]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-ddf.c
bc19674cc86c7804f9d9a423f21d3ea22684aa58
[thirdparty/mdadm.git] / super-ddf.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2006-2007 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neil@brown.name>
23 *
24 * Specifications for DDF takes from Common RAID DDF Specification Revision 1.2
25 * (July 28 2006). Reused by permission of SNIA.
26 */
27
28 #define HAVE_STDINT_H 1
29 #include "mdadm.h"
30 #include "mdmon.h"
31 #include "sha1.h"
32 #include <values.h>
33
34 static inline int ROUND_UP(int a, int base)
35 {
36 return ((a+base-1)/base)*base;
37 }
38
39 /* a non-official T10 name for creation GUIDs */
40 static char T10[] = "Linux-MD";
41
42 /* DDF timestamps are 1980 based, so we need to add
43 * second-in-decade-of-seventies to convert to linux timestamps.
44 * 10 years with 2 leap years.
45 */
46 #define DECADE (3600*24*(365*10+2))
47 unsigned long crc32(
48 unsigned long crc,
49 const unsigned char *buf,
50 unsigned len);
51
52 /* The DDF metadata handling.
53 * DDF metadata lives at the end of the device.
54 * The last 512 byte block provides an 'anchor' which is used to locate
55 * the rest of the metadata which usually lives immediately behind the anchor.
56 *
57 * Note:
58 * - all multibyte numeric fields are bigendian.
59 * - all strings are space padded.
60 *
61 */
62
63 /* Primary Raid Level (PRL) */
64 #define DDF_RAID0 0x00
65 #define DDF_RAID1 0x01
66 #define DDF_RAID3 0x03
67 #define DDF_RAID4 0x04
68 #define DDF_RAID5 0x05
69 #define DDF_RAID1E 0x11
70 #define DDF_JBOD 0x0f
71 #define DDF_CONCAT 0x1f
72 #define DDF_RAID5E 0x15
73 #define DDF_RAID5EE 0x25
74 #define DDF_RAID6 0x16 /* Vendor unique layout */
75
76 /* Raid Level Qualifier (RLQ) */
77 #define DDF_RAID0_SIMPLE 0x00
78 #define DDF_RAID1_SIMPLE 0x00 /* just 2 devices in this plex */
79 #define DDF_RAID1_MULTI 0x01 /* exactly 3 devices in this plex */
80 #define DDF_RAID3_0 0x00 /* parity in first extent */
81 #define DDF_RAID3_N 0x01 /* parity in last extent */
82 #define DDF_RAID4_0 0x00 /* parity in first extent */
83 #define DDF_RAID4_N 0x01 /* parity in last extent */
84 /* these apply to raid5e and raid5ee as well */
85 #define DDF_RAID5_0_RESTART 0x00 /* same as 'right asymmetric' - layout 1 */
86 #define DDF_RAID5_N_RESTART 0x02 /* same as 'left asymmetric' - layout 0 */
87 #define DDF_RAID5_N_CONTINUE 0x03 /* same as 'left symmetric' - layout 2 */
88
89 #define DDF_RAID1E_ADJACENT 0x00 /* raid10 nearcopies==2 */
90 #define DDF_RAID1E_OFFSET 0x01 /* raid10 offsetcopies==2 */
91
92 /* Secondary RAID Level (SRL) */
93 #define DDF_2STRIPED 0x00 /* This is weirder than RAID0 !! */
94 #define DDF_2MIRRORED 0x01
95 #define DDF_2CONCAT 0x02
96 #define DDF_2SPANNED 0x03 /* This is also weird - be careful */
97
98 /* Magic numbers */
99 #define DDF_HEADER_MAGIC __cpu_to_be32(0xDE11DE11)
100 #define DDF_CONTROLLER_MAGIC __cpu_to_be32(0xAD111111)
101 #define DDF_PHYS_RECORDS_MAGIC __cpu_to_be32(0x22222222)
102 #define DDF_PHYS_DATA_MAGIC __cpu_to_be32(0x33333333)
103 #define DDF_VIRT_RECORDS_MAGIC __cpu_to_be32(0xDDDDDDDD)
104 #define DDF_VD_CONF_MAGIC __cpu_to_be32(0xEEEEEEEE)
105 #define DDF_SPARE_ASSIGN_MAGIC __cpu_to_be32(0x55555555)
106 #define DDF_VU_CONF_MAGIC __cpu_to_be32(0x88888888)
107 #define DDF_VENDOR_LOG_MAGIC __cpu_to_be32(0x01dBEEF0)
108 #define DDF_BBM_LOG_MAGIC __cpu_to_be32(0xABADB10C)
109
110 #define DDF_GUID_LEN 24
111 #define DDF_REVISION "01.00.00"
112
113 struct ddf_header {
114 __u32 magic;
115 __u32 crc;
116 char guid[DDF_GUID_LEN];
117 char revision[8]; /* 01.00.00 */
118 __u32 seq; /* starts at '1' */
119 __u32 timestamp;
120 __u8 openflag;
121 __u8 foreignflag;
122 __u8 enforcegroups;
123 __u8 pad0; /* 0xff */
124 __u8 pad1[12]; /* 12 * 0xff */
125 /* 64 bytes so far */
126 __u8 header_ext[32]; /* reserved: fill with 0xff */
127 __u64 primary_lba;
128 __u64 secondary_lba;
129 __u8 type;
130 __u8 pad2[3]; /* 0xff */
131 __u32 workspace_len; /* sectors for vendor space -
132 * at least 32768(sectors) */
133 __u64 workspace_lba;
134 __u16 max_pd_entries; /* one of 15, 63, 255, 1023, 4095 */
135 __u16 max_vd_entries; /* 2^(4,6,8,10,12)-1 : i.e. as above */
136 __u16 max_partitions; /* i.e. max num of configuration
137 record entries per disk */
138 __u16 config_record_len; /* 1 +ROUNDUP(max_primary_element_entries
139 *12/512) */
140 __u16 max_primary_element_entries; /* 16, 64, 256, 1024, or 4096 */
141 __u8 pad3[54]; /* 0xff */
142 /* 192 bytes so far */
143 __u32 controller_section_offset;
144 __u32 controller_section_length;
145 __u32 phys_section_offset;
146 __u32 phys_section_length;
147 __u32 virt_section_offset;
148 __u32 virt_section_length;
149 __u32 config_section_offset;
150 __u32 config_section_length;
151 __u32 data_section_offset;
152 __u32 data_section_length;
153 __u32 bbm_section_offset;
154 __u32 bbm_section_length;
155 __u32 diag_space_offset;
156 __u32 diag_space_length;
157 __u32 vendor_offset;
158 __u32 vendor_length;
159 /* 256 bytes so far */
160 __u8 pad4[256]; /* 0xff */
161 };
162
163 /* type field */
164 #define DDF_HEADER_ANCHOR 0x00
165 #define DDF_HEADER_PRIMARY 0x01
166 #define DDF_HEADER_SECONDARY 0x02
167
168 /* The content of the 'controller section' - global scope */
169 struct ddf_controller_data {
170 __u32 magic;
171 __u32 crc;
172 char guid[DDF_GUID_LEN];
173 struct controller_type {
174 __u16 vendor_id;
175 __u16 device_id;
176 __u16 sub_vendor_id;
177 __u16 sub_device_id;
178 } type;
179 char product_id[16];
180 __u8 pad[8]; /* 0xff */
181 __u8 vendor_data[448];
182 };
183
184 /* The content of phys_section - global scope */
185 struct phys_disk {
186 __u32 magic;
187 __u32 crc;
188 __u16 used_pdes;
189 __u16 max_pdes;
190 __u8 pad[52];
191 struct phys_disk_entry {
192 char guid[DDF_GUID_LEN];
193 __u32 refnum;
194 __u16 type;
195 __u16 state;
196 __u64 config_size; /* DDF structures must be after here */
197 char path[18]; /* another horrible structure really */
198 __u8 pad[6];
199 } entries[0];
200 };
201
202 /* phys_disk_entry.type is a bitmap - bigendian remember */
203 #define DDF_Forced_PD_GUID 1
204 #define DDF_Active_in_VD 2
205 #define DDF_Global_Spare 4
206 #define DDF_Spare 8 /* overrides Global_spare */
207 #define DDF_Foreign 16
208 #define DDF_Legacy 32 /* no DDF on this device */
209
210 #define DDF_Interface_mask 0xf00
211 #define DDF_Interface_SCSI 0x100
212 #define DDF_Interface_SAS 0x200
213 #define DDF_Interface_SATA 0x300
214 #define DDF_Interface_FC 0x400
215
216 /* phys_disk_entry.state is a bigendian bitmap */
217 #define DDF_Online 1
218 #define DDF_Failed 2 /* overrides 1,4,8 */
219 #define DDF_Rebuilding 4
220 #define DDF_Transition 8
221 #define DDF_SMART 16
222 #define DDF_ReadErrors 32
223 #define DDF_Missing 64
224
225 /* The content of the virt_section global scope */
226 struct virtual_disk {
227 __u32 magic;
228 __u32 crc;
229 __u16 populated_vdes;
230 __u16 max_vdes;
231 __u8 pad[52];
232 struct virtual_entry {
233 char guid[DDF_GUID_LEN];
234 __u16 unit;
235 __u16 pad0; /* 0xffff */
236 __u16 guid_crc;
237 __u16 type;
238 __u8 state;
239 __u8 init_state;
240 __u8 pad1[14];
241 char name[16];
242 } entries[0];
243 };
244
245 /* virtual_entry.type is a bitmap - bigendian */
246 #define DDF_Shared 1
247 #define DDF_Enforce_Groups 2
248 #define DDF_Unicode 4
249 #define DDF_Owner_Valid 8
250
251 /* virtual_entry.state is a bigendian bitmap */
252 #define DDF_state_mask 0x7
253 #define DDF_state_optimal 0x0
254 #define DDF_state_degraded 0x1
255 #define DDF_state_deleted 0x2
256 #define DDF_state_missing 0x3
257 #define DDF_state_failed 0x4
258 #define DDF_state_part_optimal 0x5
259
260 #define DDF_state_morphing 0x8
261 #define DDF_state_inconsistent 0x10
262
263 /* virtual_entry.init_state is a bigendian bitmap */
264 #define DDF_initstate_mask 0x03
265 #define DDF_init_not 0x00
266 #define DDF_init_quick 0x01 /* initialisation is progress.
267 * i.e. 'state_inconsistent' */
268 #define DDF_init_full 0x02
269
270 #define DDF_access_mask 0xc0
271 #define DDF_access_rw 0x00
272 #define DDF_access_ro 0x80
273 #define DDF_access_blocked 0xc0
274
275 /* The content of the config_section - local scope
276 * It has multiple records each config_record_len sectors
277 * They can be vd_config or spare_assign
278 */
279
280 struct vd_config {
281 __u32 magic;
282 __u32 crc;
283 char guid[DDF_GUID_LEN];
284 __u32 timestamp;
285 __u32 seqnum;
286 __u8 pad0[24];
287 __u16 prim_elmnt_count;
288 __u8 chunk_shift; /* 0 == 512, 1==1024 etc */
289 __u8 prl;
290 __u8 rlq;
291 __u8 sec_elmnt_count;
292 __u8 sec_elmnt_seq;
293 __u8 srl;
294 __u64 blocks; /* blocks per component could be different
295 * on different component devices...(only
296 * for concat I hope) */
297 __u64 array_blocks; /* blocks in array */
298 __u8 pad1[8];
299 __u32 spare_refs[8];
300 __u8 cache_pol[8];
301 __u8 bg_rate;
302 __u8 pad2[3];
303 __u8 pad3[52];
304 __u8 pad4[192];
305 __u8 v0[32]; /* reserved- 0xff */
306 __u8 v1[32]; /* reserved- 0xff */
307 __u8 v2[16]; /* reserved- 0xff */
308 __u8 v3[16]; /* reserved- 0xff */
309 __u8 vendor[32];
310 __u32 phys_refnum[0]; /* refnum of each disk in sequence */
311 /*__u64 lba_offset[0]; LBA offset in each phys. Note extents in a
312 bvd are always the same size */
313 };
314
315 /* vd_config.cache_pol[7] is a bitmap */
316 #define DDF_cache_writeback 1 /* else writethrough */
317 #define DDF_cache_wadaptive 2 /* only applies if writeback */
318 #define DDF_cache_readahead 4
319 #define DDF_cache_radaptive 8 /* only if doing read-ahead */
320 #define DDF_cache_ifnobatt 16 /* even to write cache if battery is poor */
321 #define DDF_cache_wallowed 32 /* enable write caching */
322 #define DDF_cache_rallowed 64 /* enable read caching */
323
324 struct spare_assign {
325 __u32 magic;
326 __u32 crc;
327 __u32 timestamp;
328 __u8 reserved[7];
329 __u8 type;
330 __u16 populated; /* SAEs used */
331 __u16 max; /* max SAEs */
332 __u8 pad[8];
333 struct spare_assign_entry {
334 char guid[DDF_GUID_LEN];
335 __u16 secondary_element;
336 __u8 pad[6];
337 } spare_ents[0];
338 };
339 /* spare_assign.type is a bitmap */
340 #define DDF_spare_dedicated 0x1 /* else global */
341 #define DDF_spare_revertible 0x2 /* else committable */
342 #define DDF_spare_active 0x4 /* else not active */
343 #define DDF_spare_affinity 0x8 /* enclosure affinity */
344
345 /* The data_section contents - local scope */
346 struct disk_data {
347 __u32 magic;
348 __u32 crc;
349 char guid[DDF_GUID_LEN];
350 __u32 refnum; /* crc of some magic drive data ... */
351 __u8 forced_ref; /* set when above was not result of magic */
352 __u8 forced_guid; /* set if guid was forced rather than magic */
353 __u8 vendor[32];
354 __u8 pad[442];
355 };
356
357 /* bbm_section content */
358 struct bad_block_log {
359 __u32 magic;
360 __u32 crc;
361 __u16 entry_count;
362 __u32 spare_count;
363 __u8 pad[10];
364 __u64 first_spare;
365 struct mapped_block {
366 __u64 defective_start;
367 __u32 replacement_start;
368 __u16 remap_count;
369 __u8 pad[2];
370 } entries[0];
371 };
372
373 /* Struct for internally holding ddf structures */
374 /* The DDF structure stored on each device is potentially
375 * quite different, as some data is global and some is local.
376 * The global data is:
377 * - ddf header
378 * - controller_data
379 * - Physical disk records
380 * - Virtual disk records
381 * The local data is:
382 * - Configuration records
383 * - Physical Disk data section
384 * ( and Bad block and vendor which I don't care about yet).
385 *
386 * The local data is parsed into separate lists as it is read
387 * and reconstructed for writing. This means that we only need
388 * to make config changes once and they are automatically
389 * propagated to all devices.
390 * Note that the ddf_super has space of the conf and disk data
391 * for this disk and also for a list of all such data.
392 * The list is only used for the superblock that is being
393 * built in Create or Assemble to describe the whole array.
394 */
395 struct ddf_super {
396 struct ddf_header anchor, primary, secondary, *active;
397 struct ddf_controller_data controller;
398 struct phys_disk *phys;
399 struct virtual_disk *virt;
400 int pdsize, vdsize;
401 int max_part;
402 struct vcl {
403 struct vcl *next;
404 __u64 *lba_offset; /* location in 'conf' of
405 * the lba table */
406 struct vd_config conf;
407 } *conflist, *newconf;
408 int conf_num; /* Index into 'virt' of entry matching 'newconf' */
409 struct dl {
410 struct dl *next;
411 struct disk_data disk;
412 int major, minor;
413 char *devname;
414 int fd;
415 struct vcl *vlist[0]; /* max_part+1 in size */
416 } *dlist;
417 };
418
419 #ifndef offsetof
420 #define offsetof(t,f) ((size_t)&(((t*)0)->f))
421 #endif
422
423 extern struct superswitch super_ddf_container, super_ddf_bvd, super_ddf;
424
425 static int calc_crc(void *buf, int len)
426 {
427 /* crcs are always at the same place as in the ddf_header */
428 struct ddf_header *ddf = buf;
429 __u32 oldcrc = ddf->crc;
430 __u32 newcrc;
431 ddf->crc = 0xffffffff;
432
433 newcrc = crc32(0, buf, len);
434 ddf->crc = oldcrc;
435 return newcrc;
436 }
437
438 static int load_ddf_header(int fd, unsigned long long lba,
439 unsigned long long size,
440 int type,
441 struct ddf_header *hdr, struct ddf_header *anchor)
442 {
443 /* read a ddf header (primary or secondary) from fd/lba
444 * and check that it is consistent with anchor
445 * Need to check:
446 * magic, crc, guid, rev, and LBA's header_type, and
447 * everything after header_type must be the same
448 */
449 if (lba >= size-1)
450 return 0;
451
452 if (lseek64(fd, lba<<9, 0) < 0)
453 return 0;
454
455 if (read(fd, hdr, 512) != 512)
456 return 0;
457
458 if (hdr->magic != DDF_HEADER_MAGIC)
459 return 0;
460 if (calc_crc(hdr, 512) != hdr->crc)
461 return 0;
462 if (memcmp(anchor->guid, hdr->guid, DDF_GUID_LEN) != 0 ||
463 memcmp(anchor->revision, hdr->revision, 8) != 0 ||
464 anchor->primary_lba != hdr->primary_lba ||
465 anchor->secondary_lba != hdr->secondary_lba ||
466 hdr->type != type ||
467 memcmp(anchor->pad2, hdr->pad2, 512 -
468 offsetof(struct ddf_header, pad2)) != 0)
469 return 0;
470
471 /* Looks good enough to me... */
472 return 1;
473 }
474
475 static void *load_section(int fd, struct ddf_super *super, void *buf,
476 __u32 offset_be, __u32 len_be, int check)
477 {
478 unsigned long long offset = __be32_to_cpu(offset_be);
479 unsigned long long len = __be32_to_cpu(len_be);
480 int dofree = (buf == NULL);
481
482 if (check)
483 if (len != 2 && len != 8 && len != 32
484 && len != 128 && len != 512)
485 return NULL;
486
487 if (len > 1024)
488 return NULL;
489 if (buf) {
490 /* All pre-allocated sections are a single block */
491 if (len != 1)
492 return NULL;
493 } else
494 buf = malloc(len<<9);
495 if (!buf)
496 return NULL;
497
498 if (super->active->type == 1)
499 offset += __be64_to_cpu(super->active->primary_lba);
500 else
501 offset += __be64_to_cpu(super->active->secondary_lba);
502
503 if (lseek64(fd, offset<<9, 0) != (offset<<9)) {
504 if (dofree)
505 free(buf);
506 return NULL;
507 }
508 if (read(fd, buf, len<<9) != (len<<9)) {
509 if (dofree)
510 free(buf);
511 return NULL;
512 }
513 return buf;
514 }
515
516 static int load_ddf_headers(int fd, struct ddf_super *super, char *devname)
517 {
518 unsigned long long dsize;
519
520 get_dev_size(fd, NULL, &dsize);
521
522 if (lseek64(fd, dsize-512, 0) < 0) {
523 if (devname)
524 fprintf(stderr,
525 Name": Cannot seek to anchor block on %s: %s\n",
526 devname, strerror(errno));
527 return 1;
528 }
529 if (read(fd, &super->anchor, 512) != 512) {
530 if (devname)
531 fprintf(stderr,
532 Name ": Cannot read anchor block on %s: %s\n",
533 devname, strerror(errno));
534 return 1;
535 }
536 if (super->anchor.magic != DDF_HEADER_MAGIC) {
537 if (devname)
538 fprintf(stderr, Name ": no DDF anchor found on %s\n",
539 devname);
540 return 2;
541 }
542 if (calc_crc(&super->anchor, 512) != super->anchor.crc) {
543 if (devname)
544 fprintf(stderr, Name ": bad CRC on anchor on %s\n",
545 devname);
546 return 2;
547 }
548 if (memcmp(super->anchor.revision, DDF_REVISION, 8) != 0) {
549 if (devname)
550 fprintf(stderr, Name ": can only support super revision"
551 " %.8s, not %.8s on %s\n",
552 DDF_REVISION, super->anchor.revision, devname);
553 return 2;
554 }
555 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.primary_lba),
556 dsize >> 9, 1,
557 &super->primary, &super->anchor) == 0) {
558 if (devname)
559 fprintf(stderr,
560 Name ": Failed to load primary DDF header "
561 "on %s\n", devname);
562 return 2;
563 }
564 super->active = &super->primary;
565 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.secondary_lba),
566 dsize >> 9, 2,
567 &super->secondary, &super->anchor)) {
568 if ((__be32_to_cpu(super->primary.seq)
569 < __be32_to_cpu(super->secondary.seq) &&
570 !super->secondary.openflag)
571 || (__be32_to_cpu(super->primary.seq)
572 == __be32_to_cpu(super->secondary.seq) &&
573 super->primary.openflag && !super->secondary.openflag)
574 )
575 super->active = &super->secondary;
576 }
577 return 0;
578 }
579
580 static int load_ddf_global(int fd, struct ddf_super *super, char *devname)
581 {
582 void *ok;
583 ok = load_section(fd, super, &super->controller,
584 super->active->controller_section_offset,
585 super->active->controller_section_length,
586 0);
587 super->phys = load_section(fd, super, NULL,
588 super->active->phys_section_offset,
589 super->active->phys_section_length,
590 1);
591 super->pdsize = __be32_to_cpu(super->active->phys_section_length) * 512;
592
593 super->virt = load_section(fd, super, NULL,
594 super->active->virt_section_offset,
595 super->active->virt_section_length,
596 1);
597 super->vdsize = __be32_to_cpu(super->active->virt_section_length) * 512;
598 if (!ok ||
599 !super->phys ||
600 !super->virt) {
601 free(super->phys);
602 free(super->virt);
603 super->phys = NULL;
604 super->virt = NULL;
605 return 2;
606 }
607 super->conflist = NULL;
608 super->dlist = NULL;
609 return 0;
610 }
611
612 static int load_ddf_local(int fd, struct ddf_super *super,
613 char *devname, int keep)
614 {
615 struct dl *dl;
616 struct stat stb;
617 char *conf;
618 int i;
619 int conflen;
620 int mppe;
621
622 /* First the local disk info */
623 super->max_part = __be16_to_cpu(super->active->max_partitions);
624 dl = malloc(sizeof(*dl) +
625 (super->max_part+1) * sizeof(dl->vlist[0]));
626
627 load_section(fd, super, &dl->disk,
628 super->active->data_section_offset,
629 super->active->data_section_length,
630 0);
631 dl->devname = devname ? strdup(devname) : NULL;
632
633 fstat(fd, &stb);
634 dl->major = major(stb.st_rdev);
635 dl->minor = minor(stb.st_rdev);
636 dl->next = super->dlist;
637 dl->fd = keep ? fd : -1;
638 for (i=0 ; i < super->max_part + 1 ; i++)
639 dl->vlist[i] = NULL;
640 super->dlist = dl;
641
642 /* Now the config list. */
643 /* 'conf' is an array of config entries, some of which are
644 * probably invalid. Those which are good need to be copied into
645 * the conflist
646 */
647 conflen = __be16_to_cpu(super->active->config_record_len);
648
649 conf = load_section(fd, super, NULL,
650 super->active->config_section_offset,
651 super->active->config_section_length,
652 0);
653
654 for (i = 0;
655 i < __be32_to_cpu(super->active->config_section_length);
656 i += conflen) {
657 struct vd_config *vd =
658 (struct vd_config *)((char*)conf + i*512);
659 struct vcl *vcl;
660
661 if (vd->magic != DDF_VD_CONF_MAGIC)
662 continue;
663 for (vcl = super->conflist; vcl; vcl = vcl->next) {
664 if (memcmp(vcl->conf.guid,
665 vd->guid, DDF_GUID_LEN) == 0)
666 break;
667 }
668
669 if (vcl) {
670 dl->vlist[i/conflen] = vcl;
671 if (__be32_to_cpu(vd->seqnum) <=
672 __be32_to_cpu(vcl->conf.seqnum))
673 continue;
674 } else {
675 vcl = malloc(conflen*512 + offsetof(struct vcl, conf));
676 vcl->next = super->conflist;
677 super->conflist = vcl;
678 }
679 memcpy(&vcl->conf, vd, conflen*512);
680 mppe = __be16_to_cpu(super->anchor.max_primary_element_entries);
681 vcl->lba_offset = (__u64*)
682 &vcl->conf.phys_refnum[mppe];
683 dl->vlist[i/conflen] = vcl;
684 }
685 free(conf);
686
687 return 0;
688 }
689
690 #ifndef MDASSEMBLE
691 static int load_super_ddf_all(struct supertype *st, int fd,
692 void **sbp, char *devname, int keep_fd);
693 #endif
694 static int load_super_ddf(struct supertype *st, int fd,
695 char *devname)
696 {
697 unsigned long long dsize;
698 struct ddf_super *super;
699 int rv;
700
701 #ifndef MDASSEMBLE
702 if (load_super_ddf_all(st, fd, &st->sb, devname, 1) == 0)
703 return 0;
704 #endif
705
706 if (get_dev_size(fd, devname, &dsize) == 0)
707 return 1;
708
709 /* 32M is a lower bound */
710 if (dsize <= 32*1024*1024) {
711 if (devname) {
712 fprintf(stderr,
713 Name ": %s is too small for ddf: "
714 "size is %llu sectors.\n",
715 devname, dsize>>9);
716 return 1;
717 }
718 }
719 if (dsize & 511) {
720 if (devname) {
721 fprintf(stderr,
722 Name ": %s is an odd size for ddf: "
723 "size is %llu bytes.\n",
724 devname, dsize);
725 return 1;
726 }
727 }
728
729 super = malloc(sizeof(*super));
730 if (!super) {
731 fprintf(stderr, Name ": malloc of %zu failed.\n",
732 sizeof(*super));
733 return 1;
734 }
735 memset(super, 0, sizeof(*super));
736
737 rv = load_ddf_headers(fd, super, devname);
738 if (rv) {
739 free(super);
740 return rv;
741 }
742
743 /* Have valid headers and have chosen the best. Let's read in the rest*/
744
745 rv = load_ddf_global(fd, super, devname);
746
747 if (rv) {
748 if (devname)
749 fprintf(stderr,
750 Name ": Failed to load all information "
751 "sections on %s\n", devname);
752 free(super);
753 return rv;
754 }
755
756 load_ddf_local(fd, super, devname, 0);
757
758 /* Should possibly check the sections .... */
759
760 st->sb = super;
761 if (st->ss == NULL) {
762 st->ss = &super_ddf;
763 st->minor_version = 0;
764 st->max_devs = 512;
765 }
766 return 0;
767
768 }
769
770 static void free_super_ddf(struct supertype *st)
771 {
772 struct ddf_super *ddf = st->sb;
773 if (ddf == NULL)
774 return;
775 free(ddf->phys);
776 free(ddf->virt);
777 while (ddf->conflist) {
778 struct vcl *v = ddf->conflist;
779 ddf->conflist = v->next;
780 free(v);
781 }
782 while (ddf->dlist) {
783 struct dl *d = ddf->dlist;
784 ddf->dlist = d->next;
785 if (d->fd >= 0)
786 close(d->fd);
787 free(d);
788 }
789 free(ddf);
790 st->sb = NULL;
791 }
792
793 static struct supertype *match_metadata_desc_ddf(char *arg)
794 {
795 /* 'ddf' only support containers */
796 struct supertype *st;
797 if (strcmp(arg, "ddf") != 0 &&
798 strcmp(arg, "default") != 0
799 )
800 return NULL;
801
802 st = malloc(sizeof(*st));
803 st->ss = &super_ddf;
804 st->max_devs = 512;
805 st->minor_version = 0;
806 st->sb = NULL;
807 return st;
808 }
809
810 static struct supertype *match_metadata_desc_ddf_bvd(char *arg)
811 {
812 struct supertype *st;
813 if (strcmp(arg, "ddf/bvd") != 0 &&
814 strcmp(arg, "bvd") != 0 &&
815 strcmp(arg, "default") != 0
816 )
817 return NULL;
818
819 st = malloc(sizeof(*st));
820 st->ss = &super_ddf_bvd;
821 st->max_devs = 512;
822 st->minor_version = 0;
823 st->sb = NULL;
824 return st;
825 }
826 static struct supertype *match_metadata_desc_ddf_svd(char *arg)
827 {
828 struct supertype *st;
829 if (strcmp(arg, "ddf/svd") != 0 &&
830 strcmp(arg, "svd") != 0 &&
831 strcmp(arg, "default") != 0
832 )
833 return NULL;
834
835 st = malloc(sizeof(*st));
836 st->ss = &super_ddf_svd;
837 st->max_devs = 512;
838 st->minor_version = 0;
839 st->sb = NULL;
840 return st;
841 }
842
843 #ifndef MDASSEMBLE
844
845 static mapping_t ddf_state[] = {
846 { "Optimal", 0},
847 { "Degraded", 1},
848 { "Deleted", 2},
849 { "Missing", 3},
850 { "Failed", 4},
851 { "Partially Optimal", 5},
852 { "-reserved-", 6},
853 { "-reserved-", 7},
854 { NULL, 0}
855 };
856
857 static mapping_t ddf_init_state[] = {
858 { "Not Initialised", 0},
859 { "QuickInit in Progress", 1},
860 { "Fully Initialised", 2},
861 { "*UNKNOWN*", 3},
862 { NULL, 0}
863 };
864 static mapping_t ddf_access[] = {
865 { "Read/Write", 0},
866 { "Reserved", 1},
867 { "Read Only", 2},
868 { "Blocked (no access)", 3},
869 { NULL ,0}
870 };
871
872 static mapping_t ddf_level[] = {
873 { "RAID0", DDF_RAID0},
874 { "RAID1", DDF_RAID1},
875 { "RAID3", DDF_RAID3},
876 { "RAID4", DDF_RAID4},
877 { "RAID5", DDF_RAID5},
878 { "RAID1E",DDF_RAID1E},
879 { "JBOD", DDF_JBOD},
880 { "CONCAT",DDF_CONCAT},
881 { "RAID5E",DDF_RAID5E},
882 { "RAID5EE",DDF_RAID5EE},
883 { "RAID6", DDF_RAID6},
884 { NULL, 0}
885 };
886 static mapping_t ddf_sec_level[] = {
887 { "Striped", DDF_2STRIPED},
888 { "Mirrored", DDF_2MIRRORED},
889 { "Concat", DDF_2CONCAT},
890 { "Spanned", DDF_2SPANNED},
891 { NULL, 0}
892 };
893 #endif
894
895 struct num_mapping {
896 int num1, num2;
897 };
898 static struct num_mapping ddf_level_num[] = {
899 { DDF_RAID0, 0 },
900 { DDF_RAID1, 1 },
901 { DDF_RAID3, LEVEL_UNSUPPORTED },
902 { DDF_RAID4, 4 },
903 { DDF_RAID5, 5 },
904 { DDF_RAID1E, LEVEL_UNSUPPORTED },
905 { DDF_JBOD, LEVEL_UNSUPPORTED },
906 { DDF_CONCAT, LEVEL_LINEAR },
907 { DDF_RAID5E, LEVEL_UNSUPPORTED },
908 { DDF_RAID5EE, LEVEL_UNSUPPORTED },
909 { DDF_RAID6, 6},
910 { MAXINT, MAXINT }
911 };
912
913 static int map_num1(struct num_mapping *map, int num)
914 {
915 int i;
916 for (i=0 ; map[i].num1 != MAXINT; i++)
917 if (map[i].num1 == num)
918 break;
919 return map[i].num2;
920 }
921
922 #ifndef MDASSEMBLE
923 static void print_guid(char *guid, int tstamp)
924 {
925 /* A GUIDs are part (or all) ASCII and part binary.
926 * They tend to be space padded.
927 * We ignore trailing spaces and print numbers
928 * <0x20 and >=0x7f as \xXX
929 * Some GUIDs have a time stamp in bytes 16-19.
930 * We print that if appropriate
931 */
932 int l = DDF_GUID_LEN;
933 int i;
934 while (l && guid[l-1] == ' ')
935 l--;
936 for (i=0 ; i<l ; i++) {
937 if (guid[i] >= 0x20 && guid[i] < 0x7f)
938 fputc(guid[i], stdout);
939 else
940 fprintf(stdout, "\\x%02x", guid[i]&255);
941 }
942 if (tstamp) {
943 time_t then = __be32_to_cpu(*(__u32*)(guid+16)) + DECADE;
944 char tbuf[100];
945 struct tm *tm;
946 tm = localtime(&then);
947 strftime(tbuf, 100, " (%D %T)",tm);
948 fputs(tbuf, stdout);
949 }
950 }
951
952 static void examine_vd(int n, struct ddf_super *sb, char *guid)
953 {
954 int crl = __be16_to_cpu(sb->anchor.config_record_len);
955 struct vcl *vcl;
956
957 for (vcl = sb->conflist ; vcl ; vcl = vcl->next) {
958 struct vd_config *vc = &vcl->conf;
959
960 if (calc_crc(vc, crl*512) != vc->crc)
961 continue;
962 if (memcmp(vc->guid, guid, DDF_GUID_LEN) != 0)
963 continue;
964
965 /* Ok, we know about this VD, let's give more details */
966 printf(" Raid Devices[%d] : %d\n", n,
967 __be16_to_cpu(vc->prim_elmnt_count));
968 printf(" Chunk Size[%d] : %d sectors\n", n,
969 1 << vc->chunk_shift);
970 printf(" Raid Level[%d] : %s\n", n,
971 map_num(ddf_level, vc->prl)?:"-unknown-");
972 if (vc->sec_elmnt_count != 1) {
973 printf(" Secondary Position[%d] : %d of %d\n", n,
974 vc->sec_elmnt_seq, vc->sec_elmnt_count);
975 printf(" Secondary Level[%d] : %s\n", n,
976 map_num(ddf_sec_level, vc->srl) ?: "-unknown-");
977 }
978 printf(" Device Size[%d] : %llu\n", n,
979 __be64_to_cpu(vc->blocks)/2);
980 printf(" Array Size[%d] : %llu\n", n,
981 __be64_to_cpu(vc->array_blocks)/2);
982 }
983 }
984
985 static void examine_vds(struct ddf_super *sb)
986 {
987 int cnt = __be16_to_cpu(sb->virt->populated_vdes);
988 int i;
989 printf(" Virtual Disks : %d\n", cnt);
990
991 for (i=0; i<cnt; i++) {
992 struct virtual_entry *ve = &sb->virt->entries[i];
993 printf(" VD GUID[%d] : ", i); print_guid(ve->guid, 1);
994 printf("\n");
995 printf(" unit[%d] : %d\n", i, __be16_to_cpu(ve->unit));
996 printf(" state[%d] : %s, %s%s\n", i,
997 map_num(ddf_state, ve->state & 7),
998 (ve->state & 8) ? "Morphing, ": "",
999 (ve->state & 16)? "Not Consistent" : "Consistent");
1000 printf(" init state[%d] : %s\n", i,
1001 map_num(ddf_init_state, ve->init_state&3));
1002 printf(" access[%d] : %s\n", i,
1003 map_num(ddf_access, (ve->init_state>>6) & 3));
1004 printf(" Name[%d] : %.16s\n", i, ve->name);
1005 examine_vd(i, sb, ve->guid);
1006 }
1007 if (cnt) printf("\n");
1008 }
1009
1010 static void examine_pds(struct ddf_super *sb)
1011 {
1012 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1013 int i;
1014 struct dl *dl;
1015 printf(" Physical Disks : %d\n", cnt);
1016
1017 for (i=0 ; i<cnt ; i++) {
1018 struct phys_disk_entry *pd = &sb->phys->entries[i];
1019 int type = __be16_to_cpu(pd->type);
1020 int state = __be16_to_cpu(pd->state);
1021
1022 printf(" PD GUID[%d] : ", i); print_guid(pd->guid, 0);
1023 printf("\n");
1024 printf(" ref[%d] : %08x\n", i,
1025 __be32_to_cpu(pd->refnum));
1026 printf(" mode[%d] : %s%s%s%s%s\n", i,
1027 (type&2) ? "active":"",
1028 (type&4) ? "Global Spare":"",
1029 (type&8) ? "spare" : "",
1030 (type&16)? ", foreign" : "",
1031 (type&32)? "pass-through" : "");
1032 printf(" state[%d] : %s%s%s%s%s%s%s\n", i,
1033 (state&1)? "Online": "Offline",
1034 (state&2)? ", Failed": "",
1035 (state&4)? ", Rebuilding": "",
1036 (state&8)? ", in-transition": "",
1037 (state&16)? ", SMART errors": "",
1038 (state&32)? ", Unrecovered Read Errors": "",
1039 (state&64)? ", Missing" : "");
1040 printf(" Avail Size[%d] : %llu K\n", i,
1041 __be64_to_cpu(pd->config_size)>>1);
1042 for (dl = sb->dlist; dl ; dl = dl->next) {
1043 if (dl->disk.refnum == pd->refnum) {
1044 char *dv = map_dev(dl->major, dl->minor, 0);
1045 if (dv)
1046 printf(" Device[%d] : %s\n",
1047 i, dv);
1048 }
1049 }
1050 printf("\n");
1051 }
1052 }
1053
1054 static void examine_super_ddf(struct supertype *st, char *homehost)
1055 {
1056 struct ddf_super *sb = st->sb;
1057
1058 printf(" Magic : %08x\n", __be32_to_cpu(sb->anchor.magic));
1059 printf(" Version : %.8s\n", sb->anchor.revision);
1060 printf("Controller GUID : "); print_guid(sb->controller.guid, 0);
1061 printf("\n");
1062 printf(" Container GUID : "); print_guid(sb->anchor.guid, 1);
1063 printf("\n");
1064 printf(" Seq : %08x\n", __be32_to_cpu(sb->active->seq));
1065 printf(" Redundant hdr : %s\n", sb->secondary.magic == DDF_HEADER_MAGIC
1066 ?"yes" : "no");
1067 examine_vds(sb);
1068 examine_pds(sb);
1069 }
1070
1071 static void brief_examine_super_ddf(struct supertype *st)
1072 {
1073 /* We just write a generic DDF ARRAY entry
1074 * The uuid is all hex, 6 groups of 4 bytes
1075 */
1076 struct ddf_super *ddf = st->sb;
1077 int i;
1078 printf("ARRAY /dev/ddf UUID=");
1079 for (i = 0; i < DDF_GUID_LEN; i++) {
1080 printf("%02x", ddf->anchor.guid[i]);
1081 if ((i&3) == 0 && i != 0)
1082 printf(":");
1083 }
1084 printf("\n");
1085 }
1086
1087 static void detail_super_ddf(struct supertype *st, char *homehost)
1088 {
1089 /* FIXME later
1090 * Could print DDF GUID
1091 * Need to find which array
1092 * If whole, briefly list all arrays
1093 * If one, give name
1094 */
1095 }
1096
1097 static void brief_detail_super_ddf(struct supertype *st)
1098 {
1099 /* FIXME I really need to know which array we are detailing.
1100 * Can that be stored in ddf_super??
1101 */
1102 // struct ddf_super *ddf = st->sb;
1103 }
1104
1105
1106 #endif
1107
1108 static int match_home_ddf(struct supertype *st, char *homehost)
1109 {
1110 /* It matches 'this' host if the controller is a
1111 * Linux-MD controller with vendor_data matching
1112 * the hostname
1113 */
1114 struct ddf_super *ddf = st->sb;
1115 int len = strlen(homehost);
1116
1117 return (memcmp(ddf->controller.guid, T10, 8) == 0 &&
1118 len < sizeof(ddf->controller.vendor_data) &&
1119 memcmp(ddf->controller.vendor_data, homehost,len) == 0 &&
1120 ddf->controller.vendor_data[len] == 0);
1121 }
1122
1123 static struct vd_config *find_vdcr(struct ddf_super *ddf, int inst)
1124 {
1125 struct vcl *v;
1126 if (inst < 0 || inst > __be16_to_cpu(ddf->virt->populated_vdes))
1127 return NULL;
1128 for (v = ddf->conflist; v; v = v->next)
1129 if (memcmp(v->conf.guid,
1130 ddf->virt->entries[inst].guid,
1131 DDF_GUID_LEN) == 0)
1132 return &v->conf;
1133 return NULL;
1134 }
1135
1136 static int find_phys(struct ddf_super *ddf, __u32 phys_refnum)
1137 {
1138 /* Find the entry in phys_disk which has the given refnum
1139 * and return it's index
1140 */
1141 int i;
1142 for (i=0; i < __be16_to_cpu(ddf->phys->max_pdes); i++)
1143 if (ddf->phys->entries[i].refnum == phys_refnum)
1144 return i;
1145 return -1;
1146 }
1147
1148 static void uuid_from_super_ddf(struct supertype *st, int uuid[4])
1149 {
1150 /* The uuid returned here is used for:
1151 * uuid to put into bitmap file (Create, Grow)
1152 * uuid for backup header when saving critical section (Grow)
1153 * comparing uuids when re-adding a device into an array
1154 * For each of these we can make do with a truncated
1155 * or hashed uuid rather than the original, as long as
1156 * everyone agrees.
1157 * In each case the uuid required is that of the data-array,
1158 * not the device-set.
1159 * In the case of SVD we assume the BVD is of interest,
1160 * though that might be the case if a bitmap were made for
1161 * a mirrored SVD - worry about that later.
1162 * So we need to find the VD configuration record for the
1163 * relevant BVD and extract the GUID and Secondary_Element_Seq.
1164 * The first 16 bytes of the sha1 of these is used.
1165 */
1166 struct ddf_super *ddf = st->sb;
1167 struct vd_config *vd = find_vdcr(ddf, ddf->conf_num);
1168
1169 if (!vd)
1170 memset(uuid, 0, sizeof (uuid));
1171 else {
1172 char buf[20];
1173 struct sha1_ctx ctx;
1174 sha1_init_ctx(&ctx);
1175 sha1_process_bytes(&vd->guid, DDF_GUID_LEN, &ctx);
1176 if (vd->sec_elmnt_count > 1)
1177 sha1_process_bytes(&vd->sec_elmnt_seq, 1, &ctx);
1178 sha1_finish_ctx(&ctx, buf);
1179 memcpy(uuid, buf, sizeof(uuid));
1180 }
1181 }
1182
1183 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info)
1184 {
1185 struct ddf_super *ddf = st->sb;
1186 int i;
1187
1188 info->array.major_version = 1000;
1189 info->array.minor_version = 0; /* FIXME use ddf->revision somehow */
1190 info->array.patch_version = 0;
1191 info->array.raid_disks = __be16_to_cpu(ddf->phys->used_pdes);
1192 info->array.level = LEVEL_CONTAINER;
1193 info->array.layout = 0;
1194 info->array.md_minor = -1;
1195 info->array.ctime = DECADE + __be32_to_cpu(*(__u32*)
1196 (ddf->anchor.guid+16));
1197 info->array.utime = 0;
1198 info->array.chunk_size = 0;
1199
1200 // info->data_offset = ???;
1201 // info->component_size = ???;
1202
1203 info->disk.major = 0;
1204 info->disk.minor = 0;
1205 if (ddf->dlist) {
1206 info->disk.number = __be32_to_cpu(ddf->dlist->disk.refnum);
1207 info->disk.raid_disk = -1;
1208 for (i = 0; i < __be16_to_cpu(ddf->phys->max_pdes) ; i++)
1209 if (ddf->phys->entries[i].refnum ==
1210 ddf->dlist->disk.refnum) {
1211 info->disk.raid_disk = i;
1212 break;
1213 }
1214 } else {
1215 info->disk.number = -1;
1216 // info->disk.raid_disk = find refnum in the table and use index;
1217 }
1218 info->disk.state = (1 << MD_DISK_SYNC);
1219
1220 info->reshape_active = 0;
1221
1222 strcpy(info->text_version, "ddf");
1223
1224 // uuid_from_super_ddf(info->uuid, sbv);
1225
1226 // info->name[] ?? ;
1227 }
1228
1229 static void getinfo_super_n_container(struct supertype *st, struct mdinfo *info)
1230 {
1231 /* just need offset and size */
1232 struct ddf_super *ddf = st->sb;
1233 int n = info->disk.number;
1234
1235 info->data_offset = __be64_to_cpu(ddf->phys->entries[n].config_size);
1236 info->component_size = 32*1024*1024 / 512;
1237 }
1238
1239 static int rlq_to_layout(int rlq, int prl, int raiddisks);
1240
1241 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info)
1242 {
1243 struct ddf_super *ddf = st->sb;
1244 struct vd_config *vd = find_vdcr(ddf, info->container_member);
1245
1246 /* FIXME this returns BVD info - what if we want SVD ?? */
1247
1248 info->array.major_version = 1000;
1249 info->array.minor_version = 0; /* FIXME use ddf->revision somehow */
1250 info->array.patch_version = 0;
1251 info->array.raid_disks = __be16_to_cpu(vd->prim_elmnt_count);
1252 info->array.level = map_num1(ddf_level_num, vd->prl);
1253 info->array.layout = rlq_to_layout(vd->rlq, vd->prl,
1254 info->array.raid_disks);
1255 info->array.md_minor = -1;
1256 info->array.ctime = DECADE + __be32_to_cpu(*(__u32*)(vd->guid+16));
1257 info->array.utime = DECADE + __be32_to_cpu(vd->timestamp);
1258 info->array.chunk_size = 512 << vd->chunk_shift;
1259
1260 // info->data_offset = ???;
1261 // info->component_size = ???;
1262
1263 info->disk.major = 0;
1264 info->disk.minor = 0;
1265 // info->disk.number = __be32_to_cpu(ddf->disk.refnum);
1266 // info->disk.raid_disk = find refnum in the table and use index;
1267 // info->disk.state = ???;
1268
1269 uuid_from_super_ddf(st, info->uuid);
1270
1271 sprintf(info->text_version, "/%s/%d",
1272 devnum2devname(st->container_dev),
1273 info->container_member);
1274
1275 // info->name[] ?? ;
1276 }
1277
1278 static void getinfo_super_n_bvd(struct supertype *st, struct mdinfo *info)
1279 {
1280 /* Find the particular details for info->disk.raid_disk.
1281 * This includes data_offset, component_size,
1282 */
1283 struct ddf_super *ddf = st->sb;
1284 __u64 *lba_offset = ddf->newconf->lba_offset;
1285 struct vd_config *conf = &ddf->newconf->conf;
1286 info->data_offset = __be64_to_cpu(lba_offset[info->disk.raid_disk]);
1287 info->component_size = __be64_to_cpu(conf->blocks);
1288 }
1289
1290 static int update_super_ddf(struct supertype *st, struct mdinfo *info,
1291 char *update,
1292 char *devname, int verbose,
1293 int uuid_set, char *homehost)
1294 {
1295 /* For 'assemble' and 'force' we need to return non-zero if any
1296 * change was made. For others, the return value is ignored.
1297 * Update options are:
1298 * force-one : This device looks a bit old but needs to be included,
1299 * update age info appropriately.
1300 * assemble: clear any 'faulty' flag to allow this device to
1301 * be assembled.
1302 * force-array: Array is degraded but being forced, mark it clean
1303 * if that will be needed to assemble it.
1304 *
1305 * newdev: not used ????
1306 * grow: Array has gained a new device - this is currently for
1307 * linear only
1308 * resync: mark as dirty so a resync will happen.
1309 * uuid: Change the uuid of the array to match watch is given
1310 * homehost: update the recorded homehost
1311 * name: update the name - preserving the homehost
1312 * _reshape_progress: record new reshape_progress position.
1313 *
1314 * Following are not relevant for this version:
1315 * sparc2.2 : update from old dodgey metadata
1316 * super-minor: change the preferred_minor number
1317 * summaries: update redundant counters.
1318 */
1319 int rv = 0;
1320 // struct ddf_super *ddf = st->sb;
1321 // struct vd_config *vd = find_vdcr(ddf, info->container_member);
1322 // struct virtual_entry *ve = find_ve(ddf);
1323
1324
1325 /* we don't need to handle "force-*" or "assemble" as
1326 * there is no need to 'trick' the kernel. We the metadata is
1327 * first updated to activate the array, all the implied modifications
1328 * will just happen.
1329 */
1330
1331 if (strcmp(update, "grow") == 0) {
1332 /* FIXME */
1333 }
1334 if (strcmp(update, "resync") == 0) {
1335 // info->resync_checkpoint = 0;
1336 }
1337 /* We ignore UUID updates as they make even less sense
1338 * with DDF
1339 */
1340 if (strcmp(update, "homehost") == 0) {
1341 /* homehost is stored in controller->vendor_data,
1342 * or it is when we are the vendor
1343 */
1344 // if (info->vendor_is_local)
1345 // strcpy(ddf->controller.vendor_data, homehost);
1346 }
1347 if (strcmp(update, "name") == 0) {
1348 /* name is stored in virtual_entry->name */
1349 // memset(ve->name, ' ', 16);
1350 // strncpy(ve->name, info->name, 16);
1351 }
1352 if (strcmp(update, "_reshape_progress") == 0) {
1353 /* We don't support reshape yet */
1354 }
1355
1356 // update_all_csum(ddf);
1357
1358 return rv;
1359 }
1360
1361 static void make_header_guid(char *guid)
1362 {
1363 __u32 stamp;
1364 int rfd;
1365 /* Create a DDF Header of Virtual Disk GUID */
1366
1367 /* 24 bytes of fiction required.
1368 * first 8 are a 'vendor-id' - "Linux-MD"
1369 * next 8 are controller type.. how about 0X DEAD BEEF 0000 0000
1370 * Remaining 8 random number plus timestamp
1371 */
1372 memcpy(guid, T10, sizeof(T10));
1373 stamp = __cpu_to_be32(0xdeadbeef);
1374 memcpy(guid+8, &stamp, 4);
1375 stamp = __cpu_to_be32(0);
1376 memcpy(guid+12, &stamp, 4);
1377 stamp = __cpu_to_be32(time(0) - DECADE);
1378 memcpy(guid+16, &stamp, 4);
1379 rfd = open("/dev/urandom", O_RDONLY);
1380 if (rfd < 0 || read(rfd, &stamp, 4) != 4)
1381 stamp = random();
1382 memcpy(guid+20, &stamp, 4);
1383 if (rfd >= 0) close(rfd);
1384 }
1385 static int init_super_ddf(struct supertype *st,
1386 mdu_array_info_t *info,
1387 unsigned long long size, char *name, char *homehost,
1388 int *uuid)
1389 {
1390 /* This is primarily called by Create when creating a new array.
1391 * We will then get add_to_super called for each component, and then
1392 * write_init_super called to write it out to each device.
1393 * For DDF, Create can create on fresh devices or on a pre-existing
1394 * array.
1395 * To create on a pre-existing array a different method will be called.
1396 * This one is just for fresh drives.
1397 *
1398 * We need to create the entire 'ddf' structure which includes:
1399 * DDF headers - these are easy.
1400 * Controller data - a Sector describing this controller .. not that
1401 * this is a controller exactly.
1402 * Physical Disk Record - one entry per device, so
1403 * leave plenty of space.
1404 * Virtual Disk Records - again, just leave plenty of space.
1405 * This just lists VDs, doesn't give details
1406 * Config records - describes the VDs that use this disk
1407 * DiskData - describes 'this' device.
1408 * BadBlockManagement - empty
1409 * Diag Space - empty
1410 * Vendor Logs - Could we put bitmaps here?
1411 *
1412 */
1413 struct ddf_super *ddf;
1414 char hostname[17];
1415 int hostlen;
1416 int max_phys_disks, max_virt_disks;
1417 unsigned long long sector;
1418 int clen;
1419 int i;
1420 int pdsize, vdsize;
1421 struct phys_disk *pd;
1422 struct virtual_disk *vd;
1423
1424 ddf = malloc(sizeof(*ddf));
1425 ddf->dlist = NULL; /* no physical disks yet */
1426 ddf->conflist = NULL; /* No virtual disks yet */
1427
1428 /* At least 32MB *must* be reserved for the ddf. So let's just
1429 * start 32MB from the end, and put the primary header there.
1430 * Don't do secondary for now.
1431 * We don't know exactly where that will be yet as it could be
1432 * different on each device. To just set up the lengths.
1433 *
1434 */
1435
1436 ddf->anchor.magic = DDF_HEADER_MAGIC;
1437 make_header_guid(ddf->anchor.guid);
1438
1439 memcpy(ddf->anchor.revision, DDF_REVISION, 8);
1440 ddf->anchor.seq = __cpu_to_be32(1);
1441 ddf->anchor.timestamp = __cpu_to_be32(time(0) - DECADE);
1442 ddf->anchor.openflag = 0xFF;
1443 ddf->anchor.foreignflag = 0;
1444 ddf->anchor.enforcegroups = 0; /* Is this best?? */
1445 ddf->anchor.pad0 = 0xff;
1446 memset(ddf->anchor.pad1, 0xff, 12);
1447 memset(ddf->anchor.header_ext, 0xff, 32);
1448 ddf->anchor.primary_lba = ~(__u64)0;
1449 ddf->anchor.secondary_lba = ~(__u64)0;
1450 ddf->anchor.type = DDF_HEADER_ANCHOR;
1451 memset(ddf->anchor.pad2, 0xff, 3);
1452 ddf->anchor.workspace_len = __cpu_to_be32(32768); /* Must be reserved */
1453 ddf->anchor.workspace_lba = ~(__u64)0; /* Put this at bottom
1454 of 32M reserved.. */
1455 max_phys_disks = 1023; /* Should be enough */
1456 ddf->anchor.max_pd_entries = __cpu_to_be16(max_phys_disks);
1457 max_virt_disks = 255;
1458 ddf->anchor.max_vd_entries = __cpu_to_be16(max_virt_disks); /* ?? */
1459 ddf->anchor.max_partitions = __cpu_to_be16(64); /* ?? */
1460 ddf->max_part = 64;
1461 ddf->anchor.config_record_len = __cpu_to_be16(1 + 256*12/512);
1462 ddf->anchor.max_primary_element_entries = __cpu_to_be16(256);
1463 memset(ddf->anchor.pad3, 0xff, 54);
1464
1465 /* controller sections is one sector long immediately
1466 * after the ddf header */
1467 sector = 1;
1468 ddf->anchor.controller_section_offset = __cpu_to_be32(sector);
1469 ddf->anchor.controller_section_length = __cpu_to_be32(1);
1470 sector += 1;
1471
1472 /* phys is 8 sectors after that */
1473 pdsize = ROUND_UP(sizeof(struct phys_disk) +
1474 sizeof(struct phys_disk_entry)*max_phys_disks,
1475 512);
1476 switch(pdsize/512) {
1477 case 2: case 8: case 32: case 128: case 512: break;
1478 default: abort();
1479 }
1480 ddf->anchor.phys_section_offset = __cpu_to_be32(sector);
1481 ddf->anchor.phys_section_length =
1482 __cpu_to_be32(pdsize/512); /* max_primary_element_entries/8 */
1483 sector += pdsize/512;
1484
1485 /* virt is another 32 sectors */
1486 vdsize = ROUND_UP(sizeof(struct virtual_disk) +
1487 sizeof(struct virtual_entry) * max_virt_disks,
1488 512);
1489 switch(vdsize/512) {
1490 case 2: case 8: case 32: case 128: case 512: break;
1491 default: abort();
1492 }
1493 ddf->anchor.virt_section_offset = __cpu_to_be32(sector);
1494 ddf->anchor.virt_section_length =
1495 __cpu_to_be32(vdsize/512); /* max_vd_entries/8 */
1496 sector += vdsize/512;
1497
1498 clen = (1 + 256*12/512) * (64+1);
1499 ddf->anchor.config_section_offset = __cpu_to_be32(sector);
1500 ddf->anchor.config_section_length = __cpu_to_be32(clen);
1501 sector += clen;
1502
1503 ddf->anchor.data_section_offset = __cpu_to_be32(sector);
1504 ddf->anchor.data_section_length = __cpu_to_be32(1);
1505 sector += 1;
1506
1507 ddf->anchor.bbm_section_length = __cpu_to_be32(0);
1508 ddf->anchor.bbm_section_offset = __cpu_to_be32(0xFFFFFFFF);
1509 ddf->anchor.diag_space_length = __cpu_to_be32(0);
1510 ddf->anchor.diag_space_offset = __cpu_to_be32(0xFFFFFFFF);
1511 ddf->anchor.vendor_length = __cpu_to_be32(0);
1512 ddf->anchor.vendor_offset = __cpu_to_be32(0xFFFFFFFF);
1513
1514 memset(ddf->anchor.pad4, 0xff, 256);
1515
1516 memcpy(&ddf->primary, &ddf->anchor, 512);
1517 memcpy(&ddf->secondary, &ddf->anchor, 512);
1518
1519 ddf->primary.openflag = 1; /* I guess.. */
1520 ddf->primary.type = DDF_HEADER_PRIMARY;
1521
1522 ddf->secondary.openflag = 1; /* I guess.. */
1523 ddf->secondary.type = DDF_HEADER_SECONDARY;
1524
1525 ddf->active = &ddf->primary;
1526
1527 ddf->controller.magic = DDF_CONTROLLER_MAGIC;
1528
1529 /* 24 more bytes of fiction required.
1530 * first 8 are a 'vendor-id' - "Linux-MD"
1531 * Remaining 16 are serial number.... maybe a hostname would do?
1532 */
1533 memcpy(ddf->controller.guid, T10, sizeof(T10));
1534 gethostname(hostname, 17);
1535 hostname[17] = 0;
1536 hostlen = strlen(hostname);
1537 memcpy(ddf->controller.guid + 24 - hostlen, hostname, hostlen);
1538 for (i = strlen(T10) ; i+hostlen < 24; i++)
1539 ddf->controller.guid[i] = ' ';
1540
1541 ddf->controller.type.vendor_id = __cpu_to_be16(0xDEAD);
1542 ddf->controller.type.device_id = __cpu_to_be16(0xBEEF);
1543 ddf->controller.type.sub_vendor_id = 0;
1544 ddf->controller.type.sub_device_id = 0;
1545 memcpy(ddf->controller.product_id, "What Is My PID??", 16);
1546 memset(ddf->controller.pad, 0xff, 8);
1547 memset(ddf->controller.vendor_data, 0xff, 448);
1548
1549 pd = ddf->phys = malloc(pdsize);
1550 ddf->pdsize = pdsize;
1551
1552 memset(pd, 0xff, pdsize);
1553 memset(pd, 0, sizeof(*pd));
1554 pd->magic = DDF_PHYS_DATA_MAGIC;
1555 pd->used_pdes = __cpu_to_be16(0);
1556 pd->max_pdes = __cpu_to_be16(max_phys_disks);
1557 memset(pd->pad, 0xff, 52);
1558
1559 vd = ddf->virt = malloc(vdsize);
1560 ddf->vdsize = vdsize;
1561 memset(vd, 0, vdsize);
1562 vd->magic = DDF_VIRT_RECORDS_MAGIC;
1563 vd->populated_vdes = __cpu_to_be16(0);
1564 vd->max_vdes = __cpu_to_be16(max_virt_disks);
1565 memset(vd->pad, 0xff, 52);
1566
1567 for (i=0; i<max_virt_disks; i++)
1568 memset(&vd->entries[i], 0xff, sizeof(struct virtual_entry));
1569
1570 st->sb = ddf;
1571 return 1;
1572 }
1573
1574 static int all_ff(char *guid)
1575 {
1576 int i;
1577 for (i = 0; i < DDF_GUID_LEN; i++)
1578 if (guid[i] != (char)0xff)
1579 return 0;
1580 return 1;
1581 }
1582 static int chunk_to_shift(int chunksize)
1583 {
1584 return ffs(chunksize/512)-1;
1585 }
1586
1587 static int level_to_prl(int level)
1588 {
1589 switch (level) {
1590 case LEVEL_LINEAR: return DDF_CONCAT;
1591 case 0: return DDF_RAID0;
1592 case 1: return DDF_RAID1;
1593 case 4: return DDF_RAID4;
1594 case 5: return DDF_RAID5;
1595 case 6: return DDF_RAID6;
1596 default: return -1;
1597 }
1598 }
1599 static int layout_to_rlq(int level, int layout, int raiddisks)
1600 {
1601 switch(level) {
1602 case 0:
1603 return DDF_RAID0_SIMPLE;
1604 case 1:
1605 switch(raiddisks) {
1606 case 2: return DDF_RAID1_SIMPLE;
1607 case 3: return DDF_RAID1_MULTI;
1608 default: return -1;
1609 }
1610 case 4:
1611 switch(layout) {
1612 case 0: return DDF_RAID4_N;
1613 }
1614 break;
1615 case 5:
1616 case 6:
1617 switch(layout) {
1618 case ALGORITHM_LEFT_ASYMMETRIC:
1619 return DDF_RAID5_N_RESTART;
1620 case ALGORITHM_RIGHT_ASYMMETRIC:
1621 return DDF_RAID5_0_RESTART;
1622 case ALGORITHM_LEFT_SYMMETRIC:
1623 return DDF_RAID5_N_CONTINUE;
1624 case ALGORITHM_RIGHT_SYMMETRIC:
1625 return -1; /* not mentioned in standard */
1626 }
1627 }
1628 return -1;
1629 }
1630
1631 static int rlq_to_layout(int rlq, int prl, int raiddisks)
1632 {
1633 switch(prl) {
1634 case DDF_RAID0:
1635 return 0; /* hopefully rlq == DDF_RAID0_SIMPLE */
1636 case DDF_RAID1:
1637 return 0; /* hopefully rlq == SIMPLE or MULTI depending
1638 on raiddisks*/
1639 case DDF_RAID4:
1640 switch(rlq) {
1641 case DDF_RAID4_N:
1642 return 0;
1643 default:
1644 /* not supported */
1645 return -1; /* FIXME this isn't checked */
1646 }
1647 case DDF_RAID5:
1648 case DDF_RAID6:
1649 switch(rlq) {
1650 case DDF_RAID5_N_RESTART:
1651 return ALGORITHM_LEFT_ASYMMETRIC;
1652 case DDF_RAID5_0_RESTART:
1653 return ALGORITHM_RIGHT_ASYMMETRIC;
1654 case DDF_RAID5_N_CONTINUE:
1655 return ALGORITHM_LEFT_SYMMETRIC;
1656 default:
1657 return -1;
1658 }
1659 }
1660 return -1;
1661 }
1662
1663 static int init_super_ddf_bvd(struct supertype *st,
1664 mdu_array_info_t *info,
1665 unsigned long long size,
1666 char *name, char *homehost,
1667 int *uuid)
1668 {
1669 /* We are creating a BVD inside a pre-existing container.
1670 * so st->sb is already set.
1671 * We need to create a new vd_config and a new virtual_entry
1672 */
1673 struct ddf_super *ddf = st->sb;
1674 int venum;
1675 struct virtual_entry *ve;
1676 struct vcl *vcl;
1677 struct vd_config *vc;
1678 int mppe;
1679 int conflen;
1680
1681 if (__be16_to_cpu(ddf->virt->populated_vdes)
1682 >= __be16_to_cpu(ddf->virt->max_vdes)) {
1683 fprintf(stderr, Name": This ddf already has the "
1684 "maximum of %d virtual devices\n",
1685 __be16_to_cpu(ddf->virt->max_vdes));
1686 return 0;
1687 }
1688
1689 for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
1690 if (all_ff(ddf->virt->entries[venum].guid))
1691 break;
1692 if (venum == __be16_to_cpu(ddf->virt->max_vdes)) {
1693 fprintf(stderr, Name ": Cannot find spare slot for "
1694 "virtual disk - DDF is corrupt\n");
1695 return 0;
1696 }
1697 ve = &ddf->virt->entries[venum];
1698 ddf->conf_num = venum;
1699
1700 /* A Virtual Disk GUID contains the T10 Vendor ID, controller type,
1701 * timestamp, random number
1702 */
1703 make_header_guid(ve->guid);
1704 ve->unit = __cpu_to_be16(info->md_minor);
1705 ve->pad0 = 0xFFFF;
1706 ve->guid_crc = crc32(0, (unsigned char*)ddf->anchor.guid, DDF_GUID_LEN);
1707 ve->type = 0;
1708 ve->state = DDF_state_degraded; /* Will be modified as devices are added */
1709 if (info->state & 1) /* clean */
1710 ve->init_state = DDF_init_full;
1711 else
1712 ve->init_state = DDF_init_not;
1713
1714 memset(ve->pad1, 0xff, 14);
1715 memset(ve->name, ' ', 16);
1716 if (name)
1717 strncpy(ve->name, name, 16);
1718 ddf->virt->populated_vdes =
1719 __cpu_to_be16(__be16_to_cpu(ddf->virt->populated_vdes)+1);
1720
1721 /* Now create a new vd_config */
1722 conflen = __be16_to_cpu(ddf->active->config_record_len);
1723 vcl = malloc(offsetof(struct vcl, conf) + conflen * 512);
1724 mppe = __be16_to_cpu(ddf->anchor.max_primary_element_entries);
1725 vcl->lba_offset = (__u64*) &vcl->conf.phys_refnum[mppe];
1726
1727 vc = &vcl->conf;
1728
1729 vc->magic = DDF_VD_CONF_MAGIC;
1730 memcpy(vc->guid, ve->guid, DDF_GUID_LEN);
1731 vc->timestamp = __cpu_to_be32(time(0)-DECADE);
1732 vc->seqnum = __cpu_to_be32(1);
1733 memset(vc->pad0, 0xff, 24);
1734 vc->prim_elmnt_count = __cpu_to_be16(info->raid_disks);
1735 vc->chunk_shift = chunk_to_shift(info->chunk_size);
1736 vc->prl = level_to_prl(info->level);
1737 vc->rlq = layout_to_rlq(info->level, info->layout, info->raid_disks);
1738 vc->sec_elmnt_count = 1;
1739 vc->sec_elmnt_seq = 0;
1740 vc->srl = 0;
1741 vc->blocks = __cpu_to_be64(info->size * 2);
1742 vc->array_blocks = __cpu_to_be64(
1743 calc_array_size(info->level, info->raid_disks, info->layout,
1744 info->chunk_size, info->size*2));
1745 memset(vc->pad1, 0xff, 8);
1746 vc->spare_refs[0] = 0xffffffff;
1747 vc->spare_refs[1] = 0xffffffff;
1748 vc->spare_refs[2] = 0xffffffff;
1749 vc->spare_refs[3] = 0xffffffff;
1750 vc->spare_refs[4] = 0xffffffff;
1751 vc->spare_refs[5] = 0xffffffff;
1752 vc->spare_refs[6] = 0xffffffff;
1753 vc->spare_refs[7] = 0xffffffff;
1754 memset(vc->cache_pol, 0, 8);
1755 vc->bg_rate = 0x80;
1756 memset(vc->pad2, 0xff, 3);
1757 memset(vc->pad3, 0xff, 52);
1758 memset(vc->pad4, 0xff, 192);
1759 memset(vc->v0, 0xff, 32);
1760 memset(vc->v1, 0xff, 32);
1761 memset(vc->v2, 0xff, 16);
1762 memset(vc->v3, 0xff, 16);
1763 memset(vc->vendor, 0xff, 32);
1764
1765 memset(vc->phys_refnum, 0xff, 4*mppe);
1766 memset(vc->phys_refnum+mppe, 0x00, 8*mppe);
1767
1768 vcl->next = ddf->conflist;
1769 ddf->conflist = vcl;
1770 ddf->newconf = vcl;
1771 return 1;
1772 }
1773
1774 static void add_to_super_ddf_bvd(struct supertype *st,
1775 mdu_disk_info_t *dk, int fd, char *devname)
1776 {
1777 /* fd and devname identify a device with-in the ddf container (st).
1778 * dk identifies a location in the new BVD.
1779 * We need to find suitable free space in that device and update
1780 * the phys_refnum and lba_offset for the newly created vd_config.
1781 * We might also want to update the type in the phys_disk
1782 * section. FIXME
1783 */
1784 struct dl *dl;
1785 struct ddf_super *ddf = st->sb;
1786 struct vd_config *vc;
1787 __u64 *lba_offset;
1788 int mppe;
1789 int working;
1790
1791 for (dl = ddf->dlist; dl ; dl = dl->next)
1792 if (dl->major == dk->major &&
1793 dl->minor == dk->minor)
1794 break;
1795 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1796 return;
1797
1798 vc = &ddf->newconf->conf;
1799 vc->phys_refnum[dk->raid_disk] = dl->disk.refnum;
1800 mppe = __be16_to_cpu(ddf->anchor.max_primary_element_entries);
1801 lba_offset = (__u64*)(vc->phys_refnum + mppe);
1802 lba_offset[dk->raid_disk] = 0; /* FIXME */
1803
1804 dl->vlist[0] = ddf->newconf; /* FIXME */
1805
1806 dl->fd = fd;
1807 dl->devname = devname;
1808
1809 /* Check how many working raid_disks, and if we can mark
1810 * array as optimal yet
1811 */
1812 working = 0;
1813 #if 0
1814 for (i=0; i < __be16_to_cpu(vc->prim_elmnt_count); i++)
1815 if (vc->phys_refnum[i] != 0xffffffff)
1816 working++;
1817 if (working == __be16_to_cpu(vc->prim_elmnt_count))
1818 ->entries[xx].state = (->entries[xx].state & ~DDF_state_mask)
1819 | DDF_state_optimal;
1820
1821 if (vc->prl == DDF_RAID6 &&
1822 working+1 == __be16_to_cpu(vc->prim_elmnt_count))
1823 ->entries[xx].state = (->entries[xx].state & ~DDF_state_mask)
1824 | DDF_state_part_optimal;
1825 #endif
1826 }
1827
1828 /* add a device to a container, either while creating it or while
1829 * expanding a pre-existing container
1830 */
1831 static void add_to_super_ddf(struct supertype *st,
1832 mdu_disk_info_t *dk, int fd, char *devname)
1833 {
1834 struct ddf_super *ddf = st->sb;
1835 struct dl *dd;
1836 time_t now;
1837 struct tm *tm;
1838 unsigned long long size;
1839 struct phys_disk_entry *pde;
1840 int n, i;
1841 struct stat stb;
1842
1843 /* This is device numbered dk->number. We need to create
1844 * a phys_disk entry and a more detailed disk_data entry.
1845 */
1846 fstat(fd, &stb);
1847 dd = malloc(sizeof(*dd) + sizeof(dd->vlist[0]) * (ddf->max_part+1));
1848 dd->major = major(stb.st_rdev);
1849 dd->minor = minor(stb.st_rdev);
1850 dd->devname = devname;
1851 dd->next = ddf->dlist;
1852 dd->fd = fd;
1853
1854 dd->disk.magic = DDF_PHYS_DATA_MAGIC;
1855 now = time(0);
1856 tm = localtime(&now);
1857 sprintf(dd->disk.guid, "%8s%04d%02d%02d",
1858 T10, tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
1859 *(__u32*)(dd->disk.guid + 16) = random();
1860 *(__u32*)(dd->disk.guid + 20) = random();
1861
1862 dd->disk.refnum = random(); /* and hope for the best FIXME check this is unique!!*/
1863 dd->disk.forced_ref = 1;
1864 dd->disk.forced_guid = 1;
1865 memset(dd->disk.vendor, ' ', 32);
1866 memcpy(dd->disk.vendor, "Linux", 5);
1867 memset(dd->disk.pad, 0xff, 442);
1868 for (i = 0; i < ddf->max_part+1 ; i++)
1869 dd->vlist[i] = NULL;
1870
1871 n = __be16_to_cpu(ddf->phys->used_pdes);
1872 pde = &ddf->phys->entries[n];
1873 n++;
1874 ddf->phys->used_pdes = __cpu_to_be16(n);
1875
1876 memcpy(pde->guid, dd->disk.guid, DDF_GUID_LEN);
1877 pde->refnum = dd->disk.refnum;
1878 pde->type = __cpu_to_be16(DDF_Forced_PD_GUID |DDF_Global_Spare);
1879 pde->state = __cpu_to_be16(DDF_Online);
1880 get_dev_size(fd, NULL, &size);
1881 /* We are required to reserve 32Meg, and record the size in sectors */
1882 pde->config_size = __cpu_to_be64( (size - 32*1024*1024) / 512);
1883 sprintf(pde->path, "%17.17s","Information: nil") ;
1884 memset(pde->pad, 0xff, 6);
1885
1886 ddf->dlist = dd;
1887 }
1888
1889 /*
1890 * This is the write_init_super method for a ddf container. It is
1891 * called when creating a container or adding another device to a
1892 * container.
1893 */
1894
1895 #ifndef MDASSEMBLE
1896 static int __write_init_super_ddf(struct supertype *st, int do_close)
1897 {
1898
1899 struct ddf_super *ddf = st->sb;
1900 int i;
1901 struct dl *d;
1902 int n_config;
1903 int conf_size;
1904
1905 unsigned long long size, sector;
1906
1907 for (d = ddf->dlist; d; d=d->next) {
1908 int fd = d->fd;
1909
1910 if (fd < 0)
1911 continue;
1912
1913 /* We need to fill in the primary, (secondary) and workspace
1914 * lba's in the headers, set their checksums,
1915 * Also checksum phys, virt....
1916 *
1917 * Then write everything out, finally the anchor is written.
1918 */
1919 get_dev_size(fd, NULL, &size);
1920 size /= 512;
1921 ddf->anchor.workspace_lba = __cpu_to_be64(size - 32*1024*2);
1922 ddf->anchor.primary_lba = __cpu_to_be64(size - 16*1024*2);
1923 ddf->anchor.seq = __cpu_to_be32(1);
1924 memcpy(&ddf->primary, &ddf->anchor, 512);
1925 memcpy(&ddf->secondary, &ddf->anchor, 512);
1926
1927 ddf->anchor.openflag = 0xFF; /* 'open' means nothing */
1928 ddf->anchor.seq = 0xFFFFFFFF; /* no sequencing in anchor */
1929 ddf->anchor.crc = calc_crc(&ddf->anchor, 512);
1930
1931 ddf->primary.openflag = 0;
1932 ddf->primary.type = DDF_HEADER_PRIMARY;
1933
1934 ddf->secondary.openflag = 0;
1935 ddf->secondary.type = DDF_HEADER_SECONDARY;
1936
1937 ddf->primary.crc = calc_crc(&ddf->primary, 512);
1938 ddf->secondary.crc = calc_crc(&ddf->secondary, 512);
1939
1940 sector = size - 16*1024*2;
1941 lseek64(fd, sector<<9, 0);
1942 write(fd, &ddf->primary, 512);
1943
1944 ddf->controller.crc = calc_crc(&ddf->controller, 512);
1945 write(fd, &ddf->controller, 512);
1946
1947 ddf->phys->crc = calc_crc(ddf->phys, ddf->pdsize);
1948
1949 write(fd, ddf->phys, ddf->pdsize);
1950
1951 ddf->virt->crc = calc_crc(ddf->virt, ddf->vdsize);
1952 write(fd, ddf->virt, ddf->vdsize);
1953
1954 /* Now write lots of config records. */
1955 n_config = __be16_to_cpu(ddf->active->max_partitions);
1956 conf_size = __be16_to_cpu(ddf->active->config_record_len) * 512;
1957 for (i = 0 ; i <= n_config ; i++) {
1958 struct vcl *c = d->vlist[i];
1959
1960 if (c) {
1961 c->conf.crc = calc_crc(&c->conf, conf_size);
1962 write(fd, &c->conf, conf_size);
1963 } else {
1964 __u32 sig = 0xffffffff;
1965 write(fd, &sig, 4);
1966 lseek64(fd, conf_size-4, SEEK_CUR);
1967 }
1968 }
1969 d->disk.crc = calc_crc(&d->disk, 512);
1970 write(fd, &d->disk, 512);
1971
1972 /* Maybe do the same for secondary */
1973
1974 lseek64(fd, (size-1)*512, SEEK_SET);
1975 write(fd, &ddf->anchor, 512);
1976 if (do_close) {
1977 close(fd);
1978 d->fd = -1;
1979 }
1980 }
1981 return 1;
1982 }
1983
1984 static int write_init_super_ddf(struct supertype *st)
1985 {
1986 return __write_init_super_ddf(st, 1);
1987 }
1988
1989 #endif
1990
1991 static __u64 avail_size_ddf(struct supertype *st, __u64 devsize)
1992 {
1993 /* We must reserve the last 32Meg */
1994 if (devsize <= 32*1024*2)
1995 return 0;
1996 return devsize - 32*1024*2;
1997 }
1998
1999 #ifndef MDASSEMBLE
2000 int validate_geometry_ddf(struct supertype *st,
2001 int level, int layout, int raiddisks,
2002 int chunk, unsigned long long size,
2003 char *dev, unsigned long long *freesize)
2004 {
2005 int fd;
2006 struct mdinfo *sra;
2007 int cfd;
2008
2009 /* ddf potentially supports lots of things, but it depends on
2010 * what devices are offered (and maybe kernel version?)
2011 * If given unused devices, we will make a container.
2012 * If given devices in a container, we will make a BVD.
2013 * If given BVDs, we make an SVD, changing all the GUIDs in the process.
2014 */
2015
2016 if (level == LEVEL_CONTAINER) {
2017 st->ss = &super_ddf_container;
2018 if (dev) {
2019 int rv =st->ss->validate_geometry(st, level, layout,
2020 raiddisks, chunk,
2021 size,
2022 NULL, freesize);
2023 if (rv)
2024 return rv;
2025 }
2026 return st->ss->validate_geometry(st, level, layout, raiddisks,
2027 chunk, size, dev, freesize);
2028 }
2029
2030 if (st->sb) {
2031 /* creating in a given container */
2032 st->ss = &super_ddf_bvd;
2033 if (dev) {
2034 int rv =st->ss->validate_geometry(st, level, layout,
2035 raiddisks, chunk,
2036 size,
2037 NULL, freesize);
2038 if (rv)
2039 return rv;
2040 }
2041 return st->ss->validate_geometry(st, level, layout, raiddisks,
2042 chunk, size, dev, freesize);
2043 }
2044 /* FIXME should exclude MULTIPATH, or more appropriately, allow
2045 * only known levels.
2046 */
2047 if (!dev)
2048 return 1;
2049
2050 /* This device needs to be either a device in a 'ddf' container,
2051 * or it needs to be a 'ddf-bvd' array.
2052 */
2053
2054 fd = open(dev, O_RDONLY|O_EXCL, 0);
2055 if (fd >= 0) {
2056 sra = sysfs_read(fd, 0, GET_VERSION);
2057 close(fd);
2058 if (sra && sra->array.major_version == -1 &&
2059 strcmp(sra->text_version, "ddf-bvd") == 0) {
2060 st->ss = &super_ddf_svd;
2061 return st->ss->validate_geometry(st, level, layout,
2062 raiddisks, chunk, size,
2063 dev, freesize);
2064 }
2065
2066 fprintf(stderr,
2067 Name ": Cannot create this array on device %s\n",
2068 dev);
2069 return 0;
2070 }
2071 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2072 fprintf(stderr, Name ": Cannot open %s: %s\n",
2073 dev, strerror(errno));
2074 return 0;
2075 }
2076 /* Well, it is in use by someone, maybe a 'ddf' container. */
2077 cfd = open_container(fd);
2078 if (cfd < 0) {
2079 close(fd);
2080 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
2081 dev);
2082 return 0;
2083 }
2084 sra = sysfs_read(cfd, 0, GET_VERSION);
2085 close(fd);
2086 if (sra && sra->array.major_version == -1 &&
2087 strcmp(sra->text_version, "ddf") == 0) {
2088 /* This is a member of a ddf container. Load the container
2089 * and try to create a bvd
2090 */
2091 struct ddf_super *ddf;
2092 st->ss = &super_ddf_bvd;
2093 if (load_super_ddf_all(st, cfd, (void **)&ddf, NULL, 1) == 0) {
2094 st->sb = ddf;
2095 st->container_dev = fd2devnum(cfd);
2096 close(cfd);
2097 return st->ss->validate_geometry(st, level, layout,
2098 raiddisks, chunk, size,
2099 dev, freesize);
2100 }
2101 close(cfd);
2102 }
2103 fprintf(stderr, Name ": Cannot use %s: Already in use\n",
2104 dev);
2105 return 1;
2106 }
2107
2108 int validate_geometry_ddf_container(struct supertype *st,
2109 int level, int layout, int raiddisks,
2110 int chunk, unsigned long long size,
2111 char *dev, unsigned long long *freesize)
2112 {
2113 int fd;
2114 unsigned long long ldsize;
2115
2116 if (level != LEVEL_CONTAINER)
2117 return 0;
2118 if (!dev)
2119 return 1;
2120
2121 fd = open(dev, O_RDONLY|O_EXCL, 0);
2122 if (fd < 0) {
2123 fprintf(stderr, Name ": Cannot open %s: %s\n",
2124 dev, strerror(errno));
2125 return 0;
2126 }
2127 if (!get_dev_size(fd, dev, &ldsize)) {
2128 close(fd);
2129 return 0;
2130 }
2131 close(fd);
2132
2133 *freesize = avail_size_ddf(st, ldsize);
2134
2135 return 1;
2136 }
2137
2138 struct extent {
2139 unsigned long long start, size;
2140 };
2141 int cmp_extent(const void *av, const void *bv)
2142 {
2143 const struct extent *a = av;
2144 const struct extent *b = bv;
2145 if (a->start < b->start)
2146 return -1;
2147 if (a->start > b->start)
2148 return 1;
2149 return 0;
2150 }
2151
2152 struct extent *get_extents(struct ddf_super *ddf, struct dl *dl)
2153 {
2154 /* find a list of used extents on the give physical device
2155 * (dnum) or the given ddf.
2156 * Return a malloced array of 'struct extent'
2157
2158 FIXME ignore DDF_Legacy devices?
2159
2160 */
2161 struct extent *rv;
2162 int n = 0;
2163 int dnum;
2164 int i, j;
2165
2166 for (dnum = 0; dnum < ddf->phys->used_pdes; dnum++)
2167 if (memcmp(dl->disk.guid,
2168 ddf->phys->entries[dnum].guid,
2169 DDF_GUID_LEN) == 0)
2170 break;
2171
2172 if (dnum == ddf->phys->used_pdes)
2173 return NULL;
2174
2175 rv = malloc(sizeof(struct extent) * (ddf->max_part + 2));
2176 if (!rv)
2177 return NULL;
2178
2179 for (i = 0; i < ddf->max_part+1; i++) {
2180 struct vcl *v = dl->vlist[i];
2181 if (v == NULL)
2182 continue;
2183 for (j=0; j < v->conf.prim_elmnt_count; j++)
2184 if (v->conf.phys_refnum[j] == dl->disk.refnum) {
2185 /* This device plays role 'j' in 'v'. */
2186 rv[n].start = __be64_to_cpu(v->lba_offset[j]);
2187 rv[n].size = __be64_to_cpu(v->conf.blocks);
2188 n++;
2189 break;
2190 }
2191 }
2192 qsort(rv, n, sizeof(*rv), cmp_extent);
2193
2194 rv[n].start = __be64_to_cpu(ddf->phys->entries[dnum].config_size);
2195 rv[n].size = 0;
2196 return rv;
2197 }
2198
2199 int validate_geometry_ddf_bvd(struct supertype *st,
2200 int level, int layout, int raiddisks,
2201 int chunk, unsigned long long size,
2202 char *dev, unsigned long long *freesize)
2203 {
2204 struct stat stb;
2205 struct ddf_super *ddf = st->sb;
2206 struct dl *dl;
2207 unsigned long long pos = 0;
2208 unsigned long long maxsize;
2209 struct extent *e;
2210 int i;
2211 /* ddf/bvd supports lots of things, but not containers */
2212 if (level == LEVEL_CONTAINER)
2213 return 0;
2214 /* We must have the container info already read in. */
2215 if (!ddf)
2216 return 0;
2217
2218 if (!dev) {
2219 /* General test: make sure there is space for
2220 * 'raiddisks' device extents of size 'size'.
2221 */
2222 unsigned long long minsize = size;
2223 int dcnt = 0;
2224 if (minsize == 0)
2225 minsize = 8;
2226 for (dl = ddf->dlist; dl ; dl = dl->next)
2227 {
2228 int found = 0;
2229
2230 i = 0;
2231 e = get_extents(ddf, dl);
2232 if (!e) continue;
2233 do {
2234 unsigned long long esize;
2235 esize = e[i].start - pos;
2236 if (esize >= minsize)
2237 found = 1;
2238 pos = e[i].start + e[i].size;
2239 i++;
2240 } while (e[i-1].size);
2241 if (found)
2242 dcnt++;
2243 free(e);
2244 }
2245 if (dcnt < raiddisks) {
2246 fprintf(stderr, Name ": Not enough devices with space "
2247 "for this array (%d < %d)\n",
2248 dcnt, raiddisks);
2249 return 0;
2250 }
2251 return 1;
2252 }
2253 /* This device must be a member of the set */
2254 if (stat(dev, &stb) < 0)
2255 return 0;
2256 if ((S_IFMT & stb.st_mode) != S_IFBLK)
2257 return 0;
2258 for (dl = ddf->dlist ; dl ; dl = dl->next) {
2259 if (dl->major == major(stb.st_rdev) &&
2260 dl->minor == minor(stb.st_rdev))
2261 break;
2262 }
2263 if (!dl) {
2264 fprintf(stderr, Name ": %s is not in the same DDF set\n",
2265 dev);
2266 return 0;
2267 }
2268 e = get_extents(ddf, dl);
2269 maxsize = 0;
2270 i = 0;
2271 if (e) do {
2272 unsigned long long esize;
2273 esize = e[i].start - pos;
2274 if (esize >= maxsize)
2275 maxsize = esize;
2276 pos = e[i].start + e[i].size;
2277 i++;
2278 } while (e[i-1].size);
2279 *freesize = maxsize;
2280 // FIXME here I am
2281
2282 return 1;
2283 }
2284 int validate_geometry_ddf_svd(struct supertype *st,
2285 int level, int layout, int raiddisks,
2286 int chunk, unsigned long long size,
2287 char *dev, unsigned long long *freesize)
2288 {
2289 /* dd/svd only supports striped, mirrored, concat, spanned... */
2290 if (level != LEVEL_LINEAR &&
2291 level != 0 &&
2292 level != 1)
2293 return 0;
2294 return 1;
2295 }
2296
2297
2298 static int load_super_ddf_all(struct supertype *st, int fd,
2299 void **sbp, char *devname, int keep_fd)
2300 {
2301 struct mdinfo *sra;
2302 struct ddf_super *super;
2303 struct mdinfo *sd, *best = NULL;
2304 int bestseq = 0;
2305 int seq;
2306 char nm[20];
2307 int dfd;
2308
2309 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
2310 if (!sra)
2311 return 1;
2312 if (sra->array.major_version != -1 ||
2313 sra->array.minor_version != -2 ||
2314 strcmp(sra->text_version, "ddf") != 0)
2315 return 1;
2316
2317 super = malloc(sizeof(*super));
2318 if (!super)
2319 return 1;
2320 memset(super, 0, sizeof(*super));
2321
2322 /* first, try each device, and choose the best ddf */
2323 for (sd = sra->devs ; sd ; sd = sd->next) {
2324 int rv;
2325 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2326 dfd = dev_open(nm, O_RDONLY);
2327 if (dfd < 0)
2328 return 2;
2329 rv = load_ddf_headers(dfd, super, NULL);
2330 close(dfd);
2331 if (rv == 0) {
2332 seq = __be32_to_cpu(super->active->seq);
2333 if (super->active->openflag)
2334 seq--;
2335 if (!best || seq > bestseq) {
2336 bestseq = seq;
2337 best = sd;
2338 }
2339 }
2340 }
2341 if (!best)
2342 return 1;
2343 /* OK, load this ddf */
2344 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
2345 dfd = dev_open(nm, O_RDONLY);
2346 if (dfd < 0)
2347 return 1;
2348 load_ddf_headers(dfd, super, NULL);
2349 load_ddf_global(dfd, super, NULL);
2350 close(dfd);
2351 /* Now we need the device-local bits */
2352 for (sd = sra->devs ; sd ; sd = sd->next) {
2353 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2354 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
2355 if (dfd < 0)
2356 return 2;
2357 seq = load_ddf_local(dfd, super, NULL, keep_fd);
2358 if (!keep_fd) close(dfd);
2359 }
2360 *sbp = super;
2361 if (st->ss == NULL) {
2362 st->ss = &super_ddf_container;
2363 st->minor_version = 0;
2364 st->max_devs = 512;
2365 st->container_dev = fd2devnum(fd);
2366 }
2367 return 0;
2368 }
2369 #endif
2370
2371
2372
2373 static struct mdinfo *container_content_ddf(struct supertype *st)
2374 {
2375 /* Given a container loaded by load_super_ddf_all,
2376 * extract information about all the arrays into
2377 * an mdinfo tree.
2378 *
2379 * For each vcl in conflist: create an mdinfo, fill it in,
2380 * then look for matching devices (phys_refnum) in dlist
2381 * and create appropriate device mdinfo.
2382 */
2383 struct ddf_super *ddf = st->sb;
2384 struct mdinfo *rest = NULL;
2385 struct vcl *vc;
2386
2387 for (vc = ddf->conflist ; vc ; vc=vc->next)
2388 {
2389 int mppe;
2390 int i;
2391 struct mdinfo *this;
2392 this = malloc(sizeof(*this));
2393 memset(this, 0, sizeof(*this));
2394 this->next = rest;
2395 rest = this;
2396
2397 this->array.major_version = 1000;
2398 this->array.minor_version = 0;
2399 this->array.patch_version = 0;
2400 this->array.level = map_num1(ddf_level_num, vc->conf.prl);
2401 this->array.raid_disks =
2402 __be16_to_cpu(vc->conf.prim_elmnt_count);
2403 this->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
2404 this->array.raid_disks);
2405 this->array.md_minor = -1;
2406 this->array.ctime = DECADE +
2407 __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
2408 this->array.utime = DECADE +
2409 __be32_to_cpu(vc->conf.timestamp);
2410 this->array.chunk_size = 512 << vc->conf.chunk_shift;
2411
2412 for (i=0; i < __be16_to_cpu(ddf->virt->populated_vdes); i++)
2413 if (memcmp(ddf->virt->entries[i].guid,
2414 vc->conf.guid, DDF_GUID_LEN) == 0)
2415 break;
2416 if ((ddf->virt->entries[i].state & DDF_state_inconsistent) ||
2417 (ddf->virt->entries[i].init_state & DDF_initstate_mask) !=
2418 DDF_init_full) {
2419 this->array.state = 0;
2420 this->resync_start = 0;
2421 } else {
2422 this->array.state = 1;
2423 this->resync_start = ~0ULL;
2424 }
2425 memcpy(this->name, ddf->virt->entries[i].name, 32);
2426 this->name[33]=0;
2427
2428 memset(this->uuid, 0, sizeof(this->uuid));
2429 this->component_size = __be64_to_cpu(vc->conf.blocks);
2430 this->array.size = this->component_size / 2;
2431 this->container_member = i;
2432
2433 sprintf(this->text_version, "/%s/%d",
2434 devnum2devname(st->container_dev),
2435 this->container_member);
2436
2437
2438 mppe = __be16_to_cpu(ddf->anchor.max_primary_element_entries);
2439 for (i=0 ; i < mppe ; i++) {
2440 struct mdinfo *dev;
2441 struct dl *d;
2442
2443 if (vc->conf.phys_refnum[i] == 0xFFFFFFFF)
2444 continue;
2445
2446 this->array.working_disks++;
2447
2448 for (d = ddf->dlist; d ; d=d->next)
2449 if (d->disk.refnum == vc->conf.phys_refnum[i])
2450 break;
2451 if (d == NULL)
2452 break;
2453
2454 dev = malloc(sizeof(*dev));
2455 memset(dev, 0, sizeof(*dev));
2456 dev->next = this->devs;
2457 this->devs = dev;
2458
2459 dev->disk.number = __be32_to_cpu(d->disk.refnum);
2460 dev->disk.major = d->major;
2461 dev->disk.minor = d->minor;
2462 dev->disk.raid_disk = i;
2463 dev->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
2464
2465 dev->events = __le32_to_cpu(ddf->primary.seq);
2466 dev->data_offset = vc->lba_offset[i];
2467 dev->component_size = __be64_to_cpu(vc->conf.blocks);
2468 if (d->devname)
2469 strcpy(dev->name, d->devname);
2470 }
2471 }
2472 return rest;
2473 }
2474
2475 static int init_zero_ddf(struct supertype *st,
2476 mdu_array_info_t *info,
2477 unsigned long long size, char *name,
2478 char *homehost, int *uuid)
2479 {
2480 st->sb = NULL;
2481 return 0;
2482 }
2483
2484 static int store_zero_ddf(struct supertype *st, int fd)
2485 {
2486 unsigned long long dsize;
2487 char buf[512];
2488 memset(buf, 0, 512);
2489
2490
2491 if (!get_dev_size(fd, NULL, &dsize))
2492 return 1;
2493
2494 lseek64(fd, dsize-512, 0);
2495 write(fd, buf, 512);
2496 return 0;
2497 }
2498
2499 static int compare_super_ddf(struct supertype *st, struct supertype *tst)
2500 {
2501 /*
2502 * return:
2503 * 0 same, or first was empty, and second was copied
2504 * 1 second had wrong number
2505 * 2 wrong uuid
2506 * 3 wrong other info
2507 */
2508 struct ddf_super *first = st->sb;
2509 struct ddf_super *second = tst->sb;
2510
2511 if (!first) {
2512 st->sb = tst->sb;
2513 tst->sb = NULL;
2514 return 0;
2515 }
2516
2517 if (memcmp(first->anchor.guid, second->anchor.guid, DDF_GUID_LEN) != 0)
2518 return 2;
2519
2520 /* FIXME should I look at anything else? */
2521 return 0;
2522 }
2523
2524 /*
2525 * A new array 'a' has been started which claims to be instance 'inst'
2526 * within container 'c'.
2527 * We need to confirm that the array matches the metadata in 'c' so
2528 * that we don't corrupt any metadata.
2529 */
2530 static int ddf_open_new(struct supertype *c, struct active_array *a, char *inst)
2531 {
2532 fprintf(stderr, "ddf: open_new %s\n", inst);
2533 a->info.container_member = atoi(inst);
2534 return 0;
2535 }
2536
2537 /*
2538 * The array 'a' is to be marked clean in the metadata.
2539 * If '->resync_start' is not ~(unsigned long long)0, then the array is only
2540 * clean up to the point (in sectors). If that cannot be recorded in the
2541 * metadata, then leave it as dirty.
2542 *
2543 * For DDF, we need to clear the DDF_state_inconsistent bit in the
2544 * !global! virtual_disk.virtual_entry structure.
2545 */
2546 static void ddf_set_array_state(struct active_array *a, int consistent)
2547 {
2548 struct ddf_super *ddf = a->container->sb;
2549 int inst = a->info.container_member;
2550 if (consistent)
2551 ddf->virt->entries[inst].state &= ~DDF_state_inconsistent;
2552 else
2553 ddf->virt->entries[inst].state |= DDF_state_inconsistent;
2554 ddf->virt->entries[inst].init_state &= ~DDF_initstate_mask;
2555 if (a->resync_start == ~0ULL)
2556 ddf->virt->entries[inst].init_state |= DDF_init_full;
2557 else if (a->resync_start == 0)
2558 ddf->virt->entries[inst].init_state |= DDF_init_not;
2559 else
2560 ddf->virt->entries[inst].init_state |= DDF_init_quick;
2561
2562 printf("ddf mark %s %llu\n", consistent?"clean":"dirty",
2563 a->resync_start);
2564 }
2565
2566 /*
2567 * The state of each disk is stored in the global phys_disk structure
2568 * in phys_disk.entries[n].state.
2569 * This makes various combinations awkward.
2570 * - When a device fails in any array, it must be failed in all arrays
2571 * that include a part of this device.
2572 * - When a component is rebuilding, we cannot include it officially in the
2573 * array unless this is the only array that uses the device.
2574 *
2575 * So: when transitioning:
2576 * Online -> failed, just set failed flag. monitor will propagate
2577 * spare -> online, the device might need to be added to the array.
2578 * spare -> failed, just set failed. Don't worry if in array or not.
2579 */
2580 static void ddf_set_disk(struct active_array *a, int n, int state)
2581 {
2582 struct ddf_super *ddf = a->container->sb;
2583 int inst = a->info.container_member;
2584 struct vd_config *vc = find_vdcr(ddf, inst);
2585 int pd = find_phys(ddf, vc->phys_refnum[n]);
2586 int i, st, working;
2587
2588 if (vc == NULL) {
2589 fprintf(stderr, "ddf: cannot find instance %d!!\n", inst);
2590 return;
2591 }
2592 if (pd < 0) {
2593 /* disk doesn't currently exist. If it is now in_sync,
2594 * insert it. */
2595 if ((state & DS_INSYNC) && ! (state & DS_FAULTY)) {
2596 /* Find dev 'n' in a->info->devs, determine the
2597 * ddf refnum, and set vc->phys_refnum and update
2598 * phys->entries[]
2599 */
2600 /* FIXME */
2601 }
2602 } else {
2603 if (state & DS_FAULTY)
2604 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Failed);
2605 if (state & DS_INSYNC) {
2606 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Online);
2607 ddf->phys->entries[pd].state &= __cpu_to_be16(~DDF_Rebuilding);
2608 }
2609 }
2610
2611 /* Now we need to check the state of the array and update
2612 * virtual_disk.entries[n].state.
2613 * It needs to be one of "optimal", "degraded", "failed".
2614 * I don't understand 'deleted' or 'missing'.
2615 */
2616 working = 0;
2617 for (i=0; i < a->info.array.raid_disks; i++) {
2618 pd = find_phys(ddf, vc->phys_refnum[i]);
2619 if (pd < 0)
2620 continue;
2621 st = ddf->phys->entries[pd].state;
2622 if ((state & (DDF_Online|DDF_Failed|DDF_Rebuilding))
2623 == DDF_Online)
2624 working++;
2625 }
2626 state = DDF_state_degraded;
2627 if (working == a->info.array.raid_disks)
2628 state = DDF_state_optimal;
2629 else switch(vc->prl) {
2630 case DDF_RAID0:
2631 case DDF_CONCAT:
2632 case DDF_JBOD:
2633 state = DDF_state_failed;
2634 break;
2635 case DDF_RAID1:
2636 if (working == 0)
2637 state = DDF_state_failed;
2638 break;
2639 case DDF_RAID4:
2640 case DDF_RAID5:
2641 if (working < a->info.array.raid_disks-1)
2642 state = DDF_state_failed;
2643 break;
2644 case DDF_RAID6:
2645 if (working < a->info.array.raid_disks-2)
2646 state = DDF_state_failed;
2647 else if (working == a->info.array.raid_disks-1)
2648 state = DDF_state_part_optimal;
2649 break;
2650 }
2651
2652 ddf->virt->entries[inst].state =
2653 (ddf->virt->entries[inst].state & ~DDF_state_mask)
2654 | state;
2655
2656 fprintf(stderr, "ddf: set_disk %d\n", n);
2657 }
2658
2659 static void ddf_sync_metadata(struct active_array *a)
2660 {
2661
2662 /*
2663 * Write all data to all devices.
2664 * Later, we might be able to track whether only local changes
2665 * have been made, or whether any global data has been changed,
2666 * but ddf is sufficiently weird that it probably always
2667 * changes global data ....
2668 */
2669 __write_init_super_ddf(a->container, 0);
2670 fprintf(stderr, "ddf: sync_metadata\n");
2671 }
2672
2673 struct superswitch super_ddf = {
2674 #ifndef MDASSEMBLE
2675 .examine_super = examine_super_ddf,
2676 .brief_examine_super = brief_examine_super_ddf,
2677 .detail_super = detail_super_ddf,
2678 .brief_detail_super = brief_detail_super_ddf,
2679 .validate_geometry = validate_geometry_ddf,
2680 #endif
2681 .match_home = match_home_ddf,
2682 .uuid_from_super= uuid_from_super_ddf,
2683 .getinfo_super = getinfo_super_ddf,
2684 .update_super = update_super_ddf,
2685
2686 .avail_size = avail_size_ddf,
2687
2688 .compare_super = compare_super_ddf,
2689
2690 .load_super = load_super_ddf,
2691 .init_super = init_zero_ddf,
2692 .store_super = store_zero_ddf,
2693 .free_super = free_super_ddf,
2694 .match_metadata_desc = match_metadata_desc_ddf,
2695 .getinfo_super_n = getinfo_super_n_container,
2696
2697
2698 .major = 1000,
2699 .swapuuid = 0,
2700 .external = 1,
2701
2702 /* for mdmon */
2703 .open_new = ddf_open_new,
2704 .set_array_state= ddf_set_array_state,
2705 .set_disk = ddf_set_disk,
2706 .sync_metadata = ddf_sync_metadata,
2707
2708
2709 };
2710
2711 /* Super_ddf_container is set by validate_geometry_ddf when given a
2712 * device that is not part of any array
2713 */
2714 struct superswitch super_ddf_container = {
2715 #ifndef MDASSEMBLE
2716 .validate_geometry = validate_geometry_ddf_container,
2717 .write_init_super = write_init_super_ddf,
2718 #endif
2719
2720 .load_super = load_super_ddf,
2721 .init_super = init_super_ddf,
2722 .add_to_super = add_to_super_ddf,
2723 .getinfo_super = getinfo_super_ddf,
2724
2725 .free_super = free_super_ddf,
2726
2727 .container_content = container_content_ddf,
2728 .getinfo_super_n = getinfo_super_n_container,
2729
2730 .major = 1000,
2731 .swapuuid = 0,
2732 .external = 1,
2733 };
2734
2735 struct superswitch super_ddf_bvd = {
2736 #ifndef MDASSEMBLE
2737 // .detail_super = detail_super_ddf_bvd,
2738 // .brief_detail_super = brief_detail_super_ddf_bvd,
2739 .validate_geometry = validate_geometry_ddf_bvd,
2740 .write_init_super = write_init_super_ddf,
2741 #endif
2742 .update_super = update_super_ddf,
2743 .init_super = init_super_ddf_bvd,
2744 .add_to_super = add_to_super_ddf_bvd,
2745 .getinfo_super = getinfo_super_ddf_bvd,
2746 .getinfo_super_n = getinfo_super_n_bvd,
2747
2748 .load_super = load_super_ddf,
2749 .free_super = free_super_ddf,
2750 .match_metadata_desc = match_metadata_desc_ddf_bvd,
2751
2752
2753 .major = 1001,
2754 .swapuuid = 0,
2755 .external = 2,
2756 };
2757
2758 struct superswitch super_ddf_svd = {
2759 #ifndef MDASSEMBLE
2760 // .detail_super = detail_super_ddf_svd,
2761 // .brief_detail_super = brief_detail_super_ddf_svd,
2762 .validate_geometry = validate_geometry_ddf_svd,
2763 #endif
2764 .update_super = update_super_ddf,
2765 .init_super = init_super_ddf,
2766
2767 .load_super = load_super_ddf,
2768 .free_super = free_super_ddf,
2769 .match_metadata_desc = match_metadata_desc_ddf_svd,
2770
2771 .major = 1002,
2772 .swapuuid = 0,
2773 .external = 2,
2774 };