]> git.ipfire.org Git - thirdparty/mdadm.git/blame_incremental - super-ddf.c
DDF: write_init_super_ddf: don't zero superblocks for subarrays
[thirdparty/mdadm.git] / super-ddf.c
... / ...
CommitLineData
1/*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2006-2009 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neil@brown.name>
23 *
24 * Specifications for DDF takes from Common RAID DDF Specification Revision 1.2
25 * (July 28 2006). Reused by permission of SNIA.
26 */
27
28#define HAVE_STDINT_H 1
29#include "mdadm.h"
30#include "mdmon.h"
31#include "sha1.h"
32#include <values.h>
33
34/* a non-official T10 name for creation GUIDs */
35static char T10[] = "Linux-MD";
36
37/* DDF timestamps are 1980 based, so we need to add
38 * second-in-decade-of-seventies to convert to linux timestamps.
39 * 10 years with 2 leap years.
40 */
41#define DECADE (3600*24*(365*10+2))
42unsigned long crc32(
43 unsigned long crc,
44 const unsigned char *buf,
45 unsigned len);
46
47#define DDF_NOTFOUND (~0U)
48#define DDF_CONTAINER (DDF_NOTFOUND-1)
49
50/* The DDF metadata handling.
51 * DDF metadata lives at the end of the device.
52 * The last 512 byte block provides an 'anchor' which is used to locate
53 * the rest of the metadata which usually lives immediately behind the anchor.
54 *
55 * Note:
56 * - all multibyte numeric fields are bigendian.
57 * - all strings are space padded.
58 *
59 */
60
61/* Primary Raid Level (PRL) */
62#define DDF_RAID0 0x00
63#define DDF_RAID1 0x01
64#define DDF_RAID3 0x03
65#define DDF_RAID4 0x04
66#define DDF_RAID5 0x05
67#define DDF_RAID1E 0x11
68#define DDF_JBOD 0x0f
69#define DDF_CONCAT 0x1f
70#define DDF_RAID5E 0x15
71#define DDF_RAID5EE 0x25
72#define DDF_RAID6 0x06
73
74/* Raid Level Qualifier (RLQ) */
75#define DDF_RAID0_SIMPLE 0x00
76#define DDF_RAID1_SIMPLE 0x00 /* just 2 devices in this plex */
77#define DDF_RAID1_MULTI 0x01 /* exactly 3 devices in this plex */
78#define DDF_RAID3_0 0x00 /* parity in first extent */
79#define DDF_RAID3_N 0x01 /* parity in last extent */
80#define DDF_RAID4_0 0x00 /* parity in first extent */
81#define DDF_RAID4_N 0x01 /* parity in last extent */
82/* these apply to raid5e and raid5ee as well */
83#define DDF_RAID5_0_RESTART 0x00 /* same as 'right asymmetric' - layout 1 */
84#define DDF_RAID6_0_RESTART 0x01 /* raid6 different from raid5 here!!! */
85#define DDF_RAID5_N_RESTART 0x02 /* same as 'left asymmetric' - layout 0 */
86#define DDF_RAID5_N_CONTINUE 0x03 /* same as 'left symmetric' - layout 2 */
87
88#define DDF_RAID1E_ADJACENT 0x00 /* raid10 nearcopies==2 */
89#define DDF_RAID1E_OFFSET 0x01 /* raid10 offsetcopies==2 */
90
91/* Secondary RAID Level (SRL) */
92#define DDF_2STRIPED 0x00 /* This is weirder than RAID0 !! */
93#define DDF_2MIRRORED 0x01
94#define DDF_2CONCAT 0x02
95#define DDF_2SPANNED 0x03 /* This is also weird - be careful */
96
97/* Magic numbers */
98#define DDF_HEADER_MAGIC __cpu_to_be32(0xDE11DE11)
99#define DDF_CONTROLLER_MAGIC __cpu_to_be32(0xAD111111)
100#define DDF_PHYS_RECORDS_MAGIC __cpu_to_be32(0x22222222)
101#define DDF_PHYS_DATA_MAGIC __cpu_to_be32(0x33333333)
102#define DDF_VIRT_RECORDS_MAGIC __cpu_to_be32(0xDDDDDDDD)
103#define DDF_VD_CONF_MAGIC __cpu_to_be32(0xEEEEEEEE)
104#define DDF_SPARE_ASSIGN_MAGIC __cpu_to_be32(0x55555555)
105#define DDF_VU_CONF_MAGIC __cpu_to_be32(0x88888888)
106#define DDF_VENDOR_LOG_MAGIC __cpu_to_be32(0x01dBEEF0)
107#define DDF_BBM_LOG_MAGIC __cpu_to_be32(0xABADB10C)
108
109#define DDF_GUID_LEN 24
110#define DDF_REVISION_0 "01.00.00"
111#define DDF_REVISION_2 "01.02.00"
112
113struct ddf_header {
114 __u32 magic; /* DDF_HEADER_MAGIC */
115 __u32 crc;
116 char guid[DDF_GUID_LEN];
117 char revision[8]; /* 01.02.00 */
118 __u32 seq; /* starts at '1' */
119 __u32 timestamp;
120 __u8 openflag;
121 __u8 foreignflag;
122 __u8 enforcegroups;
123 __u8 pad0; /* 0xff */
124 __u8 pad1[12]; /* 12 * 0xff */
125 /* 64 bytes so far */
126 __u8 header_ext[32]; /* reserved: fill with 0xff */
127 __u64 primary_lba;
128 __u64 secondary_lba;
129 __u8 type;
130 __u8 pad2[3]; /* 0xff */
131 __u32 workspace_len; /* sectors for vendor space -
132 * at least 32768(sectors) */
133 __u64 workspace_lba;
134 __u16 max_pd_entries; /* one of 15, 63, 255, 1023, 4095 */
135 __u16 max_vd_entries; /* 2^(4,6,8,10,12)-1 : i.e. as above */
136 __u16 max_partitions; /* i.e. max num of configuration
137 record entries per disk */
138 __u16 config_record_len; /* 1 +ROUNDUP(max_primary_element_entries
139 *12/512) */
140 __u16 max_primary_element_entries; /* 16, 64, 256, 1024, or 4096 */
141 __u8 pad3[54]; /* 0xff */
142 /* 192 bytes so far */
143 __u32 controller_section_offset;
144 __u32 controller_section_length;
145 __u32 phys_section_offset;
146 __u32 phys_section_length;
147 __u32 virt_section_offset;
148 __u32 virt_section_length;
149 __u32 config_section_offset;
150 __u32 config_section_length;
151 __u32 data_section_offset;
152 __u32 data_section_length;
153 __u32 bbm_section_offset;
154 __u32 bbm_section_length;
155 __u32 diag_space_offset;
156 __u32 diag_space_length;
157 __u32 vendor_offset;
158 __u32 vendor_length;
159 /* 256 bytes so far */
160 __u8 pad4[256]; /* 0xff */
161};
162
163/* type field */
164#define DDF_HEADER_ANCHOR 0x00
165#define DDF_HEADER_PRIMARY 0x01
166#define DDF_HEADER_SECONDARY 0x02
167
168/* The content of the 'controller section' - global scope */
169struct ddf_controller_data {
170 __u32 magic; /* DDF_CONTROLLER_MAGIC */
171 __u32 crc;
172 char guid[DDF_GUID_LEN];
173 struct controller_type {
174 __u16 vendor_id;
175 __u16 device_id;
176 __u16 sub_vendor_id;
177 __u16 sub_device_id;
178 } type;
179 char product_id[16];
180 __u8 pad[8]; /* 0xff */
181 __u8 vendor_data[448];
182};
183
184/* The content of phys_section - global scope */
185struct phys_disk {
186 __u32 magic; /* DDF_PHYS_RECORDS_MAGIC */
187 __u32 crc;
188 __u16 used_pdes;
189 __u16 max_pdes;
190 __u8 pad[52];
191 struct phys_disk_entry {
192 char guid[DDF_GUID_LEN];
193 __u32 refnum;
194 __u16 type;
195 __u16 state;
196 __u64 config_size; /* DDF structures must be after here */
197 char path[18]; /* another horrible structure really */
198 __u8 pad[6];
199 } entries[0];
200};
201
202/* phys_disk_entry.type is a bitmap - bigendian remember */
203#define DDF_Forced_PD_GUID 1
204#define DDF_Active_in_VD 2
205#define DDF_Global_Spare 4 /* VD_CONF records are ignored */
206#define DDF_Spare 8 /* overrides Global_spare */
207#define DDF_Foreign 16
208#define DDF_Legacy 32 /* no DDF on this device */
209
210#define DDF_Interface_mask 0xf00
211#define DDF_Interface_SCSI 0x100
212#define DDF_Interface_SAS 0x200
213#define DDF_Interface_SATA 0x300
214#define DDF_Interface_FC 0x400
215
216/* phys_disk_entry.state is a bigendian bitmap */
217#define DDF_Online 1
218#define DDF_Failed 2 /* overrides 1,4,8 */
219#define DDF_Rebuilding 4
220#define DDF_Transition 8
221#define DDF_SMART 16
222#define DDF_ReadErrors 32
223#define DDF_Missing 64
224
225/* The content of the virt_section global scope */
226struct virtual_disk {
227 __u32 magic; /* DDF_VIRT_RECORDS_MAGIC */
228 __u32 crc;
229 __u16 populated_vdes;
230 __u16 max_vdes;
231 __u8 pad[52];
232 struct virtual_entry {
233 char guid[DDF_GUID_LEN];
234 __u16 unit;
235 __u16 pad0; /* 0xffff */
236 __u16 guid_crc;
237 __u16 type;
238 __u8 state;
239 __u8 init_state;
240 __u8 pad1[14];
241 char name[16];
242 } entries[0];
243};
244
245/* virtual_entry.type is a bitmap - bigendian */
246#define DDF_Shared 1
247#define DDF_Enforce_Groups 2
248#define DDF_Unicode 4
249#define DDF_Owner_Valid 8
250
251/* virtual_entry.state is a bigendian bitmap */
252#define DDF_state_mask 0x7
253#define DDF_state_optimal 0x0
254#define DDF_state_degraded 0x1
255#define DDF_state_deleted 0x2
256#define DDF_state_missing 0x3
257#define DDF_state_failed 0x4
258#define DDF_state_part_optimal 0x5
259
260#define DDF_state_morphing 0x8
261#define DDF_state_inconsistent 0x10
262
263/* virtual_entry.init_state is a bigendian bitmap */
264#define DDF_initstate_mask 0x03
265#define DDF_init_not 0x00
266#define DDF_init_quick 0x01 /* initialisation is progress.
267 * i.e. 'state_inconsistent' */
268#define DDF_init_full 0x02
269
270#define DDF_access_mask 0xc0
271#define DDF_access_rw 0x00
272#define DDF_access_ro 0x80
273#define DDF_access_blocked 0xc0
274
275/* The content of the config_section - local scope
276 * It has multiple records each config_record_len sectors
277 * They can be vd_config or spare_assign
278 */
279
280struct vd_config {
281 __u32 magic; /* DDF_VD_CONF_MAGIC */
282 __u32 crc;
283 char guid[DDF_GUID_LEN];
284 __u32 timestamp;
285 __u32 seqnum;
286 __u8 pad0[24];
287 __u16 prim_elmnt_count;
288 __u8 chunk_shift; /* 0 == 512, 1==1024 etc */
289 __u8 prl;
290 __u8 rlq;
291 __u8 sec_elmnt_count;
292 __u8 sec_elmnt_seq;
293 __u8 srl;
294 __u64 blocks; /* blocks per component could be different
295 * on different component devices...(only
296 * for concat I hope) */
297 __u64 array_blocks; /* blocks in array */
298 __u8 pad1[8];
299 __u32 spare_refs[8];
300 __u8 cache_pol[8];
301 __u8 bg_rate;
302 __u8 pad2[3];
303 __u8 pad3[52];
304 __u8 pad4[192];
305 __u8 v0[32]; /* reserved- 0xff */
306 __u8 v1[32]; /* reserved- 0xff */
307 __u8 v2[16]; /* reserved- 0xff */
308 __u8 v3[16]; /* reserved- 0xff */
309 __u8 vendor[32];
310 __u32 phys_refnum[0]; /* refnum of each disk in sequence */
311 /*__u64 lba_offset[0]; LBA offset in each phys. Note extents in a
312 bvd are always the same size */
313};
314#define LBA_OFFSET(ddf, vd) ((__u64 *) &(vd)->phys_refnum[(ddf)->mppe])
315
316/* vd_config.cache_pol[7] is a bitmap */
317#define DDF_cache_writeback 1 /* else writethrough */
318#define DDF_cache_wadaptive 2 /* only applies if writeback */
319#define DDF_cache_readahead 4
320#define DDF_cache_radaptive 8 /* only if doing read-ahead */
321#define DDF_cache_ifnobatt 16 /* even to write cache if battery is poor */
322#define DDF_cache_wallowed 32 /* enable write caching */
323#define DDF_cache_rallowed 64 /* enable read caching */
324
325struct spare_assign {
326 __u32 magic; /* DDF_SPARE_ASSIGN_MAGIC */
327 __u32 crc;
328 __u32 timestamp;
329 __u8 reserved[7];
330 __u8 type;
331 __u16 populated; /* SAEs used */
332 __u16 max; /* max SAEs */
333 __u8 pad[8];
334 struct spare_assign_entry {
335 char guid[DDF_GUID_LEN];
336 __u16 secondary_element;
337 __u8 pad[6];
338 } spare_ents[0];
339};
340/* spare_assign.type is a bitmap */
341#define DDF_spare_dedicated 0x1 /* else global */
342#define DDF_spare_revertible 0x2 /* else committable */
343#define DDF_spare_active 0x4 /* else not active */
344#define DDF_spare_affinity 0x8 /* enclosure affinity */
345
346/* The data_section contents - local scope */
347struct disk_data {
348 __u32 magic; /* DDF_PHYS_DATA_MAGIC */
349 __u32 crc;
350 char guid[DDF_GUID_LEN];
351 __u32 refnum; /* crc of some magic drive data ... */
352 __u8 forced_ref; /* set when above was not result of magic */
353 __u8 forced_guid; /* set if guid was forced rather than magic */
354 __u8 vendor[32];
355 __u8 pad[442];
356};
357
358/* bbm_section content */
359struct bad_block_log {
360 __u32 magic;
361 __u32 crc;
362 __u16 entry_count;
363 __u32 spare_count;
364 __u8 pad[10];
365 __u64 first_spare;
366 struct mapped_block {
367 __u64 defective_start;
368 __u32 replacement_start;
369 __u16 remap_count;
370 __u8 pad[2];
371 } entries[0];
372};
373
374/* Struct for internally holding ddf structures */
375/* The DDF structure stored on each device is potentially
376 * quite different, as some data is global and some is local.
377 * The global data is:
378 * - ddf header
379 * - controller_data
380 * - Physical disk records
381 * - Virtual disk records
382 * The local data is:
383 * - Configuration records
384 * - Physical Disk data section
385 * ( and Bad block and vendor which I don't care about yet).
386 *
387 * The local data is parsed into separate lists as it is read
388 * and reconstructed for writing. This means that we only need
389 * to make config changes once and they are automatically
390 * propagated to all devices.
391 * Note that the ddf_super has space of the conf and disk data
392 * for this disk and also for a list of all such data.
393 * The list is only used for the superblock that is being
394 * built in Create or Assemble to describe the whole array.
395 */
396struct ddf_super {
397 struct ddf_header anchor, primary, secondary;
398 struct ddf_controller_data controller;
399 struct ddf_header *active;
400 struct phys_disk *phys;
401 struct virtual_disk *virt;
402 int pdsize, vdsize;
403 unsigned int max_part, mppe, conf_rec_len;
404 int currentdev;
405 int updates_pending;
406 struct vcl {
407 union {
408 char space[512];
409 struct {
410 struct vcl *next;
411 unsigned int vcnum; /* index into ->virt */
412 struct vd_config **other_bvds;
413 __u64 *block_sizes; /* NULL if all the same */
414 };
415 };
416 struct vd_config conf;
417 } *conflist, *currentconf;
418 struct dl {
419 union {
420 char space[512];
421 struct {
422 struct dl *next;
423 int major, minor;
424 char *devname;
425 int fd;
426 unsigned long long size; /* sectors */
427 unsigned long long primary_lba; /* sectors */
428 unsigned long long secondary_lba; /* sectors */
429 unsigned long long workspace_lba; /* sectors */
430 int pdnum; /* index in ->phys */
431 struct spare_assign *spare;
432 void *mdupdate; /* hold metadata update */
433
434 /* These fields used by auto-layout */
435 int raiddisk; /* slot to fill in autolayout */
436 __u64 esize;
437 };
438 };
439 struct disk_data disk;
440 struct vcl *vlist[0]; /* max_part in size */
441 } *dlist, *add_list;
442};
443
444#ifndef offsetof
445#define offsetof(t,f) ((size_t)&(((t*)0)->f))
446#endif
447
448#if DEBUG
449static int all_ff(const char *guid);
450static void pr_state(struct ddf_super *ddf, const char *msg)
451{
452 unsigned int i;
453 dprintf("%s/%s: ", __func__, msg);
454 for (i = 0; i < __be16_to_cpu(ddf->active->max_vd_entries); i++) {
455 if (all_ff(ddf->virt->entries[i].guid))
456 continue;
457 dprintf("%u(s=%02x i=%02x) ", i,
458 ddf->virt->entries[i].state,
459 ddf->virt->entries[i].init_state);
460 }
461 dprintf("\n");
462}
463#else
464static void pr_state(const struct ddf_super *ddf, const char *msg) {}
465#endif
466
467#define ddf_set_updates_pending(x) \
468 do { (x)->updates_pending = 1; pr_state(x, __func__); } while (0)
469
470static unsigned int get_pd_index_from_refnum(const struct vcl *vc,
471 __u32 refnum, unsigned int nmax,
472 const struct vd_config **bvd,
473 unsigned int *idx);
474
475static unsigned int calc_crc(void *buf, int len)
476{
477 /* crcs are always at the same place as in the ddf_header */
478 struct ddf_header *ddf = buf;
479 __u32 oldcrc = ddf->crc;
480 __u32 newcrc;
481 ddf->crc = 0xffffffff;
482
483 newcrc = crc32(0, buf, len);
484 ddf->crc = oldcrc;
485 /* The crc is store (like everything) bigendian, so convert
486 * here for simplicity
487 */
488 return __cpu_to_be32(newcrc);
489}
490
491#define DDF_INVALID_LEVEL 0xff
492#define DDF_NO_SECONDARY 0xff
493static int err_bad_md_layout(const mdu_array_info_t *array)
494{
495 pr_err("RAID%d layout %x with %d disks is unsupported for DDF\n",
496 array->level, array->layout, array->raid_disks);
497 return DDF_INVALID_LEVEL;
498}
499
500static int layout_md2ddf(const mdu_array_info_t *array,
501 struct vd_config *conf)
502{
503 __u16 prim_elmnt_count = __cpu_to_be16(array->raid_disks);
504 __u8 prl = DDF_INVALID_LEVEL, rlq = 0;
505 __u8 sec_elmnt_count = 1;
506 __u8 srl = DDF_NO_SECONDARY;
507
508 switch (array->level) {
509 case LEVEL_LINEAR:
510 prl = DDF_CONCAT;
511 break;
512 case 0:
513 rlq = DDF_RAID0_SIMPLE;
514 prl = DDF_RAID0;
515 break;
516 case 1:
517 switch (array->raid_disks) {
518 case 2:
519 rlq = DDF_RAID1_SIMPLE;
520 break;
521 case 3:
522 rlq = DDF_RAID1_MULTI;
523 break;
524 default:
525 return err_bad_md_layout(array);
526 }
527 prl = DDF_RAID1;
528 break;
529 case 4:
530 if (array->layout != 0)
531 return err_bad_md_layout(array);
532 rlq = DDF_RAID4_N;
533 prl = DDF_RAID4;
534 break;
535 case 5:
536 switch (array->layout) {
537 case ALGORITHM_LEFT_ASYMMETRIC:
538 rlq = DDF_RAID5_N_RESTART;
539 break;
540 case ALGORITHM_RIGHT_ASYMMETRIC:
541 rlq = DDF_RAID5_0_RESTART;
542 break;
543 case ALGORITHM_LEFT_SYMMETRIC:
544 rlq = DDF_RAID5_N_CONTINUE;
545 break;
546 case ALGORITHM_RIGHT_SYMMETRIC:
547 /* not mentioned in standard */
548 default:
549 return err_bad_md_layout(array);
550 }
551 prl = DDF_RAID5;
552 break;
553 case 6:
554 switch (array->layout) {
555 case ALGORITHM_ROTATING_N_RESTART:
556 rlq = DDF_RAID5_N_RESTART;
557 break;
558 case ALGORITHM_ROTATING_ZERO_RESTART:
559 rlq = DDF_RAID6_0_RESTART;
560 break;
561 case ALGORITHM_ROTATING_N_CONTINUE:
562 rlq = DDF_RAID5_N_CONTINUE;
563 break;
564 default:
565 return err_bad_md_layout(array);
566 }
567 prl = DDF_RAID6;
568 break;
569 case 10:
570 if (array->raid_disks % 2 == 0 && array->layout == 0x102) {
571 rlq = DDF_RAID1_SIMPLE;
572 prim_elmnt_count = __cpu_to_be16(2);
573 sec_elmnt_count = array->raid_disks / 2;
574 } else if (array->raid_disks % 3 == 0
575 && array->layout == 0x103) {
576 rlq = DDF_RAID1_MULTI;
577 prim_elmnt_count = __cpu_to_be16(3);
578 sec_elmnt_count = array->raid_disks / 3;
579 } else
580 return err_bad_md_layout(array);
581 srl = DDF_2SPANNED;
582 prl = DDF_RAID1;
583 break;
584 default:
585 return err_bad_md_layout(array);
586 }
587 conf->prl = prl;
588 conf->prim_elmnt_count = prim_elmnt_count;
589 conf->rlq = rlq;
590 conf->srl = srl;
591 conf->sec_elmnt_count = sec_elmnt_count;
592 return 0;
593}
594
595static int err_bad_ddf_layout(const struct vd_config *conf)
596{
597 pr_err("DDF RAID %u qualifier %u with %u disks is unsupported\n",
598 conf->prl, conf->rlq, __be16_to_cpu(conf->prim_elmnt_count));
599 return -1;
600}
601
602static int layout_ddf2md(const struct vd_config *conf,
603 mdu_array_info_t *array)
604{
605 int level = LEVEL_UNSUPPORTED;
606 int layout = 0;
607 int raiddisks = __be16_to_cpu(conf->prim_elmnt_count);
608
609 if (conf->sec_elmnt_count > 1) {
610 /* see also check_secondary() */
611 if (conf->prl != DDF_RAID1 ||
612 (conf->srl != DDF_2STRIPED && conf->srl != DDF_2SPANNED)) {
613 pr_err("Unsupported secondary RAID level %u/%u\n",
614 conf->prl, conf->srl);
615 return -1;
616 }
617 if (raiddisks == 2 && conf->rlq == DDF_RAID1_SIMPLE)
618 layout = 0x102;
619 else if (raiddisks == 3 && conf->rlq == DDF_RAID1_MULTI)
620 layout = 0x103;
621 else
622 return err_bad_ddf_layout(conf);
623 raiddisks *= conf->sec_elmnt_count;
624 level = 10;
625 goto good;
626 }
627
628 switch (conf->prl) {
629 case DDF_CONCAT:
630 level = LEVEL_LINEAR;
631 break;
632 case DDF_RAID0:
633 if (conf->rlq != DDF_RAID0_SIMPLE)
634 return err_bad_ddf_layout(conf);
635 level = 0;
636 break;
637 case DDF_RAID1:
638 if (!((conf->rlq == DDF_RAID1_SIMPLE && raiddisks == 2) ||
639 (conf->rlq == DDF_RAID1_MULTI && raiddisks == 3)))
640 return err_bad_ddf_layout(conf);
641 level = 1;
642 break;
643 case DDF_RAID4:
644 if (conf->rlq != DDF_RAID4_N)
645 return err_bad_ddf_layout(conf);
646 level = 4;
647 break;
648 case DDF_RAID5:
649 switch (conf->rlq) {
650 case DDF_RAID5_N_RESTART:
651 layout = ALGORITHM_LEFT_ASYMMETRIC;
652 break;
653 case DDF_RAID5_0_RESTART:
654 layout = ALGORITHM_RIGHT_ASYMMETRIC;
655 break;
656 case DDF_RAID5_N_CONTINUE:
657 layout = ALGORITHM_LEFT_SYMMETRIC;
658 break;
659 default:
660 return err_bad_ddf_layout(conf);
661 }
662 level = 5;
663 break;
664 case DDF_RAID6:
665 switch (conf->rlq) {
666 case DDF_RAID5_N_RESTART:
667 layout = ALGORITHM_ROTATING_N_RESTART;
668 break;
669 case DDF_RAID6_0_RESTART:
670 layout = ALGORITHM_ROTATING_ZERO_RESTART;
671 break;
672 case DDF_RAID5_N_CONTINUE:
673 layout = ALGORITHM_ROTATING_N_CONTINUE;
674 break;
675 default:
676 return err_bad_ddf_layout(conf);
677 }
678 level = 6;
679 break;
680 default:
681 return err_bad_ddf_layout(conf);
682 };
683
684good:
685 array->level = level;
686 array->layout = layout;
687 array->raid_disks = raiddisks;
688 return 0;
689}
690
691static int load_ddf_header(int fd, unsigned long long lba,
692 unsigned long long size,
693 int type,
694 struct ddf_header *hdr, struct ddf_header *anchor)
695{
696 /* read a ddf header (primary or secondary) from fd/lba
697 * and check that it is consistent with anchor
698 * Need to check:
699 * magic, crc, guid, rev, and LBA's header_type, and
700 * everything after header_type must be the same
701 */
702 if (lba >= size-1)
703 return 0;
704
705 if (lseek64(fd, lba<<9, 0) < 0)
706 return 0;
707
708 if (read(fd, hdr, 512) != 512)
709 return 0;
710
711 if (hdr->magic != DDF_HEADER_MAGIC)
712 return 0;
713 if (calc_crc(hdr, 512) != hdr->crc)
714 return 0;
715 if (memcmp(anchor->guid, hdr->guid, DDF_GUID_LEN) != 0 ||
716 memcmp(anchor->revision, hdr->revision, 8) != 0 ||
717 anchor->primary_lba != hdr->primary_lba ||
718 anchor->secondary_lba != hdr->secondary_lba ||
719 hdr->type != type ||
720 memcmp(anchor->pad2, hdr->pad2, 512 -
721 offsetof(struct ddf_header, pad2)) != 0)
722 return 0;
723
724 /* Looks good enough to me... */
725 return 1;
726}
727
728static void *load_section(int fd, struct ddf_super *super, void *buf,
729 __u32 offset_be, __u32 len_be, int check)
730{
731 unsigned long long offset = __be32_to_cpu(offset_be);
732 unsigned long long len = __be32_to_cpu(len_be);
733 int dofree = (buf == NULL);
734
735 if (check)
736 if (len != 2 && len != 8 && len != 32
737 && len != 128 && len != 512)
738 return NULL;
739
740 if (len > 1024)
741 return NULL;
742 if (buf) {
743 /* All pre-allocated sections are a single block */
744 if (len != 1)
745 return NULL;
746 } else if (posix_memalign(&buf, 512, len<<9) != 0)
747 buf = NULL;
748
749 if (!buf)
750 return NULL;
751
752 if (super->active->type == 1)
753 offset += __be64_to_cpu(super->active->primary_lba);
754 else
755 offset += __be64_to_cpu(super->active->secondary_lba);
756
757 if ((unsigned long long)lseek64(fd, offset<<9, 0) != (offset<<9)) {
758 if (dofree)
759 free(buf);
760 return NULL;
761 }
762 if ((unsigned long long)read(fd, buf, len<<9) != (len<<9)) {
763 if (dofree)
764 free(buf);
765 return NULL;
766 }
767 return buf;
768}
769
770static int load_ddf_headers(int fd, struct ddf_super *super, char *devname)
771{
772 unsigned long long dsize;
773
774 get_dev_size(fd, NULL, &dsize);
775
776 if (lseek64(fd, dsize-512, 0) < 0) {
777 if (devname)
778 pr_err("Cannot seek to anchor block on %s: %s\n",
779 devname, strerror(errno));
780 return 1;
781 }
782 if (read(fd, &super->anchor, 512) != 512) {
783 if (devname)
784 pr_err("Cannot read anchor block on %s: %s\n",
785 devname, strerror(errno));
786 return 1;
787 }
788 if (super->anchor.magic != DDF_HEADER_MAGIC) {
789 if (devname)
790 pr_err("no DDF anchor found on %s\n",
791 devname);
792 return 2;
793 }
794 if (calc_crc(&super->anchor, 512) != super->anchor.crc) {
795 if (devname)
796 pr_err("bad CRC on anchor on %s\n",
797 devname);
798 return 2;
799 }
800 if (memcmp(super->anchor.revision, DDF_REVISION_0, 8) != 0 &&
801 memcmp(super->anchor.revision, DDF_REVISION_2, 8) != 0) {
802 if (devname)
803 pr_err("can only support super revision"
804 " %.8s and earlier, not %.8s on %s\n",
805 DDF_REVISION_2, super->anchor.revision,devname);
806 return 2;
807 }
808 super->active = NULL;
809 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.primary_lba),
810 dsize >> 9, 1,
811 &super->primary, &super->anchor) == 0) {
812 if (devname)
813 pr_err("Failed to load primary DDF header "
814 "on %s\n", devname);
815 } else
816 super->active = &super->primary;
817 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.secondary_lba),
818 dsize >> 9, 2,
819 &super->secondary, &super->anchor)) {
820 if ((__be32_to_cpu(super->primary.seq)
821 < __be32_to_cpu(super->secondary.seq) &&
822 !super->secondary.openflag)
823 || (__be32_to_cpu(super->primary.seq)
824 == __be32_to_cpu(super->secondary.seq) &&
825 super->primary.openflag && !super->secondary.openflag)
826 || super->active == NULL
827 )
828 super->active = &super->secondary;
829 } else if (devname)
830 pr_err("Failed to load secondary DDF header on %s\n",
831 devname);
832 if (super->active == NULL)
833 return 2;
834 return 0;
835}
836
837static int load_ddf_global(int fd, struct ddf_super *super, char *devname)
838{
839 void *ok;
840 ok = load_section(fd, super, &super->controller,
841 super->active->controller_section_offset,
842 super->active->controller_section_length,
843 0);
844 super->phys = load_section(fd, super, NULL,
845 super->active->phys_section_offset,
846 super->active->phys_section_length,
847 1);
848 super->pdsize = __be32_to_cpu(super->active->phys_section_length) * 512;
849
850 super->virt = load_section(fd, super, NULL,
851 super->active->virt_section_offset,
852 super->active->virt_section_length,
853 1);
854 super->vdsize = __be32_to_cpu(super->active->virt_section_length) * 512;
855 if (!ok ||
856 !super->phys ||
857 !super->virt) {
858 free(super->phys);
859 free(super->virt);
860 super->phys = NULL;
861 super->virt = NULL;
862 return 2;
863 }
864 super->conflist = NULL;
865 super->dlist = NULL;
866
867 super->max_part = __be16_to_cpu(super->active->max_partitions);
868 super->mppe = __be16_to_cpu(super->active->max_primary_element_entries);
869 super->conf_rec_len = __be16_to_cpu(super->active->config_record_len);
870 return 0;
871}
872
873#define DDF_UNUSED_BVD 0xff
874static int alloc_other_bvds(const struct ddf_super *ddf, struct vcl *vcl)
875{
876 unsigned int n_vds = vcl->conf.sec_elmnt_count - 1;
877 unsigned int i, vdsize;
878 void *p;
879 if (n_vds == 0) {
880 vcl->other_bvds = NULL;
881 return 0;
882 }
883 vdsize = ddf->conf_rec_len * 512;
884 if (posix_memalign(&p, 512, n_vds *
885 (vdsize + sizeof(struct vd_config *))) != 0)
886 return -1;
887 vcl->other_bvds = (struct vd_config **) (p + n_vds * vdsize);
888 for (i = 0; i < n_vds; i++) {
889 vcl->other_bvds[i] = p + i * vdsize;
890 memset(vcl->other_bvds[i], 0, vdsize);
891 vcl->other_bvds[i]->sec_elmnt_seq = DDF_UNUSED_BVD;
892 }
893 return 0;
894}
895
896static void add_other_bvd(struct vcl *vcl, struct vd_config *vd,
897 unsigned int len)
898{
899 int i;
900 for (i = 0; i < vcl->conf.sec_elmnt_count-1; i++)
901 if (vcl->other_bvds[i]->sec_elmnt_seq == vd->sec_elmnt_seq)
902 break;
903
904 if (i < vcl->conf.sec_elmnt_count-1) {
905 if (vd->seqnum <= vcl->other_bvds[i]->seqnum)
906 return;
907 } else {
908 for (i = 0; i < vcl->conf.sec_elmnt_count-1; i++)
909 if (vcl->other_bvds[i]->sec_elmnt_seq == DDF_UNUSED_BVD)
910 break;
911 if (i == vcl->conf.sec_elmnt_count-1) {
912 pr_err("no space for sec level config %u, count is %u\n",
913 vd->sec_elmnt_seq, vcl->conf.sec_elmnt_count);
914 return;
915 }
916 }
917 memcpy(vcl->other_bvds[i], vd, len);
918}
919
920static int load_ddf_local(int fd, struct ddf_super *super,
921 char *devname, int keep)
922{
923 struct dl *dl;
924 struct stat stb;
925 char *conf;
926 unsigned int i;
927 unsigned int confsec;
928 int vnum;
929 unsigned int max_virt_disks = __be16_to_cpu(super->active->max_vd_entries);
930 unsigned long long dsize;
931
932 /* First the local disk info */
933 if (posix_memalign((void**)&dl, 512,
934 sizeof(*dl) +
935 (super->max_part) * sizeof(dl->vlist[0])) != 0) {
936 pr_err("%s could not allocate disk info buffer\n",
937 __func__);
938 return 1;
939 }
940
941 load_section(fd, super, &dl->disk,
942 super->active->data_section_offset,
943 super->active->data_section_length,
944 0);
945 dl->devname = devname ? xstrdup(devname) : NULL;
946
947 fstat(fd, &stb);
948 dl->major = major(stb.st_rdev);
949 dl->minor = minor(stb.st_rdev);
950 dl->next = super->dlist;
951 dl->fd = keep ? fd : -1;
952
953 dl->size = 0;
954 if (get_dev_size(fd, devname, &dsize))
955 dl->size = dsize >> 9;
956 /* If the disks have different sizes, the LBAs will differ
957 * between phys disks.
958 * At this point here, the values in super->active must be valid
959 * for this phys disk. */
960 dl->primary_lba = super->active->primary_lba;
961 dl->secondary_lba = super->active->secondary_lba;
962 dl->workspace_lba = super->active->workspace_lba;
963 dl->spare = NULL;
964 for (i = 0 ; i < super->max_part ; i++)
965 dl->vlist[i] = NULL;
966 super->dlist = dl;
967 dl->pdnum = -1;
968 for (i = 0; i < __be16_to_cpu(super->active->max_pd_entries); i++)
969 if (memcmp(super->phys->entries[i].guid,
970 dl->disk.guid, DDF_GUID_LEN) == 0)
971 dl->pdnum = i;
972
973 /* Now the config list. */
974 /* 'conf' is an array of config entries, some of which are
975 * probably invalid. Those which are good need to be copied into
976 * the conflist
977 */
978
979 conf = load_section(fd, super, NULL,
980 super->active->config_section_offset,
981 super->active->config_section_length,
982 0);
983
984 vnum = 0;
985 for (confsec = 0;
986 confsec < __be32_to_cpu(super->active->config_section_length);
987 confsec += super->conf_rec_len) {
988 struct vd_config *vd =
989 (struct vd_config *)((char*)conf + confsec*512);
990 struct vcl *vcl;
991
992 if (vd->magic == DDF_SPARE_ASSIGN_MAGIC) {
993 if (dl->spare)
994 continue;
995 if (posix_memalign((void**)&dl->spare, 512,
996 super->conf_rec_len*512) != 0) {
997 pr_err("%s could not allocate spare info buf\n",
998 __func__);
999 return 1;
1000 }
1001
1002 memcpy(dl->spare, vd, super->conf_rec_len*512);
1003 continue;
1004 }
1005 if (vd->magic != DDF_VD_CONF_MAGIC)
1006 continue;
1007 for (vcl = super->conflist; vcl; vcl = vcl->next) {
1008 if (memcmp(vcl->conf.guid,
1009 vd->guid, DDF_GUID_LEN) == 0)
1010 break;
1011 }
1012
1013 if (vcl) {
1014 dl->vlist[vnum++] = vcl;
1015 if (vcl->other_bvds != NULL &&
1016 vcl->conf.sec_elmnt_seq != vd->sec_elmnt_seq) {
1017 add_other_bvd(vcl, vd, super->conf_rec_len*512);
1018 continue;
1019 }
1020 if (__be32_to_cpu(vd->seqnum) <=
1021 __be32_to_cpu(vcl->conf.seqnum))
1022 continue;
1023 } else {
1024 if (posix_memalign((void**)&vcl, 512,
1025 (super->conf_rec_len*512 +
1026 offsetof(struct vcl, conf))) != 0) {
1027 pr_err("%s could not allocate vcl buf\n",
1028 __func__);
1029 return 1;
1030 }
1031 vcl->next = super->conflist;
1032 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
1033 vcl->conf.sec_elmnt_count = vd->sec_elmnt_count;
1034 if (alloc_other_bvds(super, vcl) != 0) {
1035 pr_err("%s could not allocate other bvds\n",
1036 __func__);
1037 free(vcl);
1038 return 1;
1039 };
1040 super->conflist = vcl;
1041 dl->vlist[vnum++] = vcl;
1042 }
1043 memcpy(&vcl->conf, vd, super->conf_rec_len*512);
1044 for (i=0; i < max_virt_disks ; i++)
1045 if (memcmp(super->virt->entries[i].guid,
1046 vcl->conf.guid, DDF_GUID_LEN)==0)
1047 break;
1048 if (i < max_virt_disks)
1049 vcl->vcnum = i;
1050 }
1051 free(conf);
1052
1053 return 0;
1054}
1055
1056#ifndef MDASSEMBLE
1057static int load_super_ddf_all(struct supertype *st, int fd,
1058 void **sbp, char *devname);
1059#endif
1060
1061static void free_super_ddf(struct supertype *st);
1062
1063static int load_super_ddf(struct supertype *st, int fd,
1064 char *devname)
1065{
1066 unsigned long long dsize;
1067 struct ddf_super *super;
1068 int rv;
1069
1070 if (get_dev_size(fd, devname, &dsize) == 0)
1071 return 1;
1072
1073 if (!st->ignore_hw_compat && test_partition(fd))
1074 /* DDF is not allowed on partitions */
1075 return 1;
1076
1077 /* 32M is a lower bound */
1078 if (dsize <= 32*1024*1024) {
1079 if (devname)
1080 pr_err("%s is too small for ddf: "
1081 "size is %llu sectors.\n",
1082 devname, dsize>>9);
1083 return 1;
1084 }
1085 if (dsize & 511) {
1086 if (devname)
1087 pr_err("%s is an odd size for ddf: "
1088 "size is %llu bytes.\n",
1089 devname, dsize);
1090 return 1;
1091 }
1092
1093 free_super_ddf(st);
1094
1095 if (posix_memalign((void**)&super, 512, sizeof(*super))!= 0) {
1096 pr_err("malloc of %zu failed.\n",
1097 sizeof(*super));
1098 return 1;
1099 }
1100 memset(super, 0, sizeof(*super));
1101
1102 rv = load_ddf_headers(fd, super, devname);
1103 if (rv) {
1104 free(super);
1105 return rv;
1106 }
1107
1108 /* Have valid headers and have chosen the best. Let's read in the rest*/
1109
1110 rv = load_ddf_global(fd, super, devname);
1111
1112 if (rv) {
1113 if (devname)
1114 pr_err("Failed to load all information "
1115 "sections on %s\n", devname);
1116 free(super);
1117 return rv;
1118 }
1119
1120 rv = load_ddf_local(fd, super, devname, 0);
1121
1122 if (rv) {
1123 if (devname)
1124 pr_err("Failed to load all information "
1125 "sections on %s\n", devname);
1126 free(super);
1127 return rv;
1128 }
1129
1130 /* Should possibly check the sections .... */
1131
1132 st->sb = super;
1133 if (st->ss == NULL) {
1134 st->ss = &super_ddf;
1135 st->minor_version = 0;
1136 st->max_devs = 512;
1137 }
1138 return 0;
1139
1140}
1141
1142static void free_super_ddf(struct supertype *st)
1143{
1144 struct ddf_super *ddf = st->sb;
1145 if (ddf == NULL)
1146 return;
1147 free(ddf->phys);
1148 free(ddf->virt);
1149 while (ddf->conflist) {
1150 struct vcl *v = ddf->conflist;
1151 ddf->conflist = v->next;
1152 if (v->block_sizes)
1153 free(v->block_sizes);
1154 if (v->other_bvds)
1155 /*
1156 v->other_bvds[0] points to beginning of buffer,
1157 see alloc_other_bvds()
1158 */
1159 free(v->other_bvds[0]);
1160 free(v);
1161 }
1162 while (ddf->dlist) {
1163 struct dl *d = ddf->dlist;
1164 ddf->dlist = d->next;
1165 if (d->fd >= 0)
1166 close(d->fd);
1167 if (d->spare)
1168 free(d->spare);
1169 free(d);
1170 }
1171 while (ddf->add_list) {
1172 struct dl *d = ddf->add_list;
1173 ddf->add_list = d->next;
1174 if (d->fd >= 0)
1175 close(d->fd);
1176 if (d->spare)
1177 free(d->spare);
1178 free(d);
1179 }
1180 free(ddf);
1181 st->sb = NULL;
1182}
1183
1184static struct supertype *match_metadata_desc_ddf(char *arg)
1185{
1186 /* 'ddf' only support containers */
1187 struct supertype *st;
1188 if (strcmp(arg, "ddf") != 0 &&
1189 strcmp(arg, "default") != 0
1190 )
1191 return NULL;
1192
1193 st = xcalloc(1, sizeof(*st));
1194 st->ss = &super_ddf;
1195 st->max_devs = 512;
1196 st->minor_version = 0;
1197 st->sb = NULL;
1198 return st;
1199}
1200
1201#ifndef MDASSEMBLE
1202
1203static mapping_t ddf_state[] = {
1204 { "Optimal", 0},
1205 { "Degraded", 1},
1206 { "Deleted", 2},
1207 { "Missing", 3},
1208 { "Failed", 4},
1209 { "Partially Optimal", 5},
1210 { "-reserved-", 6},
1211 { "-reserved-", 7},
1212 { NULL, 0}
1213};
1214
1215static mapping_t ddf_init_state[] = {
1216 { "Not Initialised", 0},
1217 { "QuickInit in Progress", 1},
1218 { "Fully Initialised", 2},
1219 { "*UNKNOWN*", 3},
1220 { NULL, 0}
1221};
1222static mapping_t ddf_access[] = {
1223 { "Read/Write", 0},
1224 { "Reserved", 1},
1225 { "Read Only", 2},
1226 { "Blocked (no access)", 3},
1227 { NULL ,0}
1228};
1229
1230static mapping_t ddf_level[] = {
1231 { "RAID0", DDF_RAID0},
1232 { "RAID1", DDF_RAID1},
1233 { "RAID3", DDF_RAID3},
1234 { "RAID4", DDF_RAID4},
1235 { "RAID5", DDF_RAID5},
1236 { "RAID1E",DDF_RAID1E},
1237 { "JBOD", DDF_JBOD},
1238 { "CONCAT",DDF_CONCAT},
1239 { "RAID5E",DDF_RAID5E},
1240 { "RAID5EE",DDF_RAID5EE},
1241 { "RAID6", DDF_RAID6},
1242 { NULL, 0}
1243};
1244static mapping_t ddf_sec_level[] = {
1245 { "Striped", DDF_2STRIPED},
1246 { "Mirrored", DDF_2MIRRORED},
1247 { "Concat", DDF_2CONCAT},
1248 { "Spanned", DDF_2SPANNED},
1249 { NULL, 0}
1250};
1251#endif
1252
1253static int all_ff(const char *guid)
1254{
1255 int i;
1256 for (i = 0; i < DDF_GUID_LEN; i++)
1257 if (guid[i] != (char)0xff)
1258 return 0;
1259 return 1;
1260}
1261
1262#ifndef MDASSEMBLE
1263static void print_guid(char *guid, int tstamp)
1264{
1265 /* A GUIDs are part (or all) ASCII and part binary.
1266 * They tend to be space padded.
1267 * We print the GUID in HEX, then in parentheses add
1268 * any initial ASCII sequence, and a possible
1269 * time stamp from bytes 16-19
1270 */
1271 int l = DDF_GUID_LEN;
1272 int i;
1273
1274 for (i=0 ; i<DDF_GUID_LEN ; i++) {
1275 if ((i&3)==0 && i != 0) printf(":");
1276 printf("%02X", guid[i]&255);
1277 }
1278
1279 printf("\n (");
1280 while (l && guid[l-1] == ' ')
1281 l--;
1282 for (i=0 ; i<l ; i++) {
1283 if (guid[i] >= 0x20 && guid[i] < 0x7f)
1284 fputc(guid[i], stdout);
1285 else
1286 break;
1287 }
1288 if (tstamp) {
1289 time_t then = __be32_to_cpu(*(__u32*)(guid+16)) + DECADE;
1290 char tbuf[100];
1291 struct tm *tm;
1292 tm = localtime(&then);
1293 strftime(tbuf, 100, " %D %T",tm);
1294 fputs(tbuf, stdout);
1295 }
1296 printf(")");
1297}
1298
1299static const char *guid_str(const char *guid)
1300{
1301 static char buf[DDF_GUID_LEN*2+1];
1302 int i;
1303 char *p = buf;
1304 for (i = 0; i < DDF_GUID_LEN; i++)
1305 p += sprintf(p, "%02x", (unsigned char)guid[i]);
1306 *p = '\0';
1307 return (const char *) buf;
1308}
1309
1310static void examine_vd(int n, struct ddf_super *sb, char *guid)
1311{
1312 int crl = sb->conf_rec_len;
1313 struct vcl *vcl;
1314
1315 for (vcl = sb->conflist ; vcl ; vcl = vcl->next) {
1316 unsigned int i;
1317 struct vd_config *vc = &vcl->conf;
1318
1319 if (calc_crc(vc, crl*512) != vc->crc)
1320 continue;
1321 if (memcmp(vc->guid, guid, DDF_GUID_LEN) != 0)
1322 continue;
1323
1324 /* Ok, we know about this VD, let's give more details */
1325 printf(" Raid Devices[%d] : %d (", n,
1326 __be16_to_cpu(vc->prim_elmnt_count));
1327 for (i = 0; i < __be16_to_cpu(vc->prim_elmnt_count); i++) {
1328 int j;
1329 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1330 for (j=0; j<cnt; j++)
1331 if (vc->phys_refnum[i] == sb->phys->entries[j].refnum)
1332 break;
1333 if (i) printf(" ");
1334 if (j < cnt)
1335 printf("%d", j);
1336 else
1337 printf("--");
1338 }
1339 printf(")\n");
1340 if (vc->chunk_shift != 255)
1341 printf(" Chunk Size[%d] : %d sectors\n", n,
1342 1 << vc->chunk_shift);
1343 printf(" Raid Level[%d] : %s\n", n,
1344 map_num(ddf_level, vc->prl)?:"-unknown-");
1345 if (vc->sec_elmnt_count != 1) {
1346 printf(" Secondary Position[%d] : %d of %d\n", n,
1347 vc->sec_elmnt_seq, vc->sec_elmnt_count);
1348 printf(" Secondary Level[%d] : %s\n", n,
1349 map_num(ddf_sec_level, vc->srl) ?: "-unknown-");
1350 }
1351 printf(" Device Size[%d] : %llu\n", n,
1352 (unsigned long long)__be64_to_cpu(vc->blocks)/2);
1353 printf(" Array Size[%d] : %llu\n", n,
1354 (unsigned long long)__be64_to_cpu(vc->array_blocks)/2);
1355 }
1356}
1357
1358static void examine_vds(struct ddf_super *sb)
1359{
1360 int cnt = __be16_to_cpu(sb->virt->populated_vdes);
1361 unsigned int i;
1362 printf(" Virtual Disks : %d\n", cnt);
1363
1364 for (i = 0; i < __be16_to_cpu(sb->virt->max_vdes); i++) {
1365 struct virtual_entry *ve = &sb->virt->entries[i];
1366 if (all_ff(ve->guid))
1367 continue;
1368 printf("\n");
1369 printf(" VD GUID[%d] : ", i); print_guid(ve->guid, 1);
1370 printf("\n");
1371 printf(" unit[%d] : %d\n", i, __be16_to_cpu(ve->unit));
1372 printf(" state[%d] : %s, %s%s\n", i,
1373 map_num(ddf_state, ve->state & 7),
1374 (ve->state & 8) ? "Morphing, ": "",
1375 (ve->state & 16)? "Not Consistent" : "Consistent");
1376 printf(" init state[%d] : %s\n", i,
1377 map_num(ddf_init_state, ve->init_state&3));
1378 printf(" access[%d] : %s\n", i,
1379 map_num(ddf_access, (ve->init_state>>6) & 3));
1380 printf(" Name[%d] : %.16s\n", i, ve->name);
1381 examine_vd(i, sb, ve->guid);
1382 }
1383 if (cnt) printf("\n");
1384}
1385
1386static void examine_pds(struct ddf_super *sb)
1387{
1388 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1389 int i;
1390 struct dl *dl;
1391 printf(" Physical Disks : %d\n", cnt);
1392 printf(" Number RefNo Size Device Type/State\n");
1393
1394 for (i=0 ; i<cnt ; i++) {
1395 struct phys_disk_entry *pd = &sb->phys->entries[i];
1396 int type = __be16_to_cpu(pd->type);
1397 int state = __be16_to_cpu(pd->state);
1398
1399 //printf(" PD GUID[%d] : ", i); print_guid(pd->guid, 0);
1400 //printf("\n");
1401 printf(" %3d %08x ", i,
1402 __be32_to_cpu(pd->refnum));
1403 printf("%8lluK ",
1404 (unsigned long long)__be64_to_cpu(pd->config_size)>>1);
1405 for (dl = sb->dlist; dl ; dl = dl->next) {
1406 if (dl->disk.refnum == pd->refnum) {
1407 char *dv = map_dev(dl->major, dl->minor, 0);
1408 if (dv) {
1409 printf("%-15s", dv);
1410 break;
1411 }
1412 }
1413 }
1414 if (!dl)
1415 printf("%15s","");
1416 printf(" %s%s%s%s%s",
1417 (type&2) ? "active":"",
1418 (type&4) ? "Global-Spare":"",
1419 (type&8) ? "spare" : "",
1420 (type&16)? ", foreign" : "",
1421 (type&32)? "pass-through" : "");
1422 if (state & DDF_Failed)
1423 /* This over-rides these three */
1424 state &= ~(DDF_Online|DDF_Rebuilding|DDF_Transition);
1425 printf("/%s%s%s%s%s%s%s",
1426 (state&1)? "Online": "Offline",
1427 (state&2)? ", Failed": "",
1428 (state&4)? ", Rebuilding": "",
1429 (state&8)? ", in-transition": "",
1430 (state&16)? ", SMART-errors": "",
1431 (state&32)? ", Unrecovered-Read-Errors": "",
1432 (state&64)? ", Missing" : "");
1433 printf("\n");
1434 }
1435}
1436
1437static void examine_super_ddf(struct supertype *st, char *homehost)
1438{
1439 struct ddf_super *sb = st->sb;
1440
1441 printf(" Magic : %08x\n", __be32_to_cpu(sb->anchor.magic));
1442 printf(" Version : %.8s\n", sb->anchor.revision);
1443 printf("Controller GUID : "); print_guid(sb->controller.guid, 0);
1444 printf("\n");
1445 printf(" Container GUID : "); print_guid(sb->anchor.guid, 1);
1446 printf("\n");
1447 printf(" Seq : %08x\n", __be32_to_cpu(sb->active->seq));
1448 printf(" Redundant hdr : %s\n", sb->secondary.magic == DDF_HEADER_MAGIC
1449 ?"yes" : "no");
1450 examine_vds(sb);
1451 examine_pds(sb);
1452}
1453
1454static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info, char *map);
1455
1456static void uuid_from_ddf_guid(const char *guid, int uuid[4]);
1457static void uuid_from_super_ddf(struct supertype *st, int uuid[4]);
1458
1459static unsigned int get_vd_num_of_subarray(struct supertype *st)
1460{
1461 /*
1462 * Figure out the VD number for this supertype.
1463 * Returns DDF_CONTAINER for the container itself,
1464 * and DDF_NOTFOUND on error.
1465 */
1466 struct ddf_super *ddf = st->sb;
1467 struct mdinfo *sra;
1468 char *sub, *end;
1469 unsigned int vcnum;
1470
1471 if (*st->container_devnm == '\0')
1472 return DDF_CONTAINER;
1473
1474 sra = sysfs_read(-1, st->devnm, GET_VERSION);
1475 if (!sra || sra->array.major_version != -1 ||
1476 sra->array.minor_version != -2 ||
1477 !is_subarray(sra->text_version))
1478 return DDF_NOTFOUND;
1479
1480 sub = strchr(sra->text_version + 1, '/');
1481 if (sub != NULL)
1482 vcnum = strtoul(sub + 1, &end, 10);
1483 if (sub == NULL || *sub == '\0' || *end != '\0' ||
1484 vcnum >= __be16_to_cpu(ddf->active->max_vd_entries))
1485 return DDF_NOTFOUND;
1486
1487 return vcnum;
1488}
1489
1490static void brief_examine_super_ddf(struct supertype *st, int verbose)
1491{
1492 /* We just write a generic DDF ARRAY entry
1493 */
1494 struct mdinfo info;
1495 char nbuf[64];
1496 getinfo_super_ddf(st, &info, NULL);
1497 fname_from_uuid(st, &info, nbuf, ':');
1498
1499 printf("ARRAY metadata=ddf UUID=%s\n", nbuf + 5);
1500}
1501
1502static void brief_examine_subarrays_ddf(struct supertype *st, int verbose)
1503{
1504 /* We just write a generic DDF ARRAY entry
1505 */
1506 struct ddf_super *ddf = st->sb;
1507 struct mdinfo info;
1508 unsigned int i;
1509 char nbuf[64];
1510 getinfo_super_ddf(st, &info, NULL);
1511 fname_from_uuid(st, &info, nbuf, ':');
1512
1513 for (i = 0; i < __be16_to_cpu(ddf->virt->max_vdes); i++) {
1514 struct virtual_entry *ve = &ddf->virt->entries[i];
1515 struct vcl vcl;
1516 char nbuf1[64];
1517 if (all_ff(ve->guid))
1518 continue;
1519 memcpy(vcl.conf.guid, ve->guid, DDF_GUID_LEN);
1520 ddf->currentconf =&vcl;
1521 uuid_from_super_ddf(st, info.uuid);
1522 fname_from_uuid(st, &info, nbuf1, ':');
1523 printf("ARRAY container=%s member=%d UUID=%s\n",
1524 nbuf+5, i, nbuf1+5);
1525 }
1526}
1527
1528static void export_examine_super_ddf(struct supertype *st)
1529{
1530 struct mdinfo info;
1531 char nbuf[64];
1532 getinfo_super_ddf(st, &info, NULL);
1533 fname_from_uuid(st, &info, nbuf, ':');
1534 printf("MD_METADATA=ddf\n");
1535 printf("MD_LEVEL=container\n");
1536 printf("MD_UUID=%s\n", nbuf+5);
1537}
1538
1539static int copy_metadata_ddf(struct supertype *st, int from, int to)
1540{
1541 void *buf;
1542 unsigned long long dsize, offset;
1543 int bytes;
1544 struct ddf_header *ddf;
1545 int written = 0;
1546
1547 /* The meta consists of an anchor, a primary, and a secondary.
1548 * This all lives at the end of the device.
1549 * So it is easiest to find the earliest of primary and
1550 * secondary, and copy everything from there.
1551 *
1552 * Anchor is 512 from end It contains primary_lba and secondary_lba
1553 * we choose one of those
1554 */
1555
1556 if (posix_memalign(&buf, 4096, 4096) != 0)
1557 return 1;
1558
1559 if (!get_dev_size(from, NULL, &dsize))
1560 goto err;
1561
1562 if (lseek64(from, dsize-512, 0) < 0)
1563 goto err;
1564 if (read(from, buf, 512) != 512)
1565 goto err;
1566 ddf = buf;
1567 if (ddf->magic != DDF_HEADER_MAGIC ||
1568 calc_crc(ddf, 512) != ddf->crc ||
1569 (memcmp(ddf->revision, DDF_REVISION_0, 8) != 0 &&
1570 memcmp(ddf->revision, DDF_REVISION_2, 8) != 0))
1571 goto err;
1572
1573 offset = dsize - 512;
1574 if ((__be64_to_cpu(ddf->primary_lba) << 9) < offset)
1575 offset = __be64_to_cpu(ddf->primary_lba) << 9;
1576 if ((__be64_to_cpu(ddf->secondary_lba) << 9) < offset)
1577 offset = __be64_to_cpu(ddf->secondary_lba) << 9;
1578
1579 bytes = dsize - offset;
1580
1581 if (lseek64(from, offset, 0) < 0 ||
1582 lseek64(to, offset, 0) < 0)
1583 goto err;
1584 while (written < bytes) {
1585 int n = bytes - written;
1586 if (n > 4096)
1587 n = 4096;
1588 if (read(from, buf, n) != n)
1589 goto err;
1590 if (write(to, buf, n) != n)
1591 goto err;
1592 written += n;
1593 }
1594 free(buf);
1595 return 0;
1596err:
1597 free(buf);
1598 return 1;
1599}
1600
1601static void detail_super_ddf(struct supertype *st, char *homehost)
1602{
1603 /* FIXME later
1604 * Could print DDF GUID
1605 * Need to find which array
1606 * If whole, briefly list all arrays
1607 * If one, give name
1608 */
1609}
1610
1611static void brief_detail_super_ddf(struct supertype *st)
1612{
1613 struct mdinfo info;
1614 char nbuf[64];
1615 struct ddf_super *ddf = st->sb;
1616 unsigned int vcnum = get_vd_num_of_subarray(st);
1617 if (vcnum == DDF_CONTAINER)
1618 uuid_from_super_ddf(st, info.uuid);
1619 else if (vcnum == DDF_NOTFOUND)
1620 return;
1621 else
1622 uuid_from_ddf_guid(ddf->virt->entries[vcnum].guid, info.uuid);
1623 fname_from_uuid(st, &info, nbuf,':');
1624 printf(" UUID=%s", nbuf + 5);
1625}
1626#endif
1627
1628static int match_home_ddf(struct supertype *st, char *homehost)
1629{
1630 /* It matches 'this' host if the controller is a
1631 * Linux-MD controller with vendor_data matching
1632 * the hostname
1633 */
1634 struct ddf_super *ddf = st->sb;
1635 unsigned int len;
1636
1637 if (!homehost)
1638 return 0;
1639 len = strlen(homehost);
1640
1641 return (memcmp(ddf->controller.guid, T10, 8) == 0 &&
1642 len < sizeof(ddf->controller.vendor_data) &&
1643 memcmp(ddf->controller.vendor_data, homehost,len) == 0 &&
1644 ddf->controller.vendor_data[len] == 0);
1645}
1646
1647#ifndef MDASSEMBLE
1648static int find_index_in_bvd(const struct ddf_super *ddf,
1649 const struct vd_config *conf, unsigned int n,
1650 unsigned int *n_bvd)
1651{
1652 /*
1653 * Find the index of the n-th valid physical disk in this BVD
1654 */
1655 unsigned int i, j;
1656 for (i = 0, j = 0; i < ddf->mppe &&
1657 j < __be16_to_cpu(conf->prim_elmnt_count); i++) {
1658 if (conf->phys_refnum[i] != 0xffffffff) {
1659 if (n == j) {
1660 *n_bvd = i;
1661 return 1;
1662 }
1663 j++;
1664 }
1665 }
1666 dprintf("%s: couldn't find BVD member %u (total %u)\n",
1667 __func__, n, __be16_to_cpu(conf->prim_elmnt_count));
1668 return 0;
1669}
1670
1671static struct vd_config *find_vdcr(struct ddf_super *ddf, unsigned int inst,
1672 unsigned int n,
1673 unsigned int *n_bvd, struct vcl **vcl)
1674{
1675 struct vcl *v;
1676
1677 for (v = ddf->conflist; v; v = v->next) {
1678 unsigned int nsec, ibvd;
1679 struct vd_config *conf;
1680 if (inst != v->vcnum)
1681 continue;
1682 conf = &v->conf;
1683 if (conf->sec_elmnt_count == 1) {
1684 if (find_index_in_bvd(ddf, conf, n, n_bvd)) {
1685 *vcl = v;
1686 return conf;
1687 } else
1688 goto bad;
1689 }
1690 if (v->other_bvds == NULL) {
1691 pr_err("%s: BUG: other_bvds is NULL, nsec=%u\n",
1692 __func__, conf->sec_elmnt_count);
1693 goto bad;
1694 }
1695 nsec = n / __be16_to_cpu(conf->prim_elmnt_count);
1696 if (conf->sec_elmnt_seq != nsec) {
1697 for (ibvd = 1; ibvd < conf->sec_elmnt_count; ibvd++) {
1698 if (v->other_bvds[ibvd-1]->sec_elmnt_seq
1699 == nsec)
1700 break;
1701 }
1702 if (ibvd == conf->sec_elmnt_count)
1703 goto bad;
1704 conf = v->other_bvds[ibvd-1];
1705 }
1706 if (!find_index_in_bvd(ddf, conf,
1707 n - nsec*conf->sec_elmnt_count, n_bvd))
1708 goto bad;
1709 dprintf("%s: found disk %u as member %u in bvd %d of array %u\n"
1710 , __func__, n, *n_bvd, ibvd-1, inst);
1711 *vcl = v;
1712 return conf;
1713 }
1714bad:
1715 pr_err("%s: Could't find disk %d in array %u\n", __func__, n, inst);
1716 return NULL;
1717}
1718#endif
1719
1720static int find_phys(const struct ddf_super *ddf, __u32 phys_refnum)
1721{
1722 /* Find the entry in phys_disk which has the given refnum
1723 * and return it's index
1724 */
1725 unsigned int i;
1726 for (i = 0; i < __be16_to_cpu(ddf->phys->max_pdes); i++)
1727 if (ddf->phys->entries[i].refnum == phys_refnum)
1728 return i;
1729 return -1;
1730}
1731
1732static void uuid_from_ddf_guid(const char *guid, int uuid[4])
1733{
1734 char buf[20];
1735 struct sha1_ctx ctx;
1736 sha1_init_ctx(&ctx);
1737 sha1_process_bytes(guid, DDF_GUID_LEN, &ctx);
1738 sha1_finish_ctx(&ctx, buf);
1739 memcpy(uuid, buf, 4*4);
1740}
1741
1742static void uuid_from_super_ddf(struct supertype *st, int uuid[4])
1743{
1744 /* The uuid returned here is used for:
1745 * uuid to put into bitmap file (Create, Grow)
1746 * uuid for backup header when saving critical section (Grow)
1747 * comparing uuids when re-adding a device into an array
1748 * In these cases the uuid required is that of the data-array,
1749 * not the device-set.
1750 * uuid to recognise same set when adding a missing device back
1751 * to an array. This is a uuid for the device-set.
1752 *
1753 * For each of these we can make do with a truncated
1754 * or hashed uuid rather than the original, as long as
1755 * everyone agrees.
1756 * In the case of SVD we assume the BVD is of interest,
1757 * though that might be the case if a bitmap were made for
1758 * a mirrored SVD - worry about that later.
1759 * So we need to find the VD configuration record for the
1760 * relevant BVD and extract the GUID and Secondary_Element_Seq.
1761 * The first 16 bytes of the sha1 of these is used.
1762 */
1763 struct ddf_super *ddf = st->sb;
1764 struct vcl *vcl = ddf->currentconf;
1765 char *guid;
1766
1767 if (vcl)
1768 guid = vcl->conf.guid;
1769 else
1770 guid = ddf->anchor.guid;
1771 uuid_from_ddf_guid(guid, uuid);
1772}
1773
1774static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info, char *map);
1775
1776static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info, char *map)
1777{
1778 struct ddf_super *ddf = st->sb;
1779 int map_disks = info->array.raid_disks;
1780 __u32 *cptr;
1781
1782 if (ddf->currentconf) {
1783 getinfo_super_ddf_bvd(st, info, map);
1784 return;
1785 }
1786 memset(info, 0, sizeof(*info));
1787
1788 info->array.raid_disks = __be16_to_cpu(ddf->phys->used_pdes);
1789 info->array.level = LEVEL_CONTAINER;
1790 info->array.layout = 0;
1791 info->array.md_minor = -1;
1792 cptr = (__u32 *)(ddf->anchor.guid + 16);
1793 info->array.ctime = DECADE + __be32_to_cpu(*cptr);
1794
1795 info->array.utime = 0;
1796 info->array.chunk_size = 0;
1797 info->container_enough = 1;
1798
1799 info->disk.major = 0;
1800 info->disk.minor = 0;
1801 if (ddf->dlist) {
1802 info->disk.number = __be32_to_cpu(ddf->dlist->disk.refnum);
1803 info->disk.raid_disk = find_phys(ddf, ddf->dlist->disk.refnum);
1804
1805 info->data_offset = __be64_to_cpu(ddf->phys->
1806 entries[info->disk.raid_disk].
1807 config_size);
1808 info->component_size = ddf->dlist->size - info->data_offset;
1809 } else {
1810 info->disk.number = -1;
1811 info->disk.raid_disk = -1;
1812// info->disk.raid_disk = find refnum in the table and use index;
1813 }
1814 info->disk.state = (1 << MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE);
1815
1816 info->recovery_start = MaxSector;
1817 info->reshape_active = 0;
1818 info->recovery_blocked = 0;
1819 info->name[0] = 0;
1820
1821 info->array.major_version = -1;
1822 info->array.minor_version = -2;
1823 strcpy(info->text_version, "ddf");
1824 info->safe_mode_delay = 0;
1825
1826 uuid_from_super_ddf(st, info->uuid);
1827
1828 if (map) {
1829 int i;
1830 for (i = 0 ; i < map_disks; i++) {
1831 if (i < info->array.raid_disks &&
1832 (__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Online) &&
1833 !(__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Failed))
1834 map[i] = 1;
1835 else
1836 map[i] = 0;
1837 }
1838 }
1839}
1840
1841static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info, char *map)
1842{
1843 struct ddf_super *ddf = st->sb;
1844 struct vcl *vc = ddf->currentconf;
1845 int cd = ddf->currentdev;
1846 int n_prim;
1847 int j;
1848 struct dl *dl;
1849 int map_disks = info->array.raid_disks;
1850 __u32 *cptr;
1851 struct vd_config *conf;
1852
1853 memset(info, 0, sizeof(*info));
1854 if (layout_ddf2md(&vc->conf, &info->array) == -1)
1855 return;
1856 info->array.md_minor = -1;
1857 cptr = (__u32 *)(vc->conf.guid + 16);
1858 info->array.ctime = DECADE + __be32_to_cpu(*cptr);
1859 info->array.utime = DECADE + __be32_to_cpu(vc->conf.timestamp);
1860 info->array.chunk_size = 512 << vc->conf.chunk_shift;
1861 info->custom_array_size = 0;
1862
1863 conf = &vc->conf;
1864 n_prim = __be16_to_cpu(conf->prim_elmnt_count);
1865 if (conf->sec_elmnt_count > 1 && cd >= n_prim) {
1866 int ibvd = cd / n_prim - 1;
1867 cd %= n_prim;
1868 conf = vc->other_bvds[ibvd];
1869 }
1870
1871 if (cd >= 0 && (unsigned)cd < ddf->mppe) {
1872 info->data_offset =
1873 __be64_to_cpu(LBA_OFFSET(ddf, &vc->conf)[cd]);
1874 if (vc->block_sizes)
1875 info->component_size = vc->block_sizes[cd];
1876 else
1877 info->component_size = __be64_to_cpu(vc->conf.blocks);
1878 }
1879
1880 for (dl = ddf->dlist; dl ; dl = dl->next)
1881 if (dl->raiddisk == ddf->currentdev)
1882 break;
1883
1884 info->disk.major = 0;
1885 info->disk.minor = 0;
1886 info->disk.state = 0;
1887 if (dl) {
1888 info->disk.major = dl->major;
1889 info->disk.minor = dl->minor;
1890 info->disk.raid_disk = dl->raiddisk;
1891 info->disk.number = dl->pdnum;
1892 info->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
1893 }
1894
1895 info->container_member = ddf->currentconf->vcnum;
1896
1897 info->recovery_start = MaxSector;
1898 info->resync_start = 0;
1899 info->reshape_active = 0;
1900 info->recovery_blocked = 0;
1901 if (!(ddf->virt->entries[info->container_member].state
1902 & DDF_state_inconsistent) &&
1903 (ddf->virt->entries[info->container_member].init_state
1904 & DDF_initstate_mask)
1905 == DDF_init_full)
1906 info->resync_start = MaxSector;
1907
1908 uuid_from_super_ddf(st, info->uuid);
1909
1910 info->array.major_version = -1;
1911 info->array.minor_version = -2;
1912 sprintf(info->text_version, "/%s/%d",
1913 st->container_devnm,
1914 info->container_member);
1915 info->safe_mode_delay = 200;
1916
1917 memcpy(info->name, ddf->virt->entries[info->container_member].name, 16);
1918 info->name[16]=0;
1919 for(j=0; j<16; j++)
1920 if (info->name[j] == ' ')
1921 info->name[j] = 0;
1922
1923 if (map)
1924 for (j = 0; j < map_disks; j++) {
1925 map[j] = 0;
1926 if (j < info->array.raid_disks) {
1927 int i = find_phys(ddf, vc->conf.phys_refnum[j]);
1928 if (i >= 0 &&
1929 (__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Online) &&
1930 !(__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Failed))
1931 map[i] = 1;
1932 }
1933 }
1934}
1935
1936static int update_super_ddf(struct supertype *st, struct mdinfo *info,
1937 char *update,
1938 char *devname, int verbose,
1939 int uuid_set, char *homehost)
1940{
1941 /* For 'assemble' and 'force' we need to return non-zero if any
1942 * change was made. For others, the return value is ignored.
1943 * Update options are:
1944 * force-one : This device looks a bit old but needs to be included,
1945 * update age info appropriately.
1946 * assemble: clear any 'faulty' flag to allow this device to
1947 * be assembled.
1948 * force-array: Array is degraded but being forced, mark it clean
1949 * if that will be needed to assemble it.
1950 *
1951 * newdev: not used ????
1952 * grow: Array has gained a new device - this is currently for
1953 * linear only
1954 * resync: mark as dirty so a resync will happen.
1955 * uuid: Change the uuid of the array to match what is given
1956 * homehost: update the recorded homehost
1957 * name: update the name - preserving the homehost
1958 * _reshape_progress: record new reshape_progress position.
1959 *
1960 * Following are not relevant for this version:
1961 * sparc2.2 : update from old dodgey metadata
1962 * super-minor: change the preferred_minor number
1963 * summaries: update redundant counters.
1964 */
1965 int rv = 0;
1966// struct ddf_super *ddf = st->sb;
1967// struct vd_config *vd = find_vdcr(ddf, info->container_member);
1968// struct virtual_entry *ve = find_ve(ddf);
1969
1970 /* we don't need to handle "force-*" or "assemble" as
1971 * there is no need to 'trick' the kernel. We the metadata is
1972 * first updated to activate the array, all the implied modifications
1973 * will just happen.
1974 */
1975
1976 if (strcmp(update, "grow") == 0) {
1977 /* FIXME */
1978 } else if (strcmp(update, "resync") == 0) {
1979// info->resync_checkpoint = 0;
1980 } else if (strcmp(update, "homehost") == 0) {
1981 /* homehost is stored in controller->vendor_data,
1982 * or it is when we are the vendor
1983 */
1984// if (info->vendor_is_local)
1985// strcpy(ddf->controller.vendor_data, homehost);
1986 rv = -1;
1987 } else if (strcmp(update, "name") == 0) {
1988 /* name is stored in virtual_entry->name */
1989// memset(ve->name, ' ', 16);
1990// strncpy(ve->name, info->name, 16);
1991 rv = -1;
1992 } else if (strcmp(update, "_reshape_progress") == 0) {
1993 /* We don't support reshape yet */
1994 } else if (strcmp(update, "assemble") == 0 ) {
1995 /* Do nothing, just succeed */
1996 rv = 0;
1997 } else
1998 rv = -1;
1999
2000// update_all_csum(ddf);
2001
2002 return rv;
2003}
2004
2005static void make_header_guid(char *guid)
2006{
2007 __u32 stamp;
2008 /* Create a DDF Header of Virtual Disk GUID */
2009
2010 /* 24 bytes of fiction required.
2011 * first 8 are a 'vendor-id' - "Linux-MD"
2012 * next 8 are controller type.. how about 0X DEAD BEEF 0000 0000
2013 * Remaining 8 random number plus timestamp
2014 */
2015 memcpy(guid, T10, sizeof(T10));
2016 stamp = __cpu_to_be32(0xdeadbeef);
2017 memcpy(guid+8, &stamp, 4);
2018 stamp = __cpu_to_be32(0);
2019 memcpy(guid+12, &stamp, 4);
2020 stamp = __cpu_to_be32(time(0) - DECADE);
2021 memcpy(guid+16, &stamp, 4);
2022 stamp = random32();
2023 memcpy(guid+20, &stamp, 4);
2024}
2025
2026static unsigned int find_unused_vde(const struct ddf_super *ddf)
2027{
2028 unsigned int i;
2029 for (i = 0; i < __be16_to_cpu(ddf->virt->max_vdes); i++) {
2030 if (all_ff(ddf->virt->entries[i].guid))
2031 return i;
2032 }
2033 return DDF_NOTFOUND;
2034}
2035
2036static unsigned int find_vde_by_name(const struct ddf_super *ddf,
2037 const char *name)
2038{
2039 unsigned int i;
2040 if (name == NULL)
2041 return DDF_NOTFOUND;
2042 for (i = 0; i < __be16_to_cpu(ddf->virt->max_vdes); i++) {
2043 if (all_ff(ddf->virt->entries[i].guid))
2044 continue;
2045 if (!strncmp(name, ddf->virt->entries[i].name,
2046 sizeof(ddf->virt->entries[i].name)))
2047 return i;
2048 }
2049 return DDF_NOTFOUND;
2050}
2051
2052static unsigned int find_vde_by_guid(const struct ddf_super *ddf,
2053 const char *guid)
2054{
2055 unsigned int i;
2056 if (guid == NULL || all_ff(guid))
2057 return DDF_NOTFOUND;
2058 for (i = 0; i < __be16_to_cpu(ddf->virt->max_vdes); i++)
2059 if (!memcmp(ddf->virt->entries[i].guid, guid, DDF_GUID_LEN))
2060 return i;
2061 return DDF_NOTFOUND;
2062}
2063
2064static int init_super_ddf_bvd(struct supertype *st,
2065 mdu_array_info_t *info,
2066 unsigned long long size,
2067 char *name, char *homehost,
2068 int *uuid, unsigned long long data_offset);
2069
2070static int init_super_ddf(struct supertype *st,
2071 mdu_array_info_t *info,
2072 unsigned long long size, char *name, char *homehost,
2073 int *uuid, unsigned long long data_offset)
2074{
2075 /* This is primarily called by Create when creating a new array.
2076 * We will then get add_to_super called for each component, and then
2077 * write_init_super called to write it out to each device.
2078 * For DDF, Create can create on fresh devices or on a pre-existing
2079 * array.
2080 * To create on a pre-existing array a different method will be called.
2081 * This one is just for fresh drives.
2082 *
2083 * We need to create the entire 'ddf' structure which includes:
2084 * DDF headers - these are easy.
2085 * Controller data - a Sector describing this controller .. not that
2086 * this is a controller exactly.
2087 * Physical Disk Record - one entry per device, so
2088 * leave plenty of space.
2089 * Virtual Disk Records - again, just leave plenty of space.
2090 * This just lists VDs, doesn't give details
2091 * Config records - describes the VDs that use this disk
2092 * DiskData - describes 'this' device.
2093 * BadBlockManagement - empty
2094 * Diag Space - empty
2095 * Vendor Logs - Could we put bitmaps here?
2096 *
2097 */
2098 struct ddf_super *ddf;
2099 char hostname[17];
2100 int hostlen;
2101 int max_phys_disks, max_virt_disks;
2102 unsigned long long sector;
2103 int clen;
2104 int i;
2105 int pdsize, vdsize;
2106 struct phys_disk *pd;
2107 struct virtual_disk *vd;
2108
2109 if (data_offset != INVALID_SECTORS) {
2110 pr_err("data-offset not supported by DDF\n");
2111 return 0;
2112 }
2113
2114 if (st->sb)
2115 return init_super_ddf_bvd(st, info, size, name, homehost, uuid,
2116 data_offset);
2117
2118 if (posix_memalign((void**)&ddf, 512, sizeof(*ddf)) != 0) {
2119 pr_err("%s could not allocate superblock\n", __func__);
2120 return 0;
2121 }
2122 memset(ddf, 0, sizeof(*ddf));
2123 ddf->dlist = NULL; /* no physical disks yet */
2124 ddf->conflist = NULL; /* No virtual disks yet */
2125 st->sb = ddf;
2126
2127 if (info == NULL) {
2128 /* zeroing superblock */
2129 return 0;
2130 }
2131
2132 /* At least 32MB *must* be reserved for the ddf. So let's just
2133 * start 32MB from the end, and put the primary header there.
2134 * Don't do secondary for now.
2135 * We don't know exactly where that will be yet as it could be
2136 * different on each device. To just set up the lengths.
2137 *
2138 */
2139
2140 ddf->anchor.magic = DDF_HEADER_MAGIC;
2141 make_header_guid(ddf->anchor.guid);
2142
2143 memcpy(ddf->anchor.revision, DDF_REVISION_2, 8);
2144 ddf->anchor.seq = __cpu_to_be32(1);
2145 ddf->anchor.timestamp = __cpu_to_be32(time(0) - DECADE);
2146 ddf->anchor.openflag = 0xFF;
2147 ddf->anchor.foreignflag = 0;
2148 ddf->anchor.enforcegroups = 0; /* Is this best?? */
2149 ddf->anchor.pad0 = 0xff;
2150 memset(ddf->anchor.pad1, 0xff, 12);
2151 memset(ddf->anchor.header_ext, 0xff, 32);
2152 ddf->anchor.primary_lba = ~(__u64)0;
2153 ddf->anchor.secondary_lba = ~(__u64)0;
2154 ddf->anchor.type = DDF_HEADER_ANCHOR;
2155 memset(ddf->anchor.pad2, 0xff, 3);
2156 ddf->anchor.workspace_len = __cpu_to_be32(32768); /* Must be reserved */
2157 ddf->anchor.workspace_lba = ~(__u64)0; /* Put this at bottom
2158 of 32M reserved.. */
2159 max_phys_disks = 1023; /* Should be enough */
2160 ddf->anchor.max_pd_entries = __cpu_to_be16(max_phys_disks);
2161 max_virt_disks = 255;
2162 ddf->anchor.max_vd_entries = __cpu_to_be16(max_virt_disks); /* ?? */
2163 ddf->anchor.max_partitions = __cpu_to_be16(64); /* ?? */
2164 ddf->max_part = 64;
2165 ddf->mppe = 256;
2166 ddf->conf_rec_len = 1 + ROUND_UP(ddf->mppe * (4+8), 512)/512;
2167 ddf->anchor.config_record_len = __cpu_to_be16(ddf->conf_rec_len);
2168 ddf->anchor.max_primary_element_entries = __cpu_to_be16(ddf->mppe);
2169 memset(ddf->anchor.pad3, 0xff, 54);
2170 /* controller sections is one sector long immediately
2171 * after the ddf header */
2172 sector = 1;
2173 ddf->anchor.controller_section_offset = __cpu_to_be32(sector);
2174 ddf->anchor.controller_section_length = __cpu_to_be32(1);
2175 sector += 1;
2176
2177 /* phys is 8 sectors after that */
2178 pdsize = ROUND_UP(sizeof(struct phys_disk) +
2179 sizeof(struct phys_disk_entry)*max_phys_disks,
2180 512);
2181 switch(pdsize/512) {
2182 case 2: case 8: case 32: case 128: case 512: break;
2183 default: abort();
2184 }
2185 ddf->anchor.phys_section_offset = __cpu_to_be32(sector);
2186 ddf->anchor.phys_section_length =
2187 __cpu_to_be32(pdsize/512); /* max_primary_element_entries/8 */
2188 sector += pdsize/512;
2189
2190 /* virt is another 32 sectors */
2191 vdsize = ROUND_UP(sizeof(struct virtual_disk) +
2192 sizeof(struct virtual_entry) * max_virt_disks,
2193 512);
2194 switch(vdsize/512) {
2195 case 2: case 8: case 32: case 128: case 512: break;
2196 default: abort();
2197 }
2198 ddf->anchor.virt_section_offset = __cpu_to_be32(sector);
2199 ddf->anchor.virt_section_length =
2200 __cpu_to_be32(vdsize/512); /* max_vd_entries/8 */
2201 sector += vdsize/512;
2202
2203 clen = ddf->conf_rec_len * (ddf->max_part+1);
2204 ddf->anchor.config_section_offset = __cpu_to_be32(sector);
2205 ddf->anchor.config_section_length = __cpu_to_be32(clen);
2206 sector += clen;
2207
2208 ddf->anchor.data_section_offset = __cpu_to_be32(sector);
2209 ddf->anchor.data_section_length = __cpu_to_be32(1);
2210 sector += 1;
2211
2212 ddf->anchor.bbm_section_length = __cpu_to_be32(0);
2213 ddf->anchor.bbm_section_offset = __cpu_to_be32(0xFFFFFFFF);
2214 ddf->anchor.diag_space_length = __cpu_to_be32(0);
2215 ddf->anchor.diag_space_offset = __cpu_to_be32(0xFFFFFFFF);
2216 ddf->anchor.vendor_length = __cpu_to_be32(0);
2217 ddf->anchor.vendor_offset = __cpu_to_be32(0xFFFFFFFF);
2218
2219 memset(ddf->anchor.pad4, 0xff, 256);
2220
2221 memcpy(&ddf->primary, &ddf->anchor, 512);
2222 memcpy(&ddf->secondary, &ddf->anchor, 512);
2223
2224 ddf->primary.openflag = 1; /* I guess.. */
2225 ddf->primary.type = DDF_HEADER_PRIMARY;
2226
2227 ddf->secondary.openflag = 1; /* I guess.. */
2228 ddf->secondary.type = DDF_HEADER_SECONDARY;
2229
2230 ddf->active = &ddf->primary;
2231
2232 ddf->controller.magic = DDF_CONTROLLER_MAGIC;
2233
2234 /* 24 more bytes of fiction required.
2235 * first 8 are a 'vendor-id' - "Linux-MD"
2236 * Remaining 16 are serial number.... maybe a hostname would do?
2237 */
2238 memcpy(ddf->controller.guid, T10, sizeof(T10));
2239 gethostname(hostname, sizeof(hostname));
2240 hostname[sizeof(hostname) - 1] = 0;
2241 hostlen = strlen(hostname);
2242 memcpy(ddf->controller.guid + 24 - hostlen, hostname, hostlen);
2243 for (i = strlen(T10) ; i+hostlen < 24; i++)
2244 ddf->controller.guid[i] = ' ';
2245
2246 ddf->controller.type.vendor_id = __cpu_to_be16(0xDEAD);
2247 ddf->controller.type.device_id = __cpu_to_be16(0xBEEF);
2248 ddf->controller.type.sub_vendor_id = 0;
2249 ddf->controller.type.sub_device_id = 0;
2250 memcpy(ddf->controller.product_id, "What Is My PID??", 16);
2251 memset(ddf->controller.pad, 0xff, 8);
2252 memset(ddf->controller.vendor_data, 0xff, 448);
2253 if (homehost && strlen(homehost) < 440)
2254 strcpy((char*)ddf->controller.vendor_data, homehost);
2255
2256 if (posix_memalign((void**)&pd, 512, pdsize) != 0) {
2257 pr_err("%s could not allocate pd\n", __func__);
2258 return 0;
2259 }
2260 ddf->phys = pd;
2261 ddf->pdsize = pdsize;
2262
2263 memset(pd, 0xff, pdsize);
2264 memset(pd, 0, sizeof(*pd));
2265 pd->magic = DDF_PHYS_RECORDS_MAGIC;
2266 pd->used_pdes = __cpu_to_be16(0);
2267 pd->max_pdes = __cpu_to_be16(max_phys_disks);
2268 memset(pd->pad, 0xff, 52);
2269 for (i = 0; i < max_phys_disks; i++)
2270 memset(pd->entries[i].guid, 0xff, DDF_GUID_LEN);
2271
2272 if (posix_memalign((void**)&vd, 512, vdsize) != 0) {
2273 pr_err("%s could not allocate vd\n", __func__);
2274 return 0;
2275 }
2276 ddf->virt = vd;
2277 ddf->vdsize = vdsize;
2278 memset(vd, 0, vdsize);
2279 vd->magic = DDF_VIRT_RECORDS_MAGIC;
2280 vd->populated_vdes = __cpu_to_be16(0);
2281 vd->max_vdes = __cpu_to_be16(max_virt_disks);
2282 memset(vd->pad, 0xff, 52);
2283
2284 for (i=0; i<max_virt_disks; i++)
2285 memset(&vd->entries[i], 0xff, sizeof(struct virtual_entry));
2286
2287 st->sb = ddf;
2288 ddf_set_updates_pending(ddf);
2289 return 1;
2290}
2291
2292static int chunk_to_shift(int chunksize)
2293{
2294 return ffs(chunksize/512)-1;
2295}
2296
2297#ifndef MDASSEMBLE
2298struct extent {
2299 unsigned long long start, size;
2300};
2301static int cmp_extent(const void *av, const void *bv)
2302{
2303 const struct extent *a = av;
2304 const struct extent *b = bv;
2305 if (a->start < b->start)
2306 return -1;
2307 if (a->start > b->start)
2308 return 1;
2309 return 0;
2310}
2311
2312static struct extent *get_extents(struct ddf_super *ddf, struct dl *dl)
2313{
2314 /* find a list of used extents on the give physical device
2315 * (dnum) of the given ddf.
2316 * Return a malloced array of 'struct extent'
2317
2318 * FIXME ignore DDF_Legacy devices?
2319
2320 */
2321 struct extent *rv;
2322 int n = 0;
2323 unsigned int i;
2324
2325 rv = xmalloc(sizeof(struct extent) * (ddf->max_part + 2));
2326
2327 for (i = 0; i < ddf->max_part; i++) {
2328 const struct vd_config *bvd;
2329 unsigned int ibvd;
2330 struct vcl *v = dl->vlist[i];
2331 if (v == NULL ||
2332 get_pd_index_from_refnum(v, dl->disk.refnum, ddf->mppe,
2333 &bvd, &ibvd) == DDF_NOTFOUND)
2334 continue;
2335 rv[n].start = __be64_to_cpu(LBA_OFFSET(ddf, bvd)[ibvd]);
2336 rv[n].size = __be64_to_cpu(bvd->blocks);
2337 n++;
2338 }
2339 qsort(rv, n, sizeof(*rv), cmp_extent);
2340
2341 rv[n].start = __be64_to_cpu(ddf->phys->entries[dl->pdnum].config_size);
2342 rv[n].size = 0;
2343 return rv;
2344}
2345#endif
2346
2347static int init_super_ddf_bvd(struct supertype *st,
2348 mdu_array_info_t *info,
2349 unsigned long long size,
2350 char *name, char *homehost,
2351 int *uuid, unsigned long long data_offset)
2352{
2353 /* We are creating a BVD inside a pre-existing container.
2354 * so st->sb is already set.
2355 * We need to create a new vd_config and a new virtual_entry
2356 */
2357 struct ddf_super *ddf = st->sb;
2358 unsigned int venum, i;
2359 struct virtual_entry *ve;
2360 struct vcl *vcl;
2361 struct vd_config *vc;
2362
2363 if (find_vde_by_name(ddf, name) != DDF_NOTFOUND) {
2364 pr_err("This ddf already has an array called %s\n", name);
2365 return 0;
2366 }
2367 venum = find_unused_vde(ddf);
2368 if (venum == DDF_NOTFOUND) {
2369 pr_err("Cannot find spare slot for virtual disk\n");
2370 return 0;
2371 }
2372 ve = &ddf->virt->entries[venum];
2373
2374 /* A Virtual Disk GUID contains the T10 Vendor ID, controller type,
2375 * timestamp, random number
2376 */
2377 make_header_guid(ve->guid);
2378 ve->unit = __cpu_to_be16(info->md_minor);
2379 ve->pad0 = 0xFFFF;
2380 ve->guid_crc = crc32(0, (unsigned char*)ddf->anchor.guid, DDF_GUID_LEN);
2381 ve->type = 0;
2382 ve->state = DDF_state_degraded; /* Will be modified as devices are added */
2383 if (info->state & 1) /* clean */
2384 ve->init_state = DDF_init_full;
2385 else
2386 ve->init_state = DDF_init_not;
2387
2388 memset(ve->pad1, 0xff, 14);
2389 memset(ve->name, ' ', 16);
2390 if (name)
2391 strncpy(ve->name, name, 16);
2392 ddf->virt->populated_vdes =
2393 __cpu_to_be16(__be16_to_cpu(ddf->virt->populated_vdes)+1);
2394
2395 /* Now create a new vd_config */
2396 if (posix_memalign((void**)&vcl, 512,
2397 (offsetof(struct vcl, conf) + ddf->conf_rec_len * 512)) != 0) {
2398 pr_err("%s could not allocate vd_config\n", __func__);
2399 return 0;
2400 }
2401 vcl->vcnum = venum;
2402 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
2403 vc = &vcl->conf;
2404
2405 vc->magic = DDF_VD_CONF_MAGIC;
2406 memcpy(vc->guid, ve->guid, DDF_GUID_LEN);
2407 vc->timestamp = __cpu_to_be32(time(0)-DECADE);
2408 vc->seqnum = __cpu_to_be32(1);
2409 memset(vc->pad0, 0xff, 24);
2410 vc->chunk_shift = chunk_to_shift(info->chunk_size);
2411 if (layout_md2ddf(info, vc) == -1 ||
2412 __be16_to_cpu(vc->prim_elmnt_count) > ddf->mppe) {
2413 pr_err("%s: unsupported RAID level/layout %d/%d with %d disks\n",
2414 __func__, info->level, info->layout, info->raid_disks);
2415 free(vcl);
2416 return 0;
2417 }
2418 vc->sec_elmnt_seq = 0;
2419 if (alloc_other_bvds(ddf, vcl) != 0) {
2420 pr_err("%s could not allocate other bvds\n",
2421 __func__);
2422 free(vcl);
2423 return 0;
2424 }
2425 vc->blocks = __cpu_to_be64(info->size * 2);
2426 vc->array_blocks = __cpu_to_be64(
2427 calc_array_size(info->level, info->raid_disks, info->layout,
2428 info->chunk_size, info->size*2));
2429 memset(vc->pad1, 0xff, 8);
2430 vc->spare_refs[0] = 0xffffffff;
2431 vc->spare_refs[1] = 0xffffffff;
2432 vc->spare_refs[2] = 0xffffffff;
2433 vc->spare_refs[3] = 0xffffffff;
2434 vc->spare_refs[4] = 0xffffffff;
2435 vc->spare_refs[5] = 0xffffffff;
2436 vc->spare_refs[6] = 0xffffffff;
2437 vc->spare_refs[7] = 0xffffffff;
2438 memset(vc->cache_pol, 0, 8);
2439 vc->bg_rate = 0x80;
2440 memset(vc->pad2, 0xff, 3);
2441 memset(vc->pad3, 0xff, 52);
2442 memset(vc->pad4, 0xff, 192);
2443 memset(vc->v0, 0xff, 32);
2444 memset(vc->v1, 0xff, 32);
2445 memset(vc->v2, 0xff, 16);
2446 memset(vc->v3, 0xff, 16);
2447 memset(vc->vendor, 0xff, 32);
2448
2449 memset(vc->phys_refnum, 0xff, 4*ddf->mppe);
2450 memset(vc->phys_refnum+ddf->mppe, 0x00, 8*ddf->mppe);
2451
2452 for (i = 1; i < vc->sec_elmnt_count; i++) {
2453 memcpy(vcl->other_bvds[i-1], vc, ddf->conf_rec_len * 512);
2454 vcl->other_bvds[i-1]->sec_elmnt_seq = i;
2455 }
2456
2457 vcl->next = ddf->conflist;
2458 ddf->conflist = vcl;
2459 ddf->currentconf = vcl;
2460 ddf_set_updates_pending(ddf);
2461 return 1;
2462}
2463
2464static int get_svd_state(const struct ddf_super *, const struct vcl *);
2465
2466#ifndef MDASSEMBLE
2467static void add_to_super_ddf_bvd(struct supertype *st,
2468 mdu_disk_info_t *dk, int fd, char *devname)
2469{
2470 /* fd and devname identify a device with-in the ddf container (st).
2471 * dk identifies a location in the new BVD.
2472 * We need to find suitable free space in that device and update
2473 * the phys_refnum and lba_offset for the newly created vd_config.
2474 * We might also want to update the type in the phys_disk
2475 * section.
2476 *
2477 * Alternately: fd == -1 and we have already chosen which device to
2478 * use and recorded in dlist->raid_disk;
2479 */
2480 struct dl *dl;
2481 struct ddf_super *ddf = st->sb;
2482 struct vd_config *vc;
2483 unsigned int i;
2484 unsigned long long blocks, pos, esize;
2485 struct extent *ex;
2486 unsigned int raid_disk = dk->raid_disk;
2487
2488 if (fd == -1) {
2489 for (dl = ddf->dlist; dl ; dl = dl->next)
2490 if (dl->raiddisk == dk->raid_disk)
2491 break;
2492 } else {
2493 for (dl = ddf->dlist; dl ; dl = dl->next)
2494 if (dl->major == dk->major &&
2495 dl->minor == dk->minor)
2496 break;
2497 }
2498 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
2499 return;
2500
2501 vc = &ddf->currentconf->conf;
2502 if (vc->sec_elmnt_count > 1) {
2503 unsigned int n = __be16_to_cpu(vc->prim_elmnt_count);
2504 if (raid_disk >= n)
2505 vc = ddf->currentconf->other_bvds[raid_disk / n - 1];
2506 raid_disk %= n;
2507 }
2508
2509 ex = get_extents(ddf, dl);
2510 if (!ex)
2511 return;
2512
2513 i = 0; pos = 0;
2514 blocks = __be64_to_cpu(vc->blocks);
2515 if (ddf->currentconf->block_sizes)
2516 blocks = ddf->currentconf->block_sizes[dk->raid_disk];
2517
2518 do {
2519 esize = ex[i].start - pos;
2520 if (esize >= blocks)
2521 break;
2522 pos = ex[i].start + ex[i].size;
2523 i++;
2524 } while (ex[i-1].size);
2525
2526 free(ex);
2527 if (esize < blocks)
2528 return;
2529
2530 ddf->currentdev = dk->raid_disk;
2531 vc->phys_refnum[raid_disk] = dl->disk.refnum;
2532 LBA_OFFSET(ddf, vc)[raid_disk] = __cpu_to_be64(pos);
2533
2534 for (i = 0; i < ddf->max_part ; i++)
2535 if (dl->vlist[i] == NULL)
2536 break;
2537 if (i == ddf->max_part)
2538 return;
2539 dl->vlist[i] = ddf->currentconf;
2540
2541 if (fd >= 0)
2542 dl->fd = fd;
2543 if (devname)
2544 dl->devname = devname;
2545
2546 /* Check if we can mark array as optimal yet */
2547 i = ddf->currentconf->vcnum;
2548 ddf->virt->entries[i].state =
2549 (ddf->virt->entries[i].state & ~DDF_state_mask)
2550 | get_svd_state(ddf, ddf->currentconf);
2551 ddf->phys->entries[dl->pdnum].type &= ~__cpu_to_be16(DDF_Global_Spare);
2552 ddf->phys->entries[dl->pdnum].type |= __cpu_to_be16(DDF_Active_in_VD);
2553 ddf_set_updates_pending(ddf);
2554}
2555
2556static unsigned int find_unused_pde(const struct ddf_super *ddf)
2557{
2558 unsigned int i;
2559 for (i = 0; i < __be16_to_cpu(ddf->phys->max_pdes); i++) {
2560 if (all_ff(ddf->phys->entries[i].guid))
2561 return i;
2562 }
2563 return DDF_NOTFOUND;
2564}
2565
2566/* add a device to a container, either while creating it or while
2567 * expanding a pre-existing container
2568 */
2569static int add_to_super_ddf(struct supertype *st,
2570 mdu_disk_info_t *dk, int fd, char *devname,
2571 unsigned long long data_offset)
2572{
2573 struct ddf_super *ddf = st->sb;
2574 struct dl *dd;
2575 time_t now;
2576 struct tm *tm;
2577 unsigned long long size;
2578 struct phys_disk_entry *pde;
2579 unsigned int n, i;
2580 struct stat stb;
2581 __u32 *tptr;
2582
2583 if (ddf->currentconf) {
2584 add_to_super_ddf_bvd(st, dk, fd, devname);
2585 return 0;
2586 }
2587
2588 /* This is device numbered dk->number. We need to create
2589 * a phys_disk entry and a more detailed disk_data entry.
2590 */
2591 fstat(fd, &stb);
2592 n = find_unused_pde(ddf);
2593 if (n == DDF_NOTFOUND) {
2594 pr_err("%s: No free slot in array, cannot add disk\n",
2595 __func__);
2596 return 1;
2597 }
2598 pde = &ddf->phys->entries[n];
2599 get_dev_size(fd, NULL, &size);
2600 if (size <= 32*1024*1024) {
2601 pr_err("%s: device size must be at least 32MB\n",
2602 __func__);
2603 return 1;
2604 }
2605 size >>= 9;
2606
2607 if (posix_memalign((void**)&dd, 512,
2608 sizeof(*dd) + sizeof(dd->vlist[0]) * ddf->max_part) != 0) {
2609 pr_err("%s could allocate buffer for new disk, aborting\n",
2610 __func__);
2611 return 1;
2612 }
2613 dd->major = major(stb.st_rdev);
2614 dd->minor = minor(stb.st_rdev);
2615 dd->devname = devname;
2616 dd->fd = fd;
2617 dd->spare = NULL;
2618
2619 dd->disk.magic = DDF_PHYS_DATA_MAGIC;
2620 now = time(0);
2621 tm = localtime(&now);
2622 sprintf(dd->disk.guid, "%8s%04d%02d%02d",
2623 T10, tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
2624 tptr = (__u32 *)(dd->disk.guid + 16);
2625 *tptr++ = random32();
2626 *tptr = random32();
2627
2628 do {
2629 /* Cannot be bothered finding a CRC of some irrelevant details*/
2630 dd->disk.refnum = random32();
2631 for (i = __be16_to_cpu(ddf->active->max_pd_entries);
2632 i > 0; i--)
2633 if (ddf->phys->entries[i-1].refnum == dd->disk.refnum)
2634 break;
2635 } while (i > 0);
2636
2637 dd->disk.forced_ref = 1;
2638 dd->disk.forced_guid = 1;
2639 memset(dd->disk.vendor, ' ', 32);
2640 memcpy(dd->disk.vendor, "Linux", 5);
2641 memset(dd->disk.pad, 0xff, 442);
2642 for (i = 0; i < ddf->max_part ; i++)
2643 dd->vlist[i] = NULL;
2644
2645 dd->pdnum = n;
2646
2647 if (st->update_tail) {
2648 int len = (sizeof(struct phys_disk) +
2649 sizeof(struct phys_disk_entry));
2650 struct phys_disk *pd;
2651
2652 pd = xmalloc(len);
2653 pd->magic = DDF_PHYS_RECORDS_MAGIC;
2654 pd->used_pdes = __cpu_to_be16(n);
2655 pde = &pd->entries[0];
2656 dd->mdupdate = pd;
2657 } else
2658 ddf->phys->used_pdes = __cpu_to_be16(
2659 1 + __be16_to_cpu(ddf->phys->used_pdes));
2660
2661 memcpy(pde->guid, dd->disk.guid, DDF_GUID_LEN);
2662 pde->refnum = dd->disk.refnum;
2663 pde->type = __cpu_to_be16(DDF_Forced_PD_GUID | DDF_Global_Spare);
2664 pde->state = __cpu_to_be16(DDF_Online);
2665 dd->size = size;
2666 /*
2667 * If there is already a device in dlist, try to reserve the same
2668 * amount of workspace. Otherwise, use 32MB.
2669 * We checked disk size above already.
2670 */
2671#define __calc_lba(new, old, lba, mb) do { \
2672 unsigned long long dif; \
2673 if ((old) != NULL) \
2674 dif = (old)->size - __be64_to_cpu((old)->lba); \
2675 else \
2676 dif = (new)->size; \
2677 if ((new)->size > dif) \
2678 (new)->lba = __cpu_to_be64((new)->size - dif); \
2679 else \
2680 (new)->lba = __cpu_to_be64((new)->size - (mb*1024*2)); \
2681 } while (0)
2682 __calc_lba(dd, ddf->dlist, workspace_lba, 32);
2683 __calc_lba(dd, ddf->dlist, primary_lba, 16);
2684 __calc_lba(dd, ddf->dlist, secondary_lba, 32);
2685 pde->config_size = dd->workspace_lba;
2686
2687 sprintf(pde->path, "%17.17s","Information: nil") ;
2688 memset(pde->pad, 0xff, 6);
2689
2690 if (st->update_tail) {
2691 dd->next = ddf->add_list;
2692 ddf->add_list = dd;
2693 } else {
2694 dd->next = ddf->dlist;
2695 ddf->dlist = dd;
2696 ddf_set_updates_pending(ddf);
2697 }
2698
2699 return 0;
2700}
2701
2702static int remove_from_super_ddf(struct supertype *st, mdu_disk_info_t *dk)
2703{
2704 struct ddf_super *ddf = st->sb;
2705 struct dl *dl;
2706
2707 /* mdmon has noticed that this disk (dk->major/dk->minor) has
2708 * disappeared from the container.
2709 * We need to arrange that it disappears from the metadata and
2710 * internal data structures too.
2711 * Most of the work is done by ddf_process_update which edits
2712 * the metadata and closes the file handle and attaches the memory
2713 * where free_updates will free it.
2714 */
2715 for (dl = ddf->dlist; dl ; dl = dl->next)
2716 if (dl->major == dk->major &&
2717 dl->minor == dk->minor)
2718 break;
2719 if (!dl)
2720 return -1;
2721
2722 if (st->update_tail) {
2723 int len = (sizeof(struct phys_disk) +
2724 sizeof(struct phys_disk_entry));
2725 struct phys_disk *pd;
2726
2727 pd = xmalloc(len);
2728 pd->magic = DDF_PHYS_RECORDS_MAGIC;
2729 pd->used_pdes = __cpu_to_be16(dl->pdnum);
2730 pd->entries[0].state = __cpu_to_be16(DDF_Missing);
2731 append_metadata_update(st, pd, len);
2732 }
2733 return 0;
2734}
2735
2736/*
2737 * This is the write_init_super method for a ddf container. It is
2738 * called when creating a container or adding another device to a
2739 * container.
2740 */
2741#define NULL_CONF_SZ 4096
2742
2743static int __write_ddf_structure(struct dl *d, struct ddf_super *ddf, __u8 type,
2744 char *null_aligned)
2745{
2746 unsigned long long sector;
2747 struct ddf_header *header;
2748 int fd, i, n_config, conf_size;
2749 int ret = 0;
2750
2751 fd = d->fd;
2752
2753 switch (type) {
2754 case DDF_HEADER_PRIMARY:
2755 header = &ddf->primary;
2756 sector = __be64_to_cpu(header->primary_lba);
2757 break;
2758 case DDF_HEADER_SECONDARY:
2759 header = &ddf->secondary;
2760 sector = __be64_to_cpu(header->secondary_lba);
2761 break;
2762 default:
2763 return 0;
2764 }
2765
2766 header->type = type;
2767 header->openflag = 1;
2768 header->crc = calc_crc(header, 512);
2769
2770 lseek64(fd, sector<<9, 0);
2771 if (write(fd, header, 512) < 0)
2772 goto out;
2773
2774 ddf->controller.crc = calc_crc(&ddf->controller, 512);
2775 if (write(fd, &ddf->controller, 512) < 0)
2776 goto out;
2777
2778 ddf->phys->crc = calc_crc(ddf->phys, ddf->pdsize);
2779 if (write(fd, ddf->phys, ddf->pdsize) < 0)
2780 goto out;
2781 ddf->virt->crc = calc_crc(ddf->virt, ddf->vdsize);
2782 if (write(fd, ddf->virt, ddf->vdsize) < 0)
2783 goto out;
2784
2785 /* Now write lots of config records. */
2786 n_config = ddf->max_part;
2787 conf_size = ddf->conf_rec_len * 512;
2788 for (i = 0 ; i <= n_config ; i++) {
2789 struct vcl *c;
2790 struct vd_config *vdc = NULL;
2791 if (i == n_config) {
2792 c = (struct vcl *)d->spare;
2793 if (c)
2794 vdc = &c->conf;
2795 } else {
2796 unsigned int dummy;
2797 c = d->vlist[i];
2798 if (c)
2799 get_pd_index_from_refnum(
2800 c, d->disk.refnum,
2801 ddf->mppe,
2802 (const struct vd_config **)&vdc,
2803 &dummy);
2804 }
2805 if (c) {
2806 dprintf("writing conf record %i on disk %08x for %s/%u\n",
2807 i, d->disk.refnum, guid_str(vdc->guid),
2808 vdc->sec_elmnt_seq);
2809 vdc->seqnum = header->seq;
2810 vdc->crc = calc_crc(vdc, conf_size);
2811 if (write(fd, vdc, conf_size) < 0)
2812 break;
2813 } else {
2814 unsigned int togo = conf_size;
2815 while (togo > NULL_CONF_SZ) {
2816 if (write(fd, null_aligned, NULL_CONF_SZ) < 0)
2817 break;
2818 togo -= NULL_CONF_SZ;
2819 }
2820 if (write(fd, null_aligned, togo) < 0)
2821 break;
2822 }
2823 }
2824 if (i <= n_config)
2825 goto out;
2826
2827 d->disk.crc = calc_crc(&d->disk, 512);
2828 if (write(fd, &d->disk, 512) < 0)
2829 goto out;
2830
2831 ret = 1;
2832out:
2833 header->openflag = 0;
2834 header->crc = calc_crc(header, 512);
2835
2836 lseek64(fd, sector<<9, 0);
2837 if (write(fd, header, 512) < 0)
2838 ret = 0;
2839
2840 return ret;
2841}
2842
2843static int __write_init_super_ddf(struct supertype *st)
2844{
2845 struct ddf_super *ddf = st->sb;
2846 struct dl *d;
2847 int attempts = 0;
2848 int successes = 0;
2849 unsigned long long size;
2850 char *null_aligned;
2851 __u32 seq;
2852
2853 pr_state(ddf, __func__);
2854 if (posix_memalign((void**)&null_aligned, 4096, NULL_CONF_SZ) != 0) {
2855 return -ENOMEM;
2856 }
2857 memset(null_aligned, 0xff, NULL_CONF_SZ);
2858
2859 seq = ddf->active->seq + 1;
2860
2861 /* try to write updated metadata,
2862 * if we catch a failure move on to the next disk
2863 */
2864 for (d = ddf->dlist; d; d=d->next) {
2865 int fd = d->fd;
2866
2867 if (fd < 0)
2868 continue;
2869
2870 attempts++;
2871 /* We need to fill in the primary, (secondary) and workspace
2872 * lba's in the headers, set their checksums,
2873 * Also checksum phys, virt....
2874 *
2875 * Then write everything out, finally the anchor is written.
2876 */
2877 get_dev_size(fd, NULL, &size);
2878 size /= 512;
2879 if (d->workspace_lba != 0)
2880 ddf->anchor.workspace_lba = d->workspace_lba;
2881 else
2882 ddf->anchor.workspace_lba =
2883 __cpu_to_be64(size - 32*1024*2);
2884 if (d->primary_lba != 0)
2885 ddf->anchor.primary_lba = d->primary_lba;
2886 else
2887 ddf->anchor.primary_lba =
2888 __cpu_to_be64(size - 16*1024*2);
2889 if (d->secondary_lba != 0)
2890 ddf->anchor.secondary_lba = d->secondary_lba;
2891 else
2892 ddf->anchor.secondary_lba =
2893 __cpu_to_be64(size - 32*1024*2);
2894 ddf->anchor.seq = seq;
2895 memcpy(&ddf->primary, &ddf->anchor, 512);
2896 memcpy(&ddf->secondary, &ddf->anchor, 512);
2897
2898 ddf->anchor.openflag = 0xFF; /* 'open' means nothing */
2899 ddf->anchor.seq = 0xFFFFFFFF; /* no sequencing in anchor */
2900 ddf->anchor.crc = calc_crc(&ddf->anchor, 512);
2901
2902 if (!__write_ddf_structure(d, ddf, DDF_HEADER_PRIMARY,
2903 null_aligned))
2904 continue;
2905
2906 if (!__write_ddf_structure(d, ddf, DDF_HEADER_SECONDARY,
2907 null_aligned))
2908 continue;
2909
2910 lseek64(fd, (size-1)*512, SEEK_SET);
2911 if (write(fd, &ddf->anchor, 512) < 0)
2912 continue;
2913 successes++;
2914 }
2915 free(null_aligned);
2916
2917 return attempts != successes;
2918}
2919
2920static int write_init_super_ddf(struct supertype *st)
2921{
2922 struct ddf_super *ddf = st->sb;
2923 struct vcl *currentconf = ddf->currentconf;
2924
2925 /* we are done with currentconf reset it to point st at the container */
2926 ddf->currentconf = NULL;
2927
2928 if (st->update_tail) {
2929 /* queue the virtual_disk and vd_config as metadata updates */
2930 struct virtual_disk *vd;
2931 struct vd_config *vc;
2932 int len;
2933
2934 if (!currentconf) {
2935 int len = (sizeof(struct phys_disk) +
2936 sizeof(struct phys_disk_entry));
2937
2938 /* adding a disk to the container. */
2939 if (!ddf->add_list)
2940 return 0;
2941
2942 append_metadata_update(st, ddf->add_list->mdupdate, len);
2943 ddf->add_list->mdupdate = NULL;
2944 return 0;
2945 }
2946
2947 /* Newly created VD */
2948
2949 /* First the virtual disk. We have a slightly fake header */
2950 len = sizeof(struct virtual_disk) + sizeof(struct virtual_entry);
2951 vd = xmalloc(len);
2952 *vd = *ddf->virt;
2953 vd->entries[0] = ddf->virt->entries[currentconf->vcnum];
2954 vd->populated_vdes = __cpu_to_be16(currentconf->vcnum);
2955 append_metadata_update(st, vd, len);
2956
2957 /* Then the vd_config */
2958 len = ddf->conf_rec_len * 512;
2959 vc = xmalloc(len);
2960 memcpy(vc, &currentconf->conf, len);
2961 append_metadata_update(st, vc, len);
2962
2963 /* FIXME I need to close the fds! */
2964 return 0;
2965 } else {
2966 struct dl *d;
2967 if (!currentconf)
2968 for (d = ddf->dlist; d; d=d->next)
2969 while (Kill(d->devname, NULL, 0, -1, 1) == 0);
2970 return __write_init_super_ddf(st);
2971 }
2972}
2973
2974#endif
2975
2976static __u64 avail_size_ddf(struct supertype *st, __u64 devsize,
2977 unsigned long long data_offset)
2978{
2979 /* We must reserve the last 32Meg */
2980 if (devsize <= 32*1024*2)
2981 return 0;
2982 return devsize - 32*1024*2;
2983}
2984
2985#ifndef MDASSEMBLE
2986
2987static int reserve_space(struct supertype *st, int raiddisks,
2988 unsigned long long size, int chunk,
2989 unsigned long long *freesize)
2990{
2991 /* Find 'raiddisks' spare extents at least 'size' big (but
2992 * only caring about multiples of 'chunk') and remember
2993 * them.
2994 * If the cannot be found, fail.
2995 */
2996 struct dl *dl;
2997 struct ddf_super *ddf = st->sb;
2998 int cnt = 0;
2999
3000 for (dl = ddf->dlist; dl ; dl=dl->next) {
3001 dl->raiddisk = -1;
3002 dl->esize = 0;
3003 }
3004 /* Now find largest extent on each device */
3005 for (dl = ddf->dlist ; dl ; dl=dl->next) {
3006 struct extent *e = get_extents(ddf, dl);
3007 unsigned long long pos = 0;
3008 int i = 0;
3009 int found = 0;
3010 unsigned long long minsize = size;
3011
3012 if (size == 0)
3013 minsize = chunk;
3014
3015 if (!e)
3016 continue;
3017 do {
3018 unsigned long long esize;
3019 esize = e[i].start - pos;
3020 if (esize >= minsize) {
3021 found = 1;
3022 minsize = esize;
3023 }
3024 pos = e[i].start + e[i].size;
3025 i++;
3026 } while (e[i-1].size);
3027 if (found) {
3028 cnt++;
3029 dl->esize = minsize;
3030 }
3031 free(e);
3032 }
3033 if (cnt < raiddisks) {
3034 pr_err("not enough devices with space to create array.\n");
3035 return 0; /* No enough free spaces large enough */
3036 }
3037 if (size == 0) {
3038 /* choose the largest size of which there are at least 'raiddisk' */
3039 for (dl = ddf->dlist ; dl ; dl=dl->next) {
3040 struct dl *dl2;
3041 if (dl->esize <= size)
3042 continue;
3043 /* This is bigger than 'size', see if there are enough */
3044 cnt = 0;
3045 for (dl2 = ddf->dlist; dl2 ; dl2=dl2->next)
3046 if (dl2->esize >= dl->esize)
3047 cnt++;
3048 if (cnt >= raiddisks)
3049 size = dl->esize;
3050 }
3051 if (chunk) {
3052 size = size / chunk;
3053 size *= chunk;
3054 }
3055 *freesize = size;
3056 if (size < 32) {
3057 pr_err("not enough spare devices to create array.\n");
3058 return 0;
3059 }
3060 }
3061 /* We have a 'size' of which there are enough spaces.
3062 * We simply do a first-fit */
3063 cnt = 0;
3064 for (dl = ddf->dlist ; dl && cnt < raiddisks ; dl=dl->next) {
3065 if (dl->esize < size)
3066 continue;
3067
3068 dl->raiddisk = cnt;
3069 cnt++;
3070 }
3071 return 1;
3072}
3073
3074static int
3075validate_geometry_ddf_container(struct supertype *st,
3076 int level, int layout, int raiddisks,
3077 int chunk, unsigned long long size,
3078 unsigned long long data_offset,
3079 char *dev, unsigned long long *freesize,
3080 int verbose);
3081
3082static int validate_geometry_ddf_bvd(struct supertype *st,
3083 int level, int layout, int raiddisks,
3084 int *chunk, unsigned long long size,
3085 unsigned long long data_offset,
3086 char *dev, unsigned long long *freesize,
3087 int verbose);
3088
3089static int validate_geometry_ddf(struct supertype *st,
3090 int level, int layout, int raiddisks,
3091 int *chunk, unsigned long long size,
3092 unsigned long long data_offset,
3093 char *dev, unsigned long long *freesize,
3094 int verbose)
3095{
3096 int fd;
3097 struct mdinfo *sra;
3098 int cfd;
3099
3100 /* ddf potentially supports lots of things, but it depends on
3101 * what devices are offered (and maybe kernel version?)
3102 * If given unused devices, we will make a container.
3103 * If given devices in a container, we will make a BVD.
3104 * If given BVDs, we make an SVD, changing all the GUIDs in the process.
3105 */
3106
3107 if (chunk && *chunk == UnSet)
3108 *chunk = DEFAULT_CHUNK;
3109
3110 if (level == -1000000) level = LEVEL_CONTAINER;
3111 if (level == LEVEL_CONTAINER) {
3112 /* Must be a fresh device to add to a container */
3113 return validate_geometry_ddf_container(st, level, layout,
3114 raiddisks, chunk?*chunk:0,
3115 size, data_offset, dev,
3116 freesize,
3117 verbose);
3118 }
3119
3120 if (!dev) {
3121 mdu_array_info_t array = {
3122 .level = level, .layout = layout,
3123 .raid_disks = raiddisks
3124 };
3125 struct vd_config conf;
3126 if (layout_md2ddf(&array, &conf) == -1) {
3127 if (verbose)
3128 pr_err("DDF does not support level %d /layout %d arrays with %d disks\n",
3129 level, layout, raiddisks);
3130 return 0;
3131 }
3132 /* Should check layout? etc */
3133
3134 if (st->sb && freesize) {
3135 /* --create was given a container to create in.
3136 * So we need to check that there are enough
3137 * free spaces and return the amount of space.
3138 * We may as well remember which drives were
3139 * chosen so that add_to_super/getinfo_super
3140 * can return them.
3141 */
3142 return reserve_space(st, raiddisks, size, chunk?*chunk:0, freesize);
3143 }
3144 return 1;
3145 }
3146
3147 if (st->sb) {
3148 /* A container has already been opened, so we are
3149 * creating in there. Maybe a BVD, maybe an SVD.
3150 * Should make a distinction one day.
3151 */
3152 return validate_geometry_ddf_bvd(st, level, layout, raiddisks,
3153 chunk, size, data_offset, dev,
3154 freesize,
3155 verbose);
3156 }
3157 /* This is the first device for the array.
3158 * If it is a container, we read it in and do automagic allocations,
3159 * no other devices should be given.
3160 * Otherwise it must be a member device of a container, and we
3161 * do manual allocation.
3162 * Later we should check for a BVD and make an SVD.
3163 */
3164 fd = open(dev, O_RDONLY|O_EXCL, 0);
3165 if (fd >= 0) {
3166 sra = sysfs_read(fd, NULL, GET_VERSION);
3167 close(fd);
3168 if (sra && sra->array.major_version == -1 &&
3169 strcmp(sra->text_version, "ddf") == 0) {
3170
3171 /* load super */
3172 /* find space for 'n' devices. */
3173 /* remember the devices */
3174 /* Somehow return the fact that we have enough */
3175 }
3176
3177 if (verbose)
3178 pr_err("ddf: Cannot create this array "
3179 "on device %s - a container is required.\n",
3180 dev);
3181 return 0;
3182 }
3183 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
3184 if (verbose)
3185 pr_err("ddf: Cannot open %s: %s\n",
3186 dev, strerror(errno));
3187 return 0;
3188 }
3189 /* Well, it is in use by someone, maybe a 'ddf' container. */
3190 cfd = open_container(fd);
3191 if (cfd < 0) {
3192 close(fd);
3193 if (verbose)
3194 pr_err("ddf: Cannot use %s: %s\n",
3195 dev, strerror(EBUSY));
3196 return 0;
3197 }
3198 sra = sysfs_read(cfd, NULL, GET_VERSION);
3199 close(fd);
3200 if (sra && sra->array.major_version == -1 &&
3201 strcmp(sra->text_version, "ddf") == 0) {
3202 /* This is a member of a ddf container. Load the container
3203 * and try to create a bvd
3204 */
3205 struct ddf_super *ddf;
3206 if (load_super_ddf_all(st, cfd, (void **)&ddf, NULL) == 0) {
3207 st->sb = ddf;
3208 strcpy(st->container_devnm, fd2devnm(cfd));
3209 close(cfd);
3210 return validate_geometry_ddf_bvd(st, level, layout,
3211 raiddisks, chunk, size,
3212 data_offset,
3213 dev, freesize,
3214 verbose);
3215 }
3216 close(cfd);
3217 } else /* device may belong to a different container */
3218 return 0;
3219
3220 return 1;
3221}
3222
3223static int
3224validate_geometry_ddf_container(struct supertype *st,
3225 int level, int layout, int raiddisks,
3226 int chunk, unsigned long long size,
3227 unsigned long long data_offset,
3228 char *dev, unsigned long long *freesize,
3229 int verbose)
3230{
3231 int fd;
3232 unsigned long long ldsize;
3233
3234 if (level != LEVEL_CONTAINER)
3235 return 0;
3236 if (!dev)
3237 return 1;
3238
3239 fd = open(dev, O_RDONLY|O_EXCL, 0);
3240 if (fd < 0) {
3241 if (verbose)
3242 pr_err("ddf: Cannot open %s: %s\n",
3243 dev, strerror(errno));
3244 return 0;
3245 }
3246 if (!get_dev_size(fd, dev, &ldsize)) {
3247 close(fd);
3248 return 0;
3249 }
3250 close(fd);
3251
3252 *freesize = avail_size_ddf(st, ldsize >> 9, INVALID_SECTORS);
3253 if (*freesize == 0)
3254 return 0;
3255
3256 return 1;
3257}
3258
3259static int validate_geometry_ddf_bvd(struct supertype *st,
3260 int level, int layout, int raiddisks,
3261 int *chunk, unsigned long long size,
3262 unsigned long long data_offset,
3263 char *dev, unsigned long long *freesize,
3264 int verbose)
3265{
3266 struct stat stb;
3267 struct ddf_super *ddf = st->sb;
3268 struct dl *dl;
3269 unsigned long long pos = 0;
3270 unsigned long long maxsize;
3271 struct extent *e;
3272 int i;
3273 /* ddf/bvd supports lots of things, but not containers */
3274 if (level == LEVEL_CONTAINER) {
3275 if (verbose)
3276 pr_err("DDF cannot create a container within an container\n");
3277 return 0;
3278 }
3279 /* We must have the container info already read in. */
3280 if (!ddf)
3281 return 0;
3282
3283 if (!dev) {
3284 /* General test: make sure there is space for
3285 * 'raiddisks' device extents of size 'size'.
3286 */
3287 unsigned long long minsize = size;
3288 int dcnt = 0;
3289 if (minsize == 0)
3290 minsize = 8;
3291 for (dl = ddf->dlist; dl ; dl = dl->next)
3292 {
3293 int found = 0;
3294 pos = 0;
3295
3296 i = 0;
3297 e = get_extents(ddf, dl);
3298 if (!e) continue;
3299 do {
3300 unsigned long long esize;
3301 esize = e[i].start - pos;
3302 if (esize >= minsize)
3303 found = 1;
3304 pos = e[i].start + e[i].size;
3305 i++;
3306 } while (e[i-1].size);
3307 if (found)
3308 dcnt++;
3309 free(e);
3310 }
3311 if (dcnt < raiddisks) {
3312 if (verbose)
3313 pr_err("ddf: Not enough devices with "
3314 "space for this array (%d < %d)\n",
3315 dcnt, raiddisks);
3316 return 0;
3317 }
3318 return 1;
3319 }
3320 /* This device must be a member of the set */
3321 if (stat(dev, &stb) < 0)
3322 return 0;
3323 if ((S_IFMT & stb.st_mode) != S_IFBLK)
3324 return 0;
3325 for (dl = ddf->dlist ; dl ; dl = dl->next) {
3326 if (dl->major == (int)major(stb.st_rdev) &&
3327 dl->minor == (int)minor(stb.st_rdev))
3328 break;
3329 }
3330 if (!dl) {
3331 if (verbose)
3332 pr_err("ddf: %s is not in the "
3333 "same DDF set\n",
3334 dev);
3335 return 0;
3336 }
3337 e = get_extents(ddf, dl);
3338 maxsize = 0;
3339 i = 0;
3340 if (e) do {
3341 unsigned long long esize;
3342 esize = e[i].start - pos;
3343 if (esize >= maxsize)
3344 maxsize = esize;
3345 pos = e[i].start + e[i].size;
3346 i++;
3347 } while (e[i-1].size);
3348 *freesize = maxsize;
3349 // FIXME here I am
3350
3351 return 1;
3352}
3353
3354static int load_super_ddf_all(struct supertype *st, int fd,
3355 void **sbp, char *devname)
3356{
3357 struct mdinfo *sra;
3358 struct ddf_super *super;
3359 struct mdinfo *sd, *best = NULL;
3360 int bestseq = 0;
3361 int seq;
3362 char nm[20];
3363 int dfd;
3364
3365 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
3366 if (!sra)
3367 return 1;
3368 if (sra->array.major_version != -1 ||
3369 sra->array.minor_version != -2 ||
3370 strcmp(sra->text_version, "ddf") != 0)
3371 return 1;
3372
3373 if (posix_memalign((void**)&super, 512, sizeof(*super)) != 0)
3374 return 1;
3375 memset(super, 0, sizeof(*super));
3376
3377 /* first, try each device, and choose the best ddf */
3378 for (sd = sra->devs ; sd ; sd = sd->next) {
3379 int rv;
3380 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
3381 dfd = dev_open(nm, O_RDONLY);
3382 if (dfd < 0)
3383 return 2;
3384 rv = load_ddf_headers(dfd, super, NULL);
3385 close(dfd);
3386 if (rv == 0) {
3387 seq = __be32_to_cpu(super->active->seq);
3388 if (super->active->openflag)
3389 seq--;
3390 if (!best || seq > bestseq) {
3391 bestseq = seq;
3392 best = sd;
3393 }
3394 }
3395 }
3396 if (!best)
3397 return 1;
3398 /* OK, load this ddf */
3399 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
3400 dfd = dev_open(nm, O_RDONLY);
3401 if (dfd < 0)
3402 return 1;
3403 load_ddf_headers(dfd, super, NULL);
3404 load_ddf_global(dfd, super, NULL);
3405 close(dfd);
3406 /* Now we need the device-local bits */
3407 for (sd = sra->devs ; sd ; sd = sd->next) {
3408 int rv;
3409
3410 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
3411 dfd = dev_open(nm, O_RDWR);
3412 if (dfd < 0)
3413 return 2;
3414 rv = load_ddf_headers(dfd, super, NULL);
3415 if (rv == 0)
3416 rv = load_ddf_local(dfd, super, NULL, 1);
3417 if (rv)
3418 return 1;
3419 }
3420
3421 *sbp = super;
3422 if (st->ss == NULL) {
3423 st->ss = &super_ddf;
3424 st->minor_version = 0;
3425 st->max_devs = 512;
3426 }
3427 strcpy(st->container_devnm, fd2devnm(fd));
3428 return 0;
3429}
3430
3431static int load_container_ddf(struct supertype *st, int fd,
3432 char *devname)
3433{
3434 return load_super_ddf_all(st, fd, &st->sb, devname);
3435}
3436
3437#endif /* MDASSEMBLE */
3438
3439static int check_secondary(const struct vcl *vc)
3440{
3441 const struct vd_config *conf = &vc->conf;
3442 int i;
3443
3444 /* The only DDF secondary RAID level md can support is
3445 * RAID 10, if the stripe sizes and Basic volume sizes
3446 * are all equal.
3447 * Other configurations could in theory be supported by exposing
3448 * the BVDs to user space and using device mapper for the secondary
3449 * mapping. So far we don't support that.
3450 */
3451
3452 __u64 sec_elements[4] = {0, 0, 0, 0};
3453#define __set_sec_seen(n) (sec_elements[(n)>>6] |= (1<<((n)&63)))
3454#define __was_sec_seen(n) ((sec_elements[(n)>>6] & (1<<((n)&63))) != 0)
3455
3456 if (vc->other_bvds == NULL) {
3457 pr_err("No BVDs for secondary RAID found\n");
3458 return -1;
3459 }
3460 if (conf->prl != DDF_RAID1) {
3461 pr_err("Secondary RAID level only supported for mirrored BVD\n");
3462 return -1;
3463 }
3464 if (conf->srl != DDF_2STRIPED && conf->srl != DDF_2SPANNED) {
3465 pr_err("Secondary RAID level %d is unsupported\n",
3466 conf->srl);
3467 return -1;
3468 }
3469 __set_sec_seen(conf->sec_elmnt_seq);
3470 for (i = 0; i < conf->sec_elmnt_count-1; i++) {
3471 const struct vd_config *bvd = vc->other_bvds[i];
3472 if (bvd->sec_elmnt_seq == DDF_UNUSED_BVD)
3473 continue;
3474 if (bvd->srl != conf->srl) {
3475 pr_err("Inconsistent secondary RAID level across BVDs\n");
3476 return -1;
3477 }
3478 if (bvd->prl != conf->prl) {
3479 pr_err("Different RAID levels for BVDs are unsupported\n");
3480 return -1;
3481 }
3482 if (bvd->prim_elmnt_count != conf->prim_elmnt_count) {
3483 pr_err("All BVDs must have the same number of primary elements\n");
3484 return -1;
3485 }
3486 if (bvd->chunk_shift != conf->chunk_shift) {
3487 pr_err("Different strip sizes for BVDs are unsupported\n");
3488 return -1;
3489 }
3490 if (bvd->array_blocks != conf->array_blocks) {
3491 pr_err("Different BVD sizes are unsupported\n");
3492 return -1;
3493 }
3494 __set_sec_seen(bvd->sec_elmnt_seq);
3495 }
3496 for (i = 0; i < conf->sec_elmnt_count; i++) {
3497 if (!__was_sec_seen(i)) {
3498 pr_err("BVD %d is missing\n", i);
3499 return -1;
3500 }
3501 }
3502 return 0;
3503}
3504
3505static unsigned int get_pd_index_from_refnum(const struct vcl *vc,
3506 __u32 refnum, unsigned int nmax,
3507 const struct vd_config **bvd,
3508 unsigned int *idx)
3509{
3510 unsigned int i, j, n, sec, cnt;
3511
3512 cnt = __be16_to_cpu(vc->conf.prim_elmnt_count);
3513 sec = (vc->conf.sec_elmnt_count == 1 ? 0 : vc->conf.sec_elmnt_seq);
3514
3515 for (i = 0, j = 0 ; i < nmax ; i++) {
3516 /* j counts valid entries for this BVD */
3517 if (vc->conf.phys_refnum[i] != 0xffffffff)
3518 j++;
3519 if (vc->conf.phys_refnum[i] == refnum) {
3520 *bvd = &vc->conf;
3521 *idx = i;
3522 return sec * cnt + j - 1;
3523 }
3524 }
3525 if (vc->other_bvds == NULL)
3526 goto bad;
3527
3528 for (n = 1; n < vc->conf.sec_elmnt_count; n++) {
3529 struct vd_config *vd = vc->other_bvds[n-1];
3530 sec = vd->sec_elmnt_seq;
3531 if (sec == DDF_UNUSED_BVD)
3532 continue;
3533 for (i = 0, j = 0 ; i < nmax ; i++) {
3534 if (vd->phys_refnum[i] != 0xffffffff)
3535 j++;
3536 if (vd->phys_refnum[i] == refnum) {
3537 *bvd = vd;
3538 *idx = i;
3539 return sec * cnt + j - 1;
3540 }
3541 }
3542 }
3543bad:
3544 *bvd = NULL;
3545 return DDF_NOTFOUND;
3546}
3547
3548static struct mdinfo *container_content_ddf(struct supertype *st, char *subarray)
3549{
3550 /* Given a container loaded by load_super_ddf_all,
3551 * extract information about all the arrays into
3552 * an mdinfo tree.
3553 *
3554 * For each vcl in conflist: create an mdinfo, fill it in,
3555 * then look for matching devices (phys_refnum) in dlist
3556 * and create appropriate device mdinfo.
3557 */
3558 struct ddf_super *ddf = st->sb;
3559 struct mdinfo *rest = NULL;
3560 struct vcl *vc;
3561
3562 for (vc = ddf->conflist ; vc ; vc=vc->next)
3563 {
3564 unsigned int i;
3565 unsigned int j;
3566 struct mdinfo *this;
3567 char *ep;
3568 __u32 *cptr;
3569 unsigned int pd;
3570
3571 if (subarray &&
3572 (strtoul(subarray, &ep, 10) != vc->vcnum ||
3573 *ep != '\0'))
3574 continue;
3575
3576 if (vc->conf.sec_elmnt_count > 1) {
3577 if (check_secondary(vc) != 0)
3578 continue;
3579 }
3580
3581 this = xcalloc(1, sizeof(*this));
3582 this->next = rest;
3583 rest = this;
3584
3585 if (layout_ddf2md(&vc->conf, &this->array))
3586 continue;
3587 this->array.md_minor = -1;
3588 this->array.major_version = -1;
3589 this->array.minor_version = -2;
3590 cptr = (__u32 *)(vc->conf.guid + 16);
3591 this->array.ctime = DECADE + __be32_to_cpu(*cptr);
3592 this->array.utime = DECADE +
3593 __be32_to_cpu(vc->conf.timestamp);
3594 this->array.chunk_size = 512 << vc->conf.chunk_shift;
3595
3596 i = vc->vcnum;
3597 if ((ddf->virt->entries[i].state & DDF_state_inconsistent) ||
3598 (ddf->virt->entries[i].init_state & DDF_initstate_mask) !=
3599 DDF_init_full) {
3600 this->array.state = 0;
3601 this->resync_start = 0;
3602 } else {
3603 this->array.state = 1;
3604 this->resync_start = MaxSector;
3605 }
3606 memcpy(this->name, ddf->virt->entries[i].name, 16);
3607 this->name[16]=0;
3608 for(j=0; j<16; j++)
3609 if (this->name[j] == ' ')
3610 this->name[j] = 0;
3611
3612 memset(this->uuid, 0, sizeof(this->uuid));
3613 this->component_size = __be64_to_cpu(vc->conf.blocks);
3614 this->array.size = this->component_size / 2;
3615 this->container_member = i;
3616
3617 ddf->currentconf = vc;
3618 uuid_from_super_ddf(st, this->uuid);
3619 ddf->currentconf = NULL;
3620
3621 sprintf(this->text_version, "/%s/%d",
3622 st->container_devnm, this->container_member);
3623
3624 for (pd = 0; pd < __be16_to_cpu(ddf->phys->used_pdes); pd++) {
3625 struct mdinfo *dev;
3626 struct dl *d;
3627 const struct vd_config *bvd;
3628 unsigned int iphys;
3629 int stt;
3630
3631 if (ddf->phys->entries[pd].refnum == 0xFFFFFFFF)
3632 continue;
3633
3634 stt = __be16_to_cpu(ddf->phys->entries[pd].state);
3635 if ((stt & (DDF_Online|DDF_Failed|DDF_Rebuilding))
3636 != DDF_Online)
3637 continue;
3638
3639 i = get_pd_index_from_refnum(
3640 vc, ddf->phys->entries[pd].refnum,
3641 ddf->mppe, &bvd, &iphys);
3642 if (i == DDF_NOTFOUND)
3643 continue;
3644
3645 this->array.working_disks++;
3646
3647 for (d = ddf->dlist; d ; d=d->next)
3648 if (d->disk.refnum ==
3649 ddf->phys->entries[pd].refnum)
3650 break;
3651 if (d == NULL)
3652 /* Haven't found that one yet, maybe there are others */
3653 continue;
3654
3655 dev = xcalloc(1, sizeof(*dev));
3656 dev->next = this->devs;
3657 this->devs = dev;
3658
3659 dev->disk.number = __be32_to_cpu(d->disk.refnum);
3660 dev->disk.major = d->major;
3661 dev->disk.minor = d->minor;
3662 dev->disk.raid_disk = i;
3663 dev->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
3664 dev->recovery_start = MaxSector;
3665
3666 dev->events = __be32_to_cpu(ddf->primary.seq);
3667 dev->data_offset =
3668 __be64_to_cpu(LBA_OFFSET(ddf, bvd)[iphys]);
3669 dev->component_size = __be64_to_cpu(bvd->blocks);
3670 if (d->devname)
3671 strcpy(dev->name, d->devname);
3672 }
3673 }
3674 return rest;
3675}
3676
3677static int store_super_ddf(struct supertype *st, int fd)
3678{
3679 struct ddf_super *ddf = st->sb;
3680 unsigned long long dsize;
3681 void *buf;
3682 int rc;
3683
3684 if (!ddf)
3685 return 1;
3686
3687 if (!get_dev_size(fd, NULL, &dsize))
3688 return 1;
3689
3690 if (ddf->dlist || ddf->conflist) {
3691 struct stat sta;
3692 struct dl *dl;
3693 int ofd, ret;
3694
3695 if (fstat(fd, &sta) == -1 || !S_ISBLK(sta.st_mode)) {
3696 pr_err("%s: file descriptor for invalid device\n",
3697 __func__);
3698 return 1;
3699 }
3700 for (dl = ddf->dlist; dl; dl = dl->next)
3701 if (dl->major == (int)major(sta.st_rdev) &&
3702 dl->minor == (int)minor(sta.st_rdev))
3703 break;
3704 if (!dl) {
3705 pr_err("%s: couldn't find disk %d/%d\n", __func__,
3706 (int)major(sta.st_rdev),
3707 (int)minor(sta.st_rdev));
3708 return 1;
3709 }
3710 /*
3711 For DDF, writing to just one disk makes no sense.
3712 We would run the risk of writing inconsistent meta data
3713 to the devices. So just call __write_init_super_ddf and
3714 write to all devices, including this one.
3715 Use the fd passed to this function, just in case dl->fd
3716 is invalid.
3717 */
3718 ofd = dl->fd;
3719 dl->fd = fd;
3720 ret = __write_init_super_ddf(st);
3721 dl->fd = ofd;
3722 return ret;
3723 }
3724
3725 if (posix_memalign(&buf, 512, 512) != 0)
3726 return 1;
3727 memset(buf, 0, 512);
3728
3729 lseek64(fd, dsize-512, 0);
3730 rc = write(fd, buf, 512);
3731 free(buf);
3732 if (rc < 0)
3733 return 1;
3734 return 0;
3735}
3736
3737static int compare_super_ddf(struct supertype *st, struct supertype *tst)
3738{
3739 /*
3740 * return:
3741 * 0 same, or first was empty, and second was copied
3742 * 1 second had wrong number
3743 * 2 wrong uuid
3744 * 3 wrong other info
3745 */
3746 struct ddf_super *first = st->sb;
3747 struct ddf_super *second = tst->sb;
3748 struct dl *dl1, *dl2;
3749 struct vcl *vl1, *vl2;
3750 unsigned int max_vds, max_pds, pd, vd;
3751
3752 if (!first) {
3753 st->sb = tst->sb;
3754 tst->sb = NULL;
3755 return 0;
3756 }
3757
3758 if (memcmp(first->anchor.guid, second->anchor.guid, DDF_GUID_LEN) != 0)
3759 return 2;
3760
3761 if (first->anchor.seq != second->anchor.seq) {
3762 dprintf("%s: sequence number mismatch %u/%u\n", __func__,
3763 __be32_to_cpu(first->anchor.seq),
3764 __be32_to_cpu(second->anchor.seq));
3765 return 3;
3766 }
3767 if (first->max_part != second->max_part ||
3768 first->phys->used_pdes != second->phys->used_pdes ||
3769 first->virt->populated_vdes != second->virt->populated_vdes) {
3770 dprintf("%s: PD/VD number mismatch\n", __func__);
3771 return 3;
3772 }
3773
3774 max_pds = __be16_to_cpu(first->phys->used_pdes);
3775 for (dl2 = second->dlist; dl2; dl2 = dl2->next) {
3776 for (pd = 0; pd < max_pds; pd++)
3777 if (first->phys->entries[pd].refnum == dl2->disk.refnum)
3778 break;
3779 if (pd == max_pds) {
3780 dprintf("%s: no match for disk %08x\n", __func__,
3781 __be32_to_cpu(dl2->disk.refnum));
3782 return 3;
3783 }
3784 }
3785
3786 max_vds = __be16_to_cpu(first->active->max_vd_entries);
3787 for (vl2 = second->conflist; vl2; vl2 = vl2->next) {
3788 if (vl2->conf.magic != DDF_VD_CONF_MAGIC)
3789 continue;
3790 for (vd = 0; vd < max_vds; vd++)
3791 if (!memcmp(first->virt->entries[vd].guid,
3792 vl2->conf.guid, DDF_GUID_LEN))
3793 break;
3794 if (vd == max_vds) {
3795 dprintf("%s: no match for VD config\n", __func__);
3796 return 3;
3797 }
3798 }
3799 /* FIXME should I look at anything else? */
3800
3801 /*
3802 At this point we are fairly sure that the meta data matches.
3803 But the new disk may contain additional local data.
3804 Add it to the super block.
3805 */
3806 for (vl2 = second->conflist; vl2; vl2 = vl2->next) {
3807 for (vl1 = first->conflist; vl1; vl1 = vl1->next)
3808 if (!memcmp(vl1->conf.guid, vl2->conf.guid,
3809 DDF_GUID_LEN))
3810 break;
3811 if (vl1) {
3812 if (vl1->other_bvds != NULL &&
3813 vl1->conf.sec_elmnt_seq !=
3814 vl2->conf.sec_elmnt_seq) {
3815 dprintf("%s: adding BVD %u\n", __func__,
3816 vl2->conf.sec_elmnt_seq);
3817 add_other_bvd(vl1, &vl2->conf,
3818 first->conf_rec_len*512);
3819 }
3820 continue;
3821 }
3822
3823 if (posix_memalign((void **)&vl1, 512,
3824 (first->conf_rec_len*512 +
3825 offsetof(struct vcl, conf))) != 0) {
3826 pr_err("%s could not allocate vcl buf\n",
3827 __func__);
3828 return 3;
3829 }
3830
3831 vl1->next = first->conflist;
3832 vl1->block_sizes = NULL;
3833 memcpy(&vl1->conf, &vl2->conf, first->conf_rec_len*512);
3834 if (alloc_other_bvds(first, vl1) != 0) {
3835 pr_err("%s could not allocate other bvds\n",
3836 __func__);
3837 free(vl1);
3838 return 3;
3839 }
3840 for (vd = 0; vd < max_vds; vd++)
3841 if (!memcmp(first->virt->entries[vd].guid,
3842 vl1->conf.guid, DDF_GUID_LEN))
3843 break;
3844 vl1->vcnum = vd;
3845 dprintf("%s: added config for VD %u\n", __func__, vl1->vcnum);
3846 first->conflist = vl1;
3847 }
3848
3849 for (dl2 = second->dlist; dl2; dl2 = dl2->next) {
3850 for (dl1 = first->dlist; dl1; dl1 = dl1->next)
3851 if (dl1->disk.refnum == dl2->disk.refnum)
3852 break;
3853 if (dl1)
3854 continue;
3855
3856 if (posix_memalign((void **)&dl1, 512,
3857 sizeof(*dl1) + (first->max_part) * sizeof(dl1->vlist[0]))
3858 != 0) {
3859 pr_err("%s could not allocate disk info buffer\n",
3860 __func__);
3861 return 3;
3862 }
3863 memcpy(dl1, dl2, sizeof(*dl1));
3864 dl1->mdupdate = NULL;
3865 dl1->next = first->dlist;
3866 dl1->fd = -1;
3867 for (pd = 0; pd < max_pds; pd++)
3868 if (first->phys->entries[pd].refnum == dl1->disk.refnum)
3869 break;
3870 dl1->pdnum = pd;
3871 if (dl2->spare) {
3872 if (posix_memalign((void **)&dl1->spare, 512,
3873 first->conf_rec_len*512) != 0) {
3874 pr_err("%s could not allocate spare info buf\n",
3875 __func__);
3876 return 3;
3877 }
3878 memcpy(dl1->spare, dl2->spare, first->conf_rec_len*512);
3879 }
3880 for (vd = 0 ; vd < first->max_part ; vd++) {
3881 if (!dl2->vlist[vd]) {
3882 dl1->vlist[vd] = NULL;
3883 continue;
3884 }
3885 for (vl1 = first->conflist; vl1; vl1 = vl1->next) {
3886 if (!memcmp(vl1->conf.guid,
3887 dl2->vlist[vd]->conf.guid,
3888 DDF_GUID_LEN))
3889 break;
3890 dl1->vlist[vd] = vl1;
3891 }
3892 }
3893 first->dlist = dl1;
3894 dprintf("%s: added disk %d: %08x\n", __func__, dl1->pdnum,
3895 dl1->disk.refnum);
3896 }
3897
3898 return 0;
3899}
3900
3901#ifndef MDASSEMBLE
3902/*
3903 * A new array 'a' has been started which claims to be instance 'inst'
3904 * within container 'c'.
3905 * We need to confirm that the array matches the metadata in 'c' so
3906 * that we don't corrupt any metadata.
3907 */
3908static int ddf_open_new(struct supertype *c, struct active_array *a, char *inst)
3909{
3910 struct ddf_super *ddf = c->sb;
3911 int n = atoi(inst);
3912 if (all_ff(ddf->virt->entries[n].guid)) {
3913 pr_err("%s: subarray %d doesn't exist\n", __func__, n);
3914 return -ENODEV;
3915 }
3916 dprintf("ddf: open_new %d\n", n);
3917 a->info.container_member = n;
3918 return 0;
3919}
3920
3921/*
3922 * The array 'a' is to be marked clean in the metadata.
3923 * If '->resync_start' is not ~(unsigned long long)0, then the array is only
3924 * clean up to the point (in sectors). If that cannot be recorded in the
3925 * metadata, then leave it as dirty.
3926 *
3927 * For DDF, we need to clear the DDF_state_inconsistent bit in the
3928 * !global! virtual_disk.virtual_entry structure.
3929 */
3930static int ddf_set_array_state(struct active_array *a, int consistent)
3931{
3932 struct ddf_super *ddf = a->container->sb;
3933 int inst = a->info.container_member;
3934 int old = ddf->virt->entries[inst].state;
3935 if (consistent == 2) {
3936 /* Should check if a recovery should be started FIXME */
3937 consistent = 1;
3938 if (!is_resync_complete(&a->info))
3939 consistent = 0;
3940 }
3941 if (consistent)
3942 ddf->virt->entries[inst].state &= ~DDF_state_inconsistent;
3943 else
3944 ddf->virt->entries[inst].state |= DDF_state_inconsistent;
3945 if (old != ddf->virt->entries[inst].state)
3946 ddf_set_updates_pending(ddf);
3947
3948 old = ddf->virt->entries[inst].init_state;
3949 ddf->virt->entries[inst].init_state &= ~DDF_initstate_mask;
3950 if (is_resync_complete(&a->info))
3951 ddf->virt->entries[inst].init_state |= DDF_init_full;
3952 else if (a->info.resync_start == 0)
3953 ddf->virt->entries[inst].init_state |= DDF_init_not;
3954 else
3955 ddf->virt->entries[inst].init_state |= DDF_init_quick;
3956 if (old != ddf->virt->entries[inst].init_state)
3957 ddf_set_updates_pending(ddf);
3958
3959 dprintf("ddf mark %d/%s (%d) %s %llu\n", inst,
3960 guid_str(ddf->virt->entries[inst].guid), a->curr_state,
3961 consistent?"clean":"dirty",
3962 a->info.resync_start);
3963 return consistent;
3964}
3965
3966static int get_bvd_state(const struct ddf_super *ddf,
3967 const struct vd_config *vc)
3968{
3969 unsigned int i, n_bvd, working = 0;
3970 unsigned int n_prim = __be16_to_cpu(vc->prim_elmnt_count);
3971 int pd, st, state;
3972 for (i = 0; i < n_prim; i++) {
3973 if (!find_index_in_bvd(ddf, vc, i, &n_bvd))
3974 continue;
3975 pd = find_phys(ddf, vc->phys_refnum[n_bvd]);
3976 if (pd < 0)
3977 continue;
3978 st = __be16_to_cpu(ddf->phys->entries[pd].state);
3979 if ((st & (DDF_Online|DDF_Failed|DDF_Rebuilding))
3980 == DDF_Online)
3981 working++;
3982 }
3983
3984 state = DDF_state_degraded;
3985 if (working == n_prim)
3986 state = DDF_state_optimal;
3987 else
3988 switch (vc->prl) {
3989 case DDF_RAID0:
3990 case DDF_CONCAT:
3991 case DDF_JBOD:
3992 state = DDF_state_failed;
3993 break;
3994 case DDF_RAID1:
3995 if (working == 0)
3996 state = DDF_state_failed;
3997 else if (working >= 2)
3998 state = DDF_state_part_optimal;
3999 break;
4000 case DDF_RAID4:
4001 case DDF_RAID5:
4002 if (working < n_prim - 1)
4003 state = DDF_state_failed;
4004 break;
4005 case DDF_RAID6:
4006 if (working < n_prim - 2)
4007 state = DDF_state_failed;
4008 else if (working == n_prim - 1)
4009 state = DDF_state_part_optimal;
4010 break;
4011 }
4012 return state;
4013}
4014
4015static int secondary_state(int state, int other, int seclevel)
4016{
4017 if (state == DDF_state_optimal && other == DDF_state_optimal)
4018 return DDF_state_optimal;
4019 if (seclevel == DDF_2MIRRORED) {
4020 if (state == DDF_state_optimal || other == DDF_state_optimal)
4021 return DDF_state_part_optimal;
4022 if (state == DDF_state_failed && other == DDF_state_failed)
4023 return DDF_state_failed;
4024 return DDF_state_degraded;
4025 } else {
4026 if (state == DDF_state_failed || other == DDF_state_failed)
4027 return DDF_state_failed;
4028 if (state == DDF_state_degraded || other == DDF_state_degraded)
4029 return DDF_state_degraded;
4030 return DDF_state_part_optimal;
4031 }
4032}
4033
4034static int get_svd_state(const struct ddf_super *ddf, const struct vcl *vcl)
4035{
4036 int state = get_bvd_state(ddf, &vcl->conf);
4037 unsigned int i;
4038 for (i = 1; i < vcl->conf.sec_elmnt_count; i++) {
4039 state = secondary_state(
4040 state,
4041 get_bvd_state(ddf, vcl->other_bvds[i-1]),
4042 vcl->conf.srl);
4043 }
4044 return state;
4045}
4046
4047/*
4048 * The state of each disk is stored in the global phys_disk structure
4049 * in phys_disk.entries[n].state.
4050 * This makes various combinations awkward.
4051 * - When a device fails in any array, it must be failed in all arrays
4052 * that include a part of this device.
4053 * - When a component is rebuilding, we cannot include it officially in the
4054 * array unless this is the only array that uses the device.
4055 *
4056 * So: when transitioning:
4057 * Online -> failed, just set failed flag. monitor will propagate
4058 * spare -> online, the device might need to be added to the array.
4059 * spare -> failed, just set failed. Don't worry if in array or not.
4060 */
4061static void ddf_set_disk(struct active_array *a, int n, int state)
4062{
4063 struct ddf_super *ddf = a->container->sb;
4064 unsigned int inst = a->info.container_member, n_bvd;
4065 struct vcl *vcl;
4066 struct vd_config *vc = find_vdcr(ddf, inst, (unsigned int)n,
4067 &n_bvd, &vcl);
4068 int pd;
4069 struct mdinfo *mdi;
4070 struct dl *dl;
4071
4072 if (vc == NULL) {
4073 dprintf("ddf: cannot find instance %d!!\n", inst);
4074 return;
4075 }
4076 /* Find the matching slot in 'info'. */
4077 for (mdi = a->info.devs; mdi; mdi = mdi->next)
4078 if (mdi->disk.raid_disk == n)
4079 break;
4080 if (!mdi)
4081 return;
4082
4083 /* and find the 'dl' entry corresponding to that. */
4084 for (dl = ddf->dlist; dl; dl = dl->next)
4085 if (mdi->state_fd >= 0 &&
4086 mdi->disk.major == dl->major &&
4087 mdi->disk.minor == dl->minor)
4088 break;
4089 if (!dl)
4090 return;
4091
4092 pd = find_phys(ddf, vc->phys_refnum[n_bvd]);
4093 if (pd < 0 || pd != dl->pdnum) {
4094 /* disk doesn't currently exist or has changed.
4095 * If it is now in_sync, insert it. */
4096 dprintf("%s: phys disk not found for %d: %d/%d ref %08x\n",
4097 __func__, dl->pdnum, dl->major, dl->minor,
4098 dl->disk.refnum);
4099 dprintf("%s: array %u disk %u ref %08x pd %d\n",
4100 __func__, inst, n_bvd, vc->phys_refnum[n_bvd], pd);
4101 if ((state & DS_INSYNC) && ! (state & DS_FAULTY)) {
4102 pd = dl->pdnum; /* FIXME: is this really correct ? */
4103 vc->phys_refnum[n_bvd] = dl->disk.refnum;
4104 LBA_OFFSET(ddf, vc)[n_bvd] =
4105 __cpu_to_be64(mdi->data_offset);
4106 ddf->phys->entries[pd].type &=
4107 ~__cpu_to_be16(DDF_Global_Spare);
4108 ddf->phys->entries[pd].type |=
4109 __cpu_to_be16(DDF_Active_in_VD);
4110 ddf_set_updates_pending(ddf);
4111 }
4112 } else {
4113 int old = ddf->phys->entries[pd].state;
4114 if (state & DS_FAULTY)
4115 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Failed);
4116 if (state & DS_INSYNC) {
4117 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Online);
4118 ddf->phys->entries[pd].state &= __cpu_to_be16(~DDF_Rebuilding);
4119 }
4120 if (old != ddf->phys->entries[pd].state)
4121 ddf_set_updates_pending(ddf);
4122 }
4123
4124 dprintf("ddf: set_disk %d to %x\n", n, state);
4125
4126 /* Now we need to check the state of the array and update
4127 * virtual_disk.entries[n].state.
4128 * It needs to be one of "optimal", "degraded", "failed".
4129 * I don't understand 'deleted' or 'missing'.
4130 */
4131 state = get_svd_state(ddf, vcl);
4132
4133 if (ddf->virt->entries[inst].state !=
4134 ((ddf->virt->entries[inst].state & ~DDF_state_mask)
4135 | state)) {
4136
4137 ddf->virt->entries[inst].state =
4138 (ddf->virt->entries[inst].state & ~DDF_state_mask)
4139 | state;
4140 ddf_set_updates_pending(ddf);
4141 }
4142
4143}
4144
4145static void ddf_sync_metadata(struct supertype *st)
4146{
4147
4148 /*
4149 * Write all data to all devices.
4150 * Later, we might be able to track whether only local changes
4151 * have been made, or whether any global data has been changed,
4152 * but ddf is sufficiently weird that it probably always
4153 * changes global data ....
4154 */
4155 struct ddf_super *ddf = st->sb;
4156 if (!ddf->updates_pending)
4157 return;
4158 ddf->updates_pending = 0;
4159 __write_init_super_ddf(st);
4160 dprintf("ddf: sync_metadata\n");
4161}
4162
4163static void ddf_process_update(struct supertype *st,
4164 struct metadata_update *update)
4165{
4166 /* Apply this update to the metadata.
4167 * The first 4 bytes are a DDF_*_MAGIC which guides
4168 * our actions.
4169 * Possible update are:
4170 * DDF_PHYS_RECORDS_MAGIC
4171 * Add a new physical device or remove an old one.
4172 * Changes to this record only happen implicitly.
4173 * used_pdes is the device number.
4174 * DDF_VIRT_RECORDS_MAGIC
4175 * Add a new VD. Possibly also change the 'access' bits.
4176 * populated_vdes is the entry number.
4177 * DDF_VD_CONF_MAGIC
4178 * New or updated VD. the VIRT_RECORD must already
4179 * exist. For an update, phys_refnum and lba_offset
4180 * (at least) are updated, and the VD_CONF must
4181 * be written to precisely those devices listed with
4182 * a phys_refnum.
4183 * DDF_SPARE_ASSIGN_MAGIC
4184 * replacement Spare Assignment Record... but for which device?
4185 *
4186 * So, e.g.:
4187 * - to create a new array, we send a VIRT_RECORD and
4188 * a VD_CONF. Then assemble and start the array.
4189 * - to activate a spare we send a VD_CONF to add the phys_refnum
4190 * and offset. This will also mark the spare as active with
4191 * a spare-assignment record.
4192 */
4193 struct ddf_super *ddf = st->sb;
4194 __u32 *magic = (__u32*)update->buf;
4195 struct phys_disk *pd;
4196 struct virtual_disk *vd;
4197 struct vd_config *vc;
4198 struct vcl *vcl;
4199 struct dl *dl;
4200 unsigned int mppe;
4201 unsigned int ent;
4202 unsigned int pdnum, pd2;
4203
4204 dprintf("Process update %x\n", *magic);
4205
4206 switch (*magic) {
4207 case DDF_PHYS_RECORDS_MAGIC:
4208
4209 if (update->len != (sizeof(struct phys_disk) +
4210 sizeof(struct phys_disk_entry)))
4211 return;
4212 pd = (struct phys_disk*)update->buf;
4213
4214 ent = __be16_to_cpu(pd->used_pdes);
4215 if (ent >= __be16_to_cpu(ddf->phys->max_pdes))
4216 return;
4217 if (pd->entries[0].state & __cpu_to_be16(DDF_Missing)) {
4218 struct dl **dlp;
4219 /* removing this disk. */
4220 ddf->phys->entries[ent].state |= __cpu_to_be16(DDF_Missing);
4221 for (dlp = &ddf->dlist; *dlp; dlp = &(*dlp)->next) {
4222 struct dl *dl = *dlp;
4223 if (dl->pdnum == (signed)ent) {
4224 close(dl->fd);
4225 dl->fd = -1;
4226 /* FIXME this doesn't free
4227 * dl->devname */
4228 update->space = dl;
4229 *dlp = dl->next;
4230 break;
4231 }
4232 }
4233 ddf_set_updates_pending(ddf);
4234 return;
4235 }
4236 if (!all_ff(ddf->phys->entries[ent].guid))
4237 return;
4238 ddf->phys->entries[ent] = pd->entries[0];
4239 ddf->phys->used_pdes = __cpu_to_be16(1 +
4240 __be16_to_cpu(ddf->phys->used_pdes));
4241 ddf_set_updates_pending(ddf);
4242 if (ddf->add_list) {
4243 struct active_array *a;
4244 struct dl *al = ddf->add_list;
4245 ddf->add_list = al->next;
4246
4247 al->next = ddf->dlist;
4248 ddf->dlist = al;
4249
4250 /* As a device has been added, we should check
4251 * for any degraded devices that might make
4252 * use of this spare */
4253 for (a = st->arrays ; a; a=a->next)
4254 a->check_degraded = 1;
4255 }
4256 break;
4257
4258 case DDF_VIRT_RECORDS_MAGIC:
4259
4260 if (update->len != (sizeof(struct virtual_disk) +
4261 sizeof(struct virtual_entry)))
4262 return;
4263 vd = (struct virtual_disk*)update->buf;
4264
4265 ent = find_unused_vde(ddf);
4266 if (ent == DDF_NOTFOUND)
4267 return;
4268 ddf->virt->entries[ent] = vd->entries[0];
4269 ddf->virt->populated_vdes = __cpu_to_be16(1 +
4270 __be16_to_cpu(ddf->virt->populated_vdes));
4271 ddf_set_updates_pending(ddf);
4272 break;
4273
4274 case DDF_VD_CONF_MAGIC:
4275 dprintf("len %d %d\n", update->len, ddf->conf_rec_len);
4276
4277 mppe = __be16_to_cpu(ddf->anchor.max_primary_element_entries);
4278 if ((unsigned)update->len != ddf->conf_rec_len * 512)
4279 return;
4280 vc = (struct vd_config*)update->buf;
4281 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
4282 if (memcmp(vcl->conf.guid, vc->guid, DDF_GUID_LEN) == 0)
4283 break;
4284 dprintf("vcl = %p\n", vcl);
4285 if (vcl) {
4286 /* An update, just copy the phys_refnum and lba_offset
4287 * fields
4288 */
4289 struct vd_config *conf = &vcl->conf;
4290 if (vcl->other_bvds != NULL &&
4291 conf->sec_elmnt_seq != vc->sec_elmnt_seq) {
4292 unsigned int i;
4293 for (i = 1; i < conf->sec_elmnt_count; i++)
4294 if (vcl->other_bvds[i-1]->sec_elmnt_seq
4295 == vc->sec_elmnt_seq)
4296 break;
4297 if (i == conf->sec_elmnt_count) {
4298 pr_err("%s/DDF_VD_CONF_MAGIC: BVD %u not found\n",
4299 __func__, vc->sec_elmnt_seq);
4300 return;
4301 }
4302 conf = vcl->other_bvds[i-1];
4303 }
4304 memcpy(conf->phys_refnum, vc->phys_refnum,
4305 mppe * (sizeof(__u32) + sizeof(__u64)));
4306 } else {
4307 /* A new VD_CONF */
4308 if (!update->space)
4309 return;
4310 vcl = update->space;
4311 update->space = NULL;
4312 vcl->next = ddf->conflist;
4313 memcpy(&vcl->conf, vc, update->len);
4314 ent = find_vde_by_guid(ddf, vc->guid);
4315 if (ent == DDF_NOTFOUND)
4316 return;
4317 vcl->vcnum = ent;
4318 ddf->conflist = vcl;
4319 }
4320 /* Set DDF_Transition on all Failed devices - to help
4321 * us detect those that are no longer in use
4322 */
4323 for (pdnum = 0; pdnum < __be16_to_cpu(ddf->phys->used_pdes); pdnum++)
4324 if (ddf->phys->entries[pdnum].state
4325 & __be16_to_cpu(DDF_Failed))
4326 ddf->phys->entries[pdnum].state
4327 |= __be16_to_cpu(DDF_Transition);
4328 /* Now make sure vlist is correct for each dl. */
4329 for (dl = ddf->dlist; dl; dl = dl->next) {
4330 unsigned int vn = 0;
4331 int in_degraded = 0;
4332 for (vcl = ddf->conflist; vcl ; vcl = vcl->next) {
4333 unsigned int dn, ibvd;
4334 const struct vd_config *conf;
4335 int vstate;
4336 dn = get_pd_index_from_refnum(vcl,
4337 dl->disk.refnum,
4338 ddf->mppe,
4339 &conf, &ibvd);
4340 if (dn == DDF_NOTFOUND)
4341 continue;
4342 dprintf("dev %d/%08x has %s (sec=%u) at %d\n",
4343 dl->pdnum, dl->disk.refnum,
4344 guid_str(conf->guid),
4345 conf->sec_elmnt_seq, vn);
4346 /* Clear the Transition flag */
4347 if (ddf->phys->entries[dl->pdnum].state
4348 & __be16_to_cpu(DDF_Failed))
4349 ddf->phys->entries[dl->pdnum].state &=
4350 ~__be16_to_cpu(DDF_Transition);
4351 dl->vlist[vn++] = vcl;
4352 vstate = ddf->virt->entries[vcl->vcnum].state
4353 & DDF_state_mask;
4354 if (vstate == DDF_state_degraded ||
4355 vstate == DDF_state_part_optimal)
4356 in_degraded = 1;
4357 }
4358 while (vn < ddf->max_part)
4359 dl->vlist[vn++] = NULL;
4360 if (dl->vlist[0]) {
4361 ddf->phys->entries[dl->pdnum].type &=
4362 ~__cpu_to_be16(DDF_Global_Spare);
4363 if (!(ddf->phys->entries[dl->pdnum].type &
4364 __cpu_to_be16(DDF_Active_in_VD))) {
4365 ddf->phys->entries[dl->pdnum].type |=
4366 __cpu_to_be16(DDF_Active_in_VD);
4367 if (in_degraded)
4368 ddf->phys->entries[dl->pdnum].state |=
4369 __cpu_to_be16(DDF_Rebuilding);
4370 }
4371 }
4372 if (dl->spare) {
4373 ddf->phys->entries[dl->pdnum].type &=
4374 ~__cpu_to_be16(DDF_Global_Spare);
4375 ddf->phys->entries[dl->pdnum].type |=
4376 __cpu_to_be16(DDF_Spare);
4377 }
4378 if (!dl->vlist[0] && !dl->spare) {
4379 ddf->phys->entries[dl->pdnum].type |=
4380 __cpu_to_be16(DDF_Global_Spare);
4381 ddf->phys->entries[dl->pdnum].type &=
4382 ~__cpu_to_be16(DDF_Spare |
4383 DDF_Active_in_VD);
4384 }
4385 }
4386
4387 /* Now remove any 'Failed' devices that are not part
4388 * of any VD. They will have the Transition flag set.
4389 * Once done, we need to update all dl->pdnum numbers.
4390 */
4391 pd2 = 0;
4392 for (pdnum = 0; pdnum < __be16_to_cpu(ddf->phys->used_pdes); pdnum++)
4393 if ((ddf->phys->entries[pdnum].state
4394 & __be16_to_cpu(DDF_Failed))
4395 && (ddf->phys->entries[pdnum].state
4396 & __be16_to_cpu(DDF_Transition)))
4397 /* skip this one */;
4398 else if (pdnum == pd2)
4399 pd2++;
4400 else {
4401 ddf->phys->entries[pd2] = ddf->phys->entries[pdnum];
4402 for (dl = ddf->dlist; dl; dl = dl->next)
4403 if (dl->pdnum == (int)pdnum)
4404 dl->pdnum = pd2;
4405 pd2++;
4406 }
4407 ddf->phys->used_pdes = __cpu_to_be16(pd2);
4408 while (pd2 < pdnum) {
4409 memset(ddf->phys->entries[pd2].guid, 0xff, DDF_GUID_LEN);
4410 pd2++;
4411 }
4412
4413 ddf_set_updates_pending(ddf);
4414 break;
4415 case DDF_SPARE_ASSIGN_MAGIC:
4416 default: break;
4417 }
4418}
4419
4420static void ddf_prepare_update(struct supertype *st,
4421 struct metadata_update *update)
4422{
4423 /* This update arrived at managemon.
4424 * We are about to pass it to monitor.
4425 * If a malloc is needed, do it here.
4426 */
4427 struct ddf_super *ddf = st->sb;
4428 __u32 *magic = (__u32*)update->buf;
4429 if (*magic == DDF_VD_CONF_MAGIC)
4430 if (posix_memalign(&update->space, 512,
4431 offsetof(struct vcl, conf)
4432 + ddf->conf_rec_len * 512) != 0)
4433 update->space = NULL;
4434}
4435
4436/*
4437 * Check if the array 'a' is degraded but not failed.
4438 * If it is, find as many spares as are available and needed and
4439 * arrange for their inclusion.
4440 * We only choose devices which are not already in the array,
4441 * and prefer those with a spare-assignment to this array.
4442 * otherwise we choose global spares - assuming always that
4443 * there is enough room.
4444 * For each spare that we assign, we return an 'mdinfo' which
4445 * describes the position for the device in the array.
4446 * We also add to 'updates' a DDF_VD_CONF_MAGIC update with
4447 * the new phys_refnum and lba_offset values.
4448 *
4449 * Only worry about BVDs at the moment.
4450 */
4451static struct mdinfo *ddf_activate_spare(struct active_array *a,
4452 struct metadata_update **updates)
4453{
4454 int working = 0;
4455 struct mdinfo *d;
4456 struct ddf_super *ddf = a->container->sb;
4457 int global_ok = 0;
4458 struct mdinfo *rv = NULL;
4459 struct mdinfo *di;
4460 struct metadata_update *mu;
4461 struct dl *dl;
4462 int i;
4463 struct vcl *vcl;
4464 struct vd_config *vc;
4465 unsigned int n_bvd;
4466
4467 for (d = a->info.devs ; d ; d = d->next) {
4468 if ((d->curr_state & DS_FAULTY) &&
4469 d->state_fd >= 0)
4470 /* wait for Removal to happen */
4471 return NULL;
4472 if (d->state_fd >= 0)
4473 working ++;
4474 }
4475
4476 dprintf("ddf_activate: working=%d (%d) level=%d\n", working, a->info.array.raid_disks,
4477 a->info.array.level);
4478 if (working == a->info.array.raid_disks)
4479 return NULL; /* array not degraded */
4480 switch (a->info.array.level) {
4481 case 1:
4482 if (working == 0)
4483 return NULL; /* failed */
4484 break;
4485 case 4:
4486 case 5:
4487 if (working < a->info.array.raid_disks - 1)
4488 return NULL; /* failed */
4489 break;
4490 case 6:
4491 if (working < a->info.array.raid_disks - 2)
4492 return NULL; /* failed */
4493 break;
4494 default: /* concat or stripe */
4495 return NULL; /* failed */
4496 }
4497
4498 /* For each slot, if it is not working, find a spare */
4499 dl = ddf->dlist;
4500 for (i = 0; i < a->info.array.raid_disks; i++) {
4501 for (d = a->info.devs ; d ; d = d->next)
4502 if (d->disk.raid_disk == i)
4503 break;
4504 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
4505 if (d && (d->state_fd >= 0))
4506 continue;
4507
4508 /* OK, this device needs recovery. Find a spare */
4509 again:
4510 for ( ; dl ; dl = dl->next) {
4511 unsigned long long esize;
4512 unsigned long long pos;
4513 struct mdinfo *d2;
4514 int is_global = 0;
4515 int is_dedicated = 0;
4516 struct extent *ex;
4517 unsigned int j;
4518 /* If in this array, skip */
4519 for (d2 = a->info.devs ; d2 ; d2 = d2->next)
4520 if (d2->state_fd >= 0 &&
4521 d2->disk.major == dl->major &&
4522 d2->disk.minor == dl->minor) {
4523 dprintf("%x:%x already in array\n", dl->major, dl->minor);
4524 break;
4525 }
4526 if (d2)
4527 continue;
4528 if (ddf->phys->entries[dl->pdnum].type &
4529 __cpu_to_be16(DDF_Spare)) {
4530 /* Check spare assign record */
4531 if (dl->spare) {
4532 if (dl->spare->type & DDF_spare_dedicated) {
4533 /* check spare_ents for guid */
4534 for (j = 0 ;
4535 j < __be16_to_cpu(dl->spare->populated);
4536 j++) {
4537 if (memcmp(dl->spare->spare_ents[j].guid,
4538 ddf->virt->entries[a->info.container_member].guid,
4539 DDF_GUID_LEN) == 0)
4540 is_dedicated = 1;
4541 }
4542 } else
4543 is_global = 1;
4544 }
4545 } else if (ddf->phys->entries[dl->pdnum].type &
4546 __cpu_to_be16(DDF_Global_Spare)) {
4547 is_global = 1;
4548 } else if (!(ddf->phys->entries[dl->pdnum].state &
4549 __cpu_to_be16(DDF_Failed))) {
4550 /* we can possibly use some of this */
4551 is_global = 1;
4552 }
4553 if ( ! (is_dedicated ||
4554 (is_global && global_ok))) {
4555 dprintf("%x:%x not suitable: %d %d\n", dl->major, dl->minor,
4556 is_dedicated, is_global);
4557 continue;
4558 }
4559
4560 /* We are allowed to use this device - is there space?
4561 * We need a->info.component_size sectors */
4562 ex = get_extents(ddf, dl);
4563 if (!ex) {
4564 dprintf("cannot get extents\n");
4565 continue;
4566 }
4567 j = 0; pos = 0;
4568 esize = 0;
4569
4570 do {
4571 esize = ex[j].start - pos;
4572 if (esize >= a->info.component_size)
4573 break;
4574 pos = ex[j].start + ex[j].size;
4575 j++;
4576 } while (ex[j-1].size);
4577
4578 free(ex);
4579 if (esize < a->info.component_size) {
4580 dprintf("%x:%x has no room: %llu %llu\n",
4581 dl->major, dl->minor,
4582 esize, a->info.component_size);
4583 /* No room */
4584 continue;
4585 }
4586
4587 /* Cool, we have a device with some space at pos */
4588 di = xcalloc(1, sizeof(*di));
4589 di->disk.number = i;
4590 di->disk.raid_disk = i;
4591 di->disk.major = dl->major;
4592 di->disk.minor = dl->minor;
4593 di->disk.state = 0;
4594 di->recovery_start = 0;
4595 di->data_offset = pos;
4596 di->component_size = a->info.component_size;
4597 di->container_member = dl->pdnum;
4598 di->next = rv;
4599 rv = di;
4600 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
4601 i, pos);
4602
4603 break;
4604 }
4605 if (!dl && ! global_ok) {
4606 /* not enough dedicated spares, try global */
4607 global_ok = 1;
4608 dl = ddf->dlist;
4609 goto again;
4610 }
4611 }
4612
4613 if (!rv)
4614 /* No spares found */
4615 return rv;
4616 /* Now 'rv' has a list of devices to return.
4617 * Create a metadata_update record to update the
4618 * phys_refnum and lba_offset values
4619 */
4620 mu = xmalloc(sizeof(*mu));
4621 if (posix_memalign(&mu->space, 512, sizeof(struct vcl)) != 0) {
4622 free(mu);
4623 mu = NULL;
4624 }
4625 mu->buf = xmalloc(ddf->conf_rec_len * 512);
4626 mu->len = ddf->conf_rec_len * 512;
4627 mu->space = NULL;
4628 mu->space_list = NULL;
4629 mu->next = *updates;
4630 vc = find_vdcr(ddf, a->info.container_member, di->disk.raid_disk,
4631 &n_bvd, &vcl);
4632 memcpy(mu->buf, vc, ddf->conf_rec_len * 512);
4633
4634 vc = (struct vd_config*)mu->buf;
4635 for (di = rv ; di ; di = di->next) {
4636 vc->phys_refnum[di->disk.raid_disk] =
4637 ddf->phys->entries[dl->pdnum].refnum;
4638 LBA_OFFSET(ddf, vc)[di->disk.raid_disk]
4639 = __cpu_to_be64(di->data_offset);
4640 }
4641 *updates = mu;
4642 return rv;
4643}
4644#endif /* MDASSEMBLE */
4645
4646static int ddf_level_to_layout(int level)
4647{
4648 switch(level) {
4649 case 0:
4650 case 1:
4651 return 0;
4652 case 5:
4653 return ALGORITHM_LEFT_SYMMETRIC;
4654 case 6:
4655 return ALGORITHM_ROTATING_N_CONTINUE;
4656 case 10:
4657 return 0x102;
4658 default:
4659 return UnSet;
4660 }
4661}
4662
4663static void default_geometry_ddf(struct supertype *st, int *level, int *layout, int *chunk)
4664{
4665 if (level && *level == UnSet)
4666 *level = LEVEL_CONTAINER;
4667
4668 if (level && layout && *layout == UnSet)
4669 *layout = ddf_level_to_layout(*level);
4670}
4671
4672struct superswitch super_ddf = {
4673#ifndef MDASSEMBLE
4674 .examine_super = examine_super_ddf,
4675 .brief_examine_super = brief_examine_super_ddf,
4676 .brief_examine_subarrays = brief_examine_subarrays_ddf,
4677 .export_examine_super = export_examine_super_ddf,
4678 .detail_super = detail_super_ddf,
4679 .brief_detail_super = brief_detail_super_ddf,
4680 .validate_geometry = validate_geometry_ddf,
4681 .write_init_super = write_init_super_ddf,
4682 .add_to_super = add_to_super_ddf,
4683 .remove_from_super = remove_from_super_ddf,
4684 .load_container = load_container_ddf,
4685 .copy_metadata = copy_metadata_ddf,
4686#endif
4687 .match_home = match_home_ddf,
4688 .uuid_from_super= uuid_from_super_ddf,
4689 .getinfo_super = getinfo_super_ddf,
4690 .update_super = update_super_ddf,
4691
4692 .avail_size = avail_size_ddf,
4693
4694 .compare_super = compare_super_ddf,
4695
4696 .load_super = load_super_ddf,
4697 .init_super = init_super_ddf,
4698 .store_super = store_super_ddf,
4699 .free_super = free_super_ddf,
4700 .match_metadata_desc = match_metadata_desc_ddf,
4701 .container_content = container_content_ddf,
4702 .default_geometry = default_geometry_ddf,
4703
4704 .external = 1,
4705
4706#ifndef MDASSEMBLE
4707/* for mdmon */
4708 .open_new = ddf_open_new,
4709 .set_array_state= ddf_set_array_state,
4710 .set_disk = ddf_set_disk,
4711 .sync_metadata = ddf_sync_metadata,
4712 .process_update = ddf_process_update,
4713 .prepare_update = ddf_prepare_update,
4714 .activate_spare = ddf_activate_spare,
4715#endif
4716 .name = "ddf",
4717};