]> git.ipfire.org Git - thirdparty/mdadm.git/blame_incremental - super-intel.c
super1: remove fd leak when opening /dev/urandom
[thirdparty/mdadm.git] / super-intel.c
... / ...
CommitLineData
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20#define HAVE_STDINT_H 1
21#include "mdadm.h"
22#include "mdmon.h"
23#include "sha1.h"
24#include "platform-intel.h"
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
28#include <dirent.h>
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37#define MPB_VERSION_RAID5 "1.2.02"
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
43
44#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
45#define MPB_ATTRIB_PM __cpu_to_le32(0x40000000)
46#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
47#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
48#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
51#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
52#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
53
54#define MPB_SECTOR_CNT 418
55#define IMSM_RESERVED_SECTORS 4096
56#define SECT_PER_MB_SHIFT 11
57
58/* Disk configuration info. */
59#define IMSM_MAX_DEVICES 255
60struct imsm_disk {
61 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
62 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
63 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
64#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
65#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
66#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
67#define USABLE_DISK __cpu_to_le32(0x08) /* Fully usable unless FAILED_DISK is set */
68 __u32 status; /* 0xF0 - 0xF3 */
69 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
70#define IMSM_DISK_FILLERS 4
71 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
72};
73
74/* RAID map configuration infos. */
75struct imsm_map {
76 __u32 pba_of_lba0; /* start address of partition */
77 __u32 blocks_per_member;/* blocks per member */
78 __u32 num_data_stripes; /* number of data stripes */
79 __u16 blocks_per_strip;
80 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
81#define IMSM_T_STATE_NORMAL 0
82#define IMSM_T_STATE_UNINITIALIZED 1
83#define IMSM_T_STATE_DEGRADED 2
84#define IMSM_T_STATE_FAILED 3
85 __u8 raid_level;
86#define IMSM_T_RAID0 0
87#define IMSM_T_RAID1 1
88#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
89 __u8 num_members; /* number of member disks */
90 __u8 num_domains; /* number of parity domains */
91 __u8 failed_disk_num; /* valid only when state is degraded */
92 __u8 ddf;
93 __u32 filler[7]; /* expansion area */
94#define IMSM_ORD_REBUILD (1 << 24)
95 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
96 * top byte contains some flags
97 */
98} __attribute__ ((packed));
99
100struct imsm_vol {
101 __u32 curr_migr_unit;
102 __u32 checkpoint_id; /* id to access curr_migr_unit */
103 __u8 migr_state; /* Normal or Migrating */
104#define MIGR_INIT 0
105#define MIGR_REBUILD 1
106#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
107#define MIGR_GEN_MIGR 3
108#define MIGR_STATE_CHANGE 4
109#define MIGR_REPAIR 5
110 __u8 migr_type; /* Initializing, Rebuilding, ... */
111 __u8 dirty;
112 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
113 __u16 verify_errors; /* number of mismatches */
114 __u16 bad_blocks; /* number of bad blocks during verify */
115 __u32 filler[4];
116 struct imsm_map map[1];
117 /* here comes another one if migr_state */
118} __attribute__ ((packed));
119
120struct imsm_dev {
121 __u8 volume[MAX_RAID_SERIAL_LEN];
122 __u32 size_low;
123 __u32 size_high;
124#define DEV_BOOTABLE __cpu_to_le32(0x01)
125#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
126#define DEV_READ_COALESCING __cpu_to_le32(0x04)
127#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
128#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
129#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
130#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
131#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
132#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
133#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
134#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
135#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
136#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
137 __u32 status; /* Persistent RaidDev status */
138 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
139 __u8 migr_priority;
140 __u8 num_sub_vols;
141 __u8 tid;
142 __u8 cng_master_disk;
143 __u16 cache_policy;
144 __u8 cng_state;
145 __u8 cng_sub_state;
146#define IMSM_DEV_FILLERS 10
147 __u32 filler[IMSM_DEV_FILLERS];
148 struct imsm_vol vol;
149} __attribute__ ((packed));
150
151struct imsm_super {
152 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
153 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
154 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
155 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
156 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
157 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
158 __u32 attributes; /* 0x34 - 0x37 */
159 __u8 num_disks; /* 0x38 Number of configured disks */
160 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
161 __u8 error_log_pos; /* 0x3A */
162 __u8 fill[1]; /* 0x3B */
163 __u32 cache_size; /* 0x3c - 0x40 in mb */
164 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
165 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
166 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
167#define IMSM_FILLERS 35
168 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
169 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
170 /* here comes imsm_dev[num_raid_devs] */
171 /* here comes BBM logs */
172} __attribute__ ((packed));
173
174#define BBM_LOG_MAX_ENTRIES 254
175
176struct bbm_log_entry {
177 __u64 defective_block_start;
178#define UNREADABLE 0xFFFFFFFF
179 __u32 spare_block_offset;
180 __u16 remapped_marked_count;
181 __u16 disk_ordinal;
182} __attribute__ ((__packed__));
183
184struct bbm_log {
185 __u32 signature; /* 0xABADB10C */
186 __u32 entry_count;
187 __u32 reserved_spare_block_count; /* 0 */
188 __u32 reserved; /* 0xFFFF */
189 __u64 first_spare_lba;
190 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
191} __attribute__ ((__packed__));
192
193
194#ifndef MDASSEMBLE
195static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
196#endif
197
198static __u8 migr_type(struct imsm_dev *dev)
199{
200 if (dev->vol.migr_type == MIGR_VERIFY &&
201 dev->status & DEV_VERIFY_AND_FIX)
202 return MIGR_REPAIR;
203 else
204 return dev->vol.migr_type;
205}
206
207static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
208{
209 /* for compatibility with older oroms convert MIGR_REPAIR, into
210 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
211 */
212 if (migr_type == MIGR_REPAIR) {
213 dev->vol.migr_type = MIGR_VERIFY;
214 dev->status |= DEV_VERIFY_AND_FIX;
215 } else {
216 dev->vol.migr_type = migr_type;
217 dev->status &= ~DEV_VERIFY_AND_FIX;
218 }
219}
220
221static unsigned int sector_count(__u32 bytes)
222{
223 return ((bytes + (512-1)) & (~(512-1))) / 512;
224}
225
226static unsigned int mpb_sectors(struct imsm_super *mpb)
227{
228 return sector_count(__le32_to_cpu(mpb->mpb_size));
229}
230
231struct intel_dev {
232 struct imsm_dev *dev;
233 struct intel_dev *next;
234 int index;
235};
236
237/* internal representation of IMSM metadata */
238struct intel_super {
239 union {
240 void *buf; /* O_DIRECT buffer for reading/writing metadata */
241 struct imsm_super *anchor; /* immovable parameters */
242 };
243 size_t len; /* size of the 'buf' allocation */
244 void *next_buf; /* for realloc'ing buf from the manager */
245 size_t next_len;
246 int updates_pending; /* count of pending updates for mdmon */
247 int creating_imsm; /* flag to indicate container creation */
248 int current_vol; /* index of raid device undergoing creation */
249 __u32 create_offset; /* common start for 'current_vol' */
250 __u32 random; /* random data for seeding new family numbers */
251 struct intel_dev *devlist;
252 struct dl {
253 struct dl *next;
254 int index;
255 __u8 serial[MAX_RAID_SERIAL_LEN];
256 int major, minor;
257 char *devname;
258 struct imsm_disk disk;
259 int fd;
260 int extent_cnt;
261 struct extent *e; /* for determining freespace @ create */
262 int raiddisk; /* slot to fill in autolayout */
263 } *disks;
264 struct dl *add; /* list of disks to add while mdmon active */
265 struct dl *missing; /* disks removed while we weren't looking */
266 struct bbm_log *bbm_log;
267 const char *hba; /* device path of the raid controller for this metadata */
268 const struct imsm_orom *orom; /* platform firmware support */
269};
270
271struct extent {
272 unsigned long long start, size;
273};
274
275/* definition of messages passed to imsm_process_update */
276enum imsm_update_type {
277 update_activate_spare,
278 update_create_array,
279 update_add_disk,
280};
281
282struct imsm_update_activate_spare {
283 enum imsm_update_type type;
284 struct dl *dl;
285 int slot;
286 int array;
287 struct imsm_update_activate_spare *next;
288};
289
290struct disk_info {
291 __u8 serial[MAX_RAID_SERIAL_LEN];
292};
293
294struct imsm_update_create_array {
295 enum imsm_update_type type;
296 int dev_idx;
297 struct imsm_dev dev;
298};
299
300struct imsm_update_add_disk {
301 enum imsm_update_type type;
302};
303
304static struct supertype *match_metadata_desc_imsm(char *arg)
305{
306 struct supertype *st;
307
308 if (strcmp(arg, "imsm") != 0 &&
309 strcmp(arg, "default") != 0
310 )
311 return NULL;
312
313 st = malloc(sizeof(*st));
314 memset(st, 0, sizeof(*st));
315 st->ss = &super_imsm;
316 st->max_devs = IMSM_MAX_DEVICES;
317 st->minor_version = 0;
318 st->sb = NULL;
319 return st;
320}
321
322#ifndef MDASSEMBLE
323static __u8 *get_imsm_version(struct imsm_super *mpb)
324{
325 return &mpb->sig[MPB_SIG_LEN];
326}
327#endif
328
329/* retrieve a disk directly from the anchor when the anchor is known to be
330 * up-to-date, currently only at load time
331 */
332static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
333{
334 if (index >= mpb->num_disks)
335 return NULL;
336 return &mpb->disk[index];
337}
338
339#ifndef MDASSEMBLE
340/* retrieve a disk from the parsed metadata */
341static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
342{
343 struct dl *d;
344
345 for (d = super->disks; d; d = d->next)
346 if (d->index == index)
347 return &d->disk;
348
349 return NULL;
350}
351#endif
352
353/* generate a checksum directly from the anchor when the anchor is known to be
354 * up-to-date, currently only at load or write_super after coalescing
355 */
356static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
357{
358 __u32 end = mpb->mpb_size / sizeof(end);
359 __u32 *p = (__u32 *) mpb;
360 __u32 sum = 0;
361
362 while (end--) {
363 sum += __le32_to_cpu(*p);
364 p++;
365 }
366
367 return sum - __le32_to_cpu(mpb->check_sum);
368}
369
370static size_t sizeof_imsm_map(struct imsm_map *map)
371{
372 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
373}
374
375struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
376{
377 struct imsm_map *map = &dev->vol.map[0];
378
379 if (second_map && !dev->vol.migr_state)
380 return NULL;
381 else if (second_map) {
382 void *ptr = map;
383
384 return ptr + sizeof_imsm_map(map);
385 } else
386 return map;
387
388}
389
390/* return the size of the device.
391 * migr_state increases the returned size if map[0] were to be duplicated
392 */
393static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
394{
395 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
396 sizeof_imsm_map(get_imsm_map(dev, 0));
397
398 /* migrating means an additional map */
399 if (dev->vol.migr_state)
400 size += sizeof_imsm_map(get_imsm_map(dev, 1));
401 else if (migr_state)
402 size += sizeof_imsm_map(get_imsm_map(dev, 0));
403
404 return size;
405}
406
407#ifndef MDASSEMBLE
408/* retrieve disk serial number list from a metadata update */
409static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
410{
411 void *u = update;
412 struct disk_info *inf;
413
414 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
415 sizeof_imsm_dev(&update->dev, 0);
416
417 return inf;
418}
419#endif
420
421static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
422{
423 int offset;
424 int i;
425 void *_mpb = mpb;
426
427 if (index >= mpb->num_raid_devs)
428 return NULL;
429
430 /* devices start after all disks */
431 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
432
433 for (i = 0; i <= index; i++)
434 if (i == index)
435 return _mpb + offset;
436 else
437 offset += sizeof_imsm_dev(_mpb + offset, 0);
438
439 return NULL;
440}
441
442static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
443{
444 struct intel_dev *dv;
445
446 if (index >= super->anchor->num_raid_devs)
447 return NULL;
448 for (dv = super->devlist; dv; dv = dv->next)
449 if (dv->index == index)
450 return dv->dev;
451 return NULL;
452}
453
454static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev, int slot)
455{
456 struct imsm_map *map;
457
458 if (dev->vol.migr_state)
459 map = get_imsm_map(dev, 1);
460 else
461 map = get_imsm_map(dev, 0);
462
463 /* top byte identifies disk under rebuild */
464 return __le32_to_cpu(map->disk_ord_tbl[slot]);
465}
466
467#define ord_to_idx(ord) (((ord) << 8) >> 8)
468static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot)
469{
470 __u32 ord = get_imsm_ord_tbl_ent(dev, slot);
471
472 return ord_to_idx(ord);
473}
474
475static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
476{
477 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
478}
479
480static int get_imsm_disk_slot(struct imsm_map *map, int idx)
481{
482 int slot;
483 __u32 ord;
484
485 for (slot = 0; slot < map->num_members; slot++) {
486 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
487 if (ord_to_idx(ord) == idx)
488 return slot;
489 }
490
491 return -1;
492}
493
494static int get_imsm_raid_level(struct imsm_map *map)
495{
496 if (map->raid_level == 1) {
497 if (map->num_members == 2)
498 return 1;
499 else
500 return 10;
501 }
502
503 return map->raid_level;
504}
505
506static int cmp_extent(const void *av, const void *bv)
507{
508 const struct extent *a = av;
509 const struct extent *b = bv;
510 if (a->start < b->start)
511 return -1;
512 if (a->start > b->start)
513 return 1;
514 return 0;
515}
516
517static int count_memberships(struct dl *dl, struct intel_super *super)
518{
519 int memberships = 0;
520 int i;
521
522 for (i = 0; i < super->anchor->num_raid_devs; i++) {
523 struct imsm_dev *dev = get_imsm_dev(super, i);
524 struct imsm_map *map = get_imsm_map(dev, 0);
525
526 if (get_imsm_disk_slot(map, dl->index) >= 0)
527 memberships++;
528 }
529
530 return memberships;
531}
532
533static struct extent *get_extents(struct intel_super *super, struct dl *dl)
534{
535 /* find a list of used extents on the given physical device */
536 struct extent *rv, *e;
537 int i;
538 int memberships = count_memberships(dl, super);
539 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
540
541 rv = malloc(sizeof(struct extent) * (memberships + 1));
542 if (!rv)
543 return NULL;
544 e = rv;
545
546 for (i = 0; i < super->anchor->num_raid_devs; i++) {
547 struct imsm_dev *dev = get_imsm_dev(super, i);
548 struct imsm_map *map = get_imsm_map(dev, 0);
549
550 if (get_imsm_disk_slot(map, dl->index) >= 0) {
551 e->start = __le32_to_cpu(map->pba_of_lba0);
552 e->size = __le32_to_cpu(map->blocks_per_member);
553 e++;
554 }
555 }
556 qsort(rv, memberships, sizeof(*rv), cmp_extent);
557
558 /* determine the start of the metadata
559 * when no raid devices are defined use the default
560 * ...otherwise allow the metadata to truncate the value
561 * as is the case with older versions of imsm
562 */
563 if (memberships) {
564 struct extent *last = &rv[memberships - 1];
565 __u32 remainder;
566
567 remainder = __le32_to_cpu(dl->disk.total_blocks) -
568 (last->start + last->size);
569 /* round down to 1k block to satisfy precision of the kernel
570 * 'size' interface
571 */
572 remainder &= ~1UL;
573 /* make sure remainder is still sane */
574 if (remainder < ROUND_UP(super->len, 512) >> 9)
575 remainder = ROUND_UP(super->len, 512) >> 9;
576 if (reservation > remainder)
577 reservation = remainder;
578 }
579 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
580 e->size = 0;
581 return rv;
582}
583
584/* try to determine how much space is reserved for metadata from
585 * the last get_extents() entry, otherwise fallback to the
586 * default
587 */
588static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
589{
590 struct extent *e;
591 int i;
592 __u32 rv;
593
594 /* for spares just return a minimal reservation which will grow
595 * once the spare is picked up by an array
596 */
597 if (dl->index == -1)
598 return MPB_SECTOR_CNT;
599
600 e = get_extents(super, dl);
601 if (!e)
602 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
603
604 /* scroll to last entry */
605 for (i = 0; e[i].size; i++)
606 continue;
607
608 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
609
610 free(e);
611
612 return rv;
613}
614
615#ifndef MDASSEMBLE
616static void print_imsm_dev(struct imsm_dev *dev, char *uuid, int disk_idx)
617{
618 __u64 sz;
619 int slot;
620 struct imsm_map *map = get_imsm_map(dev, 0);
621 __u32 ord;
622
623 printf("\n");
624 printf("[%.16s]:\n", dev->volume);
625 printf(" UUID : %s\n", uuid);
626 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
627 printf(" Members : %d\n", map->num_members);
628 slot = get_imsm_disk_slot(map, disk_idx);
629 if (slot >= 0) {
630 ord = get_imsm_ord_tbl_ent(dev, slot);
631 printf(" This Slot : %d%s\n", slot,
632 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
633 } else
634 printf(" This Slot : ?\n");
635 sz = __le32_to_cpu(dev->size_high);
636 sz <<= 32;
637 sz += __le32_to_cpu(dev->size_low);
638 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
639 human_size(sz * 512));
640 sz = __le32_to_cpu(map->blocks_per_member);
641 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
642 human_size(sz * 512));
643 printf(" Sector Offset : %u\n",
644 __le32_to_cpu(map->pba_of_lba0));
645 printf(" Num Stripes : %u\n",
646 __le32_to_cpu(map->num_data_stripes));
647 printf(" Chunk Size : %u KiB\n",
648 __le16_to_cpu(map->blocks_per_strip) / 2);
649 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
650 printf(" Migrate State : %s", dev->vol.migr_state ? "migrating" : "idle\n");
651 if (dev->vol.migr_state) {
652 if (migr_type(dev) == MIGR_INIT)
653 printf(": initializing\n");
654 else if (migr_type(dev) == MIGR_REBUILD)
655 printf(": rebuilding\n");
656 else if (migr_type(dev) == MIGR_VERIFY)
657 printf(": check\n");
658 else if (migr_type(dev) == MIGR_GEN_MIGR)
659 printf(": general migration\n");
660 else if (migr_type(dev) == MIGR_STATE_CHANGE)
661 printf(": state change\n");
662 else if (migr_type(dev) == MIGR_REPAIR)
663 printf(": repair\n");
664 else
665 printf(": <unknown:%d>\n", migr_type(dev));
666 }
667 printf(" Map State : %s", map_state_str[map->map_state]);
668 if (dev->vol.migr_state) {
669 struct imsm_map *map = get_imsm_map(dev, 1);
670 printf(" <-- %s", map_state_str[map->map_state]);
671 }
672 printf("\n");
673 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
674}
675
676static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
677{
678 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
679 char str[MAX_RAID_SERIAL_LEN + 1];
680 __u32 s;
681 __u64 sz;
682
683 if (index < 0)
684 return;
685
686 printf("\n");
687 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
688 printf(" Disk%02d Serial : %s\n", index, str);
689 s = disk->status;
690 printf(" State :%s%s%s%s\n", s&SPARE_DISK ? " spare" : "",
691 s&CONFIGURED_DISK ? " active" : "",
692 s&FAILED_DISK ? " failed" : "",
693 s&USABLE_DISK ? " usable" : "");
694 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
695 sz = __le32_to_cpu(disk->total_blocks) - reserved;
696 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
697 human_size(sz * 512));
698}
699
700static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info);
701
702static void examine_super_imsm(struct supertype *st, char *homehost)
703{
704 struct intel_super *super = st->sb;
705 struct imsm_super *mpb = super->anchor;
706 char str[MAX_SIGNATURE_LENGTH];
707 int i;
708 struct mdinfo info;
709 char nbuf[64];
710 __u32 sum;
711 __u32 reserved = imsm_reserved_sectors(super, super->disks);
712
713
714 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
715 printf(" Magic : %s\n", str);
716 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
717 printf(" Version : %s\n", get_imsm_version(mpb));
718 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
719 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
720 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
721 getinfo_super_imsm(st, &info);
722 fname_from_uuid(st, &info, nbuf, ':');
723 printf(" UUID : %s\n", nbuf + 5);
724 sum = __le32_to_cpu(mpb->check_sum);
725 printf(" Checksum : %08x %s\n", sum,
726 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
727 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
728 printf(" Disks : %d\n", mpb->num_disks);
729 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
730 print_imsm_disk(mpb, super->disks->index, reserved);
731 if (super->bbm_log) {
732 struct bbm_log *log = super->bbm_log;
733
734 printf("\n");
735 printf("Bad Block Management Log:\n");
736 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
737 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
738 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
739 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
740 printf(" First Spare : %llx\n",
741 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
742 }
743 for (i = 0; i < mpb->num_raid_devs; i++) {
744 struct mdinfo info;
745 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
746
747 super->current_vol = i;
748 getinfo_super_imsm(st, &info);
749 fname_from_uuid(st, &info, nbuf, ':');
750 print_imsm_dev(dev, nbuf + 5, super->disks->index);
751 }
752 for (i = 0; i < mpb->num_disks; i++) {
753 if (i == super->disks->index)
754 continue;
755 print_imsm_disk(mpb, i, reserved);
756 }
757}
758
759static void brief_examine_super_imsm(struct supertype *st, int verbose)
760{
761 /* We just write a generic IMSM ARRAY entry */
762 struct mdinfo info;
763 char nbuf[64];
764 struct intel_super *super = st->sb;
765
766 if (!super->anchor->num_raid_devs) {
767 printf("ARRAY metadata=imsm\n");
768 return;
769 }
770
771 getinfo_super_imsm(st, &info);
772 fname_from_uuid(st, &info, nbuf, ':');
773 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
774}
775
776static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
777{
778 /* We just write a generic IMSM ARRAY entry */
779 struct mdinfo info;
780 char nbuf[64];
781 char nbuf1[64];
782 struct intel_super *super = st->sb;
783 int i;
784
785 if (!super->anchor->num_raid_devs)
786 return;
787
788 getinfo_super_imsm(st, &info);
789 fname_from_uuid(st, &info, nbuf, ':');
790 for (i = 0; i < super->anchor->num_raid_devs; i++) {
791 struct imsm_dev *dev = get_imsm_dev(super, i);
792
793 super->current_vol = i;
794 getinfo_super_imsm(st, &info);
795 fname_from_uuid(st, &info, nbuf1, ':');
796 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
797 dev->volume, nbuf + 5, i, nbuf1 + 5);
798 }
799}
800
801static void export_examine_super_imsm(struct supertype *st)
802{
803 struct intel_super *super = st->sb;
804 struct imsm_super *mpb = super->anchor;
805 struct mdinfo info;
806 char nbuf[64];
807
808 getinfo_super_imsm(st, &info);
809 fname_from_uuid(st, &info, nbuf, ':');
810 printf("MD_METADATA=imsm\n");
811 printf("MD_LEVEL=container\n");
812 printf("MD_UUID=%s\n", nbuf+5);
813 printf("MD_DEVICES=%u\n", mpb->num_disks);
814}
815
816static void detail_super_imsm(struct supertype *st, char *homehost)
817{
818 struct mdinfo info;
819 char nbuf[64];
820
821 getinfo_super_imsm(st, &info);
822 fname_from_uuid(st, &info, nbuf, ':');
823 printf("\n UUID : %s\n", nbuf + 5);
824}
825
826static void brief_detail_super_imsm(struct supertype *st)
827{
828 struct mdinfo info;
829 char nbuf[64];
830 getinfo_super_imsm(st, &info);
831 fname_from_uuid(st, &info, nbuf, ':');
832 printf(" UUID=%s", nbuf + 5);
833}
834
835static int imsm_read_serial(int fd, char *devname, __u8 *serial);
836static void fd2devname(int fd, char *name);
837
838static int imsm_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
839{
840 /* dump an unsorted list of devices attached to ahci, as well as
841 * non-connected ports
842 */
843 int hba_len = strlen(hba_path) + 1;
844 struct dirent *ent;
845 DIR *dir;
846 char *path = NULL;
847 int err = 0;
848 unsigned long port_mask = (1 << port_count) - 1;
849
850 if (port_count > sizeof(port_mask) * 8) {
851 if (verbose)
852 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
853 return 2;
854 }
855
856 /* scroll through /sys/dev/block looking for devices attached to
857 * this hba
858 */
859 dir = opendir("/sys/dev/block");
860 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
861 int fd;
862 char model[64];
863 char vendor[64];
864 char buf[1024];
865 int major, minor;
866 char *device;
867 char *c;
868 int port;
869 int type;
870
871 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
872 continue;
873 path = devt_to_devpath(makedev(major, minor));
874 if (!path)
875 continue;
876 if (!path_attached_to_hba(path, hba_path)) {
877 free(path);
878 path = NULL;
879 continue;
880 }
881
882 /* retrieve the scsi device type */
883 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
884 if (verbose)
885 fprintf(stderr, Name ": failed to allocate 'device'\n");
886 err = 2;
887 break;
888 }
889 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
890 if (load_sys(device, buf) != 0) {
891 if (verbose)
892 fprintf(stderr, Name ": failed to read device type for %s\n",
893 path);
894 err = 2;
895 free(device);
896 break;
897 }
898 type = strtoul(buf, NULL, 10);
899
900 /* if it's not a disk print the vendor and model */
901 if (!(type == 0 || type == 7 || type == 14)) {
902 vendor[0] = '\0';
903 model[0] = '\0';
904 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
905 if (load_sys(device, buf) == 0) {
906 strncpy(vendor, buf, sizeof(vendor));
907 vendor[sizeof(vendor) - 1] = '\0';
908 c = (char *) &vendor[sizeof(vendor) - 1];
909 while (isspace(*c) || *c == '\0')
910 *c-- = '\0';
911
912 }
913 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
914 if (load_sys(device, buf) == 0) {
915 strncpy(model, buf, sizeof(model));
916 model[sizeof(model) - 1] = '\0';
917 c = (char *) &model[sizeof(model) - 1];
918 while (isspace(*c) || *c == '\0')
919 *c-- = '\0';
920 }
921
922 if (vendor[0] && model[0])
923 sprintf(buf, "%.64s %.64s", vendor, model);
924 else
925 switch (type) { /* numbers from hald/linux/device.c */
926 case 1: sprintf(buf, "tape"); break;
927 case 2: sprintf(buf, "printer"); break;
928 case 3: sprintf(buf, "processor"); break;
929 case 4:
930 case 5: sprintf(buf, "cdrom"); break;
931 case 6: sprintf(buf, "scanner"); break;
932 case 8: sprintf(buf, "media_changer"); break;
933 case 9: sprintf(buf, "comm"); break;
934 case 12: sprintf(buf, "raid"); break;
935 default: sprintf(buf, "unknown");
936 }
937 } else
938 buf[0] = '\0';
939 free(device);
940
941 /* chop device path to 'host%d' and calculate the port number */
942 c = strchr(&path[hba_len], '/');
943 *c = '\0';
944 if (sscanf(&path[hba_len], "host%d", &port) == 1)
945 port -= host_base;
946 else {
947 if (verbose) {
948 *c = '/'; /* repair the full string */
949 fprintf(stderr, Name ": failed to determine port number for %s\n",
950 path);
951 }
952 err = 2;
953 break;
954 }
955
956 /* mark this port as used */
957 port_mask &= ~(1 << port);
958
959 /* print out the device information */
960 if (buf[0]) {
961 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
962 continue;
963 }
964
965 fd = dev_open(ent->d_name, O_RDONLY);
966 if (fd < 0)
967 printf(" Port%d : - disk info unavailable -\n", port);
968 else {
969 fd2devname(fd, buf);
970 printf(" Port%d : %s", port, buf);
971 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
972 printf(" (%s)\n", buf);
973 else
974 printf("()\n");
975 }
976 close(fd);
977 free(path);
978 path = NULL;
979 }
980 if (path)
981 free(path);
982 if (dir)
983 closedir(dir);
984 if (err == 0) {
985 int i;
986
987 for (i = 0; i < port_count; i++)
988 if (port_mask & (1 << i))
989 printf(" Port%d : - no device attached -\n", i);
990 }
991
992 return err;
993}
994
995static int detail_platform_imsm(int verbose, int enumerate_only)
996{
997 /* There are two components to imsm platform support, the ahci SATA
998 * controller and the option-rom. To find the SATA controller we
999 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1000 * controller with the Intel vendor id is present. This approach
1001 * allows mdadm to leverage the kernel's ahci detection logic, with the
1002 * caveat that if ahci.ko is not loaded mdadm will not be able to
1003 * detect platform raid capabilities. The option-rom resides in a
1004 * platform "Adapter ROM". We scan for its signature to retrieve the
1005 * platform capabilities. If raid support is disabled in the BIOS the
1006 * option-rom capability structure will not be available.
1007 */
1008 const struct imsm_orom *orom;
1009 struct sys_dev *list, *hba;
1010 DIR *dir;
1011 struct dirent *ent;
1012 const char *hba_path;
1013 int host_base = 0;
1014 int port_count = 0;
1015
1016 if (enumerate_only) {
1017 if (check_env("IMSM_NO_PLATFORM") || find_imsm_orom())
1018 return 0;
1019 return 2;
1020 }
1021
1022 list = find_driver_devices("pci", "ahci");
1023 for (hba = list; hba; hba = hba->next)
1024 if (devpath_to_vendor(hba->path) == 0x8086)
1025 break;
1026
1027 if (!hba) {
1028 if (verbose)
1029 fprintf(stderr, Name ": unable to find active ahci controller\n");
1030 free_sys_dev(&list);
1031 return 2;
1032 } else if (verbose)
1033 fprintf(stderr, Name ": found Intel SATA AHCI Controller\n");
1034 hba_path = hba->path;
1035 hba->path = NULL;
1036 free_sys_dev(&list);
1037
1038 orom = find_imsm_orom();
1039 if (!orom) {
1040 if (verbose)
1041 fprintf(stderr, Name ": imsm option-rom not found\n");
1042 return 2;
1043 }
1044
1045 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1046 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1047 orom->hotfix_ver, orom->build);
1048 printf(" RAID Levels :%s%s%s%s%s\n",
1049 imsm_orom_has_raid0(orom) ? " raid0" : "",
1050 imsm_orom_has_raid1(orom) ? " raid1" : "",
1051 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1052 imsm_orom_has_raid10(orom) ? " raid10" : "",
1053 imsm_orom_has_raid5(orom) ? " raid5" : "");
1054 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1055 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1056 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1057 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1058 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1059 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1060 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1061 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1062 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1063 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1064 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1065 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1066 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1067 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1068 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1069 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1070 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1071 printf(" Max Disks : %d\n", orom->tds);
1072 printf(" Max Volumes : %d\n", orom->vpa);
1073 printf(" I/O Controller : %s\n", hba_path);
1074
1075 /* find the smallest scsi host number to determine a port number base */
1076 dir = opendir(hba_path);
1077 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1078 int host;
1079
1080 if (sscanf(ent->d_name, "host%d", &host) != 1)
1081 continue;
1082 if (port_count == 0)
1083 host_base = host;
1084 else if (host < host_base)
1085 host_base = host;
1086
1087 if (host + 1 > port_count + host_base)
1088 port_count = host + 1 - host_base;
1089
1090 }
1091 if (dir)
1092 closedir(dir);
1093
1094 if (!port_count || imsm_enumerate_ports(hba_path, port_count,
1095 host_base, verbose) != 0) {
1096 if (verbose)
1097 fprintf(stderr, Name ": failed to enumerate ports\n");
1098 return 2;
1099 }
1100
1101 return 0;
1102}
1103#endif
1104
1105static int match_home_imsm(struct supertype *st, char *homehost)
1106{
1107 /* the imsm metadata format does not specify any host
1108 * identification information. We return -1 since we can never
1109 * confirm nor deny whether a given array is "meant" for this
1110 * host. We rely on compare_super and the 'family_num' fields to
1111 * exclude member disks that do not belong, and we rely on
1112 * mdadm.conf to specify the arrays that should be assembled.
1113 * Auto-assembly may still pick up "foreign" arrays.
1114 */
1115
1116 return -1;
1117}
1118
1119static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1120{
1121 /* The uuid returned here is used for:
1122 * uuid to put into bitmap file (Create, Grow)
1123 * uuid for backup header when saving critical section (Grow)
1124 * comparing uuids when re-adding a device into an array
1125 * In these cases the uuid required is that of the data-array,
1126 * not the device-set.
1127 * uuid to recognise same set when adding a missing device back
1128 * to an array. This is a uuid for the device-set.
1129 *
1130 * For each of these we can make do with a truncated
1131 * or hashed uuid rather than the original, as long as
1132 * everyone agrees.
1133 * In each case the uuid required is that of the data-array,
1134 * not the device-set.
1135 */
1136 /* imsm does not track uuid's so we synthesis one using sha1 on
1137 * - The signature (Which is constant for all imsm array, but no matter)
1138 * - the orig_family_num of the container
1139 * - the index number of the volume
1140 * - the 'serial' number of the volume.
1141 * Hopefully these are all constant.
1142 */
1143 struct intel_super *super = st->sb;
1144
1145 char buf[20];
1146 struct sha1_ctx ctx;
1147 struct imsm_dev *dev = NULL;
1148 __u32 family_num;
1149
1150 /* some mdadm versions failed to set ->orig_family_num, in which
1151 * case fall back to ->family_num. orig_family_num will be
1152 * fixed up with the first metadata update.
1153 */
1154 family_num = super->anchor->orig_family_num;
1155 if (family_num == 0)
1156 family_num = super->anchor->family_num;
1157 sha1_init_ctx(&ctx);
1158 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1159 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1160 if (super->current_vol >= 0)
1161 dev = get_imsm_dev(super, super->current_vol);
1162 if (dev) {
1163 __u32 vol = super->current_vol;
1164 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1165 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1166 }
1167 sha1_finish_ctx(&ctx, buf);
1168 memcpy(uuid, buf, 4*4);
1169}
1170
1171#if 0
1172static void
1173get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1174{
1175 __u8 *v = get_imsm_version(mpb);
1176 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1177 char major[] = { 0, 0, 0 };
1178 char minor[] = { 0 ,0, 0 };
1179 char patch[] = { 0, 0, 0 };
1180 char *ver_parse[] = { major, minor, patch };
1181 int i, j;
1182
1183 i = j = 0;
1184 while (*v != '\0' && v < end) {
1185 if (*v != '.' && j < 2)
1186 ver_parse[i][j++] = *v;
1187 else {
1188 i++;
1189 j = 0;
1190 }
1191 v++;
1192 }
1193
1194 *m = strtol(minor, NULL, 0);
1195 *p = strtol(patch, NULL, 0);
1196}
1197#endif
1198
1199static int imsm_level_to_layout(int level)
1200{
1201 switch (level) {
1202 case 0:
1203 case 1:
1204 return 0;
1205 case 5:
1206 case 6:
1207 return ALGORITHM_LEFT_ASYMMETRIC;
1208 case 10:
1209 return 0x102;
1210 }
1211 return UnSet;
1212}
1213
1214static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
1215{
1216 struct intel_super *super = st->sb;
1217 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
1218 struct imsm_map *map = get_imsm_map(dev, 0);
1219 struct dl *dl;
1220
1221 for (dl = super->disks; dl; dl = dl->next)
1222 if (dl->raiddisk == info->disk.raid_disk)
1223 break;
1224 info->container_member = super->current_vol;
1225 info->array.raid_disks = map->num_members;
1226 info->array.level = get_imsm_raid_level(map);
1227 info->array.layout = imsm_level_to_layout(info->array.level);
1228 info->array.md_minor = -1;
1229 info->array.ctime = 0;
1230 info->array.utime = 0;
1231 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
1232 info->array.state = !dev->vol.dirty;
1233 info->custom_array_size = __le32_to_cpu(dev->size_high);
1234 info->custom_array_size <<= 32;
1235 info->custom_array_size |= __le32_to_cpu(dev->size_low);
1236
1237 info->disk.major = 0;
1238 info->disk.minor = 0;
1239 if (dl) {
1240 info->disk.major = dl->major;
1241 info->disk.minor = dl->minor;
1242 }
1243
1244 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
1245 info->component_size = __le32_to_cpu(map->blocks_per_member);
1246 memset(info->uuid, 0, sizeof(info->uuid));
1247
1248 if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty)
1249 info->resync_start = 0;
1250 else if (dev->vol.migr_state)
1251 /* FIXME add curr_migr_unit to resync_start conversion */
1252 info->resync_start = 0;
1253 else
1254 info->resync_start = ~0ULL;
1255
1256 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
1257 info->name[MAX_RAID_SERIAL_LEN] = 0;
1258
1259 info->array.major_version = -1;
1260 info->array.minor_version = -2;
1261 sprintf(info->text_version, "/%s/%d",
1262 devnum2devname(st->container_dev),
1263 info->container_member);
1264 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
1265 uuid_from_super_imsm(st, info->uuid);
1266}
1267
1268/* check the config file to see if we can return a real uuid for this spare */
1269static void fixup_container_spare_uuid(struct mdinfo *inf)
1270{
1271 struct mddev_ident_s *array_list;
1272
1273 if (inf->array.level != LEVEL_CONTAINER ||
1274 memcmp(inf->uuid, uuid_match_any, sizeof(int[4])) != 0)
1275 return;
1276
1277 array_list = conf_get_ident(NULL);
1278
1279 for (; array_list; array_list = array_list->next) {
1280 if (array_list->uuid_set) {
1281 struct supertype *_sst; /* spare supertype */
1282 struct supertype *_cst; /* container supertype */
1283
1284 _cst = array_list->st;
1285 if (_cst)
1286 _sst = _cst->ss->match_metadata_desc(inf->text_version);
1287 else
1288 _sst = NULL;
1289
1290 if (_sst) {
1291 memcpy(inf->uuid, array_list->uuid, sizeof(int[4]));
1292 free(_sst);
1293 break;
1294 }
1295 }
1296 }
1297}
1298
1299static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
1300{
1301 struct intel_super *super = st->sb;
1302 struct imsm_disk *disk;
1303 __u32 s;
1304
1305 if (super->current_vol >= 0) {
1306 getinfo_super_imsm_volume(st, info);
1307 return;
1308 }
1309
1310 /* Set raid_disks to zero so that Assemble will always pull in valid
1311 * spares
1312 */
1313 info->array.raid_disks = 0;
1314 info->array.level = LEVEL_CONTAINER;
1315 info->array.layout = 0;
1316 info->array.md_minor = -1;
1317 info->array.ctime = 0; /* N/A for imsm */
1318 info->array.utime = 0;
1319 info->array.chunk_size = 0;
1320
1321 info->disk.major = 0;
1322 info->disk.minor = 0;
1323 info->disk.raid_disk = -1;
1324 info->reshape_active = 0;
1325 info->array.major_version = -1;
1326 info->array.minor_version = -2;
1327 strcpy(info->text_version, "imsm");
1328 info->safe_mode_delay = 0;
1329 info->disk.number = -1;
1330 info->disk.state = 0;
1331 info->name[0] = 0;
1332
1333 if (super->disks) {
1334 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1335
1336 disk = &super->disks->disk;
1337 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
1338 info->component_size = reserved;
1339 s = disk->status;
1340 info->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
1341 /* we don't change info->disk.raid_disk here because
1342 * this state will be finalized in mdmon after we have
1343 * found the 'most fresh' version of the metadata
1344 */
1345 info->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
1346 info->disk.state |= s & SPARE_DISK ? 0 : (1 << MD_DISK_SYNC);
1347 }
1348
1349 /* only call uuid_from_super_imsm when this disk is part of a populated container,
1350 * ->compare_super may have updated the 'num_raid_devs' field for spares
1351 */
1352 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
1353 uuid_from_super_imsm(st, info->uuid);
1354 else {
1355 memcpy(info->uuid, uuid_match_any, sizeof(int[4]));
1356 fixup_container_spare_uuid(info);
1357 }
1358}
1359
1360static int update_super_imsm(struct supertype *st, struct mdinfo *info,
1361 char *update, char *devname, int verbose,
1362 int uuid_set, char *homehost)
1363{
1364 /* FIXME */
1365
1366 /* For 'assemble' and 'force' we need to return non-zero if any
1367 * change was made. For others, the return value is ignored.
1368 * Update options are:
1369 * force-one : This device looks a bit old but needs to be included,
1370 * update age info appropriately.
1371 * assemble: clear any 'faulty' flag to allow this device to
1372 * be assembled.
1373 * force-array: Array is degraded but being forced, mark it clean
1374 * if that will be needed to assemble it.
1375 *
1376 * newdev: not used ????
1377 * grow: Array has gained a new device - this is currently for
1378 * linear only
1379 * resync: mark as dirty so a resync will happen.
1380 * name: update the name - preserving the homehost
1381 *
1382 * Following are not relevant for this imsm:
1383 * sparc2.2 : update from old dodgey metadata
1384 * super-minor: change the preferred_minor number
1385 * summaries: update redundant counters.
1386 * uuid: Change the uuid of the array to match watch is given
1387 * homehost: update the recorded homehost
1388 * _reshape_progress: record new reshape_progress position.
1389 */
1390 int rv = 0;
1391 //struct intel_super *super = st->sb;
1392 //struct imsm_super *mpb = super->mpb;
1393
1394 if (strcmp(update, "grow") == 0) {
1395 }
1396 if (strcmp(update, "resync") == 0) {
1397 /* dev->vol.dirty = 1; */
1398 }
1399
1400 /* IMSM has no concept of UUID or homehost */
1401
1402 return rv;
1403}
1404
1405static size_t disks_to_mpb_size(int disks)
1406{
1407 size_t size;
1408
1409 size = sizeof(struct imsm_super);
1410 size += (disks - 1) * sizeof(struct imsm_disk);
1411 size += 2 * sizeof(struct imsm_dev);
1412 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
1413 size += (4 - 2) * sizeof(struct imsm_map);
1414 /* 4 possible disk_ord_tbl's */
1415 size += 4 * (disks - 1) * sizeof(__u32);
1416
1417 return size;
1418}
1419
1420static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
1421{
1422 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
1423 return 0;
1424
1425 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
1426}
1427
1428static void free_devlist(struct intel_super *super)
1429{
1430 struct intel_dev *dv;
1431
1432 while (super->devlist) {
1433 dv = super->devlist->next;
1434 free(super->devlist->dev);
1435 free(super->devlist);
1436 super->devlist = dv;
1437 }
1438}
1439
1440static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
1441{
1442 memcpy(dest, src, sizeof_imsm_dev(src, 0));
1443}
1444
1445static int compare_super_imsm(struct supertype *st, struct supertype *tst)
1446{
1447 /*
1448 * return:
1449 * 0 same, or first was empty, and second was copied
1450 * 1 second had wrong number
1451 * 2 wrong uuid
1452 * 3 wrong other info
1453 */
1454 struct intel_super *first = st->sb;
1455 struct intel_super *sec = tst->sb;
1456
1457 if (!first) {
1458 st->sb = tst->sb;
1459 tst->sb = NULL;
1460 return 0;
1461 }
1462
1463 if (memcmp(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH) != 0)
1464 return 3;
1465
1466 /* if an anchor does not have num_raid_devs set then it is a free
1467 * floating spare
1468 */
1469 if (first->anchor->num_raid_devs > 0 &&
1470 sec->anchor->num_raid_devs > 0) {
1471 if (first->anchor->orig_family_num != sec->anchor->orig_family_num ||
1472 first->anchor->family_num != sec->anchor->family_num)
1473 return 3;
1474 }
1475
1476 /* if 'first' is a spare promote it to a populated mpb with sec's
1477 * family number
1478 */
1479 if (first->anchor->num_raid_devs == 0 &&
1480 sec->anchor->num_raid_devs > 0) {
1481 int i;
1482 struct intel_dev *dv;
1483 struct imsm_dev *dev;
1484
1485 /* we need to copy raid device info from sec if an allocation
1486 * fails here we don't associate the spare
1487 */
1488 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
1489 dv = malloc(sizeof(*dv));
1490 if (!dv)
1491 break;
1492 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
1493 if (!dev) {
1494 free(dv);
1495 break;
1496 }
1497 dv->dev = dev;
1498 dv->index = i;
1499 dv->next = first->devlist;
1500 first->devlist = dv;
1501 }
1502 if (i <= sec->anchor->num_raid_devs) {
1503 /* allocation failure */
1504 free_devlist(first);
1505 fprintf(stderr, "imsm: failed to associate spare\n");
1506 return 3;
1507 }
1508 for (i = 0; i < sec->anchor->num_raid_devs; i++)
1509 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
1510
1511 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
1512 first->anchor->orig_family_num = sec->anchor->orig_family_num;
1513 first->anchor->family_num = sec->anchor->family_num;
1514 }
1515
1516 return 0;
1517}
1518
1519static void fd2devname(int fd, char *name)
1520{
1521 struct stat st;
1522 char path[256];
1523 char dname[100];
1524 char *nm;
1525 int rv;
1526
1527 name[0] = '\0';
1528 if (fstat(fd, &st) != 0)
1529 return;
1530 sprintf(path, "/sys/dev/block/%d:%d",
1531 major(st.st_rdev), minor(st.st_rdev));
1532
1533 rv = readlink(path, dname, sizeof(dname));
1534 if (rv <= 0)
1535 return;
1536
1537 dname[rv] = '\0';
1538 nm = strrchr(dname, '/');
1539 nm++;
1540 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
1541}
1542
1543
1544extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
1545
1546static int imsm_read_serial(int fd, char *devname,
1547 __u8 serial[MAX_RAID_SERIAL_LEN])
1548{
1549 unsigned char scsi_serial[255];
1550 int rv;
1551 int rsp_len;
1552 int len;
1553 char *dest;
1554 char *src;
1555 char *rsp_buf;
1556 int i;
1557
1558 memset(scsi_serial, 0, sizeof(scsi_serial));
1559
1560 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
1561
1562 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
1563 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1564 fd2devname(fd, (char *) serial);
1565 return 0;
1566 }
1567
1568 if (rv != 0) {
1569 if (devname)
1570 fprintf(stderr,
1571 Name ": Failed to retrieve serial for %s\n",
1572 devname);
1573 return rv;
1574 }
1575
1576 rsp_len = scsi_serial[3];
1577 if (!rsp_len) {
1578 if (devname)
1579 fprintf(stderr,
1580 Name ": Failed to retrieve serial for %s\n",
1581 devname);
1582 return 2;
1583 }
1584 rsp_buf = (char *) &scsi_serial[4];
1585
1586 /* trim all whitespace and non-printable characters and convert
1587 * ':' to ';'
1588 */
1589 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
1590 src = &rsp_buf[i];
1591 if (*src > 0x20) {
1592 /* ':' is reserved for use in placeholder serial
1593 * numbers for missing disks
1594 */
1595 if (*src == ':')
1596 *dest++ = ';';
1597 else
1598 *dest++ = *src;
1599 }
1600 }
1601 len = dest - rsp_buf;
1602 dest = rsp_buf;
1603
1604 /* truncate leading characters */
1605 if (len > MAX_RAID_SERIAL_LEN) {
1606 dest += len - MAX_RAID_SERIAL_LEN;
1607 len = MAX_RAID_SERIAL_LEN;
1608 }
1609
1610 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1611 memcpy(serial, dest, len);
1612
1613 return 0;
1614}
1615
1616static int serialcmp(__u8 *s1, __u8 *s2)
1617{
1618 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
1619}
1620
1621static void serialcpy(__u8 *dest, __u8 *src)
1622{
1623 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
1624}
1625
1626static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
1627{
1628 struct dl *dl;
1629
1630 for (dl = super->disks; dl; dl = dl->next)
1631 if (serialcmp(dl->serial, serial) == 0)
1632 break;
1633
1634 return dl;
1635}
1636
1637static int
1638load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
1639{
1640 struct dl *dl;
1641 struct stat stb;
1642 int rv;
1643 int i;
1644 int alloc = 1;
1645 __u8 serial[MAX_RAID_SERIAL_LEN];
1646
1647 rv = imsm_read_serial(fd, devname, serial);
1648
1649 if (rv != 0)
1650 return 2;
1651
1652 /* check if this is a disk we have seen before. it may be a spare in
1653 * super->disks while the current anchor believes it is a raid member,
1654 * check if we need to update dl->index
1655 */
1656 dl = serial_to_dl(serial, super);
1657 if (!dl)
1658 dl = malloc(sizeof(*dl));
1659 else
1660 alloc = 0;
1661
1662 if (!dl) {
1663 if (devname)
1664 fprintf(stderr,
1665 Name ": failed to allocate disk buffer for %s\n",
1666 devname);
1667 return 2;
1668 }
1669
1670 if (alloc) {
1671 fstat(fd, &stb);
1672 dl->major = major(stb.st_rdev);
1673 dl->minor = minor(stb.st_rdev);
1674 dl->next = super->disks;
1675 dl->fd = keep_fd ? fd : -1;
1676 dl->devname = devname ? strdup(devname) : NULL;
1677 serialcpy(dl->serial, serial);
1678 dl->index = -2;
1679 dl->e = NULL;
1680 } else if (keep_fd) {
1681 close(dl->fd);
1682 dl->fd = fd;
1683 }
1684
1685 /* look up this disk's index in the current anchor */
1686 for (i = 0; i < super->anchor->num_disks; i++) {
1687 struct imsm_disk *disk_iter;
1688
1689 disk_iter = __get_imsm_disk(super->anchor, i);
1690
1691 if (serialcmp(disk_iter->serial, dl->serial) == 0) {
1692 dl->disk = *disk_iter;
1693 /* only set index on disks that are a member of a
1694 * populated contianer, i.e. one with raid_devs
1695 */
1696 if (dl->disk.status & FAILED_DISK)
1697 dl->index = -2;
1698 else if (dl->disk.status & SPARE_DISK)
1699 dl->index = -1;
1700 else
1701 dl->index = i;
1702
1703 break;
1704 }
1705 }
1706
1707 /* no match, maybe a stale failed drive */
1708 if (i == super->anchor->num_disks && dl->index >= 0) {
1709 dl->disk = *__get_imsm_disk(super->anchor, dl->index);
1710 if (dl->disk.status & FAILED_DISK)
1711 dl->index = -2;
1712 }
1713
1714 if (alloc)
1715 super->disks = dl;
1716
1717 return 0;
1718}
1719
1720#ifndef MDASSEMBLE
1721/* When migrating map0 contains the 'destination' state while map1
1722 * contains the current state. When not migrating map0 contains the
1723 * current state. This routine assumes that map[0].map_state is set to
1724 * the current array state before being called.
1725 *
1726 * Migration is indicated by one of the following states
1727 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
1728 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
1729 * map1state=unitialized)
1730 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
1731 * map1state=normal)
1732 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
1733 * map1state=degraded)
1734 */
1735static void migrate(struct imsm_dev *dev, __u8 to_state, int migr_type)
1736{
1737 struct imsm_map *dest;
1738 struct imsm_map *src = get_imsm_map(dev, 0);
1739
1740 dev->vol.migr_state = 1;
1741 set_migr_type(dev, migr_type);
1742 dev->vol.curr_migr_unit = 0;
1743 dest = get_imsm_map(dev, 1);
1744
1745 /* duplicate and then set the target end state in map[0] */
1746 memcpy(dest, src, sizeof_imsm_map(src));
1747 if (migr_type == MIGR_REBUILD) {
1748 __u32 ord;
1749 int i;
1750
1751 for (i = 0; i < src->num_members; i++) {
1752 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
1753 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
1754 }
1755 }
1756
1757 src->map_state = to_state;
1758}
1759
1760static void end_migration(struct imsm_dev *dev, __u8 map_state)
1761{
1762 struct imsm_map *map = get_imsm_map(dev, 0);
1763 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
1764 int i;
1765
1766 /* merge any IMSM_ORD_REBUILD bits that were not successfully
1767 * completed in the last migration.
1768 *
1769 * FIXME add support for online capacity expansion and
1770 * raid-level-migration
1771 */
1772 for (i = 0; i < prev->num_members; i++)
1773 map->disk_ord_tbl[i] |= prev->disk_ord_tbl[i];
1774
1775 dev->vol.migr_state = 0;
1776 dev->vol.curr_migr_unit = 0;
1777 map->map_state = map_state;
1778}
1779#endif
1780
1781static int parse_raid_devices(struct intel_super *super)
1782{
1783 int i;
1784 struct imsm_dev *dev_new;
1785 size_t len, len_migr;
1786 size_t space_needed = 0;
1787 struct imsm_super *mpb = super->anchor;
1788
1789 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1790 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
1791 struct intel_dev *dv;
1792
1793 len = sizeof_imsm_dev(dev_iter, 0);
1794 len_migr = sizeof_imsm_dev(dev_iter, 1);
1795 if (len_migr > len)
1796 space_needed += len_migr - len;
1797
1798 dv = malloc(sizeof(*dv));
1799 if (!dv)
1800 return 1;
1801 dev_new = malloc(len_migr);
1802 if (!dev_new) {
1803 free(dv);
1804 return 1;
1805 }
1806 imsm_copy_dev(dev_new, dev_iter);
1807 dv->dev = dev_new;
1808 dv->index = i;
1809 dv->next = super->devlist;
1810 super->devlist = dv;
1811 }
1812
1813 /* ensure that super->buf is large enough when all raid devices
1814 * are migrating
1815 */
1816 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
1817 void *buf;
1818
1819 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
1820 if (posix_memalign(&buf, 512, len) != 0)
1821 return 1;
1822
1823 memcpy(buf, super->buf, super->len);
1824 memset(buf + super->len, 0, len - super->len);
1825 free(super->buf);
1826 super->buf = buf;
1827 super->len = len;
1828 }
1829
1830 return 0;
1831}
1832
1833/* retrieve a pointer to the bbm log which starts after all raid devices */
1834struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
1835{
1836 void *ptr = NULL;
1837
1838 if (__le32_to_cpu(mpb->bbm_log_size)) {
1839 ptr = mpb;
1840 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
1841 }
1842
1843 return ptr;
1844}
1845
1846static void __free_imsm(struct intel_super *super, int free_disks);
1847
1848/* load_imsm_mpb - read matrix metadata
1849 * allocates super->mpb to be freed by free_super
1850 */
1851static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
1852{
1853 unsigned long long dsize;
1854 unsigned long long sectors;
1855 struct stat;
1856 struct imsm_super *anchor;
1857 __u32 check_sum;
1858 int rc;
1859
1860 get_dev_size(fd, NULL, &dsize);
1861
1862 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
1863 if (devname)
1864 fprintf(stderr,
1865 Name ": Cannot seek to anchor block on %s: %s\n",
1866 devname, strerror(errno));
1867 return 1;
1868 }
1869
1870 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
1871 if (devname)
1872 fprintf(stderr,
1873 Name ": Failed to allocate imsm anchor buffer"
1874 " on %s\n", devname);
1875 return 1;
1876 }
1877 if (read(fd, anchor, 512) != 512) {
1878 if (devname)
1879 fprintf(stderr,
1880 Name ": Cannot read anchor block on %s: %s\n",
1881 devname, strerror(errno));
1882 free(anchor);
1883 return 1;
1884 }
1885
1886 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
1887 if (devname)
1888 fprintf(stderr,
1889 Name ": no IMSM anchor on %s\n", devname);
1890 free(anchor);
1891 return 2;
1892 }
1893
1894 __free_imsm(super, 0);
1895 super->len = ROUND_UP(anchor->mpb_size, 512);
1896 if (posix_memalign(&super->buf, 512, super->len) != 0) {
1897 if (devname)
1898 fprintf(stderr,
1899 Name ": unable to allocate %zu byte mpb buffer\n",
1900 super->len);
1901 free(anchor);
1902 return 2;
1903 }
1904 memcpy(super->buf, anchor, 512);
1905
1906 sectors = mpb_sectors(anchor) - 1;
1907 free(anchor);
1908 if (!sectors) {
1909 check_sum = __gen_imsm_checksum(super->anchor);
1910 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
1911 if (devname)
1912 fprintf(stderr,
1913 Name ": IMSM checksum %x != %x on %s\n",
1914 check_sum,
1915 __le32_to_cpu(super->anchor->check_sum),
1916 devname);
1917 return 2;
1918 }
1919
1920 rc = load_imsm_disk(fd, super, devname, 0);
1921 if (rc == 0)
1922 rc = parse_raid_devices(super);
1923 return rc;
1924 }
1925
1926 /* read the extended mpb */
1927 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
1928 if (devname)
1929 fprintf(stderr,
1930 Name ": Cannot seek to extended mpb on %s: %s\n",
1931 devname, strerror(errno));
1932 return 1;
1933 }
1934
1935 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
1936 if (devname)
1937 fprintf(stderr,
1938 Name ": Cannot read extended mpb on %s: %s\n",
1939 devname, strerror(errno));
1940 return 2;
1941 }
1942
1943 check_sum = __gen_imsm_checksum(super->anchor);
1944 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
1945 if (devname)
1946 fprintf(stderr,
1947 Name ": IMSM checksum %x != %x on %s\n",
1948 check_sum, __le32_to_cpu(super->anchor->check_sum),
1949 devname);
1950 return 3;
1951 }
1952
1953 /* FIXME the BBM log is disk specific so we cannot use this global
1954 * buffer for all disks. Ok for now since we only look at the global
1955 * bbm_log_size parameter to gate assembly
1956 */
1957 super->bbm_log = __get_imsm_bbm_log(super->anchor);
1958
1959 rc = load_imsm_disk(fd, super, devname, 0);
1960 if (rc == 0)
1961 rc = parse_raid_devices(super);
1962
1963 return rc;
1964}
1965
1966static void __free_imsm_disk(struct dl *d)
1967{
1968 if (d->fd >= 0)
1969 close(d->fd);
1970 if (d->devname)
1971 free(d->devname);
1972 if (d->e)
1973 free(d->e);
1974 free(d);
1975
1976}
1977static void free_imsm_disks(struct intel_super *super)
1978{
1979 struct dl *d;
1980
1981 while (super->disks) {
1982 d = super->disks;
1983 super->disks = d->next;
1984 __free_imsm_disk(d);
1985 }
1986 while (super->missing) {
1987 d = super->missing;
1988 super->missing = d->next;
1989 __free_imsm_disk(d);
1990 }
1991
1992}
1993
1994/* free all the pieces hanging off of a super pointer */
1995static void __free_imsm(struct intel_super *super, int free_disks)
1996{
1997 if (super->buf) {
1998 free(super->buf);
1999 super->buf = NULL;
2000 }
2001 if (free_disks)
2002 free_imsm_disks(super);
2003 free_devlist(super);
2004 if (super->hba) {
2005 free((void *) super->hba);
2006 super->hba = NULL;
2007 }
2008}
2009
2010static void free_imsm(struct intel_super *super)
2011{
2012 __free_imsm(super, 1);
2013 free(super);
2014}
2015
2016static void free_super_imsm(struct supertype *st)
2017{
2018 struct intel_super *super = st->sb;
2019
2020 if (!super)
2021 return;
2022
2023 free_imsm(super);
2024 st->sb = NULL;
2025}
2026
2027static struct intel_super *alloc_super(int creating_imsm)
2028{
2029 struct intel_super *super = malloc(sizeof(*super));
2030
2031 if (super) {
2032 memset(super, 0, sizeof(*super));
2033 super->creating_imsm = creating_imsm;
2034 super->current_vol = -1;
2035 super->create_offset = ~((__u32 ) 0);
2036 if (!check_env("IMSM_NO_PLATFORM"))
2037 super->orom = find_imsm_orom();
2038 if (super->orom && !check_env("IMSM_TEST_OROM")) {
2039 struct sys_dev *list, *ent;
2040
2041 /* find the first intel ahci controller */
2042 list = find_driver_devices("pci", "ahci");
2043 for (ent = list; ent; ent = ent->next)
2044 if (devpath_to_vendor(ent->path) == 0x8086)
2045 break;
2046 if (ent) {
2047 super->hba = ent->path;
2048 ent->path = NULL;
2049 }
2050 free_sys_dev(&list);
2051 }
2052 }
2053
2054 return super;
2055}
2056
2057#ifndef MDASSEMBLE
2058/* find_missing - helper routine for load_super_imsm_all that identifies
2059 * disks that have disappeared from the system. This routine relies on
2060 * the mpb being uptodate, which it is at load time.
2061 */
2062static int find_missing(struct intel_super *super)
2063{
2064 int i;
2065 struct imsm_super *mpb = super->anchor;
2066 struct dl *dl;
2067 struct imsm_disk *disk;
2068
2069 for (i = 0; i < mpb->num_disks; i++) {
2070 disk = __get_imsm_disk(mpb, i);
2071 dl = serial_to_dl(disk->serial, super);
2072 if (dl)
2073 continue;
2074
2075 dl = malloc(sizeof(*dl));
2076 if (!dl)
2077 return 1;
2078 dl->major = 0;
2079 dl->minor = 0;
2080 dl->fd = -1;
2081 dl->devname = strdup("missing");
2082 dl->index = i;
2083 serialcpy(dl->serial, disk->serial);
2084 dl->disk = *disk;
2085 dl->e = NULL;
2086 dl->next = super->missing;
2087 super->missing = dl;
2088 }
2089
2090 return 0;
2091}
2092
2093static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
2094 char *devname, int keep_fd)
2095{
2096 struct mdinfo *sra;
2097 struct intel_super *super;
2098 struct mdinfo *sd, *best = NULL;
2099 __u32 bestgen = 0;
2100 __u32 gen;
2101 char nm[20];
2102 int dfd;
2103 int rv;
2104 int devnum = fd2devnum(fd);
2105 int retry;
2106 enum sysfs_read_flags flags;
2107
2108 flags = GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE;
2109 if (mdmon_running(devnum))
2110 flags |= SKIP_GONE_DEVS;
2111
2112 /* check if 'fd' an opened container */
2113 sra = sysfs_read(fd, 0, flags);
2114 if (!sra)
2115 return 1;
2116
2117 if (sra->array.major_version != -1 ||
2118 sra->array.minor_version != -2 ||
2119 strcmp(sra->text_version, "imsm") != 0)
2120 return 1;
2121
2122 super = alloc_super(0);
2123 if (!super)
2124 return 1;
2125
2126 /* find the most up to date disk in this array, skipping spares */
2127 for (sd = sra->devs; sd; sd = sd->next) {
2128 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2129 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
2130 if (dfd < 0) {
2131 free_imsm(super);
2132 return 2;
2133 }
2134 rv = load_imsm_mpb(dfd, super, NULL);
2135
2136 /* retry the load if we might have raced against mdmon */
2137 if (rv == 3 && mdmon_running(devnum))
2138 for (retry = 0; retry < 3; retry++) {
2139 usleep(3000);
2140 rv = load_imsm_mpb(dfd, super, NULL);
2141 if (rv != 3)
2142 break;
2143 }
2144 if (!keep_fd)
2145 close(dfd);
2146 if (rv == 0) {
2147 if (super->anchor->num_raid_devs == 0)
2148 gen = 0;
2149 else
2150 gen = __le32_to_cpu(super->anchor->generation_num);
2151 if (!best || gen > bestgen) {
2152 bestgen = gen;
2153 best = sd;
2154 }
2155 } else {
2156 free_imsm(super);
2157 return rv;
2158 }
2159 }
2160
2161 if (!best) {
2162 free_imsm(super);
2163 return 1;
2164 }
2165
2166 /* load the most up to date anchor */
2167 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
2168 dfd = dev_open(nm, O_RDONLY);
2169 if (dfd < 0) {
2170 free_imsm(super);
2171 return 1;
2172 }
2173 rv = load_imsm_mpb(dfd, super, NULL);
2174 close(dfd);
2175 if (rv != 0) {
2176 free_imsm(super);
2177 return 2;
2178 }
2179
2180 /* re-parse the disk list with the current anchor */
2181 for (sd = sra->devs ; sd ; sd = sd->next) {
2182 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2183 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
2184 if (dfd < 0) {
2185 free_imsm(super);
2186 return 2;
2187 }
2188 load_imsm_disk(dfd, super, NULL, keep_fd);
2189 if (!keep_fd)
2190 close(dfd);
2191 }
2192
2193
2194 if (find_missing(super) != 0) {
2195 free_imsm(super);
2196 return 2;
2197 }
2198
2199 if (st->subarray[0]) {
2200 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
2201 super->current_vol = atoi(st->subarray);
2202 else {
2203 free_imsm(super);
2204 return 1;
2205 }
2206 }
2207
2208 *sbp = super;
2209 st->container_dev = devnum;
2210 if (st->ss == NULL) {
2211 st->ss = &super_imsm;
2212 st->minor_version = 0;
2213 st->max_devs = IMSM_MAX_DEVICES;
2214 }
2215 st->loaded_container = 1;
2216
2217 return 0;
2218}
2219#endif
2220
2221static int load_super_imsm(struct supertype *st, int fd, char *devname)
2222{
2223 struct intel_super *super;
2224 int rv;
2225
2226#ifndef MDASSEMBLE
2227 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
2228 return 0;
2229#endif
2230
2231 free_super_imsm(st);
2232
2233 super = alloc_super(0);
2234 if (!super) {
2235 fprintf(stderr,
2236 Name ": malloc of %zu failed.\n",
2237 sizeof(*super));
2238 return 1;
2239 }
2240
2241 rv = load_imsm_mpb(fd, super, devname);
2242
2243 if (rv) {
2244 if (devname)
2245 fprintf(stderr,
2246 Name ": Failed to load all information "
2247 "sections on %s\n", devname);
2248 free_imsm(super);
2249 return rv;
2250 }
2251
2252 if (st->subarray[0]) {
2253 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
2254 super->current_vol = atoi(st->subarray);
2255 else {
2256 free_imsm(super);
2257 return 1;
2258 }
2259 }
2260
2261 st->sb = super;
2262 if (st->ss == NULL) {
2263 st->ss = &super_imsm;
2264 st->minor_version = 0;
2265 st->max_devs = IMSM_MAX_DEVICES;
2266 }
2267 st->loaded_container = 0;
2268
2269 return 0;
2270}
2271
2272static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
2273{
2274 if (info->level == 1)
2275 return 128;
2276 return info->chunk_size >> 9;
2277}
2278
2279static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
2280{
2281 __u32 num_stripes;
2282
2283 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
2284 num_stripes /= num_domains;
2285
2286 return num_stripes;
2287}
2288
2289static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
2290{
2291 if (info->level == 1)
2292 return info->size * 2;
2293 else
2294 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
2295}
2296
2297static void imsm_update_version_info(struct intel_super *super)
2298{
2299 /* update the version and attributes */
2300 struct imsm_super *mpb = super->anchor;
2301 char *version;
2302 struct imsm_dev *dev;
2303 struct imsm_map *map;
2304 int i;
2305
2306 for (i = 0; i < mpb->num_raid_devs; i++) {
2307 dev = get_imsm_dev(super, i);
2308 map = get_imsm_map(dev, 0);
2309 if (__le32_to_cpu(dev->size_high) > 0)
2310 mpb->attributes |= MPB_ATTRIB_2TB;
2311
2312 /* FIXME detect when an array spans a port multiplier */
2313 #if 0
2314 mpb->attributes |= MPB_ATTRIB_PM;
2315 #endif
2316
2317 if (mpb->num_raid_devs > 1 ||
2318 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
2319 version = MPB_VERSION_ATTRIBS;
2320 switch (get_imsm_raid_level(map)) {
2321 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
2322 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
2323 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
2324 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
2325 }
2326 } else {
2327 if (map->num_members >= 5)
2328 version = MPB_VERSION_5OR6_DISK_ARRAY;
2329 else if (dev->status == DEV_CLONE_N_GO)
2330 version = MPB_VERSION_CNG;
2331 else if (get_imsm_raid_level(map) == 5)
2332 version = MPB_VERSION_RAID5;
2333 else if (map->num_members >= 3)
2334 version = MPB_VERSION_3OR4_DISK_ARRAY;
2335 else if (get_imsm_raid_level(map) == 1)
2336 version = MPB_VERSION_RAID1;
2337 else
2338 version = MPB_VERSION_RAID0;
2339 }
2340 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
2341 }
2342}
2343
2344static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
2345 unsigned long long size, char *name,
2346 char *homehost, int *uuid)
2347{
2348 /* We are creating a volume inside a pre-existing container.
2349 * so st->sb is already set.
2350 */
2351 struct intel_super *super = st->sb;
2352 struct imsm_super *mpb = super->anchor;
2353 struct intel_dev *dv;
2354 struct imsm_dev *dev;
2355 struct imsm_vol *vol;
2356 struct imsm_map *map;
2357 int idx = mpb->num_raid_devs;
2358 int i;
2359 unsigned long long array_blocks;
2360 size_t size_old, size_new;
2361 __u32 num_data_stripes;
2362
2363 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
2364 fprintf(stderr, Name": This imsm-container already has the "
2365 "maximum of %d volumes\n", super->orom->vpa);
2366 return 0;
2367 }
2368
2369 /* ensure the mpb is large enough for the new data */
2370 size_old = __le32_to_cpu(mpb->mpb_size);
2371 size_new = disks_to_mpb_size(info->nr_disks);
2372 if (size_new > size_old) {
2373 void *mpb_new;
2374 size_t size_round = ROUND_UP(size_new, 512);
2375
2376 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
2377 fprintf(stderr, Name": could not allocate new mpb\n");
2378 return 0;
2379 }
2380 memcpy(mpb_new, mpb, size_old);
2381 free(mpb);
2382 mpb = mpb_new;
2383 super->anchor = mpb_new;
2384 mpb->mpb_size = __cpu_to_le32(size_new);
2385 memset(mpb_new + size_old, 0, size_round - size_old);
2386 }
2387 super->current_vol = idx;
2388 /* when creating the first raid device in this container set num_disks
2389 * to zero, i.e. delete this spare and add raid member devices in
2390 * add_to_super_imsm_volume()
2391 */
2392 if (super->current_vol == 0)
2393 mpb->num_disks = 0;
2394
2395 for (i = 0; i < super->current_vol; i++) {
2396 dev = get_imsm_dev(super, i);
2397 if (strncmp((char *) dev->volume, name,
2398 MAX_RAID_SERIAL_LEN) == 0) {
2399 fprintf(stderr, Name": '%s' is already defined for this container\n",
2400 name);
2401 return 0;
2402 }
2403 }
2404
2405 sprintf(st->subarray, "%d", idx);
2406 dv = malloc(sizeof(*dv));
2407 if (!dv) {
2408 fprintf(stderr, Name ": failed to allocate device list entry\n");
2409 return 0;
2410 }
2411 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
2412 if (!dev) {
2413 free(dv);
2414 fprintf(stderr, Name": could not allocate raid device\n");
2415 return 0;
2416 }
2417 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
2418 if (info->level == 1)
2419 array_blocks = info_to_blocks_per_member(info);
2420 else
2421 array_blocks = calc_array_size(info->level, info->raid_disks,
2422 info->layout, info->chunk_size,
2423 info->size*2);
2424 /* round array size down to closest MB */
2425 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
2426
2427 dev->size_low = __cpu_to_le32((__u32) array_blocks);
2428 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
2429 dev->status = __cpu_to_le32(0);
2430 dev->reserved_blocks = __cpu_to_le32(0);
2431 vol = &dev->vol;
2432 vol->migr_state = 0;
2433 set_migr_type(dev, MIGR_INIT);
2434 vol->dirty = 0;
2435 vol->curr_migr_unit = 0;
2436 map = get_imsm_map(dev, 0);
2437 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
2438 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
2439 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
2440 map->failed_disk_num = ~0;
2441 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
2442 IMSM_T_STATE_NORMAL;
2443 map->ddf = 1;
2444
2445 if (info->level == 1 && info->raid_disks > 2) {
2446 fprintf(stderr, Name": imsm does not support more than 2 disks"
2447 "in a raid1 volume\n");
2448 return 0;
2449 }
2450
2451 map->raid_level = info->level;
2452 if (info->level == 10) {
2453 map->raid_level = 1;
2454 map->num_domains = info->raid_disks / 2;
2455 } else if (info->level == 1)
2456 map->num_domains = info->raid_disks;
2457 else
2458 map->num_domains = 1;
2459
2460 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
2461 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
2462
2463 map->num_members = info->raid_disks;
2464 for (i = 0; i < map->num_members; i++) {
2465 /* initialized in add_to_super */
2466 set_imsm_ord_tbl_ent(map, i, 0);
2467 }
2468 mpb->num_raid_devs++;
2469
2470 dv->dev = dev;
2471 dv->index = super->current_vol;
2472 dv->next = super->devlist;
2473 super->devlist = dv;
2474
2475 imsm_update_version_info(super);
2476
2477 return 1;
2478}
2479
2480static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
2481 unsigned long long size, char *name,
2482 char *homehost, int *uuid)
2483{
2484 /* This is primarily called by Create when creating a new array.
2485 * We will then get add_to_super called for each component, and then
2486 * write_init_super called to write it out to each device.
2487 * For IMSM, Create can create on fresh devices or on a pre-existing
2488 * array.
2489 * To create on a pre-existing array a different method will be called.
2490 * This one is just for fresh drives.
2491 */
2492 struct intel_super *super;
2493 struct imsm_super *mpb;
2494 size_t mpb_size;
2495 char *version;
2496
2497 if (!info) {
2498 st->sb = NULL;
2499 return 0;
2500 }
2501 if (st->sb)
2502 return init_super_imsm_volume(st, info, size, name, homehost,
2503 uuid);
2504
2505 super = alloc_super(1);
2506 if (!super)
2507 return 0;
2508 mpb_size = disks_to_mpb_size(info->nr_disks);
2509 if (posix_memalign(&super->buf, 512, mpb_size) != 0) {
2510 free(super);
2511 return 0;
2512 }
2513 mpb = super->buf;
2514 memset(mpb, 0, mpb_size);
2515
2516 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
2517
2518 version = (char *) mpb->sig;
2519 strcpy(version, MPB_SIGNATURE);
2520 version += strlen(MPB_SIGNATURE);
2521 strcpy(version, MPB_VERSION_RAID0);
2522 mpb->mpb_size = mpb_size;
2523
2524 st->sb = super;
2525 return 1;
2526}
2527
2528#ifndef MDASSEMBLE
2529static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
2530 int fd, char *devname)
2531{
2532 struct intel_super *super = st->sb;
2533 struct imsm_super *mpb = super->anchor;
2534 struct dl *dl;
2535 struct imsm_dev *dev;
2536 struct imsm_map *map;
2537
2538 dev = get_imsm_dev(super, super->current_vol);
2539 map = get_imsm_map(dev, 0);
2540
2541 if (! (dk->state & (1<<MD_DISK_SYNC))) {
2542 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
2543 devname);
2544 return 1;
2545 }
2546
2547 if (fd == -1) {
2548 /* we're doing autolayout so grab the pre-marked (in
2549 * validate_geometry) raid_disk
2550 */
2551 for (dl = super->disks; dl; dl = dl->next)
2552 if (dl->raiddisk == dk->raid_disk)
2553 break;
2554 } else {
2555 for (dl = super->disks; dl ; dl = dl->next)
2556 if (dl->major == dk->major &&
2557 dl->minor == dk->minor)
2558 break;
2559 }
2560
2561 if (!dl) {
2562 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
2563 return 1;
2564 }
2565
2566 /* add a pristine spare to the metadata */
2567 if (dl->index < 0) {
2568 dl->index = super->anchor->num_disks;
2569 super->anchor->num_disks++;
2570 }
2571 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
2572 dl->disk.status = CONFIGURED_DISK | USABLE_DISK;
2573
2574 /* if we are creating the first raid device update the family number */
2575 if (super->current_vol == 0) {
2576 __u32 sum;
2577 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
2578 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
2579
2580 *_dev = *dev;
2581 *_disk = dl->disk;
2582 sum = random32();
2583 sum += __gen_imsm_checksum(mpb);
2584 mpb->family_num = __cpu_to_le32(sum);
2585 mpb->orig_family_num = mpb->family_num;
2586 }
2587
2588 return 0;
2589}
2590
2591static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
2592 int fd, char *devname)
2593{
2594 struct intel_super *super = st->sb;
2595 struct dl *dd;
2596 unsigned long long size;
2597 __u32 id;
2598 int rv;
2599 struct stat stb;
2600
2601 /* if we are on an RAID enabled platform check that the disk is
2602 * attached to the raid controller
2603 */
2604 if (super->hba && !disk_attached_to_hba(fd, super->hba)) {
2605 fprintf(stderr,
2606 Name ": %s is not attached to the raid controller: %s\n",
2607 devname ? : "disk", super->hba);
2608 return 1;
2609 }
2610
2611 if (super->current_vol >= 0)
2612 return add_to_super_imsm_volume(st, dk, fd, devname);
2613
2614 fstat(fd, &stb);
2615 dd = malloc(sizeof(*dd));
2616 if (!dd) {
2617 fprintf(stderr,
2618 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
2619 return 1;
2620 }
2621 memset(dd, 0, sizeof(*dd));
2622 dd->major = major(stb.st_rdev);
2623 dd->minor = minor(stb.st_rdev);
2624 dd->index = -1;
2625 dd->devname = devname ? strdup(devname) : NULL;
2626 dd->fd = fd;
2627 dd->e = NULL;
2628 rv = imsm_read_serial(fd, devname, dd->serial);
2629 if (rv) {
2630 fprintf(stderr,
2631 Name ": failed to retrieve scsi serial, aborting\n");
2632 free(dd);
2633 abort();
2634 }
2635
2636 get_dev_size(fd, NULL, &size);
2637 size /= 512;
2638 serialcpy(dd->disk.serial, dd->serial);
2639 dd->disk.total_blocks = __cpu_to_le32(size);
2640 dd->disk.status = USABLE_DISK | SPARE_DISK;
2641 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
2642 dd->disk.scsi_id = __cpu_to_le32(id);
2643 else
2644 dd->disk.scsi_id = __cpu_to_le32(0);
2645
2646 if (st->update_tail) {
2647 dd->next = super->add;
2648 super->add = dd;
2649 } else {
2650 dd->next = super->disks;
2651 super->disks = dd;
2652 }
2653
2654 return 0;
2655}
2656
2657static int store_imsm_mpb(int fd, struct intel_super *super);
2658
2659/* spare records have their own family number and do not have any defined raid
2660 * devices
2661 */
2662static int write_super_imsm_spares(struct intel_super *super, int doclose)
2663{
2664 struct imsm_super mpb_save;
2665 struct imsm_super *mpb = super->anchor;
2666 __u32 sum;
2667 struct dl *d;
2668
2669 mpb_save = *mpb;
2670 mpb->num_raid_devs = 0;
2671 mpb->num_disks = 1;
2672 mpb->mpb_size = sizeof(struct imsm_super);
2673 mpb->generation_num = __cpu_to_le32(1UL);
2674
2675 for (d = super->disks; d; d = d->next) {
2676 if (d->index != -1)
2677 continue;
2678
2679 mpb->disk[0] = d->disk;
2680 sum = __gen_imsm_checksum(mpb);
2681 mpb->family_num = __cpu_to_le32(sum);
2682 mpb->orig_family_num = 0;
2683 sum = __gen_imsm_checksum(mpb);
2684 mpb->check_sum = __cpu_to_le32(sum);
2685
2686 if (store_imsm_mpb(d->fd, super)) {
2687 fprintf(stderr, "%s: failed for device %d:%d %s\n",
2688 __func__, d->major, d->minor, strerror(errno));
2689 *mpb = mpb_save;
2690 return 1;
2691 }
2692 if (doclose) {
2693 close(d->fd);
2694 d->fd = -1;
2695 }
2696 }
2697
2698 *mpb = mpb_save;
2699 return 0;
2700}
2701
2702static int write_super_imsm(struct intel_super *super, int doclose)
2703{
2704 struct imsm_super *mpb = super->anchor;
2705 struct dl *d;
2706 __u32 generation;
2707 __u32 sum;
2708 int spares = 0;
2709 int i;
2710 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
2711
2712 /* 'generation' is incremented everytime the metadata is written */
2713 generation = __le32_to_cpu(mpb->generation_num);
2714 generation++;
2715 mpb->generation_num = __cpu_to_le32(generation);
2716
2717 /* fix up cases where previous mdadm releases failed to set
2718 * orig_family_num
2719 */
2720 if (mpb->orig_family_num == 0)
2721 mpb->orig_family_num = mpb->family_num;
2722
2723 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
2724 for (d = super->disks; d; d = d->next) {
2725 if (d->index == -1)
2726 spares++;
2727 else
2728 mpb->disk[d->index] = d->disk;
2729 }
2730 for (d = super->missing; d; d = d->next)
2731 mpb->disk[d->index] = d->disk;
2732
2733 for (i = 0; i < mpb->num_raid_devs; i++) {
2734 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
2735
2736 imsm_copy_dev(dev, get_imsm_dev(super, i));
2737 mpb_size += sizeof_imsm_dev(dev, 0);
2738 }
2739 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
2740 mpb->mpb_size = __cpu_to_le32(mpb_size);
2741
2742 /* recalculate checksum */
2743 sum = __gen_imsm_checksum(mpb);
2744 mpb->check_sum = __cpu_to_le32(sum);
2745
2746 /* write the mpb for disks that compose raid devices */
2747 for (d = super->disks; d ; d = d->next) {
2748 if (d->index < 0)
2749 continue;
2750 if (store_imsm_mpb(d->fd, super))
2751 fprintf(stderr, "%s: failed for device %d:%d %s\n",
2752 __func__, d->major, d->minor, strerror(errno));
2753 if (doclose) {
2754 close(d->fd);
2755 d->fd = -1;
2756 }
2757 }
2758
2759 if (spares)
2760 return write_super_imsm_spares(super, doclose);
2761
2762 return 0;
2763}
2764
2765
2766static int create_array(struct supertype *st, int dev_idx)
2767{
2768 size_t len;
2769 struct imsm_update_create_array *u;
2770 struct intel_super *super = st->sb;
2771 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
2772 struct imsm_map *map = get_imsm_map(dev, 0);
2773 struct disk_info *inf;
2774 struct imsm_disk *disk;
2775 int i;
2776
2777 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
2778 sizeof(*inf) * map->num_members;
2779 u = malloc(len);
2780 if (!u) {
2781 fprintf(stderr, "%s: failed to allocate update buffer\n",
2782 __func__);
2783 return 1;
2784 }
2785
2786 u->type = update_create_array;
2787 u->dev_idx = dev_idx;
2788 imsm_copy_dev(&u->dev, dev);
2789 inf = get_disk_info(u);
2790 for (i = 0; i < map->num_members; i++) {
2791 int idx = get_imsm_disk_idx(dev, i);
2792
2793 disk = get_imsm_disk(super, idx);
2794 serialcpy(inf[i].serial, disk->serial);
2795 }
2796 append_metadata_update(st, u, len);
2797
2798 return 0;
2799}
2800
2801static int _add_disk(struct supertype *st)
2802{
2803 struct intel_super *super = st->sb;
2804 size_t len;
2805 struct imsm_update_add_disk *u;
2806
2807 if (!super->add)
2808 return 0;
2809
2810 len = sizeof(*u);
2811 u = malloc(len);
2812 if (!u) {
2813 fprintf(stderr, "%s: failed to allocate update buffer\n",
2814 __func__);
2815 return 1;
2816 }
2817
2818 u->type = update_add_disk;
2819 append_metadata_update(st, u, len);
2820
2821 return 0;
2822}
2823
2824static int write_init_super_imsm(struct supertype *st)
2825{
2826 struct intel_super *super = st->sb;
2827 int current_vol = super->current_vol;
2828
2829 /* we are done with current_vol reset it to point st at the container */
2830 super->current_vol = -1;
2831
2832 if (st->update_tail) {
2833 /* queue the recently created array / added disk
2834 * as a metadata update */
2835 struct dl *d;
2836 int rv;
2837
2838 /* determine if we are creating a volume or adding a disk */
2839 if (current_vol < 0) {
2840 /* in the add disk case we are running in mdmon
2841 * context, so don't close fd's
2842 */
2843 return _add_disk(st);
2844 } else
2845 rv = create_array(st, current_vol);
2846
2847 for (d = super->disks; d ; d = d->next) {
2848 close(d->fd);
2849 d->fd = -1;
2850 }
2851
2852 return rv;
2853 } else
2854 return write_super_imsm(st->sb, 1);
2855}
2856#endif
2857
2858static int store_zero_imsm(struct supertype *st, int fd)
2859{
2860 unsigned long long dsize;
2861 void *buf;
2862
2863 get_dev_size(fd, NULL, &dsize);
2864
2865 /* first block is stored on second to last sector of the disk */
2866 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
2867 return 1;
2868
2869 if (posix_memalign(&buf, 512, 512) != 0)
2870 return 1;
2871
2872 memset(buf, 0, 512);
2873 if (write(fd, buf, 512) != 512)
2874 return 1;
2875 return 0;
2876}
2877
2878static int imsm_bbm_log_size(struct imsm_super *mpb)
2879{
2880 return __le32_to_cpu(mpb->bbm_log_size);
2881}
2882
2883#ifndef MDASSEMBLE
2884static int validate_geometry_imsm_container(struct supertype *st, int level,
2885 int layout, int raiddisks, int chunk,
2886 unsigned long long size, char *dev,
2887 unsigned long long *freesize,
2888 int verbose)
2889{
2890 int fd;
2891 unsigned long long ldsize;
2892 const struct imsm_orom *orom;
2893
2894 if (level != LEVEL_CONTAINER)
2895 return 0;
2896 if (!dev)
2897 return 1;
2898
2899 if (check_env("IMSM_NO_PLATFORM"))
2900 orom = NULL;
2901 else
2902 orom = find_imsm_orom();
2903 if (orom && raiddisks > orom->tds) {
2904 if (verbose)
2905 fprintf(stderr, Name ": %d exceeds maximum number of"
2906 " platform supported disks: %d\n",
2907 raiddisks, orom->tds);
2908 return 0;
2909 }
2910
2911 fd = open(dev, O_RDONLY|O_EXCL, 0);
2912 if (fd < 0) {
2913 if (verbose)
2914 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
2915 dev, strerror(errno));
2916 return 0;
2917 }
2918 if (!get_dev_size(fd, dev, &ldsize)) {
2919 close(fd);
2920 return 0;
2921 }
2922 close(fd);
2923
2924 *freesize = avail_size_imsm(st, ldsize >> 9);
2925
2926 return 1;
2927}
2928
2929static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
2930{
2931 const unsigned long long base_start = e[*idx].start;
2932 unsigned long long end = base_start + e[*idx].size;
2933 int i;
2934
2935 if (base_start == end)
2936 return 0;
2937
2938 *idx = *idx + 1;
2939 for (i = *idx; i < num_extents; i++) {
2940 /* extend overlapping extents */
2941 if (e[i].start >= base_start &&
2942 e[i].start <= end) {
2943 if (e[i].size == 0)
2944 return 0;
2945 if (e[i].start + e[i].size > end)
2946 end = e[i].start + e[i].size;
2947 } else if (e[i].start > end) {
2948 *idx = i;
2949 break;
2950 }
2951 }
2952
2953 return end - base_start;
2954}
2955
2956static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
2957{
2958 /* build a composite disk with all known extents and generate a new
2959 * 'maxsize' given the "all disks in an array must share a common start
2960 * offset" constraint
2961 */
2962 struct extent *e = calloc(sum_extents, sizeof(*e));
2963 struct dl *dl;
2964 int i, j;
2965 int start_extent;
2966 unsigned long long pos;
2967 unsigned long long start = 0;
2968 unsigned long long maxsize;
2969 unsigned long reserve;
2970
2971 if (!e)
2972 return ~0ULL; /* error */
2973
2974 /* coalesce and sort all extents. also, check to see if we need to
2975 * reserve space between member arrays
2976 */
2977 j = 0;
2978 for (dl = super->disks; dl; dl = dl->next) {
2979 if (!dl->e)
2980 continue;
2981 for (i = 0; i < dl->extent_cnt; i++)
2982 e[j++] = dl->e[i];
2983 }
2984 qsort(e, sum_extents, sizeof(*e), cmp_extent);
2985
2986 /* merge extents */
2987 i = 0;
2988 j = 0;
2989 while (i < sum_extents) {
2990 e[j].start = e[i].start;
2991 e[j].size = find_size(e, &i, sum_extents);
2992 j++;
2993 if (e[j-1].size == 0)
2994 break;
2995 }
2996
2997 pos = 0;
2998 maxsize = 0;
2999 start_extent = 0;
3000 i = 0;
3001 do {
3002 unsigned long long esize;
3003
3004 esize = e[i].start - pos;
3005 if (esize >= maxsize) {
3006 maxsize = esize;
3007 start = pos;
3008 start_extent = i;
3009 }
3010 pos = e[i].start + e[i].size;
3011 i++;
3012 } while (e[i-1].size);
3013 free(e);
3014
3015 if (start_extent > 0)
3016 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
3017 else
3018 reserve = 0;
3019
3020 if (maxsize < reserve)
3021 return ~0ULL;
3022
3023 super->create_offset = ~((__u32) 0);
3024 if (start + reserve > super->create_offset)
3025 return ~0ULL; /* start overflows create_offset */
3026 super->create_offset = start + reserve;
3027
3028 return maxsize - reserve;
3029}
3030
3031static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
3032{
3033 if (level < 0 || level == 6 || level == 4)
3034 return 0;
3035
3036 /* if we have an orom prevent invalid raid levels */
3037 if (orom)
3038 switch (level) {
3039 case 0: return imsm_orom_has_raid0(orom);
3040 case 1:
3041 if (raiddisks > 2)
3042 return imsm_orom_has_raid1e(orom);
3043 return imsm_orom_has_raid1(orom) && raiddisks == 2;
3044 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
3045 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
3046 }
3047 else
3048 return 1; /* not on an Intel RAID platform so anything goes */
3049
3050 return 0;
3051}
3052
3053#define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
3054/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
3055 * FIX ME add ahci details
3056 */
3057static int validate_geometry_imsm_volume(struct supertype *st, int level,
3058 int layout, int raiddisks, int chunk,
3059 unsigned long long size, char *dev,
3060 unsigned long long *freesize,
3061 int verbose)
3062{
3063 struct stat stb;
3064 struct intel_super *super = st->sb;
3065 struct imsm_super *mpb = super->anchor;
3066 struct dl *dl;
3067 unsigned long long pos = 0;
3068 unsigned long long maxsize;
3069 struct extent *e;
3070 int i;
3071
3072 /* We must have the container info already read in. */
3073 if (!super)
3074 return 0;
3075
3076 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
3077 pr_vrb(": platform does not support raid%d with %d disk%s\n",
3078 level, raiddisks, raiddisks > 1 ? "s" : "");
3079 return 0;
3080 }
3081 if (super->orom && level != 1 &&
3082 !imsm_orom_has_chunk(super->orom, chunk)) {
3083 pr_vrb(": platform does not support a chunk size of: %d\n", chunk);
3084 return 0;
3085 }
3086 if (layout != imsm_level_to_layout(level)) {
3087 if (level == 5)
3088 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
3089 else if (level == 10)
3090 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
3091 else
3092 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
3093 layout, level);
3094 return 0;
3095 }
3096
3097 if (!dev) {
3098 /* General test: make sure there is space for
3099 * 'raiddisks' device extents of size 'size' at a given
3100 * offset
3101 */
3102 unsigned long long minsize = size;
3103 unsigned long long start_offset = ~0ULL;
3104 int dcnt = 0;
3105 if (minsize == 0)
3106 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
3107 for (dl = super->disks; dl ; dl = dl->next) {
3108 int found = 0;
3109
3110 pos = 0;
3111 i = 0;
3112 e = get_extents(super, dl);
3113 if (!e) continue;
3114 do {
3115 unsigned long long esize;
3116 esize = e[i].start - pos;
3117 if (esize >= minsize)
3118 found = 1;
3119 if (found && start_offset == ~0ULL) {
3120 start_offset = pos;
3121 break;
3122 } else if (found && pos != start_offset) {
3123 found = 0;
3124 break;
3125 }
3126 pos = e[i].start + e[i].size;
3127 i++;
3128 } while (e[i-1].size);
3129 if (found)
3130 dcnt++;
3131 free(e);
3132 }
3133 if (dcnt < raiddisks) {
3134 if (verbose)
3135 fprintf(stderr, Name ": imsm: Not enough "
3136 "devices with space for this array "
3137 "(%d < %d)\n",
3138 dcnt, raiddisks);
3139 return 0;
3140 }
3141 return 1;
3142 }
3143
3144 /* This device must be a member of the set */
3145 if (stat(dev, &stb) < 0)
3146 return 0;
3147 if ((S_IFMT & stb.st_mode) != S_IFBLK)
3148 return 0;
3149 for (dl = super->disks ; dl ; dl = dl->next) {
3150 if (dl->major == major(stb.st_rdev) &&
3151 dl->minor == minor(stb.st_rdev))
3152 break;
3153 }
3154 if (!dl) {
3155 if (verbose)
3156 fprintf(stderr, Name ": %s is not in the "
3157 "same imsm set\n", dev);
3158 return 0;
3159 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
3160 /* If a volume is present then the current creation attempt
3161 * cannot incorporate new spares because the orom may not
3162 * understand this configuration (all member disks must be
3163 * members of each array in the container).
3164 */
3165 fprintf(stderr, Name ": %s is a spare and a volume"
3166 " is already defined for this container\n", dev);
3167 fprintf(stderr, Name ": The option-rom requires all member"
3168 " disks to be a member of all volumes\n");
3169 return 0;
3170 }
3171
3172 /* retrieve the largest free space block */
3173 e = get_extents(super, dl);
3174 maxsize = 0;
3175 i = 0;
3176 if (e) {
3177 do {
3178 unsigned long long esize;
3179
3180 esize = e[i].start - pos;
3181 if (esize >= maxsize)
3182 maxsize = esize;
3183 pos = e[i].start + e[i].size;
3184 i++;
3185 } while (e[i-1].size);
3186 dl->e = e;
3187 dl->extent_cnt = i;
3188 } else {
3189 if (verbose)
3190 fprintf(stderr, Name ": unable to determine free space for: %s\n",
3191 dev);
3192 return 0;
3193 }
3194 if (maxsize < size) {
3195 if (verbose)
3196 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
3197 dev, maxsize, size);
3198 return 0;
3199 }
3200
3201 /* count total number of extents for merge */
3202 i = 0;
3203 for (dl = super->disks; dl; dl = dl->next)
3204 if (dl->e)
3205 i += dl->extent_cnt;
3206
3207 maxsize = merge_extents(super, i);
3208 if (maxsize < size) {
3209 if (verbose)
3210 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
3211 maxsize, size);
3212 return 0;
3213 } else if (maxsize == ~0ULL) {
3214 if (verbose)
3215 fprintf(stderr, Name ": failed to merge %d extents\n", i);
3216 return 0;
3217 }
3218
3219 *freesize = maxsize;
3220
3221 return 1;
3222}
3223
3224static int reserve_space(struct supertype *st, int raiddisks,
3225 unsigned long long size, int chunk,
3226 unsigned long long *freesize)
3227{
3228 struct intel_super *super = st->sb;
3229 struct imsm_super *mpb = super->anchor;
3230 struct dl *dl;
3231 int i;
3232 int extent_cnt;
3233 struct extent *e;
3234 unsigned long long maxsize;
3235 unsigned long long minsize;
3236 int cnt;
3237 int used;
3238
3239 /* find the largest common start free region of the possible disks */
3240 used = 0;
3241 extent_cnt = 0;
3242 cnt = 0;
3243 for (dl = super->disks; dl; dl = dl->next) {
3244 dl->raiddisk = -1;
3245
3246 if (dl->index >= 0)
3247 used++;
3248
3249 /* don't activate new spares if we are orom constrained
3250 * and there is already a volume active in the container
3251 */
3252 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
3253 continue;
3254
3255 e = get_extents(super, dl);
3256 if (!e)
3257 continue;
3258 for (i = 1; e[i-1].size; i++)
3259 ;
3260 dl->e = e;
3261 dl->extent_cnt = i;
3262 extent_cnt += i;
3263 cnt++;
3264 }
3265
3266 maxsize = merge_extents(super, extent_cnt);
3267 minsize = size;
3268 if (size == 0)
3269 minsize = chunk;
3270
3271 if (cnt < raiddisks ||
3272 (super->orom && used && used != raiddisks) ||
3273 maxsize < minsize) {
3274 fprintf(stderr, Name ": not enough devices with space to create array.\n");
3275 return 0; /* No enough free spaces large enough */
3276 }
3277
3278 if (size == 0) {
3279 size = maxsize;
3280 if (chunk) {
3281 size /= chunk;
3282 size *= chunk;
3283 }
3284 }
3285
3286 cnt = 0;
3287 for (dl = super->disks; dl; dl = dl->next)
3288 if (dl->e)
3289 dl->raiddisk = cnt++;
3290
3291 *freesize = size;
3292
3293 return 1;
3294}
3295
3296static int validate_geometry_imsm(struct supertype *st, int level, int layout,
3297 int raiddisks, int chunk, unsigned long long size,
3298 char *dev, unsigned long long *freesize,
3299 int verbose)
3300{
3301 int fd, cfd;
3302 struct mdinfo *sra;
3303
3304 /* if given unused devices create a container
3305 * if given given devices in a container create a member volume
3306 */
3307 if (level == LEVEL_CONTAINER) {
3308 /* Must be a fresh device to add to a container */
3309 return validate_geometry_imsm_container(st, level, layout,
3310 raiddisks, chunk, size,
3311 dev, freesize,
3312 verbose);
3313 }
3314
3315 if (!dev) {
3316 if (st->sb && freesize) {
3317 /* we are being asked to automatically layout a
3318 * new volume based on the current contents of
3319 * the container. If the the parameters can be
3320 * satisfied reserve_space will record the disks,
3321 * start offset, and size of the volume to be
3322 * created. add_to_super and getinfo_super
3323 * detect when autolayout is in progress.
3324 */
3325 return reserve_space(st, raiddisks, size, chunk, freesize);
3326 }
3327 return 1;
3328 }
3329 if (st->sb) {
3330 /* creating in a given container */
3331 return validate_geometry_imsm_volume(st, level, layout,
3332 raiddisks, chunk, size,
3333 dev, freesize, verbose);
3334 }
3335
3336 /* limit creation to the following levels */
3337 if (!dev)
3338 switch (level) {
3339 case 0:
3340 case 1:
3341 case 10:
3342 case 5:
3343 break;
3344 default:
3345 return 1;
3346 }
3347
3348 /* This device needs to be a device in an 'imsm' container */
3349 fd = open(dev, O_RDONLY|O_EXCL, 0);
3350 if (fd >= 0) {
3351 if (verbose)
3352 fprintf(stderr,
3353 Name ": Cannot create this array on device %s\n",
3354 dev);
3355 close(fd);
3356 return 0;
3357 }
3358 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
3359 if (verbose)
3360 fprintf(stderr, Name ": Cannot open %s: %s\n",
3361 dev, strerror(errno));
3362 return 0;
3363 }
3364 /* Well, it is in use by someone, maybe an 'imsm' container. */
3365 cfd = open_container(fd);
3366 if (cfd < 0) {
3367 close(fd);
3368 if (verbose)
3369 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
3370 dev);
3371 return 0;
3372 }
3373 sra = sysfs_read(cfd, 0, GET_VERSION);
3374 close(fd);
3375 if (sra && sra->array.major_version == -1 &&
3376 strcmp(sra->text_version, "imsm") == 0) {
3377 /* This is a member of a imsm container. Load the container
3378 * and try to create a volume
3379 */
3380 struct intel_super *super;
3381
3382 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
3383 st->sb = super;
3384 st->container_dev = fd2devnum(cfd);
3385 close(cfd);
3386 return validate_geometry_imsm_volume(st, level, layout,
3387 raiddisks, chunk,
3388 size, dev,
3389 freesize, verbose);
3390 }
3391 close(cfd);
3392 } else /* may belong to another container */
3393 return 0;
3394
3395 return 1;
3396}
3397#endif /* MDASSEMBLE */
3398
3399static struct mdinfo *container_content_imsm(struct supertype *st)
3400{
3401 /* Given a container loaded by load_super_imsm_all,
3402 * extract information about all the arrays into
3403 * an mdinfo tree.
3404 *
3405 * For each imsm_dev create an mdinfo, fill it in,
3406 * then look for matching devices in super->disks
3407 * and create appropriate device mdinfo.
3408 */
3409 struct intel_super *super = st->sb;
3410 struct imsm_super *mpb = super->anchor;
3411 struct mdinfo *rest = NULL;
3412 int i;
3413
3414 /* do not assemble arrays that might have bad blocks */
3415 if (imsm_bbm_log_size(super->anchor)) {
3416 fprintf(stderr, Name ": BBM log found in metadata. "
3417 "Cannot activate array(s).\n");
3418 return NULL;
3419 }
3420
3421 for (i = 0; i < mpb->num_raid_devs; i++) {
3422 struct imsm_dev *dev = get_imsm_dev(super, i);
3423 struct imsm_map *map = get_imsm_map(dev, 0);
3424 struct mdinfo *this;
3425 int slot;
3426
3427 /* do not publish arrays that are in the middle of an
3428 * unsupported migration
3429 */
3430 if (dev->vol.migr_state &&
3431 (migr_type(dev) == MIGR_GEN_MIGR ||
3432 migr_type(dev) == MIGR_STATE_CHANGE)) {
3433 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
3434 " unsupported migration in progress\n",
3435 dev->volume);
3436 continue;
3437 }
3438
3439 this = malloc(sizeof(*this));
3440 memset(this, 0, sizeof(*this));
3441 this->next = rest;
3442
3443 super->current_vol = i;
3444 getinfo_super_imsm_volume(st, this);
3445 for (slot = 0 ; slot < map->num_members; slot++) {
3446 struct mdinfo *info_d;
3447 struct dl *d;
3448 int idx;
3449 int skip;
3450 __u32 s;
3451 __u32 ord;
3452
3453 skip = 0;
3454 idx = get_imsm_disk_idx(dev, slot);
3455 ord = get_imsm_ord_tbl_ent(dev, slot);
3456 for (d = super->disks; d ; d = d->next)
3457 if (d->index == idx)
3458 break;
3459
3460 if (d == NULL)
3461 skip = 1;
3462
3463 s = d ? d->disk.status : 0;
3464 if (s & FAILED_DISK)
3465 skip = 1;
3466 if (!(s & USABLE_DISK))
3467 skip = 1;
3468 if (ord & IMSM_ORD_REBUILD)
3469 skip = 1;
3470
3471 /*
3472 * if we skip some disks the array will be assmebled degraded;
3473 * reset resync start to avoid a dirty-degraded situation
3474 *
3475 * FIXME handle dirty degraded
3476 */
3477 if (skip && !dev->vol.dirty)
3478 this->resync_start = ~0ULL;
3479 if (skip)
3480 continue;
3481
3482 info_d = malloc(sizeof(*info_d));
3483 if (!info_d) {
3484 fprintf(stderr, Name ": failed to allocate disk"
3485 " for volume %.16s\n", dev->volume);
3486 free(this);
3487 this = rest;
3488 break;
3489 }
3490 memset(info_d, 0, sizeof(*info_d));
3491 info_d->next = this->devs;
3492 this->devs = info_d;
3493
3494 info_d->disk.number = d->index;
3495 info_d->disk.major = d->major;
3496 info_d->disk.minor = d->minor;
3497 info_d->disk.raid_disk = slot;
3498
3499 this->array.working_disks++;
3500
3501 info_d->events = __le32_to_cpu(mpb->generation_num);
3502 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
3503 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
3504 if (d->devname)
3505 strcpy(info_d->name, d->devname);
3506 }
3507 rest = this;
3508 }
3509
3510 return rest;
3511}
3512
3513
3514#ifndef MDASSEMBLE
3515static int imsm_open_new(struct supertype *c, struct active_array *a,
3516 char *inst)
3517{
3518 struct intel_super *super = c->sb;
3519 struct imsm_super *mpb = super->anchor;
3520
3521 if (atoi(inst) >= mpb->num_raid_devs) {
3522 fprintf(stderr, "%s: subarry index %d, out of range\n",
3523 __func__, atoi(inst));
3524 return -ENODEV;
3525 }
3526
3527 dprintf("imsm: open_new %s\n", inst);
3528 a->info.container_member = atoi(inst);
3529 return 0;
3530}
3531
3532static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
3533{
3534 struct imsm_map *map = get_imsm_map(dev, 0);
3535
3536 if (!failed)
3537 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
3538 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
3539
3540 switch (get_imsm_raid_level(map)) {
3541 case 0:
3542 return IMSM_T_STATE_FAILED;
3543 break;
3544 case 1:
3545 if (failed < map->num_members)
3546 return IMSM_T_STATE_DEGRADED;
3547 else
3548 return IMSM_T_STATE_FAILED;
3549 break;
3550 case 10:
3551 {
3552 /**
3553 * check to see if any mirrors have failed, otherwise we
3554 * are degraded. Even numbered slots are mirrored on
3555 * slot+1
3556 */
3557 int i;
3558 /* gcc -Os complains that this is unused */
3559 int insync = insync;
3560
3561 for (i = 0; i < map->num_members; i++) {
3562 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
3563 int idx = ord_to_idx(ord);
3564 struct imsm_disk *disk;
3565
3566 /* reset the potential in-sync count on even-numbered
3567 * slots. num_copies is always 2 for imsm raid10
3568 */
3569 if ((i & 1) == 0)
3570 insync = 2;
3571
3572 disk = get_imsm_disk(super, idx);
3573 if (!disk || disk->status & FAILED_DISK ||
3574 ord & IMSM_ORD_REBUILD)
3575 insync--;
3576
3577 /* no in-sync disks left in this mirror the
3578 * array has failed
3579 */
3580 if (insync == 0)
3581 return IMSM_T_STATE_FAILED;
3582 }
3583
3584 return IMSM_T_STATE_DEGRADED;
3585 }
3586 case 5:
3587 if (failed < 2)
3588 return IMSM_T_STATE_DEGRADED;
3589 else
3590 return IMSM_T_STATE_FAILED;
3591 break;
3592 default:
3593 break;
3594 }
3595
3596 return map->map_state;
3597}
3598
3599static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
3600{
3601 int i;
3602 int failed = 0;
3603 struct imsm_disk *disk;
3604 struct imsm_map *map = get_imsm_map(dev, 0);
3605 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
3606 __u32 ord;
3607 int idx;
3608
3609 /* at the beginning of migration we set IMSM_ORD_REBUILD on
3610 * disks that are being rebuilt. New failures are recorded to
3611 * map[0]. So we look through all the disks we started with and
3612 * see if any failures are still present, or if any new ones
3613 * have arrived
3614 *
3615 * FIXME add support for online capacity expansion and
3616 * raid-level-migration
3617 */
3618 for (i = 0; i < prev->num_members; i++) {
3619 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
3620 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
3621 idx = ord_to_idx(ord);
3622
3623 disk = get_imsm_disk(super, idx);
3624 if (!disk || disk->status & FAILED_DISK ||
3625 ord & IMSM_ORD_REBUILD)
3626 failed++;
3627 }
3628
3629 return failed;
3630}
3631
3632static int is_resyncing(struct imsm_dev *dev)
3633{
3634 struct imsm_map *migr_map;
3635
3636 if (!dev->vol.migr_state)
3637 return 0;
3638
3639 if (migr_type(dev) == MIGR_INIT ||
3640 migr_type(dev) == MIGR_REPAIR)
3641 return 1;
3642
3643 migr_map = get_imsm_map(dev, 1);
3644
3645 if (migr_map->map_state == IMSM_T_STATE_NORMAL)
3646 return 1;
3647 else
3648 return 0;
3649}
3650
3651static int is_rebuilding(struct imsm_dev *dev)
3652{
3653 struct imsm_map *migr_map;
3654
3655 if (!dev->vol.migr_state)
3656 return 0;
3657
3658 if (migr_type(dev) != MIGR_REBUILD)
3659 return 0;
3660
3661 migr_map = get_imsm_map(dev, 1);
3662
3663 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
3664 return 1;
3665 else
3666 return 0;
3667}
3668
3669/* return true if we recorded new information */
3670static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
3671{
3672 __u32 ord;
3673 int slot;
3674 struct imsm_map *map;
3675
3676 /* new failures are always set in map[0] */
3677 map = get_imsm_map(dev, 0);
3678
3679 slot = get_imsm_disk_slot(map, idx);
3680 if (slot < 0)
3681 return 0;
3682
3683 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
3684 if ((disk->status & FAILED_DISK) && (ord & IMSM_ORD_REBUILD))
3685 return 0;
3686
3687 disk->status |= FAILED_DISK;
3688 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
3689 if (~map->failed_disk_num == 0)
3690 map->failed_disk_num = slot;
3691 return 1;
3692}
3693
3694static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
3695{
3696 mark_failure(dev, disk, idx);
3697
3698 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
3699 return;
3700
3701 disk->scsi_id = __cpu_to_le32(~(__u32)0);
3702 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
3703}
3704
3705/* Handle dirty -> clean transititions and resync. Degraded and rebuild
3706 * states are handled in imsm_set_disk() with one exception, when a
3707 * resync is stopped due to a new failure this routine will set the
3708 * 'degraded' state for the array.
3709 */
3710static int imsm_set_array_state(struct active_array *a, int consistent)
3711{
3712 int inst = a->info.container_member;
3713 struct intel_super *super = a->container->sb;
3714 struct imsm_dev *dev = get_imsm_dev(super, inst);
3715 struct imsm_map *map = get_imsm_map(dev, 0);
3716 int failed = imsm_count_failed(super, dev);
3717 __u8 map_state = imsm_check_degraded(super, dev, failed);
3718
3719 /* before we activate this array handle any missing disks */
3720 if (consistent == 2 && super->missing) {
3721 struct dl *dl;
3722
3723 dprintf("imsm: mark missing\n");
3724 end_migration(dev, map_state);
3725 for (dl = super->missing; dl; dl = dl->next)
3726 mark_missing(dev, &dl->disk, dl->index);
3727 super->updates_pending++;
3728 }
3729
3730 if (consistent == 2 &&
3731 (!is_resync_complete(a) ||
3732 map_state != IMSM_T_STATE_NORMAL ||
3733 dev->vol.migr_state))
3734 consistent = 0;
3735
3736 if (is_resync_complete(a)) {
3737 /* complete intialization / resync,
3738 * recovery and interrupted recovery is completed in
3739 * ->set_disk
3740 */
3741 if (is_resyncing(dev)) {
3742 dprintf("imsm: mark resync done\n");
3743 end_migration(dev, map_state);
3744 super->updates_pending++;
3745 }
3746 } else if (!is_resyncing(dev) && !failed) {
3747 /* mark the start of the init process if nothing is failed */
3748 dprintf("imsm: mark resync start (%llu)\n", a->resync_start);
3749 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
3750 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_INIT);
3751 else
3752 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3753 super->updates_pending++;
3754 }
3755
3756 /* FIXME check if we can update curr_migr_unit from resync_start */
3757
3758 /* mark dirty / clean */
3759 if (dev->vol.dirty != !consistent) {
3760 dprintf("imsm: mark '%s' (%llu)\n",
3761 consistent ? "clean" : "dirty", a->resync_start);
3762 if (consistent)
3763 dev->vol.dirty = 0;
3764 else
3765 dev->vol.dirty = 1;
3766 super->updates_pending++;
3767 }
3768 return consistent;
3769}
3770
3771static void imsm_set_disk(struct active_array *a, int n, int state)
3772{
3773 int inst = a->info.container_member;
3774 struct intel_super *super = a->container->sb;
3775 struct imsm_dev *dev = get_imsm_dev(super, inst);
3776 struct imsm_map *map = get_imsm_map(dev, 0);
3777 struct imsm_disk *disk;
3778 int failed;
3779 __u32 ord;
3780 __u8 map_state;
3781
3782 if (n > map->num_members)
3783 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
3784 n, map->num_members - 1);
3785
3786 if (n < 0)
3787 return;
3788
3789 dprintf("imsm: set_disk %d:%x\n", n, state);
3790
3791 ord = get_imsm_ord_tbl_ent(dev, n);
3792 disk = get_imsm_disk(super, ord_to_idx(ord));
3793
3794 /* check for new failures */
3795 if (state & DS_FAULTY) {
3796 if (mark_failure(dev, disk, ord_to_idx(ord)))
3797 super->updates_pending++;
3798 }
3799
3800 /* check if in_sync */
3801 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
3802 struct imsm_map *migr_map = get_imsm_map(dev, 1);
3803
3804 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
3805 super->updates_pending++;
3806 }
3807
3808 failed = imsm_count_failed(super, dev);
3809 map_state = imsm_check_degraded(super, dev, failed);
3810
3811 /* check if recovery complete, newly degraded, or failed */
3812 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
3813 end_migration(dev, map_state);
3814 map = get_imsm_map(dev, 0);
3815 map->failed_disk_num = ~0;
3816 super->updates_pending++;
3817 } else if (map_state == IMSM_T_STATE_DEGRADED &&
3818 map->map_state != map_state &&
3819 !dev->vol.migr_state) {
3820 dprintf("imsm: mark degraded\n");
3821 map->map_state = map_state;
3822 super->updates_pending++;
3823 } else if (map_state == IMSM_T_STATE_FAILED &&
3824 map->map_state != map_state) {
3825 dprintf("imsm: mark failed\n");
3826 end_migration(dev, map_state);
3827 super->updates_pending++;
3828 }
3829}
3830
3831static int store_imsm_mpb(int fd, struct intel_super *super)
3832{
3833 struct imsm_super *mpb = super->anchor;
3834 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
3835 unsigned long long dsize;
3836 unsigned long long sectors;
3837
3838 get_dev_size(fd, NULL, &dsize);
3839
3840 if (mpb_size > 512) {
3841 /* -1 to account for anchor */
3842 sectors = mpb_sectors(mpb) - 1;
3843
3844 /* write the extended mpb to the sectors preceeding the anchor */
3845 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
3846 return 1;
3847
3848 if (write(fd, super->buf + 512, 512 * sectors) != 512 * sectors)
3849 return 1;
3850 }
3851
3852 /* first block is stored on second to last sector of the disk */
3853 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
3854 return 1;
3855
3856 if (write(fd, super->buf, 512) != 512)
3857 return 1;
3858
3859 return 0;
3860}
3861
3862static void imsm_sync_metadata(struct supertype *container)
3863{
3864 struct intel_super *super = container->sb;
3865
3866 if (!super->updates_pending)
3867 return;
3868
3869 write_super_imsm(super, 0);
3870
3871 super->updates_pending = 0;
3872}
3873
3874static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
3875{
3876 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
3877 int i = get_imsm_disk_idx(dev, idx);
3878 struct dl *dl;
3879
3880 for (dl = super->disks; dl; dl = dl->next)
3881 if (dl->index == i)
3882 break;
3883
3884 if (dl && dl->disk.status & FAILED_DISK)
3885 dl = NULL;
3886
3887 if (dl)
3888 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
3889
3890 return dl;
3891}
3892
3893static struct dl *imsm_add_spare(struct intel_super *super, int slot,
3894 struct active_array *a, int activate_new)
3895{
3896 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
3897 int idx = get_imsm_disk_idx(dev, slot);
3898 struct imsm_super *mpb = super->anchor;
3899 struct imsm_map *map;
3900 unsigned long long pos;
3901 struct mdinfo *d;
3902 struct extent *ex;
3903 int i, j;
3904 int found;
3905 __u32 array_start;
3906 __u32 array_end;
3907 struct dl *dl;
3908
3909 for (dl = super->disks; dl; dl = dl->next) {
3910 /* If in this array, skip */
3911 for (d = a->info.devs ; d ; d = d->next)
3912 if (d->state_fd >= 0 &&
3913 d->disk.major == dl->major &&
3914 d->disk.minor == dl->minor) {
3915 dprintf("%x:%x already in array\n", dl->major, dl->minor);
3916 break;
3917 }
3918 if (d)
3919 continue;
3920
3921 /* skip in use or failed drives */
3922 if (dl->disk.status & FAILED_DISK || idx == dl->index ||
3923 dl->index == -2) {
3924 dprintf("%x:%x status (failed: %d index: %d)\n",
3925 dl->major, dl->minor,
3926 (dl->disk.status & FAILED_DISK) == FAILED_DISK, idx);
3927 continue;
3928 }
3929
3930 /* skip pure spares when we are looking for partially
3931 * assimilated drives
3932 */
3933 if (dl->index == -1 && !activate_new)
3934 continue;
3935
3936 /* Does this unused device have the requisite free space?
3937 * It needs to be able to cover all member volumes
3938 */
3939 ex = get_extents(super, dl);
3940 if (!ex) {
3941 dprintf("cannot get extents\n");
3942 continue;
3943 }
3944 for (i = 0; i < mpb->num_raid_devs; i++) {
3945 dev = get_imsm_dev(super, i);
3946 map = get_imsm_map(dev, 0);
3947
3948 /* check if this disk is already a member of
3949 * this array
3950 */
3951 if (get_imsm_disk_slot(map, dl->index) >= 0)
3952 continue;
3953
3954 found = 0;
3955 j = 0;
3956 pos = 0;
3957 array_start = __le32_to_cpu(map->pba_of_lba0);
3958 array_end = array_start +
3959 __le32_to_cpu(map->blocks_per_member) - 1;
3960
3961 do {
3962 /* check that we can start at pba_of_lba0 with
3963 * blocks_per_member of space
3964 */
3965 if (array_start >= pos && array_end < ex[j].start) {
3966 found = 1;
3967 break;
3968 }
3969 pos = ex[j].start + ex[j].size;
3970 j++;
3971 } while (ex[j-1].size);
3972
3973 if (!found)
3974 break;
3975 }
3976
3977 free(ex);
3978 if (i < mpb->num_raid_devs) {
3979 dprintf("%x:%x does not have %u to %u available\n",
3980 dl->major, dl->minor, array_start, array_end);
3981 /* No room */
3982 continue;
3983 }
3984 return dl;
3985 }
3986
3987 return dl;
3988}
3989
3990static struct mdinfo *imsm_activate_spare(struct active_array *a,
3991 struct metadata_update **updates)
3992{
3993 /**
3994 * Find a device with unused free space and use it to replace a
3995 * failed/vacant region in an array. We replace failed regions one a
3996 * array at a time. The result is that a new spare disk will be added
3997 * to the first failed array and after the monitor has finished
3998 * propagating failures the remainder will be consumed.
3999 *
4000 * FIXME add a capability for mdmon to request spares from another
4001 * container.
4002 */
4003
4004 struct intel_super *super = a->container->sb;
4005 int inst = a->info.container_member;
4006 struct imsm_dev *dev = get_imsm_dev(super, inst);
4007 struct imsm_map *map = get_imsm_map(dev, 0);
4008 int failed = a->info.array.raid_disks;
4009 struct mdinfo *rv = NULL;
4010 struct mdinfo *d;
4011 struct mdinfo *di;
4012 struct metadata_update *mu;
4013 struct dl *dl;
4014 struct imsm_update_activate_spare *u;
4015 int num_spares = 0;
4016 int i;
4017
4018 for (d = a->info.devs ; d ; d = d->next) {
4019 if ((d->curr_state & DS_FAULTY) &&
4020 d->state_fd >= 0)
4021 /* wait for Removal to happen */
4022 return NULL;
4023 if (d->state_fd >= 0)
4024 failed--;
4025 }
4026
4027 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
4028 inst, failed, a->info.array.raid_disks, a->info.array.level);
4029 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
4030 return NULL;
4031
4032 /* For each slot, if it is not working, find a spare */
4033 for (i = 0; i < a->info.array.raid_disks; i++) {
4034 for (d = a->info.devs ; d ; d = d->next)
4035 if (d->disk.raid_disk == i)
4036 break;
4037 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
4038 if (d && (d->state_fd >= 0))
4039 continue;
4040
4041 /*
4042 * OK, this device needs recovery. Try to re-add the
4043 * previous occupant of this slot, if this fails see if
4044 * we can continue the assimilation of a spare that was
4045 * partially assimilated, finally try to activate a new
4046 * spare.
4047 */
4048 dl = imsm_readd(super, i, a);
4049 if (!dl)
4050 dl = imsm_add_spare(super, i, a, 0);
4051 if (!dl)
4052 dl = imsm_add_spare(super, i, a, 1);
4053 if (!dl)
4054 continue;
4055
4056 /* found a usable disk with enough space */
4057 di = malloc(sizeof(*di));
4058 if (!di)
4059 continue;
4060 memset(di, 0, sizeof(*di));
4061
4062 /* dl->index will be -1 in the case we are activating a
4063 * pristine spare. imsm_process_update() will create a
4064 * new index in this case. Once a disk is found to be
4065 * failed in all member arrays it is kicked from the
4066 * metadata
4067 */
4068 di->disk.number = dl->index;
4069
4070 /* (ab)use di->devs to store a pointer to the device
4071 * we chose
4072 */
4073 di->devs = (struct mdinfo *) dl;
4074
4075 di->disk.raid_disk = i;
4076 di->disk.major = dl->major;
4077 di->disk.minor = dl->minor;
4078 di->disk.state = 0;
4079 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
4080 di->component_size = a->info.component_size;
4081 di->container_member = inst;
4082 super->random = random32();
4083 di->next = rv;
4084 rv = di;
4085 num_spares++;
4086 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
4087 i, di->data_offset);
4088
4089 break;
4090 }
4091
4092 if (!rv)
4093 /* No spares found */
4094 return rv;
4095 /* Now 'rv' has a list of devices to return.
4096 * Create a metadata_update record to update the
4097 * disk_ord_tbl for the array
4098 */
4099 mu = malloc(sizeof(*mu));
4100 if (mu) {
4101 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
4102 if (mu->buf == NULL) {
4103 free(mu);
4104 mu = NULL;
4105 }
4106 }
4107 if (!mu) {
4108 while (rv) {
4109 struct mdinfo *n = rv->next;
4110
4111 free(rv);
4112 rv = n;
4113 }
4114 return NULL;
4115 }
4116
4117 mu->space = NULL;
4118 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
4119 mu->next = *updates;
4120 u = (struct imsm_update_activate_spare *) mu->buf;
4121
4122 for (di = rv ; di ; di = di->next) {
4123 u->type = update_activate_spare;
4124 u->dl = (struct dl *) di->devs;
4125 di->devs = NULL;
4126 u->slot = di->disk.raid_disk;
4127 u->array = inst;
4128 u->next = u + 1;
4129 u++;
4130 }
4131 (u-1)->next = NULL;
4132 *updates = mu;
4133
4134 return rv;
4135}
4136
4137static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
4138{
4139 struct imsm_dev *dev = get_imsm_dev(super, idx);
4140 struct imsm_map *map = get_imsm_map(dev, 0);
4141 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
4142 struct disk_info *inf = get_disk_info(u);
4143 struct imsm_disk *disk;
4144 int i;
4145 int j;
4146
4147 for (i = 0; i < map->num_members; i++) {
4148 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
4149 for (j = 0; j < new_map->num_members; j++)
4150 if (serialcmp(disk->serial, inf[j].serial) == 0)
4151 return 1;
4152 }
4153
4154 return 0;
4155}
4156
4157static void imsm_delete(struct intel_super *super, struct dl **dlp, int index);
4158
4159static void imsm_process_update(struct supertype *st,
4160 struct metadata_update *update)
4161{
4162 /**
4163 * crack open the metadata_update envelope to find the update record
4164 * update can be one of:
4165 * update_activate_spare - a spare device has replaced a failed
4166 * device in an array, update the disk_ord_tbl. If this disk is
4167 * present in all member arrays then also clear the SPARE_DISK
4168 * flag
4169 */
4170 struct intel_super *super = st->sb;
4171 struct imsm_super *mpb;
4172 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4173
4174 /* update requires a larger buf but the allocation failed */
4175 if (super->next_len && !super->next_buf) {
4176 super->next_len = 0;
4177 return;
4178 }
4179
4180 if (super->next_buf) {
4181 memcpy(super->next_buf, super->buf, super->len);
4182 free(super->buf);
4183 super->len = super->next_len;
4184 super->buf = super->next_buf;
4185
4186 super->next_len = 0;
4187 super->next_buf = NULL;
4188 }
4189
4190 mpb = super->anchor;
4191
4192 switch (type) {
4193 case update_activate_spare: {
4194 struct imsm_update_activate_spare *u = (void *) update->buf;
4195 struct imsm_dev *dev = get_imsm_dev(super, u->array);
4196 struct imsm_map *map = get_imsm_map(dev, 0);
4197 struct imsm_map *migr_map;
4198 struct active_array *a;
4199 struct imsm_disk *disk;
4200 __u8 to_state;
4201 struct dl *dl;
4202 unsigned int found;
4203 int failed;
4204 int victim = get_imsm_disk_idx(dev, u->slot);
4205 int i;
4206
4207 for (dl = super->disks; dl; dl = dl->next)
4208 if (dl == u->dl)
4209 break;
4210
4211 if (!dl) {
4212 fprintf(stderr, "error: imsm_activate_spare passed "
4213 "an unknown disk (index: %d)\n",
4214 u->dl->index);
4215 return;
4216 }
4217
4218 super->updates_pending++;
4219
4220 /* count failures (excluding rebuilds and the victim)
4221 * to determine map[0] state
4222 */
4223 failed = 0;
4224 for (i = 0; i < map->num_members; i++) {
4225 if (i == u->slot)
4226 continue;
4227 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
4228 if (!disk || disk->status & FAILED_DISK)
4229 failed++;
4230 }
4231
4232 /* adding a pristine spare, assign a new index */
4233 if (dl->index < 0) {
4234 dl->index = super->anchor->num_disks;
4235 super->anchor->num_disks++;
4236 }
4237 disk = &dl->disk;
4238 disk->status |= CONFIGURED_DISK;
4239 disk->status &= ~SPARE_DISK;
4240
4241 /* mark rebuild */
4242 to_state = imsm_check_degraded(super, dev, failed);
4243 map->map_state = IMSM_T_STATE_DEGRADED;
4244 migrate(dev, to_state, MIGR_REBUILD);
4245 migr_map = get_imsm_map(dev, 1);
4246 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
4247 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
4248
4249 /* update the family_num to mark a new container
4250 * generation, being careful to record the existing
4251 * family_num in orig_family_num to clean up after
4252 * earlier mdadm versions that neglected to set it.
4253 */
4254 if (mpb->orig_family_num == 0)
4255 mpb->orig_family_num = mpb->family_num;
4256 mpb->family_num += super->random;
4257
4258 /* count arrays using the victim in the metadata */
4259 found = 0;
4260 for (a = st->arrays; a ; a = a->next) {
4261 dev = get_imsm_dev(super, a->info.container_member);
4262 map = get_imsm_map(dev, 0);
4263
4264 if (get_imsm_disk_slot(map, victim) >= 0)
4265 found++;
4266 }
4267
4268 /* delete the victim if it is no longer being
4269 * utilized anywhere
4270 */
4271 if (!found) {
4272 struct dl **dlp;
4273
4274 /* We know that 'manager' isn't touching anything,
4275 * so it is safe to delete
4276 */
4277 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
4278 if ((*dlp)->index == victim)
4279 break;
4280
4281 /* victim may be on the missing list */
4282 if (!*dlp)
4283 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
4284 if ((*dlp)->index == victim)
4285 break;
4286 imsm_delete(super, dlp, victim);
4287 }
4288 break;
4289 }
4290 case update_create_array: {
4291 /* someone wants to create a new array, we need to be aware of
4292 * a few races/collisions:
4293 * 1/ 'Create' called by two separate instances of mdadm
4294 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
4295 * devices that have since been assimilated via
4296 * activate_spare.
4297 * In the event this update can not be carried out mdadm will
4298 * (FIX ME) notice that its update did not take hold.
4299 */
4300 struct imsm_update_create_array *u = (void *) update->buf;
4301 struct intel_dev *dv;
4302 struct imsm_dev *dev;
4303 struct imsm_map *map, *new_map;
4304 unsigned long long start, end;
4305 unsigned long long new_start, new_end;
4306 int i;
4307 struct disk_info *inf;
4308 struct dl *dl;
4309
4310 /* handle racing creates: first come first serve */
4311 if (u->dev_idx < mpb->num_raid_devs) {
4312 dprintf("%s: subarray %d already defined\n",
4313 __func__, u->dev_idx);
4314 goto create_error;
4315 }
4316
4317 /* check update is next in sequence */
4318 if (u->dev_idx != mpb->num_raid_devs) {
4319 dprintf("%s: can not create array %d expected index %d\n",
4320 __func__, u->dev_idx, mpb->num_raid_devs);
4321 goto create_error;
4322 }
4323
4324 new_map = get_imsm_map(&u->dev, 0);
4325 new_start = __le32_to_cpu(new_map->pba_of_lba0);
4326 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
4327 inf = get_disk_info(u);
4328
4329 /* handle activate_spare versus create race:
4330 * check to make sure that overlapping arrays do not include
4331 * overalpping disks
4332 */
4333 for (i = 0; i < mpb->num_raid_devs; i++) {
4334 dev = get_imsm_dev(super, i);
4335 map = get_imsm_map(dev, 0);
4336 start = __le32_to_cpu(map->pba_of_lba0);
4337 end = start + __le32_to_cpu(map->blocks_per_member);
4338 if ((new_start >= start && new_start <= end) ||
4339 (start >= new_start && start <= new_end))
4340 /* overlap */;
4341 else
4342 continue;
4343
4344 if (disks_overlap(super, i, u)) {
4345 dprintf("%s: arrays overlap\n", __func__);
4346 goto create_error;
4347 }
4348 }
4349
4350 /* check that prepare update was successful */
4351 if (!update->space) {
4352 dprintf("%s: prepare update failed\n", __func__);
4353 goto create_error;
4354 }
4355
4356 /* check that all disks are still active before committing
4357 * changes. FIXME: could we instead handle this by creating a
4358 * degraded array? That's probably not what the user expects,
4359 * so better to drop this update on the floor.
4360 */
4361 for (i = 0; i < new_map->num_members; i++) {
4362 dl = serial_to_dl(inf[i].serial, super);
4363 if (!dl) {
4364 dprintf("%s: disk disappeared\n", __func__);
4365 goto create_error;
4366 }
4367 }
4368
4369 super->updates_pending++;
4370
4371 /* convert spares to members and fixup ord_tbl */
4372 for (i = 0; i < new_map->num_members; i++) {
4373 dl = serial_to_dl(inf[i].serial, super);
4374 if (dl->index == -1) {
4375 dl->index = mpb->num_disks;
4376 mpb->num_disks++;
4377 dl->disk.status |= CONFIGURED_DISK;
4378 dl->disk.status &= ~SPARE_DISK;
4379 }
4380 set_imsm_ord_tbl_ent(new_map, i, dl->index);
4381 }
4382
4383 dv = update->space;
4384 dev = dv->dev;
4385 update->space = NULL;
4386 imsm_copy_dev(dev, &u->dev);
4387 dv->index = u->dev_idx;
4388 dv->next = super->devlist;
4389 super->devlist = dv;
4390 mpb->num_raid_devs++;
4391
4392 imsm_update_version_info(super);
4393 break;
4394 create_error:
4395 /* mdmon knows how to release update->space, but not
4396 * ((struct intel_dev *) update->space)->dev
4397 */
4398 if (update->space) {
4399 dv = update->space;
4400 free(dv->dev);
4401 }
4402 break;
4403 }
4404 case update_add_disk:
4405
4406 /* we may be able to repair some arrays if disks are
4407 * being added */
4408 if (super->add) {
4409 struct active_array *a;
4410
4411 super->updates_pending++;
4412 for (a = st->arrays; a; a = a->next)
4413 a->check_degraded = 1;
4414 }
4415 /* add some spares to the metadata */
4416 while (super->add) {
4417 struct dl *al;
4418
4419 al = super->add;
4420 super->add = al->next;
4421 al->next = super->disks;
4422 super->disks = al;
4423 dprintf("%s: added %x:%x\n",
4424 __func__, al->major, al->minor);
4425 }
4426
4427 break;
4428 }
4429}
4430
4431static void imsm_prepare_update(struct supertype *st,
4432 struct metadata_update *update)
4433{
4434 /**
4435 * Allocate space to hold new disk entries, raid-device entries or a new
4436 * mpb if necessary. The manager synchronously waits for updates to
4437 * complete in the monitor, so new mpb buffers allocated here can be
4438 * integrated by the monitor thread without worrying about live pointers
4439 * in the manager thread.
4440 */
4441 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4442 struct intel_super *super = st->sb;
4443 struct imsm_super *mpb = super->anchor;
4444 size_t buf_len;
4445 size_t len = 0;
4446
4447 switch (type) {
4448 case update_create_array: {
4449 struct imsm_update_create_array *u = (void *) update->buf;
4450 struct intel_dev *dv;
4451 struct imsm_dev *dev = &u->dev;
4452 struct imsm_map *map = get_imsm_map(dev, 0);
4453 struct dl *dl;
4454 struct disk_info *inf;
4455 int i;
4456 int activate = 0;
4457
4458 inf = get_disk_info(u);
4459 len = sizeof_imsm_dev(dev, 1);
4460 /* allocate a new super->devlist entry */
4461 dv = malloc(sizeof(*dv));
4462 if (dv) {
4463 dv->dev = malloc(len);
4464 if (dv->dev)
4465 update->space = dv;
4466 else {
4467 free(dv);
4468 update->space = NULL;
4469 }
4470 }
4471
4472 /* count how many spares will be converted to members */
4473 for (i = 0; i < map->num_members; i++) {
4474 dl = serial_to_dl(inf[i].serial, super);
4475 if (!dl) {
4476 /* hmm maybe it failed?, nothing we can do about
4477 * it here
4478 */
4479 continue;
4480 }
4481 if (count_memberships(dl, super) == 0)
4482 activate++;
4483 }
4484 len += activate * sizeof(struct imsm_disk);
4485 break;
4486 default:
4487 break;
4488 }
4489 }
4490
4491 /* check if we need a larger metadata buffer */
4492 if (super->next_buf)
4493 buf_len = super->next_len;
4494 else
4495 buf_len = super->len;
4496
4497 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
4498 /* ok we need a larger buf than what is currently allocated
4499 * if this allocation fails process_update will notice that
4500 * ->next_len is set and ->next_buf is NULL
4501 */
4502 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
4503 if (super->next_buf)
4504 free(super->next_buf);
4505
4506 super->next_len = buf_len;
4507 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
4508 memset(super->next_buf, 0, buf_len);
4509 else
4510 super->next_buf = NULL;
4511 }
4512}
4513
4514/* must be called while manager is quiesced */
4515static void imsm_delete(struct intel_super *super, struct dl **dlp, int index)
4516{
4517 struct imsm_super *mpb = super->anchor;
4518 struct dl *iter;
4519 struct imsm_dev *dev;
4520 struct imsm_map *map;
4521 int i, j, num_members;
4522 __u32 ord;
4523
4524 dprintf("%s: deleting device[%d] from imsm_super\n",
4525 __func__, index);
4526
4527 /* shift all indexes down one */
4528 for (iter = super->disks; iter; iter = iter->next)
4529 if (iter->index > index)
4530 iter->index--;
4531 for (iter = super->missing; iter; iter = iter->next)
4532 if (iter->index > index)
4533 iter->index--;
4534
4535 for (i = 0; i < mpb->num_raid_devs; i++) {
4536 dev = get_imsm_dev(super, i);
4537 map = get_imsm_map(dev, 0);
4538 num_members = map->num_members;
4539 for (j = 0; j < num_members; j++) {
4540 /* update ord entries being careful not to propagate
4541 * ord-flags to the first map
4542 */
4543 ord = get_imsm_ord_tbl_ent(dev, j);
4544
4545 if (ord_to_idx(ord) <= index)
4546 continue;
4547
4548 map = get_imsm_map(dev, 0);
4549 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
4550 map = get_imsm_map(dev, 1);
4551 if (map)
4552 set_imsm_ord_tbl_ent(map, j, ord - 1);
4553 }
4554 }
4555
4556 mpb->num_disks--;
4557 super->updates_pending++;
4558 if (*dlp) {
4559 struct dl *dl = *dlp;
4560
4561 *dlp = (*dlp)->next;
4562 __free_imsm_disk(dl);
4563 }
4564}
4565#endif /* MDASSEMBLE */
4566
4567struct superswitch super_imsm = {
4568#ifndef MDASSEMBLE
4569 .examine_super = examine_super_imsm,
4570 .brief_examine_super = brief_examine_super_imsm,
4571 .brief_examine_subarrays = brief_examine_subarrays_imsm,
4572 .export_examine_super = export_examine_super_imsm,
4573 .detail_super = detail_super_imsm,
4574 .brief_detail_super = brief_detail_super_imsm,
4575 .write_init_super = write_init_super_imsm,
4576 .validate_geometry = validate_geometry_imsm,
4577 .add_to_super = add_to_super_imsm,
4578 .detail_platform = detail_platform_imsm,
4579#endif
4580 .match_home = match_home_imsm,
4581 .uuid_from_super= uuid_from_super_imsm,
4582 .getinfo_super = getinfo_super_imsm,
4583 .update_super = update_super_imsm,
4584
4585 .avail_size = avail_size_imsm,
4586
4587 .compare_super = compare_super_imsm,
4588
4589 .load_super = load_super_imsm,
4590 .init_super = init_super_imsm,
4591 .store_super = store_zero_imsm,
4592 .free_super = free_super_imsm,
4593 .match_metadata_desc = match_metadata_desc_imsm,
4594 .container_content = container_content_imsm,
4595 .default_layout = imsm_level_to_layout,
4596
4597 .external = 1,
4598 .name = "imsm",
4599
4600#ifndef MDASSEMBLE
4601/* for mdmon */
4602 .open_new = imsm_open_new,
4603 .load_super = load_super_imsm,
4604 .set_array_state= imsm_set_array_state,
4605 .set_disk = imsm_set_disk,
4606 .sync_metadata = imsm_sync_metadata,
4607 .activate_spare = imsm_activate_spare,
4608 .process_update = imsm_process_update,
4609 .prepare_update = imsm_prepare_update,
4610#endif /* MDASSEMBLE */
4611};