a container loaded by load_super_imsm_all,
3775 * extract information about all the arrays into
3776 * an mdinfo tree.
3777 *
3778 * For each imsm_dev create an mdinfo, fill it in,
3779 * then look for matching devices in super->disks
3780 * and create appropriate device mdinfo.
3781 */
3782 struct intel_super *super = st->sb;
949c47a0 3783 struct imsm_super *mpb = super->anchor;
4f5bc454
DW
3784 struct mdinfo *rest = NULL;
3785 int i;
cdddbdbc 3786
604b746f
JD
3787 /* do not assemble arrays that might have bad blocks */
3788 if (imsm_bbm_log_size(super->anchor)) {
3789 fprintf(stderr, Name ": BBM log found in metadata. "
3790 "Cannot activate array(s).\n");
3791 return NULL;
3792 }
3793
4f5bc454 3794 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 3795 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 3796 struct imsm_map *map = get_imsm_map(dev, 0);
4f5bc454 3797 struct mdinfo *this;
4f5bc454
DW
3798 int slot;
3799
1ce0101c
DW
3800 /* do not publish arrays that are in the middle of an
3801 * unsupported migration
3802 */
3803 if (dev->vol.migr_state &&
3804 (migr_type(dev) == MIGR_GEN_MIGR ||
3805 migr_type(dev) == MIGR_STATE_CHANGE)) {
3806 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
3807 " unsupported migration in progress\n",
3808 dev->volume);
3809 continue;
3810 }
3811
4f5bc454 3812 this = malloc(sizeof(*this));
0fbd635c
AW
3813 if (!this) {
3814 fprintf(stderr, Name ": failed to allocate %lu bytes\n",
3815 sizeof(*this));
3816 break;
3817 }
4f5bc454
DW
3818 memset(this, 0, sizeof(*this));
3819 this->next = rest;
4f5bc454 3820
301406c9
DW
3821 super->current_vol = i;
3822 getinfo_super_imsm_volume(st, this);
4f5bc454 3823 for (slot = 0 ; slot < map->num_members; slot++) {
4f5bc454
DW
3824 struct mdinfo *info_d;
3825 struct dl *d;
3826 int idx;
9a1608e5 3827 int skip;
7eef0453 3828 __u32 ord;
4f5bc454 3829
9a1608e5 3830 skip = 0;
ff077194 3831 idx = get_imsm_disk_idx(dev, slot);
7eef0453 3832 ord = get_imsm_ord_tbl_ent(dev, slot);
4f5bc454
DW
3833 for (d = super->disks; d ; d = d->next)
3834 if (d->index == idx)
0fbd635c 3835 break;
4f5bc454
DW
3836
3837 if (d == NULL)
9a1608e5 3838 skip = 1;
25ed7e59 3839 if (d && is_failed(&d->disk))
9a1608e5 3840 skip = 1;
7eef0453
DW
3841 if (ord & IMSM_ORD_REBUILD)
3842 skip = 1;
9a1608e5
DW
3843
3844 /*
3845 * if we skip some disks the array will be assmebled degraded;
3846 * reset resync start to avoid a dirty-degraded situation
3847 *
3848 * FIXME handle dirty degraded
3849 */
3850 if (skip && !dev->vol.dirty)
3851 this->resync_start = ~0ULL;
3852 if (skip)
3853 continue;
4f5bc454
DW
3854
3855 info_d = malloc(sizeof(*info_d));
9a1608e5
DW
3856 if (!info_d) {
3857 fprintf(stderr, Name ": failed to allocate disk"
1ce0101c 3858 " for volume %.16s\n", dev->volume);
9a1608e5
DW
3859 free(this);
3860 this = rest;
3861 break;
3862 }
4f5bc454
DW
3863 memset(info_d, 0, sizeof(*info_d));
3864 info_d->next = this->devs;
3865 this->devs = info_d;
3866
4f5bc454
DW
3867 info_d->disk.number = d->index;
3868 info_d->disk.major = d->major;
3869 info_d->disk.minor = d->minor;
3870 info_d->disk.raid_disk = slot;
4f5bc454
DW
3871
3872 this->array.working_disks++;
3873
3874 info_d->events = __le32_to_cpu(mpb->generation_num);
3875 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
3876 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
3877 if (d->devname)
3878 strcpy(info_d->name, d->devname);
3879 }
9a1608e5 3880 rest = this;
4f5bc454
DW
3881 }
3882
3883 return rest;
cdddbdbc
DW
3884}
3885
845dea95 3886
0e600426 3887#ifndef MDASSEMBLE
cba0191b
NB
3888static int imsm_open_new(struct supertype *c, struct active_array *a,
3889 char *inst)
845dea95 3890{
0372d5a2 3891 struct intel_super *super = c->sb;
949c47a0 3892 struct imsm_super *mpb = super->anchor;
0372d5a2 3893
949c47a0 3894 if (atoi(inst) >= mpb->num_raid_devs) {
0372d5a2
DW
3895 fprintf(stderr, "%s: subarry index %d, out of range\n",
3896 __func__, atoi(inst));
3897 return -ENODEV;
3898 }
3899
4e6e574a 3900 dprintf("imsm: open_new %s\n", inst);
cba0191b 3901 a->info.container_member = atoi(inst);
845dea95
NB
3902 return 0;
3903}
3904
fb49eef2 3905static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
c2a1e7da 3906{
a965f303 3907 struct imsm_map *map = get_imsm_map(dev, 0);
c2a1e7da
DW
3908
3909 if (!failed)
3393c6af
DW
3910 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
3911 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
3912
3913 switch (get_imsm_raid_level(map)) {
3914 case 0:
3915 return IMSM_T_STATE_FAILED;
3916 break;
3917 case 1:
3918 if (failed < map->num_members)
3919 return IMSM_T_STATE_DEGRADED;
3920 else
3921 return IMSM_T_STATE_FAILED;
3922 break;
3923 case 10:
3924 {
3925 /**
c92a2527
DW
3926 * check to see if any mirrors have failed, otherwise we
3927 * are degraded. Even numbered slots are mirrored on
3928 * slot+1
c2a1e7da 3929 */
c2a1e7da 3930 int i;
d9b420a5
N
3931 /* gcc -Os complains that this is unused */
3932 int insync = insync;
c2a1e7da
DW
3933
3934 for (i = 0; i < map->num_members; i++) {
c92a2527
DW
3935 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
3936 int idx = ord_to_idx(ord);
3937 struct imsm_disk *disk;
c2a1e7da 3938
c92a2527
DW
3939 /* reset the potential in-sync count on even-numbered
3940 * slots. num_copies is always 2 for imsm raid10
3941 */
3942 if ((i & 1) == 0)
3943 insync = 2;
c2a1e7da 3944
c92a2527 3945 disk = get_imsm_disk(super, idx);
25ed7e59 3946 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 3947 insync--;
c2a1e7da 3948
c92a2527
DW
3949 /* no in-sync disks left in this mirror the
3950 * array has failed
3951 */
3952 if (insync == 0)
3953 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
3954 }
3955
3956 return IMSM_T_STATE_DEGRADED;
3957 }
3958 case 5:
3959 if (failed < 2)
3960 return IMSM_T_STATE_DEGRADED;
3961 else
3962 return IMSM_T_STATE_FAILED;
3963 break;
3964 default:
3965 break;
3966 }
3967
3968 return map->map_state;
3969}
3970
ff077194 3971static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
c2a1e7da
DW
3972{
3973 int i;
3974 int failed = 0;
3975 struct imsm_disk *disk;
ff077194 3976 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2
DW
3977 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
3978 __u32 ord;
3979 int idx;
c2a1e7da 3980
0556e1a2
DW
3981 /* at the beginning of migration we set IMSM_ORD_REBUILD on
3982 * disks that are being rebuilt. New failures are recorded to
3983 * map[0]. So we look through all the disks we started with and
3984 * see if any failures are still present, or if any new ones
3985 * have arrived
3986 *
3987 * FIXME add support for online capacity expansion and
3988 * raid-level-migration
3989 */
3990 for (i = 0; i < prev->num_members; i++) {
3991 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
3992 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
3993 idx = ord_to_idx(ord);
c2a1e7da 3994
949c47a0 3995 disk = get_imsm_disk(super, idx);
25ed7e59 3996 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
fcb84475 3997 failed++;
c2a1e7da
DW
3998 }
3999
4000 return failed;
845dea95
NB
4001}
4002
0c046afd
DW
4003static int is_resyncing(struct imsm_dev *dev)
4004{
4005 struct imsm_map *migr_map;
4006
4007 if (!dev->vol.migr_state)
4008 return 0;
4009
1484e727
DW
4010 if (migr_type(dev) == MIGR_INIT ||
4011 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
4012 return 1;
4013
4014 migr_map = get_imsm_map(dev, 1);
4015
4016 if (migr_map->map_state == IMSM_T_STATE_NORMAL)
4017 return 1;
4018 else
4019 return 0;
4020}
4021
4022static int is_rebuilding(struct imsm_dev *dev)
4023{
4024 struct imsm_map *migr_map;
4025
4026 if (!dev->vol.migr_state)
4027 return 0;
4028
1484e727 4029 if (migr_type(dev) != MIGR_REBUILD)
0c046afd
DW
4030 return 0;
4031
4032 migr_map = get_imsm_map(dev, 1);
4033
4034 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
4035 return 1;
4036 else
4037 return 0;
4038}
4039
0556e1a2
DW
4040/* return true if we recorded new information */
4041static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 4042{
0556e1a2
DW
4043 __u32 ord;
4044 int slot;
4045 struct imsm_map *map;
4046
4047 /* new failures are always set in map[0] */
4048 map = get_imsm_map(dev, 0);
4049
4050 slot = get_imsm_disk_slot(map, idx);
4051 if (slot < 0)
4052 return 0;
4053
4054 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 4055 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
4056 return 0;
4057
f2f27e63 4058 disk->status |= FAILED_DISK;
cf53434e 4059 disk->status &= ~CONFIGURED_DISK;
0556e1a2 4060 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
4291d691 4061 if (~map->failed_disk_num == 0)
0556e1a2
DW
4062 map->failed_disk_num = slot;
4063 return 1;
4064}
4065
4066static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
4067{
4068 mark_failure(dev, disk, idx);
4069
4070 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
4071 return;
4072
47ee5a45
DW
4073 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4074 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
4075}
4076
0c046afd
DW
4077/* Handle dirty -> clean transititions and resync. Degraded and rebuild
4078 * states are handled in imsm_set_disk() with one exception, when a
4079 * resync is stopped due to a new failure this routine will set the
4080 * 'degraded' state for the array.
4081 */
01f157d7 4082static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
4083{
4084 int inst = a->info.container_member;
4085 struct intel_super *super = a->container->sb;
949c47a0 4086 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 4087 struct imsm_map *map = get_imsm_map(dev, 0);
0c046afd
DW
4088 int failed = imsm_count_failed(super, dev);
4089 __u8 map_state = imsm_check_degraded(super, dev, failed);
a862209d 4090
47ee5a45
DW
4091 /* before we activate this array handle any missing disks */
4092 if (consistent == 2 && super->missing) {
4093 struct dl *dl;
4094
4095 dprintf("imsm: mark missing\n");
4096 end_migration(dev, map_state);
4097 for (dl = super->missing; dl; dl = dl->next)
0556e1a2 4098 mark_missing(dev, &dl->disk, dl->index);
47ee5a45
DW
4099 super->updates_pending++;
4100 }
4101
0c046afd 4102 if (consistent == 2 &&
593add1b 4103 (!is_resync_complete(a) ||
0c046afd
DW
4104 map_state != IMSM_T_STATE_NORMAL ||
4105 dev->vol.migr_state))
01f157d7 4106 consistent = 0;
272906ef 4107
593add1b 4108 if (is_resync_complete(a)) {
0c046afd 4109 /* complete intialization / resync,
0556e1a2
DW
4110 * recovery and interrupted recovery is completed in
4111 * ->set_disk
0c046afd
DW
4112 */
4113 if (is_resyncing(dev)) {
4114 dprintf("imsm: mark resync done\n");
f8f603f1 4115 end_migration(dev, map_state);
115c3803 4116 super->updates_pending++;
115c3803 4117 }
0c046afd
DW
4118 } else if (!is_resyncing(dev) && !failed) {
4119 /* mark the start of the init process if nothing is failed */
4120 dprintf("imsm: mark resync start (%llu)\n", a->resync_start);
1484e727 4121 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
e3bba0e0 4122 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727
DW
4123 else
4124 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 4125 super->updates_pending++;
115c3803 4126 }
a862209d 4127
da188789 4128 /* FIXME check if we can update curr_migr_unit from resync_start */
f8f603f1 4129
3393c6af 4130 /* mark dirty / clean */
0c046afd 4131 if (dev->vol.dirty != !consistent) {
3393c6af 4132 dprintf("imsm: mark '%s' (%llu)\n",
0c046afd
DW
4133 consistent ? "clean" : "dirty", a->resync_start);
4134 if (consistent)
4135 dev->vol.dirty = 0;
4136 else
4137 dev->vol.dirty = 1;
a862209d
DW
4138 super->updates_pending++;
4139 }
01f157d7 4140 return consistent;
a862209d
DW
4141}
4142
8d45d196 4143static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 4144{
8d45d196
DW
4145 int inst = a->info.container_member;
4146 struct intel_super *super = a->container->sb;
949c47a0 4147 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 4148 struct imsm_map *map = get_imsm_map(dev, 0);
8d45d196 4149 struct imsm_disk *disk;
0c046afd 4150 int failed;
b10b37b8 4151 __u32 ord;
0c046afd 4152 __u8 map_state;
8d45d196
DW
4153
4154 if (n > map->num_members)
4155 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
4156 n, map->num_members - 1);
4157
4158 if (n < 0)
4159 return;
4160
4e6e574a 4161 dprintf("imsm: set_disk %d:%x\n", n, state);
8d45d196 4162
b10b37b8
DW
4163 ord = get_imsm_ord_tbl_ent(dev, n);
4164 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 4165
5802a811 4166 /* check for new failures */
0556e1a2
DW
4167 if (state & DS_FAULTY) {
4168 if (mark_failure(dev, disk, ord_to_idx(ord)))
4169 super->updates_pending++;
8d45d196 4170 }
47ee5a45 4171
19859edc 4172 /* check if in_sync */
0556e1a2 4173 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
b10b37b8
DW
4174 struct imsm_map *migr_map = get_imsm_map(dev, 1);
4175
4176 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
19859edc
DW
4177 super->updates_pending++;
4178 }
8d45d196 4179
0c046afd
DW
4180 failed = imsm_count_failed(super, dev);
4181 map_state = imsm_check_degraded(super, dev, failed);
5802a811 4182
0c046afd
DW
4183 /* check if recovery complete, newly degraded, or failed */
4184 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
f8f603f1 4185 end_migration(dev, map_state);
0556e1a2
DW
4186 map = get_imsm_map(dev, 0);
4187 map->failed_disk_num = ~0;
0c046afd
DW
4188 super->updates_pending++;
4189 } else if (map_state == IMSM_T_STATE_DEGRADED &&
4190 map->map_state != map_state &&
4191 !dev->vol.migr_state) {
4192 dprintf("imsm: mark degraded\n");
4193 map->map_state = map_state;
4194 super->updates_pending++;
4195 } else if (map_state == IMSM_T_STATE_FAILED &&
4196 map->map_state != map_state) {
4197 dprintf("imsm: mark failed\n");
f8f603f1 4198 end_migration(dev, map_state);
0c046afd 4199 super->updates_pending++;
5802a811 4200 }
845dea95
NB
4201}
4202
f796af5d 4203static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 4204{
f796af5d 4205 void *buf = mpb;
c2a1e7da
DW
4206 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
4207 unsigned long long dsize;
4208 unsigned long long sectors;
4209
4210 get_dev_size(fd, NULL, &dsize);
4211
272f648f
DW
4212 if (mpb_size > 512) {
4213 /* -1 to account for anchor */
4214 sectors = mpb_sectors(mpb) - 1;
c2a1e7da 4215
272f648f
DW
4216 /* write the extended mpb to the sectors preceeding the anchor */
4217 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
4218 return 1;
c2a1e7da 4219
f796af5d 4220 if (write(fd, buf + 512, 512 * sectors) != 512 * sectors)
272f648f
DW
4221 return 1;
4222 }
c2a1e7da 4223
272f648f
DW
4224 /* first block is stored on second to last sector of the disk */
4225 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
c2a1e7da
DW
4226 return 1;
4227
f796af5d 4228 if (write(fd, buf, 512) != 512)
c2a1e7da
DW
4229 return 1;
4230
c2a1e7da
DW
4231 return 0;
4232}
4233
2e735d19 4234static void imsm_sync_metadata(struct supertype *container)
845dea95 4235{
2e735d19 4236 struct intel_super *super = container->sb;
c2a1e7da
DW
4237
4238 if (!super->updates_pending)
4239 return;
4240
c2c087e6 4241 write_super_imsm(super, 0);
c2a1e7da
DW
4242
4243 super->updates_pending = 0;
845dea95
NB
4244}
4245
272906ef
DW
4246static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
4247{
4248 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
ff077194 4249 int i = get_imsm_disk_idx(dev, idx);
272906ef
DW
4250 struct dl *dl;
4251
4252 for (dl = super->disks; dl; dl = dl->next)
4253 if (dl->index == i)
4254 break;
4255
25ed7e59 4256 if (dl && is_failed(&dl->disk))
272906ef
DW
4257 dl = NULL;
4258
4259 if (dl)
4260 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
4261
4262 return dl;
4263}
4264
a20d2ba5
DW
4265static struct dl *imsm_add_spare(struct intel_super *super, int slot,
4266 struct active_array *a, int activate_new)
272906ef
DW
4267{
4268 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
e553d2a4 4269 int idx = get_imsm_disk_idx(dev, slot);
a20d2ba5
DW
4270 struct imsm_super *mpb = super->anchor;
4271 struct imsm_map *map;
272906ef
DW
4272 unsigned long long pos;
4273 struct mdinfo *d;
4274 struct extent *ex;
a20d2ba5 4275 int i, j;
272906ef
DW
4276 int found;
4277 __u32 array_start;
329c8278 4278 __u32 array_end;
272906ef
DW
4279 struct dl *dl;
4280
4281 for (dl = super->disks; dl; dl = dl->next) {
4282 /* If in this array, skip */
4283 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
4284 if (d->state_fd >= 0 &&
4285 d->disk.major == dl->major &&
272906ef
DW
4286 d->disk.minor == dl->minor) {
4287 dprintf("%x:%x already in array\n", dl->major, dl->minor);
4288 break;
4289 }
4290 if (d)
4291 continue;
4292
e553d2a4 4293 /* skip in use or failed drives */
25ed7e59 4294 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
4295 dl->index == -2) {
4296 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 4297 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
4298 continue;
4299 }
4300
a20d2ba5
DW
4301 /* skip pure spares when we are looking for partially
4302 * assimilated drives
4303 */
4304 if (dl->index == -1 && !activate_new)
4305 continue;
4306
272906ef 4307 /* Does this unused device have the requisite free space?
a20d2ba5 4308 * It needs to be able to cover all member volumes
272906ef
DW
4309 */
4310 ex = get_extents(super, dl);
4311 if (!ex) {
4312 dprintf("cannot get extents\n");
4313 continue;
4314 }
a20d2ba5
DW
4315 for (i = 0; i < mpb->num_raid_devs; i++) {
4316 dev = get_imsm_dev(super, i);
4317 map = get_imsm_map(dev, 0);
272906ef 4318
a20d2ba5
DW
4319 /* check if this disk is already a member of
4320 * this array
272906ef 4321 */
620b1713 4322 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
4323 continue;
4324
4325 found = 0;
4326 j = 0;
4327 pos = 0;
4328 array_start = __le32_to_cpu(map->pba_of_lba0);
329c8278
DW
4329 array_end = array_start +
4330 __le32_to_cpu(map->blocks_per_member) - 1;
a20d2ba5
DW
4331
4332 do {
4333 /* check that we can start at pba_of_lba0 with
4334 * blocks_per_member of space
4335 */
329c8278 4336 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
4337 found = 1;
4338 break;
4339 }
4340 pos = ex[j].start + ex[j].size;
4341 j++;
4342 } while (ex[j-1].size);
4343
4344 if (!found)
272906ef 4345 break;
a20d2ba5 4346 }
272906ef
DW
4347
4348 free(ex);
a20d2ba5 4349 if (i < mpb->num_raid_devs) {
329c8278
DW
4350 dprintf("%x:%x does not have %u to %u available\n",
4351 dl->major, dl->minor, array_start, array_end);
272906ef
DW
4352 /* No room */
4353 continue;
a20d2ba5
DW
4354 }
4355 return dl;
272906ef
DW
4356 }
4357
4358 return dl;
4359}
4360
88758e9d
DW
4361static struct mdinfo *imsm_activate_spare(struct active_array *a,
4362 struct metadata_update **updates)
4363{
4364 /**
d23fe947
DW
4365 * Find a device with unused free space and use it to replace a
4366 * failed/vacant region in an array. We replace failed regions one a
4367 * array at a time. The result is that a new spare disk will be added
4368 * to the first failed array and after the monitor has finished
4369 * propagating failures the remainder will be consumed.
88758e9d 4370 *
d23fe947
DW
4371 * FIXME add a capability for mdmon to request spares from another
4372 * container.
88758e9d
DW
4373 */
4374
4375 struct intel_super *super = a->container->sb;
88758e9d 4376 int inst = a->info.container_member;
949c47a0 4377 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 4378 struct imsm_map *map = get_imsm_map(dev, 0);
88758e9d
DW
4379 int failed = a->info.array.raid_disks;
4380 struct mdinfo *rv = NULL;
4381 struct mdinfo *d;
4382 struct mdinfo *di;
4383 struct metadata_update *mu;
4384 struct dl *dl;
4385 struct imsm_update_activate_spare *u;
4386 int num_spares = 0;
4387 int i;
4388
4389 for (d = a->info.devs ; d ; d = d->next) {
4390 if ((d->curr_state & DS_FAULTY) &&
4391 d->state_fd >= 0)
4392 /* wait for Removal to happen */
4393 return NULL;
4394 if (d->state_fd >= 0)
4395 failed--;
4396 }
4397
4398 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
4399 inst, failed, a->info.array.raid_disks, a->info.array.level);
fb49eef2 4400 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
88758e9d
DW
4401 return NULL;
4402
4403 /* For each slot, if it is not working, find a spare */
88758e9d
DW
4404 for (i = 0; i < a->info.array.raid_disks; i++) {
4405 for (d = a->info.devs ; d ; d = d->next)
4406 if (d->disk.raid_disk == i)
4407 break;
4408 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
4409 if (d && (d->state_fd >= 0))
4410 continue;
4411
272906ef 4412 /*
a20d2ba5
DW
4413 * OK, this device needs recovery. Try to re-add the
4414 * previous occupant of this slot, if this fails see if
4415 * we can continue the assimilation of a spare that was
4416 * partially assimilated, finally try to activate a new
4417 * spare.
272906ef
DW
4418 */
4419 dl = imsm_readd(super, i, a);
4420 if (!dl)
a20d2ba5
DW
4421 dl = imsm_add_spare(super, i, a, 0);
4422 if (!dl)
4423 dl = imsm_add_spare(super, i, a, 1);
272906ef
DW
4424 if (!dl)
4425 continue;
4426
4427 /* found a usable disk with enough space */
4428 di = malloc(sizeof(*di));
79244939
DW
4429 if (!di)
4430 continue;
272906ef
DW
4431 memset(di, 0, sizeof(*di));
4432
4433 /* dl->index will be -1 in the case we are activating a
4434 * pristine spare. imsm_process_update() will create a
4435 * new index in this case. Once a disk is found to be
4436 * failed in all member arrays it is kicked from the
4437 * metadata
4438 */
4439 di->disk.number = dl->index;
d23fe947 4440
272906ef
DW
4441 /* (ab)use di->devs to store a pointer to the device
4442 * we chose
4443 */
4444 di->devs = (struct mdinfo *) dl;
4445
4446 di->disk.raid_disk = i;
4447 di->disk.major = dl->major;
4448 di->disk.minor = dl->minor;
4449 di->disk.state = 0;
4450 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
4451 di->component_size = a->info.component_size;
4452 di->container_member = inst;
148acb7b 4453 super->random = random32();
272906ef
DW
4454 di->next = rv;
4455 rv = di;
4456 num_spares++;
4457 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
4458 i, di->data_offset);
88758e9d 4459
272906ef 4460 break;
88758e9d
DW
4461 }
4462
4463 if (!rv)
4464 /* No spares found */
4465 return rv;
4466 /* Now 'rv' has a list of devices to return.
4467 * Create a metadata_update record to update the
4468 * disk_ord_tbl for the array
4469 */
4470 mu = malloc(sizeof(*mu));
79244939
DW
4471 if (mu) {
4472 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
4473 if (mu->buf == NULL) {
4474 free(mu);
4475 mu = NULL;
4476 }
4477 }
4478 if (!mu) {
4479 while (rv) {
4480 struct mdinfo *n = rv->next;
4481
4482 free(rv);
4483 rv = n;
4484 }
4485 return NULL;
4486 }
4487
88758e9d
DW
4488 mu->space = NULL;
4489 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
4490 mu->next = *updates;
4491 u = (struct imsm_update_activate_spare *) mu->buf;
4492
4493 for (di = rv ; di ; di = di->next) {
4494 u->type = update_activate_spare;
d23fe947
DW
4495 u->dl = (struct dl *) di->devs;
4496 di->devs = NULL;
88758e9d
DW
4497 u->slot = di->disk.raid_disk;
4498 u->array = inst;
4499 u->next = u + 1;
4500 u++;
4501 }
4502 (u-1)->next = NULL;
4503 *updates = mu;
4504
4505 return rv;
4506}
4507
54c2c1ea 4508static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 4509{
54c2c1ea
DW
4510 struct imsm_dev *dev = get_imsm_dev(super, idx);
4511 struct imsm_map *map = get_imsm_map(dev, 0);
4512 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
4513 struct disk_info *inf = get_disk_info(u);
4514 struct imsm_disk *disk;
8273f55e
DW
4515 int i;
4516 int j;
8273f55e 4517
54c2c1ea
DW
4518 for (i = 0; i < map->num_members; i++) {
4519 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
4520 for (j = 0; j < new_map->num_members; j++)
4521 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
4522 return 1;
4523 }
4524
4525 return 0;
4526}
4527
24565c9a 4528static void imsm_delete(struct intel_super *super, struct dl **dlp, int index);
ae6aad82 4529
e8319a19
DW
4530static void imsm_process_update(struct supertype *st,
4531 struct metadata_update *update)
4532{
4533 /**
4534 * crack open the metadata_update envelope to find the update record
4535 * update can be one of:
4536 * update_activate_spare - a spare device has replaced a failed
4537 * device in an array, update the disk_ord_tbl. If this disk is
4538 * present in all member arrays then also clear the SPARE_DISK
4539 * flag
4540 */
4541 struct intel_super *super = st->sb;
4d7b1503 4542 struct imsm_super *mpb;
e8319a19
DW
4543 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4544
4d7b1503
DW
4545 /* update requires a larger buf but the allocation failed */
4546 if (super->next_len && !super->next_buf) {
4547 super->next_len = 0;
4548 return;
4549 }
4550
4551 if (super->next_buf) {
4552 memcpy(super->next_buf, super->buf, super->len);
4553 free(super->buf);
4554 super->len = super->next_len;
4555 super->buf = super->next_buf;
4556
4557 super->next_len = 0;
4558 super->next_buf = NULL;
4559 }
4560
4561 mpb = super->anchor;
4562
e8319a19
DW
4563 switch (type) {
4564 case update_activate_spare: {
4565 struct imsm_update_activate_spare *u = (void *) update->buf;
949c47a0 4566 struct imsm_dev *dev = get_imsm_dev(super, u->array);
a965f303 4567 struct imsm_map *map = get_imsm_map(dev, 0);
0c046afd 4568 struct imsm_map *migr_map;
e8319a19
DW
4569 struct active_array *a;
4570 struct imsm_disk *disk;
0c046afd 4571 __u8 to_state;
e8319a19 4572 struct dl *dl;
e8319a19 4573 unsigned int found;
0c046afd
DW
4574 int failed;
4575 int victim = get_imsm_disk_idx(dev, u->slot);
e8319a19
DW
4576 int i;
4577
4578 for (dl = super->disks; dl; dl = dl->next)
d23fe947 4579 if (dl == u->dl)
e8319a19
DW
4580 break;
4581
4582 if (!dl) {
4583 fprintf(stderr, "error: imsm_activate_spare passed "
1f24f035
DW
4584 "an unknown disk (index: %d)\n",
4585 u->dl->index);
e8319a19
DW
4586 return;
4587 }
4588
4589 super->updates_pending++;
4590
0c046afd
DW
4591 /* count failures (excluding rebuilds and the victim)
4592 * to determine map[0] state
4593 */
4594 failed = 0;
4595 for (i = 0; i < map->num_members; i++) {
4596 if (i == u->slot)
4597 continue;
4598 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
25ed7e59 4599 if (!disk || is_failed(disk))
0c046afd
DW
4600 failed++;
4601 }
4602
d23fe947
DW
4603 /* adding a pristine spare, assign a new index */
4604 if (dl->index < 0) {
4605 dl->index = super->anchor->num_disks;
4606 super->anchor->num_disks++;
4607 }
d23fe947 4608 disk = &dl->disk;
f2f27e63
DW
4609 disk->status |= CONFIGURED_DISK;
4610 disk->status &= ~SPARE_DISK;
e8319a19 4611
0c046afd
DW
4612 /* mark rebuild */
4613 to_state = imsm_check_degraded(super, dev, failed);
4614 map->map_state = IMSM_T_STATE_DEGRADED;
e3bba0e0 4615 migrate(dev, to_state, MIGR_REBUILD);
0c046afd
DW
4616 migr_map = get_imsm_map(dev, 1);
4617 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
4618 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
4619
148acb7b
DW
4620 /* update the family_num to mark a new container
4621 * generation, being careful to record the existing
4622 * family_num in orig_family_num to clean up after
4623 * earlier mdadm versions that neglected to set it.
4624 */
4625 if (mpb->orig_family_num == 0)
4626 mpb->orig_family_num = mpb->family_num;
4627 mpb->family_num += super->random;
4628
e8319a19
DW
4629 /* count arrays using the victim in the metadata */
4630 found = 0;
4631 for (a = st->arrays; a ; a = a->next) {
949c47a0 4632 dev = get_imsm_dev(super, a->info.container_member);
620b1713
DW
4633 map = get_imsm_map(dev, 0);
4634
4635 if (get_imsm_disk_slot(map, victim) >= 0)
4636 found++;
e8319a19
DW
4637 }
4638
24565c9a 4639 /* delete the victim if it is no longer being
e8319a19
DW
4640 * utilized anywhere
4641 */
e8319a19 4642 if (!found) {
ae6aad82 4643 struct dl **dlp;
24565c9a 4644
47ee5a45
DW
4645 /* We know that 'manager' isn't touching anything,
4646 * so it is safe to delete
4647 */
24565c9a 4648 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
ae6aad82
DW
4649 if ((*dlp)->index == victim)
4650 break;
47ee5a45
DW
4651
4652 /* victim may be on the missing list */
4653 if (!*dlp)
4654 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
4655 if ((*dlp)->index == victim)
4656 break;
24565c9a 4657 imsm_delete(super, dlp, victim);
e8319a19 4658 }
8273f55e
DW
4659 break;
4660 }
4661 case update_create_array: {
4662 /* someone wants to create a new array, we need to be aware of
4663 * a few races/collisions:
4664 * 1/ 'Create' called by two separate instances of mdadm
4665 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
4666 * devices that have since been assimilated via
4667 * activate_spare.
4668 * In the event this update can not be carried out mdadm will
4669 * (FIX ME) notice that its update did not take hold.
4670 */
4671 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 4672 struct intel_dev *dv;
8273f55e
DW
4673 struct imsm_dev *dev;
4674 struct imsm_map *map, *new_map;
4675 unsigned long long start, end;
4676 unsigned long long new_start, new_end;
4677 int i;
54c2c1ea
DW
4678 struct disk_info *inf;
4679 struct dl *dl;
8273f55e
DW
4680
4681 /* handle racing creates: first come first serve */
4682 if (u->dev_idx < mpb->num_raid_devs) {
4683 dprintf("%s: subarray %d already defined\n",
4684 __func__, u->dev_idx);
ba2de7ba 4685 goto create_error;
8273f55e
DW
4686 }
4687
4688 /* check update is next in sequence */
4689 if (u->dev_idx != mpb->num_raid_devs) {
6a3e913e
DW
4690 dprintf("%s: can not create array %d expected index %d\n",
4691 __func__, u->dev_idx, mpb->num_raid_devs);
ba2de7ba 4692 goto create_error;
8273f55e
DW
4693 }
4694
a965f303 4695 new_map = get_imsm_map(&u->dev, 0);
8273f55e
DW
4696 new_start = __le32_to_cpu(new_map->pba_of_lba0);
4697 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
54c2c1ea 4698 inf = get_disk_info(u);
8273f55e
DW
4699
4700 /* handle activate_spare versus create race:
4701 * check to make sure that overlapping arrays do not include
4702 * overalpping disks
4703 */
4704 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 4705 dev = get_imsm_dev(super, i);
a965f303 4706 map = get_imsm_map(dev, 0);
8273f55e
DW
4707 start = __le32_to_cpu(map->pba_of_lba0);
4708 end = start + __le32_to_cpu(map->blocks_per_member);
4709 if ((new_start >= start && new_start <= end) ||
4710 (start >= new_start && start <= new_end))
54c2c1ea
DW
4711 /* overlap */;
4712 else
4713 continue;
4714
4715 if (disks_overlap(super, i, u)) {
8273f55e 4716 dprintf("%s: arrays overlap\n", __func__);
ba2de7ba 4717 goto create_error;
8273f55e
DW
4718 }
4719 }
8273f55e 4720
949c47a0
DW
4721 /* check that prepare update was successful */
4722 if (!update->space) {
4723 dprintf("%s: prepare update failed\n", __func__);
ba2de7ba 4724 goto create_error;
949c47a0
DW
4725 }
4726
54c2c1ea
DW
4727 /* check that all disks are still active before committing
4728 * changes. FIXME: could we instead handle this by creating a
4729 * degraded array? That's probably not what the user expects,
4730 * so better to drop this update on the floor.
4731 */
4732 for (i = 0; i < new_map->num_members; i++) {
4733 dl = serial_to_dl(inf[i].serial, super);
4734 if (!dl) {
4735 dprintf("%s: disk disappeared\n", __func__);
ba2de7ba 4736 goto create_error;
54c2c1ea 4737 }
949c47a0
DW
4738 }
4739
8273f55e 4740 super->updates_pending++;
54c2c1ea
DW
4741
4742 /* convert spares to members and fixup ord_tbl */
4743 for (i = 0; i < new_map->num_members; i++) {
4744 dl = serial_to_dl(inf[i].serial, super);
4745 if (dl->index == -1) {
4746 dl->index = mpb->num_disks;
4747 mpb->num_disks++;
4748 dl->disk.status |= CONFIGURED_DISK;
4749 dl->disk.status &= ~SPARE_DISK;
4750 }
4751 set_imsm_ord_tbl_ent(new_map, i, dl->index);
4752 }
4753
ba2de7ba
DW
4754 dv = update->space;
4755 dev = dv->dev;
949c47a0
DW
4756 update->space = NULL;
4757 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
4758 dv->index = u->dev_idx;
4759 dv->next = super->devlist;
4760 super->devlist = dv;
8273f55e 4761 mpb->num_raid_devs++;
8273f55e 4762
4d1313e9 4763 imsm_update_version_info(super);
8273f55e 4764 break;
ba2de7ba
DW
4765 create_error:
4766 /* mdmon knows how to release update->space, but not
4767 * ((struct intel_dev *) update->space)->dev
4768 */
4769 if (update->space) {
4770 dv = update->space;
4771 free(dv->dev);
4772 }
8273f55e 4773 break;
e8319a19 4774 }
43dad3d6
DW
4775 case update_add_disk:
4776
4777 /* we may be able to repair some arrays if disks are
4778 * being added */
4779 if (super->add) {
4780 struct active_array *a;
072b727f
DW
4781
4782 super->updates_pending++;
43dad3d6
DW
4783 for (a = st->arrays; a; a = a->next)
4784 a->check_degraded = 1;
4785 }
e553d2a4 4786 /* add some spares to the metadata */
43dad3d6 4787 while (super->add) {
e553d2a4
DW
4788 struct dl *al;
4789
43dad3d6
DW
4790 al = super->add;
4791 super->add = al->next;
43dad3d6
DW
4792 al->next = super->disks;
4793 super->disks = al;
e553d2a4
DW
4794 dprintf("%s: added %x:%x\n",
4795 __func__, al->major, al->minor);
43dad3d6
DW
4796 }
4797
4798 break;
e8319a19
DW
4799 }
4800}
88758e9d 4801
8273f55e
DW
4802static void imsm_prepare_update(struct supertype *st,
4803 struct metadata_update *update)
4804{
949c47a0 4805 /**
4d7b1503
DW
4806 * Allocate space to hold new disk entries, raid-device entries or a new
4807 * mpb if necessary. The manager synchronously waits for updates to
4808 * complete in the monitor, so new mpb buffers allocated here can be
4809 * integrated by the monitor thread without worrying about live pointers
4810 * in the manager thread.
8273f55e 4811 */
949c47a0 4812 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4d7b1503
DW
4813 struct intel_super *super = st->sb;
4814 struct imsm_super *mpb = super->anchor;
4815 size_t buf_len;
4816 size_t len = 0;
949c47a0
DW
4817
4818 switch (type) {
4819 case update_create_array: {
4820 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 4821 struct intel_dev *dv;
54c2c1ea
DW
4822 struct imsm_dev *dev = &u->dev;
4823 struct imsm_map *map = get_imsm_map(dev, 0);
4824 struct dl *dl;
4825 struct disk_info *inf;
4826 int i;
4827 int activate = 0;
949c47a0 4828
54c2c1ea
DW
4829 inf = get_disk_info(u);
4830 len = sizeof_imsm_dev(dev, 1);
ba2de7ba
DW
4831 /* allocate a new super->devlist entry */
4832 dv = malloc(sizeof(*dv));
4833 if (dv) {
4834 dv->dev = malloc(len);
4835 if (dv->dev)
4836 update->space = dv;
4837 else {
4838 free(dv);
4839 update->space = NULL;
4840 }
4841 }
949c47a0 4842
54c2c1ea
DW
4843 /* count how many spares will be converted to members */
4844 for (i = 0; i < map->num_members; i++) {
4845 dl = serial_to_dl(inf[i].serial, super);
4846 if (!dl) {
4847 /* hmm maybe it failed?, nothing we can do about
4848 * it here
4849 */
4850 continue;
4851 }
4852 if (count_memberships(dl, super) == 0)
4853 activate++;
4854 }
4855 len += activate * sizeof(struct imsm_disk);
949c47a0
DW
4856 break;
4857 default:
4858 break;
4859 }
4860 }
8273f55e 4861
4d7b1503
DW
4862 /* check if we need a larger metadata buffer */
4863 if (super->next_buf)
4864 buf_len = super->next_len;
4865 else
4866 buf_len = super->len;
4867
4868 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
4869 /* ok we need a larger buf than what is currently allocated
4870 * if this allocation fails process_update will notice that
4871 * ->next_len is set and ->next_buf is NULL
4872 */
4873 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
4874 if (super->next_buf)
4875 free(super->next_buf);
4876
4877 super->next_len = buf_len;
1f45a8ad
DW
4878 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
4879 memset(super->next_buf, 0, buf_len);
4880 else
4d7b1503
DW
4881 super->next_buf = NULL;
4882 }
8273f55e
DW
4883}
4884
ae6aad82 4885/* must be called while manager is quiesced */
24565c9a 4886static void imsm_delete(struct intel_super *super, struct dl **dlp, int index)
ae6aad82
DW
4887{
4888 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
4889 struct dl *iter;
4890 struct imsm_dev *dev;
4891 struct imsm_map *map;
24565c9a
DW
4892 int i, j, num_members;
4893 __u32 ord;
ae6aad82 4894
24565c9a
DW
4895 dprintf("%s: deleting device[%d] from imsm_super\n",
4896 __func__, index);
ae6aad82
DW
4897
4898 /* shift all indexes down one */
4899 for (iter = super->disks; iter; iter = iter->next)
24565c9a 4900 if (iter->index > index)
ae6aad82 4901 iter->index--;
47ee5a45
DW
4902 for (iter = super->missing; iter; iter = iter->next)
4903 if (iter->index > index)
4904 iter->index--;
ae6aad82
DW
4905
4906 for (i = 0; i < mpb->num_raid_devs; i++) {
4907 dev = get_imsm_dev(super, i);
4908 map = get_imsm_map(dev, 0);
24565c9a
DW
4909 num_members = map->num_members;
4910 for (j = 0; j < num_members; j++) {
4911 /* update ord entries being careful not to propagate
4912 * ord-flags to the first map
4913 */
4914 ord = get_imsm_ord_tbl_ent(dev, j);
ae6aad82 4915
24565c9a
DW
4916 if (ord_to_idx(ord) <= index)
4917 continue;
ae6aad82 4918
24565c9a
DW
4919 map = get_imsm_map(dev, 0);
4920 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
4921 map = get_imsm_map(dev, 1);
4922 if (map)
4923 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
4924 }
4925 }
4926
4927 mpb->num_disks--;
4928 super->updates_pending++;
24565c9a
DW
4929 if (*dlp) {
4930 struct dl *dl = *dlp;
4931
4932 *dlp = (*dlp)->next;
4933 __free_imsm_disk(dl);
4934 }
ae6aad82 4935}
0e600426 4936#endif /* MDASSEMBLE */
ae6aad82 4937
cdddbdbc
DW
4938struct superswitch super_imsm = {
4939#ifndef MDASSEMBLE
4940 .examine_super = examine_super_imsm,
4941 .brief_examine_super = brief_examine_super_imsm,
4737ae25 4942 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 4943 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
4944 .detail_super = detail_super_imsm,
4945 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 4946 .write_init_super = write_init_super_imsm,
0e600426
N
4947 .validate_geometry = validate_geometry_imsm,
4948 .add_to_super = add_to_super_imsm,
d665cc31 4949 .detail_platform = detail_platform_imsm,
cdddbdbc
DW
4950#endif
4951 .match_home = match_home_imsm,
4952 .uuid_from_super= uuid_from_super_imsm,
4953 .getinfo_super = getinfo_super_imsm,
4954 .update_super = update_super_imsm,
4955
4956 .avail_size = avail_size_imsm,
4957
4958 .compare_super = compare_super_imsm,
4959
4960 .load_super = load_super_imsm,
bf5a934a 4961 .init_super = init_super_imsm,
e683ca88 4962 .store_super = store_super_imsm,
cdddbdbc
DW
4963 .free_super = free_super_imsm,
4964 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 4965 .container_content = container_content_imsm,
a18a888e 4966 .default_layout = imsm_level_to_layout,
cdddbdbc 4967
cdddbdbc 4968 .external = 1,
4cce4069 4969 .name = "imsm",
845dea95 4970
0e600426 4971#ifndef MDASSEMBLE
845dea95
NB
4972/* for mdmon */
4973 .open_new = imsm_open_new,
4974 .load_super = load_super_imsm,
ed9d66aa 4975 .set_array_state= imsm_set_array_state,
845dea95
NB
4976 .set_disk = imsm_set_disk,
4977 .sync_metadata = imsm_sync_metadata,
88758e9d 4978 .activate_spare = imsm_activate_spare,
e8319a19 4979 .process_update = imsm_process_update,
8273f55e 4980 .prepare_update = imsm_prepare_update,
0e600426 4981#endif /* MDASSEMBLE */
cdddbdbc 4982};