]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-ddf.c
c0fd5fae671aea872a7942ce80719c5324030e77
[thirdparty/mdadm.git] / super-ddf.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2006-2009 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neil@brown.name>
23 *
24 * Specifications for DDF takes from Common RAID DDF Specification Revision 1.2
25 * (July 28 2006). Reused by permission of SNIA.
26 */
27
28 #define HAVE_STDINT_H 1
29 #include "mdadm.h"
30 #include "mdmon.h"
31 #include "sha1.h"
32 #include <values.h>
33
34 /* a non-official T10 name for creation GUIDs */
35 static char T10[] = "Linux-MD";
36
37 /* DDF timestamps are 1980 based, so we need to add
38 * second-in-decade-of-seventies to convert to linux timestamps.
39 * 10 years with 2 leap years.
40 */
41 #define DECADE (3600*24*(365*10+2))
42 unsigned long crc32(
43 unsigned long crc,
44 const unsigned char *buf,
45 unsigned len);
46
47 /* The DDF metadata handling.
48 * DDF metadata lives at the end of the device.
49 * The last 512 byte block provides an 'anchor' which is used to locate
50 * the rest of the metadata which usually lives immediately behind the anchor.
51 *
52 * Note:
53 * - all multibyte numeric fields are bigendian.
54 * - all strings are space padded.
55 *
56 */
57
58 /* Primary Raid Level (PRL) */
59 #define DDF_RAID0 0x00
60 #define DDF_RAID1 0x01
61 #define DDF_RAID3 0x03
62 #define DDF_RAID4 0x04
63 #define DDF_RAID5 0x05
64 #define DDF_RAID1E 0x11
65 #define DDF_JBOD 0x0f
66 #define DDF_CONCAT 0x1f
67 #define DDF_RAID5E 0x15
68 #define DDF_RAID5EE 0x25
69 #define DDF_RAID6 0x06
70
71 /* Raid Level Qualifier (RLQ) */
72 #define DDF_RAID0_SIMPLE 0x00
73 #define DDF_RAID1_SIMPLE 0x00 /* just 2 devices in this plex */
74 #define DDF_RAID1_MULTI 0x01 /* exactly 3 devices in this plex */
75 #define DDF_RAID3_0 0x00 /* parity in first extent */
76 #define DDF_RAID3_N 0x01 /* parity in last extent */
77 #define DDF_RAID4_0 0x00 /* parity in first extent */
78 #define DDF_RAID4_N 0x01 /* parity in last extent */
79 /* these apply to raid5e and raid5ee as well */
80 #define DDF_RAID5_0_RESTART 0x00 /* same as 'right asymmetric' - layout 1 */
81 #define DDF_RAID6_0_RESTART 0x01 /* raid6 different from raid5 here!!! */
82 #define DDF_RAID5_N_RESTART 0x02 /* same as 'left asymmetric' - layout 0 */
83 #define DDF_RAID5_N_CONTINUE 0x03 /* same as 'left symmetric' - layout 2 */
84
85 #define DDF_RAID1E_ADJACENT 0x00 /* raid10 nearcopies==2 */
86 #define DDF_RAID1E_OFFSET 0x01 /* raid10 offsetcopies==2 */
87
88 /* Secondary RAID Level (SRL) */
89 #define DDF_2STRIPED 0x00 /* This is weirder than RAID0 !! */
90 #define DDF_2MIRRORED 0x01
91 #define DDF_2CONCAT 0x02
92 #define DDF_2SPANNED 0x03 /* This is also weird - be careful */
93
94 /* Magic numbers */
95 #define DDF_HEADER_MAGIC __cpu_to_be32(0xDE11DE11)
96 #define DDF_CONTROLLER_MAGIC __cpu_to_be32(0xAD111111)
97 #define DDF_PHYS_RECORDS_MAGIC __cpu_to_be32(0x22222222)
98 #define DDF_PHYS_DATA_MAGIC __cpu_to_be32(0x33333333)
99 #define DDF_VIRT_RECORDS_MAGIC __cpu_to_be32(0xDDDDDDDD)
100 #define DDF_VD_CONF_MAGIC __cpu_to_be32(0xEEEEEEEE)
101 #define DDF_SPARE_ASSIGN_MAGIC __cpu_to_be32(0x55555555)
102 #define DDF_VU_CONF_MAGIC __cpu_to_be32(0x88888888)
103 #define DDF_VENDOR_LOG_MAGIC __cpu_to_be32(0x01dBEEF0)
104 #define DDF_BBM_LOG_MAGIC __cpu_to_be32(0xABADB10C)
105
106 #define DDF_GUID_LEN 24
107 #define DDF_REVISION_0 "01.00.00"
108 #define DDF_REVISION_2 "01.02.00"
109
110 struct ddf_header {
111 __u32 magic; /* DDF_HEADER_MAGIC */
112 __u32 crc;
113 char guid[DDF_GUID_LEN];
114 char revision[8]; /* 01.02.00 */
115 __u32 seq; /* starts at '1' */
116 __u32 timestamp;
117 __u8 openflag;
118 __u8 foreignflag;
119 __u8 enforcegroups;
120 __u8 pad0; /* 0xff */
121 __u8 pad1[12]; /* 12 * 0xff */
122 /* 64 bytes so far */
123 __u8 header_ext[32]; /* reserved: fill with 0xff */
124 __u64 primary_lba;
125 __u64 secondary_lba;
126 __u8 type;
127 __u8 pad2[3]; /* 0xff */
128 __u32 workspace_len; /* sectors for vendor space -
129 * at least 32768(sectors) */
130 __u64 workspace_lba;
131 __u16 max_pd_entries; /* one of 15, 63, 255, 1023, 4095 */
132 __u16 max_vd_entries; /* 2^(4,6,8,10,12)-1 : i.e. as above */
133 __u16 max_partitions; /* i.e. max num of configuration
134 record entries per disk */
135 __u16 config_record_len; /* 1 +ROUNDUP(max_primary_element_entries
136 *12/512) */
137 __u16 max_primary_element_entries; /* 16, 64, 256, 1024, or 4096 */
138 __u8 pad3[54]; /* 0xff */
139 /* 192 bytes so far */
140 __u32 controller_section_offset;
141 __u32 controller_section_length;
142 __u32 phys_section_offset;
143 __u32 phys_section_length;
144 __u32 virt_section_offset;
145 __u32 virt_section_length;
146 __u32 config_section_offset;
147 __u32 config_section_length;
148 __u32 data_section_offset;
149 __u32 data_section_length;
150 __u32 bbm_section_offset;
151 __u32 bbm_section_length;
152 __u32 diag_space_offset;
153 __u32 diag_space_length;
154 __u32 vendor_offset;
155 __u32 vendor_length;
156 /* 256 bytes so far */
157 __u8 pad4[256]; /* 0xff */
158 };
159
160 /* type field */
161 #define DDF_HEADER_ANCHOR 0x00
162 #define DDF_HEADER_PRIMARY 0x01
163 #define DDF_HEADER_SECONDARY 0x02
164
165 /* The content of the 'controller section' - global scope */
166 struct ddf_controller_data {
167 __u32 magic; /* DDF_CONTROLLER_MAGIC */
168 __u32 crc;
169 char guid[DDF_GUID_LEN];
170 struct controller_type {
171 __u16 vendor_id;
172 __u16 device_id;
173 __u16 sub_vendor_id;
174 __u16 sub_device_id;
175 } type;
176 char product_id[16];
177 __u8 pad[8]; /* 0xff */
178 __u8 vendor_data[448];
179 };
180
181 /* The content of phys_section - global scope */
182 struct phys_disk {
183 __u32 magic; /* DDF_PHYS_RECORDS_MAGIC */
184 __u32 crc;
185 __u16 used_pdes;
186 __u16 max_pdes;
187 __u8 pad[52];
188 struct phys_disk_entry {
189 char guid[DDF_GUID_LEN];
190 __u32 refnum;
191 __u16 type;
192 __u16 state;
193 __u64 config_size; /* DDF structures must be after here */
194 char path[18]; /* another horrible structure really */
195 __u8 pad[6];
196 } entries[0];
197 };
198
199 /* phys_disk_entry.type is a bitmap - bigendian remember */
200 #define DDF_Forced_PD_GUID 1
201 #define DDF_Active_in_VD 2
202 #define DDF_Global_Spare 4 /* VD_CONF records are ignored */
203 #define DDF_Spare 8 /* overrides Global_spare */
204 #define DDF_Foreign 16
205 #define DDF_Legacy 32 /* no DDF on this device */
206
207 #define DDF_Interface_mask 0xf00
208 #define DDF_Interface_SCSI 0x100
209 #define DDF_Interface_SAS 0x200
210 #define DDF_Interface_SATA 0x300
211 #define DDF_Interface_FC 0x400
212
213 /* phys_disk_entry.state is a bigendian bitmap */
214 #define DDF_Online 1
215 #define DDF_Failed 2 /* overrides 1,4,8 */
216 #define DDF_Rebuilding 4
217 #define DDF_Transition 8
218 #define DDF_SMART 16
219 #define DDF_ReadErrors 32
220 #define DDF_Missing 64
221
222 /* The content of the virt_section global scope */
223 struct virtual_disk {
224 __u32 magic; /* DDF_VIRT_RECORDS_MAGIC */
225 __u32 crc;
226 __u16 populated_vdes;
227 __u16 max_vdes;
228 __u8 pad[52];
229 struct virtual_entry {
230 char guid[DDF_GUID_LEN];
231 __u16 unit;
232 __u16 pad0; /* 0xffff */
233 __u16 guid_crc;
234 __u16 type;
235 __u8 state;
236 __u8 init_state;
237 __u8 pad1[14];
238 char name[16];
239 } entries[0];
240 };
241
242 /* virtual_entry.type is a bitmap - bigendian */
243 #define DDF_Shared 1
244 #define DDF_Enforce_Groups 2
245 #define DDF_Unicode 4
246 #define DDF_Owner_Valid 8
247
248 /* virtual_entry.state is a bigendian bitmap */
249 #define DDF_state_mask 0x7
250 #define DDF_state_optimal 0x0
251 #define DDF_state_degraded 0x1
252 #define DDF_state_deleted 0x2
253 #define DDF_state_missing 0x3
254 #define DDF_state_failed 0x4
255 #define DDF_state_part_optimal 0x5
256
257 #define DDF_state_morphing 0x8
258 #define DDF_state_inconsistent 0x10
259
260 /* virtual_entry.init_state is a bigendian bitmap */
261 #define DDF_initstate_mask 0x03
262 #define DDF_init_not 0x00
263 #define DDF_init_quick 0x01 /* initialisation is progress.
264 * i.e. 'state_inconsistent' */
265 #define DDF_init_full 0x02
266
267 #define DDF_access_mask 0xc0
268 #define DDF_access_rw 0x00
269 #define DDF_access_ro 0x80
270 #define DDF_access_blocked 0xc0
271
272 /* The content of the config_section - local scope
273 * It has multiple records each config_record_len sectors
274 * They can be vd_config or spare_assign
275 */
276
277 struct vd_config {
278 __u32 magic; /* DDF_VD_CONF_MAGIC */
279 __u32 crc;
280 char guid[DDF_GUID_LEN];
281 __u32 timestamp;
282 __u32 seqnum;
283 __u8 pad0[24];
284 __u16 prim_elmnt_count;
285 __u8 chunk_shift; /* 0 == 512, 1==1024 etc */
286 __u8 prl;
287 __u8 rlq;
288 __u8 sec_elmnt_count;
289 __u8 sec_elmnt_seq;
290 __u8 srl;
291 __u64 blocks; /* blocks per component could be different
292 * on different component devices...(only
293 * for concat I hope) */
294 __u64 array_blocks; /* blocks in array */
295 __u8 pad1[8];
296 __u32 spare_refs[8];
297 __u8 cache_pol[8];
298 __u8 bg_rate;
299 __u8 pad2[3];
300 __u8 pad3[52];
301 __u8 pad4[192];
302 __u8 v0[32]; /* reserved- 0xff */
303 __u8 v1[32]; /* reserved- 0xff */
304 __u8 v2[16]; /* reserved- 0xff */
305 __u8 v3[16]; /* reserved- 0xff */
306 __u8 vendor[32];
307 __u32 phys_refnum[0]; /* refnum of each disk in sequence */
308 /*__u64 lba_offset[0]; LBA offset in each phys. Note extents in a
309 bvd are always the same size */
310 };
311
312 /* vd_config.cache_pol[7] is a bitmap */
313 #define DDF_cache_writeback 1 /* else writethrough */
314 #define DDF_cache_wadaptive 2 /* only applies if writeback */
315 #define DDF_cache_readahead 4
316 #define DDF_cache_radaptive 8 /* only if doing read-ahead */
317 #define DDF_cache_ifnobatt 16 /* even to write cache if battery is poor */
318 #define DDF_cache_wallowed 32 /* enable write caching */
319 #define DDF_cache_rallowed 64 /* enable read caching */
320
321 struct spare_assign {
322 __u32 magic; /* DDF_SPARE_ASSIGN_MAGIC */
323 __u32 crc;
324 __u32 timestamp;
325 __u8 reserved[7];
326 __u8 type;
327 __u16 populated; /* SAEs used */
328 __u16 max; /* max SAEs */
329 __u8 pad[8];
330 struct spare_assign_entry {
331 char guid[DDF_GUID_LEN];
332 __u16 secondary_element;
333 __u8 pad[6];
334 } spare_ents[0];
335 };
336 /* spare_assign.type is a bitmap */
337 #define DDF_spare_dedicated 0x1 /* else global */
338 #define DDF_spare_revertible 0x2 /* else committable */
339 #define DDF_spare_active 0x4 /* else not active */
340 #define DDF_spare_affinity 0x8 /* enclosure affinity */
341
342 /* The data_section contents - local scope */
343 struct disk_data {
344 __u32 magic; /* DDF_PHYS_DATA_MAGIC */
345 __u32 crc;
346 char guid[DDF_GUID_LEN];
347 __u32 refnum; /* crc of some magic drive data ... */
348 __u8 forced_ref; /* set when above was not result of magic */
349 __u8 forced_guid; /* set if guid was forced rather than magic */
350 __u8 vendor[32];
351 __u8 pad[442];
352 };
353
354 /* bbm_section content */
355 struct bad_block_log {
356 __u32 magic;
357 __u32 crc;
358 __u16 entry_count;
359 __u32 spare_count;
360 __u8 pad[10];
361 __u64 first_spare;
362 struct mapped_block {
363 __u64 defective_start;
364 __u32 replacement_start;
365 __u16 remap_count;
366 __u8 pad[2];
367 } entries[0];
368 };
369
370 /* Struct for internally holding ddf structures */
371 /* The DDF structure stored on each device is potentially
372 * quite different, as some data is global and some is local.
373 * The global data is:
374 * - ddf header
375 * - controller_data
376 * - Physical disk records
377 * - Virtual disk records
378 * The local data is:
379 * - Configuration records
380 * - Physical Disk data section
381 * ( and Bad block and vendor which I don't care about yet).
382 *
383 * The local data is parsed into separate lists as it is read
384 * and reconstructed for writing. This means that we only need
385 * to make config changes once and they are automatically
386 * propagated to all devices.
387 * Note that the ddf_super has space of the conf and disk data
388 * for this disk and also for a list of all such data.
389 * The list is only used for the superblock that is being
390 * built in Create or Assemble to describe the whole array.
391 */
392 struct ddf_super {
393 struct ddf_header anchor, primary, secondary;
394 struct ddf_controller_data controller;
395 struct ddf_header *active;
396 struct phys_disk *phys;
397 struct virtual_disk *virt;
398 int pdsize, vdsize;
399 unsigned int max_part, mppe, conf_rec_len;
400 int currentdev;
401 int updates_pending;
402 struct vcl {
403 union {
404 char space[512];
405 struct {
406 struct vcl *next;
407 __u64 *lba_offset; /* location in 'conf' of
408 * the lba table */
409 unsigned int vcnum; /* index into ->virt */
410 __u64 *block_sizes; /* NULL if all the same */
411 };
412 };
413 struct vd_config conf;
414 } *conflist, *currentconf;
415 struct dl {
416 union {
417 char space[512];
418 struct {
419 struct dl *next;
420 int major, minor;
421 char *devname;
422 int fd;
423 unsigned long long size; /* sectors */
424 int pdnum; /* index in ->phys */
425 struct spare_assign *spare;
426 void *mdupdate; /* hold metadata update */
427
428 /* These fields used by auto-layout */
429 int raiddisk; /* slot to fill in autolayout */
430 __u64 esize;
431 };
432 };
433 struct disk_data disk;
434 struct vcl *vlist[0]; /* max_part in size */
435 } *dlist, *add_list;
436 };
437
438 #ifndef offsetof
439 #define offsetof(t,f) ((size_t)&(((t*)0)->f))
440 #endif
441
442 static unsigned int calc_crc(void *buf, int len)
443 {
444 /* crcs are always at the same place as in the ddf_header */
445 struct ddf_header *ddf = buf;
446 __u32 oldcrc = ddf->crc;
447 __u32 newcrc;
448 ddf->crc = 0xffffffff;
449
450 newcrc = crc32(0, buf, len);
451 ddf->crc = oldcrc;
452 /* The crc is store (like everything) bigendian, so convert
453 * here for simplicity
454 */
455 return __cpu_to_be32(newcrc);
456 }
457
458 static int load_ddf_header(int fd, unsigned long long lba,
459 unsigned long long size,
460 int type,
461 struct ddf_header *hdr, struct ddf_header *anchor)
462 {
463 /* read a ddf header (primary or secondary) from fd/lba
464 * and check that it is consistent with anchor
465 * Need to check:
466 * magic, crc, guid, rev, and LBA's header_type, and
467 * everything after header_type must be the same
468 */
469 if (lba >= size-1)
470 return 0;
471
472 if (lseek64(fd, lba<<9, 0) < 0)
473 return 0;
474
475 if (read(fd, hdr, 512) != 512)
476 return 0;
477
478 if (hdr->magic != DDF_HEADER_MAGIC)
479 return 0;
480 if (calc_crc(hdr, 512) != hdr->crc)
481 return 0;
482 if (memcmp(anchor->guid, hdr->guid, DDF_GUID_LEN) != 0 ||
483 memcmp(anchor->revision, hdr->revision, 8) != 0 ||
484 anchor->primary_lba != hdr->primary_lba ||
485 anchor->secondary_lba != hdr->secondary_lba ||
486 hdr->type != type ||
487 memcmp(anchor->pad2, hdr->pad2, 512 -
488 offsetof(struct ddf_header, pad2)) != 0)
489 return 0;
490
491 /* Looks good enough to me... */
492 return 1;
493 }
494
495 static void *load_section(int fd, struct ddf_super *super, void *buf,
496 __u32 offset_be, __u32 len_be, int check)
497 {
498 unsigned long long offset = __be32_to_cpu(offset_be);
499 unsigned long long len = __be32_to_cpu(len_be);
500 int dofree = (buf == NULL);
501
502 if (check)
503 if (len != 2 && len != 8 && len != 32
504 && len != 128 && len != 512)
505 return NULL;
506
507 if (len > 1024)
508 return NULL;
509 if (buf) {
510 /* All pre-allocated sections are a single block */
511 if (len != 1)
512 return NULL;
513 } else if (posix_memalign(&buf, 512, len<<9) != 0)
514 buf = NULL;
515
516 if (!buf)
517 return NULL;
518
519 if (super->active->type == 1)
520 offset += __be64_to_cpu(super->active->primary_lba);
521 else
522 offset += __be64_to_cpu(super->active->secondary_lba);
523
524 if ((unsigned long long)lseek64(fd, offset<<9, 0) != (offset<<9)) {
525 if (dofree)
526 free(buf);
527 return NULL;
528 }
529 if ((unsigned long long)read(fd, buf, len<<9) != (len<<9)) {
530 if (dofree)
531 free(buf);
532 return NULL;
533 }
534 return buf;
535 }
536
537 static int load_ddf_headers(int fd, struct ddf_super *super, char *devname)
538 {
539 unsigned long long dsize;
540
541 get_dev_size(fd, NULL, &dsize);
542
543 if (lseek64(fd, dsize-512, 0) < 0) {
544 if (devname)
545 pr_err("Cannot seek to anchor block on %s: %s\n",
546 devname, strerror(errno));
547 return 1;
548 }
549 if (read(fd, &super->anchor, 512) != 512) {
550 if (devname)
551 pr_err("Cannot read anchor block on %s: %s\n",
552 devname, strerror(errno));
553 return 1;
554 }
555 if (super->anchor.magic != DDF_HEADER_MAGIC) {
556 if (devname)
557 pr_err("no DDF anchor found on %s\n",
558 devname);
559 return 2;
560 }
561 if (calc_crc(&super->anchor, 512) != super->anchor.crc) {
562 if (devname)
563 pr_err("bad CRC on anchor on %s\n",
564 devname);
565 return 2;
566 }
567 if (memcmp(super->anchor.revision, DDF_REVISION_0, 8) != 0 &&
568 memcmp(super->anchor.revision, DDF_REVISION_2, 8) != 0) {
569 if (devname)
570 pr_err("can only support super revision"
571 " %.8s and earlier, not %.8s on %s\n",
572 DDF_REVISION_2, super->anchor.revision,devname);
573 return 2;
574 }
575 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.primary_lba),
576 dsize >> 9, 1,
577 &super->primary, &super->anchor) == 0) {
578 if (devname)
579 pr_err("Failed to load primary DDF header "
580 "on %s\n", devname);
581 return 2;
582 }
583 super->active = &super->primary;
584 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.secondary_lba),
585 dsize >> 9, 2,
586 &super->secondary, &super->anchor)) {
587 if ((__be32_to_cpu(super->primary.seq)
588 < __be32_to_cpu(super->secondary.seq) &&
589 !super->secondary.openflag)
590 || (__be32_to_cpu(super->primary.seq)
591 == __be32_to_cpu(super->secondary.seq) &&
592 super->primary.openflag && !super->secondary.openflag)
593 )
594 super->active = &super->secondary;
595 }
596 return 0;
597 }
598
599 static int load_ddf_global(int fd, struct ddf_super *super, char *devname)
600 {
601 void *ok;
602 ok = load_section(fd, super, &super->controller,
603 super->active->controller_section_offset,
604 super->active->controller_section_length,
605 0);
606 super->phys = load_section(fd, super, NULL,
607 super->active->phys_section_offset,
608 super->active->phys_section_length,
609 1);
610 super->pdsize = __be32_to_cpu(super->active->phys_section_length) * 512;
611
612 super->virt = load_section(fd, super, NULL,
613 super->active->virt_section_offset,
614 super->active->virt_section_length,
615 1);
616 super->vdsize = __be32_to_cpu(super->active->virt_section_length) * 512;
617 if (!ok ||
618 !super->phys ||
619 !super->virt) {
620 free(super->phys);
621 free(super->virt);
622 super->phys = NULL;
623 super->virt = NULL;
624 return 2;
625 }
626 super->conflist = NULL;
627 super->dlist = NULL;
628
629 super->max_part = __be16_to_cpu(super->active->max_partitions);
630 super->mppe = __be16_to_cpu(super->active->max_primary_element_entries);
631 super->conf_rec_len = __be16_to_cpu(super->active->config_record_len);
632 return 0;
633 }
634
635 static int load_ddf_local(int fd, struct ddf_super *super,
636 char *devname, int keep)
637 {
638 struct dl *dl;
639 struct stat stb;
640 char *conf;
641 unsigned int i;
642 unsigned int confsec;
643 int vnum;
644 unsigned int max_virt_disks = __be16_to_cpu(super->active->max_vd_entries);
645 unsigned long long dsize;
646
647 /* First the local disk info */
648 if (posix_memalign((void**)&dl, 512,
649 sizeof(*dl) +
650 (super->max_part) * sizeof(dl->vlist[0])) != 0) {
651 pr_err("%s could not allocate disk info buffer\n",
652 __func__);
653 return 1;
654 }
655
656 load_section(fd, super, &dl->disk,
657 super->active->data_section_offset,
658 super->active->data_section_length,
659 0);
660 dl->devname = devname ? xstrdup(devname) : NULL;
661
662 fstat(fd, &stb);
663 dl->major = major(stb.st_rdev);
664 dl->minor = minor(stb.st_rdev);
665 dl->next = super->dlist;
666 dl->fd = keep ? fd : -1;
667
668 dl->size = 0;
669 if (get_dev_size(fd, devname, &dsize))
670 dl->size = dsize >> 9;
671 dl->spare = NULL;
672 for (i = 0 ; i < super->max_part ; i++)
673 dl->vlist[i] = NULL;
674 super->dlist = dl;
675 dl->pdnum = -1;
676 for (i = 0; i < __be16_to_cpu(super->active->max_pd_entries); i++)
677 if (memcmp(super->phys->entries[i].guid,
678 dl->disk.guid, DDF_GUID_LEN) == 0)
679 dl->pdnum = i;
680
681 /* Now the config list. */
682 /* 'conf' is an array of config entries, some of which are
683 * probably invalid. Those which are good need to be copied into
684 * the conflist
685 */
686
687 conf = load_section(fd, super, NULL,
688 super->active->config_section_offset,
689 super->active->config_section_length,
690 0);
691
692 vnum = 0;
693 for (confsec = 0;
694 confsec < __be32_to_cpu(super->active->config_section_length);
695 confsec += super->conf_rec_len) {
696 struct vd_config *vd =
697 (struct vd_config *)((char*)conf + confsec*512);
698 struct vcl *vcl;
699
700 if (vd->magic == DDF_SPARE_ASSIGN_MAGIC) {
701 if (dl->spare)
702 continue;
703 if (posix_memalign((void**)&dl->spare, 512,
704 super->conf_rec_len*512) != 0) {
705 pr_err("%s could not allocate spare info buf\n",
706 __func__);
707 return 1;
708 }
709
710 memcpy(dl->spare, vd, super->conf_rec_len*512);
711 continue;
712 }
713 if (vd->magic != DDF_VD_CONF_MAGIC)
714 continue;
715 for (vcl = super->conflist; vcl; vcl = vcl->next) {
716 if (memcmp(vcl->conf.guid,
717 vd->guid, DDF_GUID_LEN) == 0)
718 break;
719 }
720
721 if (vcl) {
722 dl->vlist[vnum++] = vcl;
723 if (__be32_to_cpu(vd->seqnum) <=
724 __be32_to_cpu(vcl->conf.seqnum))
725 continue;
726 } else {
727 if (posix_memalign((void**)&vcl, 512,
728 (super->conf_rec_len*512 +
729 offsetof(struct vcl, conf))) != 0) {
730 pr_err("%s could not allocate vcl buf\n",
731 __func__);
732 return 1;
733 }
734 vcl->next = super->conflist;
735 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
736 super->conflist = vcl;
737 dl->vlist[vnum++] = vcl;
738 }
739 memcpy(&vcl->conf, vd, super->conf_rec_len*512);
740 vcl->lba_offset = (__u64*)
741 &vcl->conf.phys_refnum[super->mppe];
742
743 for (i=0; i < max_virt_disks ; i++)
744 if (memcmp(super->virt->entries[i].guid,
745 vcl->conf.guid, DDF_GUID_LEN)==0)
746 break;
747 if (i < max_virt_disks)
748 vcl->vcnum = i;
749 }
750 free(conf);
751
752 return 0;
753 }
754
755 #ifndef MDASSEMBLE
756 static int load_super_ddf_all(struct supertype *st, int fd,
757 void **sbp, char *devname);
758 #endif
759
760 static void free_super_ddf(struct supertype *st);
761
762 static int load_super_ddf(struct supertype *st, int fd,
763 char *devname)
764 {
765 unsigned long long dsize;
766 struct ddf_super *super;
767 int rv;
768
769 if (get_dev_size(fd, devname, &dsize) == 0)
770 return 1;
771
772 if (test_partition(fd))
773 /* DDF is not allowed on partitions */
774 return 1;
775
776 /* 32M is a lower bound */
777 if (dsize <= 32*1024*1024) {
778 if (devname)
779 pr_err("%s is too small for ddf: "
780 "size is %llu sectors.\n",
781 devname, dsize>>9);
782 return 1;
783 }
784 if (dsize & 511) {
785 if (devname)
786 pr_err("%s is an odd size for ddf: "
787 "size is %llu bytes.\n",
788 devname, dsize);
789 return 1;
790 }
791
792 free_super_ddf(st);
793
794 if (posix_memalign((void**)&super, 512, sizeof(*super))!= 0) {
795 pr_err("malloc of %zu failed.\n",
796 sizeof(*super));
797 return 1;
798 }
799 memset(super, 0, sizeof(*super));
800
801 rv = load_ddf_headers(fd, super, devname);
802 if (rv) {
803 free(super);
804 return rv;
805 }
806
807 /* Have valid headers and have chosen the best. Let's read in the rest*/
808
809 rv = load_ddf_global(fd, super, devname);
810
811 if (rv) {
812 if (devname)
813 pr_err("Failed to load all information "
814 "sections on %s\n", devname);
815 free(super);
816 return rv;
817 }
818
819 rv = load_ddf_local(fd, super, devname, 0);
820
821 if (rv) {
822 if (devname)
823 pr_err("Failed to load all information "
824 "sections on %s\n", devname);
825 free(super);
826 return rv;
827 }
828
829 /* Should possibly check the sections .... */
830
831 st->sb = super;
832 if (st->ss == NULL) {
833 st->ss = &super_ddf;
834 st->minor_version = 0;
835 st->max_devs = 512;
836 }
837 return 0;
838
839 }
840
841 static void free_super_ddf(struct supertype *st)
842 {
843 struct ddf_super *ddf = st->sb;
844 if (ddf == NULL)
845 return;
846 free(ddf->phys);
847 free(ddf->virt);
848 while (ddf->conflist) {
849 struct vcl *v = ddf->conflist;
850 ddf->conflist = v->next;
851 if (v->block_sizes)
852 free(v->block_sizes);
853 free(v);
854 }
855 while (ddf->dlist) {
856 struct dl *d = ddf->dlist;
857 ddf->dlist = d->next;
858 if (d->fd >= 0)
859 close(d->fd);
860 if (d->spare)
861 free(d->spare);
862 free(d);
863 }
864 while (ddf->add_list) {
865 struct dl *d = ddf->add_list;
866 ddf->add_list = d->next;
867 if (d->fd >= 0)
868 close(d->fd);
869 if (d->spare)
870 free(d->spare);
871 free(d);
872 }
873 free(ddf);
874 st->sb = NULL;
875 }
876
877 static struct supertype *match_metadata_desc_ddf(char *arg)
878 {
879 /* 'ddf' only support containers */
880 struct supertype *st;
881 if (strcmp(arg, "ddf") != 0 &&
882 strcmp(arg, "default") != 0
883 )
884 return NULL;
885
886 st = xcalloc(1, sizeof(*st));
887 st->ss = &super_ddf;
888 st->max_devs = 512;
889 st->minor_version = 0;
890 st->sb = NULL;
891 return st;
892 }
893
894 #ifndef MDASSEMBLE
895
896 static mapping_t ddf_state[] = {
897 { "Optimal", 0},
898 { "Degraded", 1},
899 { "Deleted", 2},
900 { "Missing", 3},
901 { "Failed", 4},
902 { "Partially Optimal", 5},
903 { "-reserved-", 6},
904 { "-reserved-", 7},
905 { NULL, 0}
906 };
907
908 static mapping_t ddf_init_state[] = {
909 { "Not Initialised", 0},
910 { "QuickInit in Progress", 1},
911 { "Fully Initialised", 2},
912 { "*UNKNOWN*", 3},
913 { NULL, 0}
914 };
915 static mapping_t ddf_access[] = {
916 { "Read/Write", 0},
917 { "Reserved", 1},
918 { "Read Only", 2},
919 { "Blocked (no access)", 3},
920 { NULL ,0}
921 };
922
923 static mapping_t ddf_level[] = {
924 { "RAID0", DDF_RAID0},
925 { "RAID1", DDF_RAID1},
926 { "RAID3", DDF_RAID3},
927 { "RAID4", DDF_RAID4},
928 { "RAID5", DDF_RAID5},
929 { "RAID1E",DDF_RAID1E},
930 { "JBOD", DDF_JBOD},
931 { "CONCAT",DDF_CONCAT},
932 { "RAID5E",DDF_RAID5E},
933 { "RAID5EE",DDF_RAID5EE},
934 { "RAID6", DDF_RAID6},
935 { NULL, 0}
936 };
937 static mapping_t ddf_sec_level[] = {
938 { "Striped", DDF_2STRIPED},
939 { "Mirrored", DDF_2MIRRORED},
940 { "Concat", DDF_2CONCAT},
941 { "Spanned", DDF_2SPANNED},
942 { NULL, 0}
943 };
944 #endif
945
946 struct num_mapping {
947 int num1, num2;
948 };
949 static struct num_mapping ddf_level_num[] = {
950 { DDF_RAID0, 0 },
951 { DDF_RAID1, 1 },
952 { DDF_RAID3, LEVEL_UNSUPPORTED },
953 { DDF_RAID4, 4 },
954 { DDF_RAID5, 5 },
955 { DDF_RAID1E, LEVEL_UNSUPPORTED },
956 { DDF_JBOD, LEVEL_UNSUPPORTED },
957 { DDF_CONCAT, LEVEL_LINEAR },
958 { DDF_RAID5E, LEVEL_UNSUPPORTED },
959 { DDF_RAID5EE, LEVEL_UNSUPPORTED },
960 { DDF_RAID6, 6},
961 { MAXINT, MAXINT }
962 };
963
964 static int map_num1(struct num_mapping *map, int num)
965 {
966 int i;
967 for (i=0 ; map[i].num1 != MAXINT; i++)
968 if (map[i].num1 == num)
969 break;
970 return map[i].num2;
971 }
972
973 static int all_ff(char *guid)
974 {
975 int i;
976 for (i = 0; i < DDF_GUID_LEN; i++)
977 if (guid[i] != (char)0xff)
978 return 0;
979 return 1;
980 }
981
982 #ifndef MDASSEMBLE
983 static void print_guid(char *guid, int tstamp)
984 {
985 /* A GUIDs are part (or all) ASCII and part binary.
986 * They tend to be space padded.
987 * We print the GUID in HEX, then in parentheses add
988 * any initial ASCII sequence, and a possible
989 * time stamp from bytes 16-19
990 */
991 int l = DDF_GUID_LEN;
992 int i;
993
994 for (i=0 ; i<DDF_GUID_LEN ; i++) {
995 if ((i&3)==0 && i != 0) printf(":");
996 printf("%02X", guid[i]&255);
997 }
998
999 printf("\n (");
1000 while (l && guid[l-1] == ' ')
1001 l--;
1002 for (i=0 ; i<l ; i++) {
1003 if (guid[i] >= 0x20 && guid[i] < 0x7f)
1004 fputc(guid[i], stdout);
1005 else
1006 break;
1007 }
1008 if (tstamp) {
1009 time_t then = __be32_to_cpu(*(__u32*)(guid+16)) + DECADE;
1010 char tbuf[100];
1011 struct tm *tm;
1012 tm = localtime(&then);
1013 strftime(tbuf, 100, " %D %T",tm);
1014 fputs(tbuf, stdout);
1015 }
1016 printf(")");
1017 }
1018
1019 static void examine_vd(int n, struct ddf_super *sb, char *guid)
1020 {
1021 int crl = sb->conf_rec_len;
1022 struct vcl *vcl;
1023
1024 for (vcl = sb->conflist ; vcl ; vcl = vcl->next) {
1025 unsigned int i;
1026 struct vd_config *vc = &vcl->conf;
1027
1028 if (calc_crc(vc, crl*512) != vc->crc)
1029 continue;
1030 if (memcmp(vc->guid, guid, DDF_GUID_LEN) != 0)
1031 continue;
1032
1033 /* Ok, we know about this VD, let's give more details */
1034 printf(" Raid Devices[%d] : %d (", n,
1035 __be16_to_cpu(vc->prim_elmnt_count));
1036 for (i = 0; i < __be16_to_cpu(vc->prim_elmnt_count); i++) {
1037 int j;
1038 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1039 for (j=0; j<cnt; j++)
1040 if (vc->phys_refnum[i] == sb->phys->entries[j].refnum)
1041 break;
1042 if (i) printf(" ");
1043 if (j < cnt)
1044 printf("%d", j);
1045 else
1046 printf("--");
1047 }
1048 printf(")\n");
1049 if (vc->chunk_shift != 255)
1050 printf(" Chunk Size[%d] : %d sectors\n", n,
1051 1 << vc->chunk_shift);
1052 printf(" Raid Level[%d] : %s\n", n,
1053 map_num(ddf_level, vc->prl)?:"-unknown-");
1054 if (vc->sec_elmnt_count != 1) {
1055 printf(" Secondary Position[%d] : %d of %d\n", n,
1056 vc->sec_elmnt_seq, vc->sec_elmnt_count);
1057 printf(" Secondary Level[%d] : %s\n", n,
1058 map_num(ddf_sec_level, vc->srl) ?: "-unknown-");
1059 }
1060 printf(" Device Size[%d] : %llu\n", n,
1061 (unsigned long long)__be64_to_cpu(vc->blocks)/2);
1062 printf(" Array Size[%d] : %llu\n", n,
1063 (unsigned long long)__be64_to_cpu(vc->array_blocks)/2);
1064 }
1065 }
1066
1067 static void examine_vds(struct ddf_super *sb)
1068 {
1069 int cnt = __be16_to_cpu(sb->virt->populated_vdes);
1070 int i;
1071 printf(" Virtual Disks : %d\n", cnt);
1072
1073 for (i=0; i<cnt; i++) {
1074 struct virtual_entry *ve = &sb->virt->entries[i];
1075 printf("\n");
1076 printf(" VD GUID[%d] : ", i); print_guid(ve->guid, 1);
1077 printf("\n");
1078 printf(" unit[%d] : %d\n", i, __be16_to_cpu(ve->unit));
1079 printf(" state[%d] : %s, %s%s\n", i,
1080 map_num(ddf_state, ve->state & 7),
1081 (ve->state & 8) ? "Morphing, ": "",
1082 (ve->state & 16)? "Not Consistent" : "Consistent");
1083 printf(" init state[%d] : %s\n", i,
1084 map_num(ddf_init_state, ve->init_state&3));
1085 printf(" access[%d] : %s\n", i,
1086 map_num(ddf_access, (ve->init_state>>6) & 3));
1087 printf(" Name[%d] : %.16s\n", i, ve->name);
1088 examine_vd(i, sb, ve->guid);
1089 }
1090 if (cnt) printf("\n");
1091 }
1092
1093 static void examine_pds(struct ddf_super *sb)
1094 {
1095 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1096 int i;
1097 struct dl *dl;
1098 printf(" Physical Disks : %d\n", cnt);
1099 printf(" Number RefNo Size Device Type/State\n");
1100
1101 for (i=0 ; i<cnt ; i++) {
1102 struct phys_disk_entry *pd = &sb->phys->entries[i];
1103 int type = __be16_to_cpu(pd->type);
1104 int state = __be16_to_cpu(pd->state);
1105
1106 //printf(" PD GUID[%d] : ", i); print_guid(pd->guid, 0);
1107 //printf("\n");
1108 printf(" %3d %08x ", i,
1109 __be32_to_cpu(pd->refnum));
1110 printf("%8lluK ",
1111 (unsigned long long)__be64_to_cpu(pd->config_size)>>1);
1112 for (dl = sb->dlist; dl ; dl = dl->next) {
1113 if (dl->disk.refnum == pd->refnum) {
1114 char *dv = map_dev(dl->major, dl->minor, 0);
1115 if (dv) {
1116 printf("%-15s", dv);
1117 break;
1118 }
1119 }
1120 }
1121 if (!dl)
1122 printf("%15s","");
1123 printf(" %s%s%s%s%s",
1124 (type&2) ? "active":"",
1125 (type&4) ? "Global-Spare":"",
1126 (type&8) ? "spare" : "",
1127 (type&16)? ", foreign" : "",
1128 (type&32)? "pass-through" : "");
1129 if (state & DDF_Failed)
1130 /* This over-rides these three */
1131 state &= ~(DDF_Online|DDF_Rebuilding|DDF_Transition);
1132 printf("/%s%s%s%s%s%s%s",
1133 (state&1)? "Online": "Offline",
1134 (state&2)? ", Failed": "",
1135 (state&4)? ", Rebuilding": "",
1136 (state&8)? ", in-transition": "",
1137 (state&16)? ", SMART-errors": "",
1138 (state&32)? ", Unrecovered-Read-Errors": "",
1139 (state&64)? ", Missing" : "");
1140 printf("\n");
1141 }
1142 }
1143
1144 static void examine_super_ddf(struct supertype *st, char *homehost)
1145 {
1146 struct ddf_super *sb = st->sb;
1147
1148 printf(" Magic : %08x\n", __be32_to_cpu(sb->anchor.magic));
1149 printf(" Version : %.8s\n", sb->anchor.revision);
1150 printf("Controller GUID : "); print_guid(sb->controller.guid, 0);
1151 printf("\n");
1152 printf(" Container GUID : "); print_guid(sb->anchor.guid, 1);
1153 printf("\n");
1154 printf(" Seq : %08x\n", __be32_to_cpu(sb->active->seq));
1155 printf(" Redundant hdr : %s\n", sb->secondary.magic == DDF_HEADER_MAGIC
1156 ?"yes" : "no");
1157 examine_vds(sb);
1158 examine_pds(sb);
1159 }
1160
1161 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info, char *map);
1162
1163 static void uuid_from_super_ddf(struct supertype *st, int uuid[4]);
1164
1165 static void brief_examine_super_ddf(struct supertype *st, int verbose)
1166 {
1167 /* We just write a generic DDF ARRAY entry
1168 */
1169 struct mdinfo info;
1170 char nbuf[64];
1171 getinfo_super_ddf(st, &info, NULL);
1172 fname_from_uuid(st, &info, nbuf, ':');
1173
1174 printf("ARRAY metadata=ddf UUID=%s\n", nbuf + 5);
1175 }
1176
1177 static void brief_examine_subarrays_ddf(struct supertype *st, int verbose)
1178 {
1179 /* We just write a generic DDF ARRAY entry
1180 */
1181 struct ddf_super *ddf = st->sb;
1182 struct mdinfo info;
1183 unsigned int i;
1184 char nbuf[64];
1185 getinfo_super_ddf(st, &info, NULL);
1186 fname_from_uuid(st, &info, nbuf, ':');
1187
1188 for (i = 0; i < __be16_to_cpu(ddf->virt->max_vdes); i++) {
1189 struct virtual_entry *ve = &ddf->virt->entries[i];
1190 struct vcl vcl;
1191 char nbuf1[64];
1192 if (all_ff(ve->guid))
1193 continue;
1194 memcpy(vcl.conf.guid, ve->guid, DDF_GUID_LEN);
1195 ddf->currentconf =&vcl;
1196 uuid_from_super_ddf(st, info.uuid);
1197 fname_from_uuid(st, &info, nbuf1, ':');
1198 printf("ARRAY container=%s member=%d UUID=%s\n",
1199 nbuf+5, i, nbuf1+5);
1200 }
1201 }
1202
1203 static void export_examine_super_ddf(struct supertype *st)
1204 {
1205 struct mdinfo info;
1206 char nbuf[64];
1207 getinfo_super_ddf(st, &info, NULL);
1208 fname_from_uuid(st, &info, nbuf, ':');
1209 printf("MD_METADATA=ddf\n");
1210 printf("MD_LEVEL=container\n");
1211 printf("MD_UUID=%s\n", nbuf+5);
1212 }
1213
1214 static void detail_super_ddf(struct supertype *st, char *homehost)
1215 {
1216 /* FIXME later
1217 * Could print DDF GUID
1218 * Need to find which array
1219 * If whole, briefly list all arrays
1220 * If one, give name
1221 */
1222 }
1223
1224 static void brief_detail_super_ddf(struct supertype *st)
1225 {
1226 /* FIXME I really need to know which array we are detailing.
1227 * Can that be stored in ddf_super??
1228 */
1229 // struct ddf_super *ddf = st->sb;
1230 struct mdinfo info;
1231 char nbuf[64];
1232 getinfo_super_ddf(st, &info, NULL);
1233 fname_from_uuid(st, &info, nbuf,':');
1234 printf(" UUID=%s", nbuf + 5);
1235 }
1236 #endif
1237
1238 static int match_home_ddf(struct supertype *st, char *homehost)
1239 {
1240 /* It matches 'this' host if the controller is a
1241 * Linux-MD controller with vendor_data matching
1242 * the hostname
1243 */
1244 struct ddf_super *ddf = st->sb;
1245 unsigned int len;
1246
1247 if (!homehost)
1248 return 0;
1249 len = strlen(homehost);
1250
1251 return (memcmp(ddf->controller.guid, T10, 8) == 0 &&
1252 len < sizeof(ddf->controller.vendor_data) &&
1253 memcmp(ddf->controller.vendor_data, homehost,len) == 0 &&
1254 ddf->controller.vendor_data[len] == 0);
1255 }
1256
1257 #ifndef MDASSEMBLE
1258 static struct vd_config *find_vdcr(struct ddf_super *ddf, unsigned int inst)
1259 {
1260 struct vcl *v;
1261
1262 for (v = ddf->conflist; v; v = v->next)
1263 if (inst == v->vcnum)
1264 return &v->conf;
1265 return NULL;
1266 }
1267 #endif
1268
1269 static int find_phys(struct ddf_super *ddf, __u32 phys_refnum)
1270 {
1271 /* Find the entry in phys_disk which has the given refnum
1272 * and return it's index
1273 */
1274 unsigned int i;
1275 for (i = 0; i < __be16_to_cpu(ddf->phys->max_pdes); i++)
1276 if (ddf->phys->entries[i].refnum == phys_refnum)
1277 return i;
1278 return -1;
1279 }
1280
1281 static void uuid_from_super_ddf(struct supertype *st, int uuid[4])
1282 {
1283 /* The uuid returned here is used for:
1284 * uuid to put into bitmap file (Create, Grow)
1285 * uuid for backup header when saving critical section (Grow)
1286 * comparing uuids when re-adding a device into an array
1287 * In these cases the uuid required is that of the data-array,
1288 * not the device-set.
1289 * uuid to recognise same set when adding a missing device back
1290 * to an array. This is a uuid for the device-set.
1291 *
1292 * For each of these we can make do with a truncated
1293 * or hashed uuid rather than the original, as long as
1294 * everyone agrees.
1295 * In the case of SVD we assume the BVD is of interest,
1296 * though that might be the case if a bitmap were made for
1297 * a mirrored SVD - worry about that later.
1298 * So we need to find the VD configuration record for the
1299 * relevant BVD and extract the GUID and Secondary_Element_Seq.
1300 * The first 16 bytes of the sha1 of these is used.
1301 */
1302 struct ddf_super *ddf = st->sb;
1303 struct vcl *vcl = ddf->currentconf;
1304 char *guid;
1305 char buf[20];
1306 struct sha1_ctx ctx;
1307
1308 if (vcl)
1309 guid = vcl->conf.guid;
1310 else
1311 guid = ddf->anchor.guid;
1312
1313 sha1_init_ctx(&ctx);
1314 sha1_process_bytes(guid, DDF_GUID_LEN, &ctx);
1315 sha1_finish_ctx(&ctx, buf);
1316 memcpy(uuid, buf, 4*4);
1317 }
1318
1319 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info, char *map);
1320
1321 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info, char *map)
1322 {
1323 struct ddf_super *ddf = st->sb;
1324 int map_disks = info->array.raid_disks;
1325 __u32 *cptr;
1326
1327 if (ddf->currentconf) {
1328 getinfo_super_ddf_bvd(st, info, map);
1329 return;
1330 }
1331 memset(info, 0, sizeof(*info));
1332
1333 info->array.raid_disks = __be16_to_cpu(ddf->phys->used_pdes);
1334 info->array.level = LEVEL_CONTAINER;
1335 info->array.layout = 0;
1336 info->array.md_minor = -1;
1337 cptr = (__u32 *)(ddf->anchor.guid + 16);
1338 info->array.ctime = DECADE + __be32_to_cpu(*cptr);
1339
1340 info->array.utime = 0;
1341 info->array.chunk_size = 0;
1342 info->container_enough = 1;
1343
1344 info->disk.major = 0;
1345 info->disk.minor = 0;
1346 if (ddf->dlist) {
1347 info->disk.number = __be32_to_cpu(ddf->dlist->disk.refnum);
1348 info->disk.raid_disk = find_phys(ddf, ddf->dlist->disk.refnum);
1349
1350 info->data_offset = __be64_to_cpu(ddf->phys->
1351 entries[info->disk.raid_disk].
1352 config_size);
1353 info->component_size = ddf->dlist->size - info->data_offset;
1354 } else {
1355 info->disk.number = -1;
1356 info->disk.raid_disk = -1;
1357 // info->disk.raid_disk = find refnum in the table and use index;
1358 }
1359 info->disk.state = (1 << MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE);
1360
1361 info->recovery_start = MaxSector;
1362 info->reshape_active = 0;
1363 info->recovery_blocked = 0;
1364 info->name[0] = 0;
1365
1366 info->array.major_version = -1;
1367 info->array.minor_version = -2;
1368 strcpy(info->text_version, "ddf");
1369 info->safe_mode_delay = 0;
1370
1371 uuid_from_super_ddf(st, info->uuid);
1372
1373 if (map) {
1374 int i;
1375 for (i = 0 ; i < map_disks; i++) {
1376 if (i < info->array.raid_disks &&
1377 (__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Online) &&
1378 !(__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Failed))
1379 map[i] = 1;
1380 else
1381 map[i] = 0;
1382 }
1383 }
1384 }
1385
1386 static int rlq_to_layout(int rlq, int prl, int raiddisks);
1387
1388 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info, char *map)
1389 {
1390 struct ddf_super *ddf = st->sb;
1391 struct vcl *vc = ddf->currentconf;
1392 int cd = ddf->currentdev;
1393 int j;
1394 struct dl *dl;
1395 int map_disks = info->array.raid_disks;
1396 __u32 *cptr;
1397
1398 memset(info, 0, sizeof(*info));
1399 /* FIXME this returns BVD info - what if we want SVD ?? */
1400
1401 info->array.raid_disks = __be16_to_cpu(vc->conf.prim_elmnt_count);
1402 info->array.level = map_num1(ddf_level_num, vc->conf.prl);
1403 info->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
1404 info->array.raid_disks);
1405 info->array.md_minor = -1;
1406 cptr = (__u32 *)(vc->conf.guid + 16);
1407 info->array.ctime = DECADE + __be32_to_cpu(*cptr);
1408 info->array.utime = DECADE + __be32_to_cpu(vc->conf.timestamp);
1409 info->array.chunk_size = 512 << vc->conf.chunk_shift;
1410 info->custom_array_size = 0;
1411
1412 if (cd >= 0 && (unsigned)cd < ddf->mppe) {
1413 info->data_offset = __be64_to_cpu(vc->lba_offset[cd]);
1414 if (vc->block_sizes)
1415 info->component_size = vc->block_sizes[cd];
1416 else
1417 info->component_size = __be64_to_cpu(vc->conf.blocks);
1418 }
1419
1420 for (dl = ddf->dlist; dl ; dl = dl->next)
1421 if (dl->raiddisk == ddf->currentdev)
1422 break;
1423
1424 info->disk.major = 0;
1425 info->disk.minor = 0;
1426 info->disk.state = 0;
1427 if (dl) {
1428 info->disk.major = dl->major;
1429 info->disk.minor = dl->minor;
1430 info->disk.raid_disk = dl->raiddisk;
1431 info->disk.number = dl->pdnum;
1432 info->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
1433 }
1434
1435 info->container_member = ddf->currentconf->vcnum;
1436
1437 info->recovery_start = MaxSector;
1438 info->resync_start = 0;
1439 info->reshape_active = 0;
1440 info->recovery_blocked = 0;
1441 if (!(ddf->virt->entries[info->container_member].state
1442 & DDF_state_inconsistent) &&
1443 (ddf->virt->entries[info->container_member].init_state
1444 & DDF_initstate_mask)
1445 == DDF_init_full)
1446 info->resync_start = MaxSector;
1447
1448 uuid_from_super_ddf(st, info->uuid);
1449
1450 info->array.major_version = -1;
1451 info->array.minor_version = -2;
1452 sprintf(info->text_version, "/%s/%d",
1453 st->container_devnm,
1454 info->container_member);
1455 info->safe_mode_delay = 200;
1456
1457 memcpy(info->name, ddf->virt->entries[info->container_member].name, 16);
1458 info->name[16]=0;
1459 for(j=0; j<16; j++)
1460 if (info->name[j] == ' ')
1461 info->name[j] = 0;
1462
1463 if (map)
1464 for (j = 0; j < map_disks; j++) {
1465 map[j] = 0;
1466 if (j < info->array.raid_disks) {
1467 int i = find_phys(ddf, vc->conf.phys_refnum[j]);
1468 if (i >= 0 &&
1469 (__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Online) &&
1470 !(__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Failed))
1471 map[i] = 1;
1472 }
1473 }
1474 }
1475
1476 static int update_super_ddf(struct supertype *st, struct mdinfo *info,
1477 char *update,
1478 char *devname, int verbose,
1479 int uuid_set, char *homehost)
1480 {
1481 /* For 'assemble' and 'force' we need to return non-zero if any
1482 * change was made. For others, the return value is ignored.
1483 * Update options are:
1484 * force-one : This device looks a bit old but needs to be included,
1485 * update age info appropriately.
1486 * assemble: clear any 'faulty' flag to allow this device to
1487 * be assembled.
1488 * force-array: Array is degraded but being forced, mark it clean
1489 * if that will be needed to assemble it.
1490 *
1491 * newdev: not used ????
1492 * grow: Array has gained a new device - this is currently for
1493 * linear only
1494 * resync: mark as dirty so a resync will happen.
1495 * uuid: Change the uuid of the array to match what is given
1496 * homehost: update the recorded homehost
1497 * name: update the name - preserving the homehost
1498 * _reshape_progress: record new reshape_progress position.
1499 *
1500 * Following are not relevant for this version:
1501 * sparc2.2 : update from old dodgey metadata
1502 * super-minor: change the preferred_minor number
1503 * summaries: update redundant counters.
1504 */
1505 int rv = 0;
1506 // struct ddf_super *ddf = st->sb;
1507 // struct vd_config *vd = find_vdcr(ddf, info->container_member);
1508 // struct virtual_entry *ve = find_ve(ddf);
1509
1510 /* we don't need to handle "force-*" or "assemble" as
1511 * there is no need to 'trick' the kernel. We the metadata is
1512 * first updated to activate the array, all the implied modifications
1513 * will just happen.
1514 */
1515
1516 if (strcmp(update, "grow") == 0) {
1517 /* FIXME */
1518 } else if (strcmp(update, "resync") == 0) {
1519 // info->resync_checkpoint = 0;
1520 } else if (strcmp(update, "homehost") == 0) {
1521 /* homehost is stored in controller->vendor_data,
1522 * or it is when we are the vendor
1523 */
1524 // if (info->vendor_is_local)
1525 // strcpy(ddf->controller.vendor_data, homehost);
1526 rv = -1;
1527 } else if (strcmp(update, "name") == 0) {
1528 /* name is stored in virtual_entry->name */
1529 // memset(ve->name, ' ', 16);
1530 // strncpy(ve->name, info->name, 16);
1531 rv = -1;
1532 } else if (strcmp(update, "_reshape_progress") == 0) {
1533 /* We don't support reshape yet */
1534 } else if (strcmp(update, "assemble") == 0 ) {
1535 /* Do nothing, just succeed */
1536 rv = 0;
1537 } else
1538 rv = -1;
1539
1540 // update_all_csum(ddf);
1541
1542 return rv;
1543 }
1544
1545 static void make_header_guid(char *guid)
1546 {
1547 __u32 stamp;
1548 /* Create a DDF Header of Virtual Disk GUID */
1549
1550 /* 24 bytes of fiction required.
1551 * first 8 are a 'vendor-id' - "Linux-MD"
1552 * next 8 are controller type.. how about 0X DEAD BEEF 0000 0000
1553 * Remaining 8 random number plus timestamp
1554 */
1555 memcpy(guid, T10, sizeof(T10));
1556 stamp = __cpu_to_be32(0xdeadbeef);
1557 memcpy(guid+8, &stamp, 4);
1558 stamp = __cpu_to_be32(0);
1559 memcpy(guid+12, &stamp, 4);
1560 stamp = __cpu_to_be32(time(0) - DECADE);
1561 memcpy(guid+16, &stamp, 4);
1562 stamp = random32();
1563 memcpy(guid+20, &stamp, 4);
1564 }
1565
1566 static int init_super_ddf_bvd(struct supertype *st,
1567 mdu_array_info_t *info,
1568 unsigned long long size,
1569 char *name, char *homehost,
1570 int *uuid, unsigned long long data_offset);
1571
1572 static int init_super_ddf(struct supertype *st,
1573 mdu_array_info_t *info,
1574 unsigned long long size, char *name, char *homehost,
1575 int *uuid, unsigned long long data_offset)
1576 {
1577 /* This is primarily called by Create when creating a new array.
1578 * We will then get add_to_super called for each component, and then
1579 * write_init_super called to write it out to each device.
1580 * For DDF, Create can create on fresh devices or on a pre-existing
1581 * array.
1582 * To create on a pre-existing array a different method will be called.
1583 * This one is just for fresh drives.
1584 *
1585 * We need to create the entire 'ddf' structure which includes:
1586 * DDF headers - these are easy.
1587 * Controller data - a Sector describing this controller .. not that
1588 * this is a controller exactly.
1589 * Physical Disk Record - one entry per device, so
1590 * leave plenty of space.
1591 * Virtual Disk Records - again, just leave plenty of space.
1592 * This just lists VDs, doesn't give details
1593 * Config records - describes the VDs that use this disk
1594 * DiskData - describes 'this' device.
1595 * BadBlockManagement - empty
1596 * Diag Space - empty
1597 * Vendor Logs - Could we put bitmaps here?
1598 *
1599 */
1600 struct ddf_super *ddf;
1601 char hostname[17];
1602 int hostlen;
1603 int max_phys_disks, max_virt_disks;
1604 unsigned long long sector;
1605 int clen;
1606 int i;
1607 int pdsize, vdsize;
1608 struct phys_disk *pd;
1609 struct virtual_disk *vd;
1610
1611 if (data_offset != INVALID_SECTORS) {
1612 fprintf(stderr, Name ": data-offset not supported by DDF\n");
1613 return 0;
1614 }
1615
1616 if (st->sb)
1617 return init_super_ddf_bvd(st, info, size, name, homehost, uuid,
1618 data_offset);
1619
1620 if (posix_memalign((void**)&ddf, 512, sizeof(*ddf)) != 0) {
1621 pr_err("%s could not allocate superblock\n", __func__);
1622 return 0;
1623 }
1624 memset(ddf, 0, sizeof(*ddf));
1625 ddf->dlist = NULL; /* no physical disks yet */
1626 ddf->conflist = NULL; /* No virtual disks yet */
1627 st->sb = ddf;
1628
1629 if (info == NULL) {
1630 /* zeroing superblock */
1631 return 0;
1632 }
1633
1634 /* At least 32MB *must* be reserved for the ddf. So let's just
1635 * start 32MB from the end, and put the primary header there.
1636 * Don't do secondary for now.
1637 * We don't know exactly where that will be yet as it could be
1638 * different on each device. To just set up the lengths.
1639 *
1640 */
1641
1642 ddf->anchor.magic = DDF_HEADER_MAGIC;
1643 make_header_guid(ddf->anchor.guid);
1644
1645 memcpy(ddf->anchor.revision, DDF_REVISION_2, 8);
1646 ddf->anchor.seq = __cpu_to_be32(1);
1647 ddf->anchor.timestamp = __cpu_to_be32(time(0) - DECADE);
1648 ddf->anchor.openflag = 0xFF;
1649 ddf->anchor.foreignflag = 0;
1650 ddf->anchor.enforcegroups = 0; /* Is this best?? */
1651 ddf->anchor.pad0 = 0xff;
1652 memset(ddf->anchor.pad1, 0xff, 12);
1653 memset(ddf->anchor.header_ext, 0xff, 32);
1654 ddf->anchor.primary_lba = ~(__u64)0;
1655 ddf->anchor.secondary_lba = ~(__u64)0;
1656 ddf->anchor.type = DDF_HEADER_ANCHOR;
1657 memset(ddf->anchor.pad2, 0xff, 3);
1658 ddf->anchor.workspace_len = __cpu_to_be32(32768); /* Must be reserved */
1659 ddf->anchor.workspace_lba = ~(__u64)0; /* Put this at bottom
1660 of 32M reserved.. */
1661 max_phys_disks = 1023; /* Should be enough */
1662 ddf->anchor.max_pd_entries = __cpu_to_be16(max_phys_disks);
1663 max_virt_disks = 255;
1664 ddf->anchor.max_vd_entries = __cpu_to_be16(max_virt_disks); /* ?? */
1665 ddf->anchor.max_partitions = __cpu_to_be16(64); /* ?? */
1666 ddf->max_part = 64;
1667 ddf->mppe = 256;
1668 ddf->conf_rec_len = 1 + ROUND_UP(ddf->mppe * (4+8), 512)/512;
1669 ddf->anchor.config_record_len = __cpu_to_be16(ddf->conf_rec_len);
1670 ddf->anchor.max_primary_element_entries = __cpu_to_be16(ddf->mppe);
1671 memset(ddf->anchor.pad3, 0xff, 54);
1672 /* controller sections is one sector long immediately
1673 * after the ddf header */
1674 sector = 1;
1675 ddf->anchor.controller_section_offset = __cpu_to_be32(sector);
1676 ddf->anchor.controller_section_length = __cpu_to_be32(1);
1677 sector += 1;
1678
1679 /* phys is 8 sectors after that */
1680 pdsize = ROUND_UP(sizeof(struct phys_disk) +
1681 sizeof(struct phys_disk_entry)*max_phys_disks,
1682 512);
1683 switch(pdsize/512) {
1684 case 2: case 8: case 32: case 128: case 512: break;
1685 default: abort();
1686 }
1687 ddf->anchor.phys_section_offset = __cpu_to_be32(sector);
1688 ddf->anchor.phys_section_length =
1689 __cpu_to_be32(pdsize/512); /* max_primary_element_entries/8 */
1690 sector += pdsize/512;
1691
1692 /* virt is another 32 sectors */
1693 vdsize = ROUND_UP(sizeof(struct virtual_disk) +
1694 sizeof(struct virtual_entry) * max_virt_disks,
1695 512);
1696 switch(vdsize/512) {
1697 case 2: case 8: case 32: case 128: case 512: break;
1698 default: abort();
1699 }
1700 ddf->anchor.virt_section_offset = __cpu_to_be32(sector);
1701 ddf->anchor.virt_section_length =
1702 __cpu_to_be32(vdsize/512); /* max_vd_entries/8 */
1703 sector += vdsize/512;
1704
1705 clen = ddf->conf_rec_len * (ddf->max_part+1);
1706 ddf->anchor.config_section_offset = __cpu_to_be32(sector);
1707 ddf->anchor.config_section_length = __cpu_to_be32(clen);
1708 sector += clen;
1709
1710 ddf->anchor.data_section_offset = __cpu_to_be32(sector);
1711 ddf->anchor.data_section_length = __cpu_to_be32(1);
1712 sector += 1;
1713
1714 ddf->anchor.bbm_section_length = __cpu_to_be32(0);
1715 ddf->anchor.bbm_section_offset = __cpu_to_be32(0xFFFFFFFF);
1716 ddf->anchor.diag_space_length = __cpu_to_be32(0);
1717 ddf->anchor.diag_space_offset = __cpu_to_be32(0xFFFFFFFF);
1718 ddf->anchor.vendor_length = __cpu_to_be32(0);
1719 ddf->anchor.vendor_offset = __cpu_to_be32(0xFFFFFFFF);
1720
1721 memset(ddf->anchor.pad4, 0xff, 256);
1722
1723 memcpy(&ddf->primary, &ddf->anchor, 512);
1724 memcpy(&ddf->secondary, &ddf->anchor, 512);
1725
1726 ddf->primary.openflag = 1; /* I guess.. */
1727 ddf->primary.type = DDF_HEADER_PRIMARY;
1728
1729 ddf->secondary.openflag = 1; /* I guess.. */
1730 ddf->secondary.type = DDF_HEADER_SECONDARY;
1731
1732 ddf->active = &ddf->primary;
1733
1734 ddf->controller.magic = DDF_CONTROLLER_MAGIC;
1735
1736 /* 24 more bytes of fiction required.
1737 * first 8 are a 'vendor-id' - "Linux-MD"
1738 * Remaining 16 are serial number.... maybe a hostname would do?
1739 */
1740 memcpy(ddf->controller.guid, T10, sizeof(T10));
1741 gethostname(hostname, sizeof(hostname));
1742 hostname[sizeof(hostname) - 1] = 0;
1743 hostlen = strlen(hostname);
1744 memcpy(ddf->controller.guid + 24 - hostlen, hostname, hostlen);
1745 for (i = strlen(T10) ; i+hostlen < 24; i++)
1746 ddf->controller.guid[i] = ' ';
1747
1748 ddf->controller.type.vendor_id = __cpu_to_be16(0xDEAD);
1749 ddf->controller.type.device_id = __cpu_to_be16(0xBEEF);
1750 ddf->controller.type.sub_vendor_id = 0;
1751 ddf->controller.type.sub_device_id = 0;
1752 memcpy(ddf->controller.product_id, "What Is My PID??", 16);
1753 memset(ddf->controller.pad, 0xff, 8);
1754 memset(ddf->controller.vendor_data, 0xff, 448);
1755 if (homehost && strlen(homehost) < 440)
1756 strcpy((char*)ddf->controller.vendor_data, homehost);
1757
1758 if (posix_memalign((void**)&pd, 512, pdsize) != 0) {
1759 pr_err("%s could not allocate pd\n", __func__);
1760 return 0;
1761 }
1762 ddf->phys = pd;
1763 ddf->pdsize = pdsize;
1764
1765 memset(pd, 0xff, pdsize);
1766 memset(pd, 0, sizeof(*pd));
1767 pd->magic = DDF_PHYS_RECORDS_MAGIC;
1768 pd->used_pdes = __cpu_to_be16(0);
1769 pd->max_pdes = __cpu_to_be16(max_phys_disks);
1770 memset(pd->pad, 0xff, 52);
1771
1772 if (posix_memalign((void**)&vd, 512, vdsize) != 0) {
1773 pr_err("%s could not allocate vd\n", __func__);
1774 return 0;
1775 }
1776 ddf->virt = vd;
1777 ddf->vdsize = vdsize;
1778 memset(vd, 0, vdsize);
1779 vd->magic = DDF_VIRT_RECORDS_MAGIC;
1780 vd->populated_vdes = __cpu_to_be16(0);
1781 vd->max_vdes = __cpu_to_be16(max_virt_disks);
1782 memset(vd->pad, 0xff, 52);
1783
1784 for (i=0; i<max_virt_disks; i++)
1785 memset(&vd->entries[i], 0xff, sizeof(struct virtual_entry));
1786
1787 st->sb = ddf;
1788 ddf->updates_pending = 1;
1789 return 1;
1790 }
1791
1792 static int chunk_to_shift(int chunksize)
1793 {
1794 return ffs(chunksize/512)-1;
1795 }
1796
1797 static int level_to_prl(int level)
1798 {
1799 switch (level) {
1800 case LEVEL_LINEAR: return DDF_CONCAT;
1801 case 0: return DDF_RAID0;
1802 case 1: return DDF_RAID1;
1803 case 4: return DDF_RAID4;
1804 case 5: return DDF_RAID5;
1805 case 6: return DDF_RAID6;
1806 default: return -1;
1807 }
1808 }
1809
1810 static int layout_to_rlq(int level, int layout, int raiddisks)
1811 {
1812 switch(level) {
1813 case 0:
1814 return DDF_RAID0_SIMPLE;
1815 case 1:
1816 switch(raiddisks) {
1817 case 2: return DDF_RAID1_SIMPLE;
1818 case 3: return DDF_RAID1_MULTI;
1819 default: return -1;
1820 }
1821 case 4:
1822 switch(layout) {
1823 case 0: return DDF_RAID4_N;
1824 }
1825 break;
1826 case 5:
1827 switch(layout) {
1828 case ALGORITHM_LEFT_ASYMMETRIC:
1829 return DDF_RAID5_N_RESTART;
1830 case ALGORITHM_RIGHT_ASYMMETRIC:
1831 return DDF_RAID5_0_RESTART;
1832 case ALGORITHM_LEFT_SYMMETRIC:
1833 return DDF_RAID5_N_CONTINUE;
1834 case ALGORITHM_RIGHT_SYMMETRIC:
1835 return -1; /* not mentioned in standard */
1836 }
1837 case 6:
1838 switch(layout) {
1839 case ALGORITHM_ROTATING_N_RESTART:
1840 return DDF_RAID5_N_RESTART;
1841 case ALGORITHM_ROTATING_ZERO_RESTART:
1842 return DDF_RAID6_0_RESTART;
1843 case ALGORITHM_ROTATING_N_CONTINUE:
1844 return DDF_RAID5_N_CONTINUE;
1845 }
1846 }
1847 return -1;
1848 }
1849
1850 static int rlq_to_layout(int rlq, int prl, int raiddisks)
1851 {
1852 switch(prl) {
1853 case DDF_RAID0:
1854 return 0; /* hopefully rlq == DDF_RAID0_SIMPLE */
1855 case DDF_RAID1:
1856 return 0; /* hopefully rlq == SIMPLE or MULTI depending
1857 on raiddisks*/
1858 case DDF_RAID4:
1859 switch(rlq) {
1860 case DDF_RAID4_N:
1861 return 0;
1862 default:
1863 /* not supported */
1864 return -1; /* FIXME this isn't checked */
1865 }
1866 case DDF_RAID5:
1867 switch(rlq) {
1868 case DDF_RAID5_N_RESTART:
1869 return ALGORITHM_LEFT_ASYMMETRIC;
1870 case DDF_RAID5_0_RESTART:
1871 return ALGORITHM_RIGHT_ASYMMETRIC;
1872 case DDF_RAID5_N_CONTINUE:
1873 return ALGORITHM_LEFT_SYMMETRIC;
1874 default:
1875 return -1;
1876 }
1877 case DDF_RAID6:
1878 switch(rlq) {
1879 case DDF_RAID5_N_RESTART:
1880 return ALGORITHM_ROTATING_N_RESTART;
1881 case DDF_RAID6_0_RESTART:
1882 return ALGORITHM_ROTATING_ZERO_RESTART;
1883 case DDF_RAID5_N_CONTINUE:
1884 return ALGORITHM_ROTATING_N_CONTINUE;
1885 default:
1886 return -1;
1887 }
1888 }
1889 return -1;
1890 }
1891
1892 #ifndef MDASSEMBLE
1893 struct extent {
1894 unsigned long long start, size;
1895 };
1896 static int cmp_extent(const void *av, const void *bv)
1897 {
1898 const struct extent *a = av;
1899 const struct extent *b = bv;
1900 if (a->start < b->start)
1901 return -1;
1902 if (a->start > b->start)
1903 return 1;
1904 return 0;
1905 }
1906
1907 static struct extent *get_extents(struct ddf_super *ddf, struct dl *dl)
1908 {
1909 /* find a list of used extents on the give physical device
1910 * (dnum) of the given ddf.
1911 * Return a malloced array of 'struct extent'
1912
1913 * FIXME ignore DDF_Legacy devices?
1914
1915 */
1916 struct extent *rv;
1917 int n = 0;
1918 unsigned int i, j;
1919
1920 rv = xmalloc(sizeof(struct extent) * (ddf->max_part + 2));
1921
1922 for (i = 0; i < ddf->max_part; i++) {
1923 struct vcl *v = dl->vlist[i];
1924 if (v == NULL)
1925 continue;
1926 for (j = 0; j < v->conf.prim_elmnt_count; j++)
1927 if (v->conf.phys_refnum[j] == dl->disk.refnum) {
1928 /* This device plays role 'j' in 'v'. */
1929 rv[n].start = __be64_to_cpu(v->lba_offset[j]);
1930 rv[n].size = __be64_to_cpu(v->conf.blocks);
1931 n++;
1932 break;
1933 }
1934 }
1935 qsort(rv, n, sizeof(*rv), cmp_extent);
1936
1937 rv[n].start = __be64_to_cpu(ddf->phys->entries[dl->pdnum].config_size);
1938 rv[n].size = 0;
1939 return rv;
1940 }
1941 #endif
1942
1943 static int init_super_ddf_bvd(struct supertype *st,
1944 mdu_array_info_t *info,
1945 unsigned long long size,
1946 char *name, char *homehost,
1947 int *uuid, unsigned long long data_offset)
1948 {
1949 /* We are creating a BVD inside a pre-existing container.
1950 * so st->sb is already set.
1951 * We need to create a new vd_config and a new virtual_entry
1952 */
1953 struct ddf_super *ddf = st->sb;
1954 unsigned int venum;
1955 struct virtual_entry *ve;
1956 struct vcl *vcl;
1957 struct vd_config *vc;
1958
1959 if (__be16_to_cpu(ddf->virt->populated_vdes)
1960 >= __be16_to_cpu(ddf->virt->max_vdes)) {
1961 pr_err("This ddf already has the "
1962 "maximum of %d virtual devices\n",
1963 __be16_to_cpu(ddf->virt->max_vdes));
1964 return 0;
1965 }
1966
1967 if (name)
1968 for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
1969 if (!all_ff(ddf->virt->entries[venum].guid)) {
1970 char *n = ddf->virt->entries[venum].name;
1971
1972 if (strncmp(name, n, 16) == 0) {
1973 pr_err("This ddf already"
1974 " has an array called %s\n",
1975 name);
1976 return 0;
1977 }
1978 }
1979
1980 for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
1981 if (all_ff(ddf->virt->entries[venum].guid))
1982 break;
1983 if (venum == __be16_to_cpu(ddf->virt->max_vdes)) {
1984 pr_err("Cannot find spare slot for "
1985 "virtual disk - DDF is corrupt\n");
1986 return 0;
1987 }
1988 ve = &ddf->virt->entries[venum];
1989
1990 /* A Virtual Disk GUID contains the T10 Vendor ID, controller type,
1991 * timestamp, random number
1992 */
1993 make_header_guid(ve->guid);
1994 ve->unit = __cpu_to_be16(info->md_minor);
1995 ve->pad0 = 0xFFFF;
1996 ve->guid_crc = crc32(0, (unsigned char*)ddf->anchor.guid, DDF_GUID_LEN);
1997 ve->type = 0;
1998 ve->state = DDF_state_degraded; /* Will be modified as devices are added */
1999 if (info->state & 1) /* clean */
2000 ve->init_state = DDF_init_full;
2001 else
2002 ve->init_state = DDF_init_not;
2003
2004 memset(ve->pad1, 0xff, 14);
2005 memset(ve->name, ' ', 16);
2006 if (name)
2007 strncpy(ve->name, name, 16);
2008 ddf->virt->populated_vdes =
2009 __cpu_to_be16(__be16_to_cpu(ddf->virt->populated_vdes)+1);
2010
2011 /* Now create a new vd_config */
2012 if (posix_memalign((void**)&vcl, 512,
2013 (offsetof(struct vcl, conf) + ddf->conf_rec_len * 512)) != 0) {
2014 pr_err("%s could not allocate vd_config\n", __func__);
2015 return 0;
2016 }
2017 vcl->lba_offset = (__u64*) &vcl->conf.phys_refnum[ddf->mppe];
2018 vcl->vcnum = venum;
2019 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
2020
2021 vc = &vcl->conf;
2022
2023 vc->magic = DDF_VD_CONF_MAGIC;
2024 memcpy(vc->guid, ve->guid, DDF_GUID_LEN);
2025 vc->timestamp = __cpu_to_be32(time(0)-DECADE);
2026 vc->seqnum = __cpu_to_be32(1);
2027 memset(vc->pad0, 0xff, 24);
2028 vc->prim_elmnt_count = __cpu_to_be16(info->raid_disks);
2029 vc->chunk_shift = chunk_to_shift(info->chunk_size);
2030 vc->prl = level_to_prl(info->level);
2031 vc->rlq = layout_to_rlq(info->level, info->layout, info->raid_disks);
2032 vc->sec_elmnt_count = 1;
2033 vc->sec_elmnt_seq = 0;
2034 vc->srl = 0;
2035 vc->blocks = __cpu_to_be64(info->size * 2);
2036 vc->array_blocks = __cpu_to_be64(
2037 calc_array_size(info->level, info->raid_disks, info->layout,
2038 info->chunk_size, info->size*2));
2039 memset(vc->pad1, 0xff, 8);
2040 vc->spare_refs[0] = 0xffffffff;
2041 vc->spare_refs[1] = 0xffffffff;
2042 vc->spare_refs[2] = 0xffffffff;
2043 vc->spare_refs[3] = 0xffffffff;
2044 vc->spare_refs[4] = 0xffffffff;
2045 vc->spare_refs[5] = 0xffffffff;
2046 vc->spare_refs[6] = 0xffffffff;
2047 vc->spare_refs[7] = 0xffffffff;
2048 memset(vc->cache_pol, 0, 8);
2049 vc->bg_rate = 0x80;
2050 memset(vc->pad2, 0xff, 3);
2051 memset(vc->pad3, 0xff, 52);
2052 memset(vc->pad4, 0xff, 192);
2053 memset(vc->v0, 0xff, 32);
2054 memset(vc->v1, 0xff, 32);
2055 memset(vc->v2, 0xff, 16);
2056 memset(vc->v3, 0xff, 16);
2057 memset(vc->vendor, 0xff, 32);
2058
2059 memset(vc->phys_refnum, 0xff, 4*ddf->mppe);
2060 memset(vc->phys_refnum+ddf->mppe, 0x00, 8*ddf->mppe);
2061
2062 vcl->next = ddf->conflist;
2063 ddf->conflist = vcl;
2064 ddf->currentconf = vcl;
2065 ddf->updates_pending = 1;
2066 return 1;
2067 }
2068
2069 #ifndef MDASSEMBLE
2070 static void add_to_super_ddf_bvd(struct supertype *st,
2071 mdu_disk_info_t *dk, int fd, char *devname)
2072 {
2073 /* fd and devname identify a device with-in the ddf container (st).
2074 * dk identifies a location in the new BVD.
2075 * We need to find suitable free space in that device and update
2076 * the phys_refnum and lba_offset for the newly created vd_config.
2077 * We might also want to update the type in the phys_disk
2078 * section.
2079 *
2080 * Alternately: fd == -1 and we have already chosen which device to
2081 * use and recorded in dlist->raid_disk;
2082 */
2083 struct dl *dl;
2084 struct ddf_super *ddf = st->sb;
2085 struct vd_config *vc;
2086 __u64 *lba_offset;
2087 unsigned int working;
2088 unsigned int i;
2089 unsigned long long blocks, pos, esize;
2090 struct extent *ex;
2091
2092 if (fd == -1) {
2093 for (dl = ddf->dlist; dl ; dl = dl->next)
2094 if (dl->raiddisk == dk->raid_disk)
2095 break;
2096 } else {
2097 for (dl = ddf->dlist; dl ; dl = dl->next)
2098 if (dl->major == dk->major &&
2099 dl->minor == dk->minor)
2100 break;
2101 }
2102 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
2103 return;
2104
2105 vc = &ddf->currentconf->conf;
2106 lba_offset = ddf->currentconf->lba_offset;
2107
2108 ex = get_extents(ddf, dl);
2109 if (!ex)
2110 return;
2111
2112 i = 0; pos = 0;
2113 blocks = __be64_to_cpu(vc->blocks);
2114 if (ddf->currentconf->block_sizes)
2115 blocks = ddf->currentconf->block_sizes[dk->raid_disk];
2116
2117 do {
2118 esize = ex[i].start - pos;
2119 if (esize >= blocks)
2120 break;
2121 pos = ex[i].start + ex[i].size;
2122 i++;
2123 } while (ex[i-1].size);
2124
2125 free(ex);
2126 if (esize < blocks)
2127 return;
2128
2129 ddf->currentdev = dk->raid_disk;
2130 vc->phys_refnum[dk->raid_disk] = dl->disk.refnum;
2131 lba_offset[dk->raid_disk] = __cpu_to_be64(pos);
2132
2133 for (i = 0; i < ddf->max_part ; i++)
2134 if (dl->vlist[i] == NULL)
2135 break;
2136 if (i == ddf->max_part)
2137 return;
2138 dl->vlist[i] = ddf->currentconf;
2139
2140 if (fd >= 0)
2141 dl->fd = fd;
2142 if (devname)
2143 dl->devname = devname;
2144
2145 /* Check how many working raid_disks, and if we can mark
2146 * array as optimal yet
2147 */
2148 working = 0;
2149
2150 for (i = 0; i < __be16_to_cpu(vc->prim_elmnt_count); i++)
2151 if (vc->phys_refnum[i] != 0xffffffff)
2152 working++;
2153
2154 /* Find which virtual_entry */
2155 i = ddf->currentconf->vcnum;
2156 if (working == __be16_to_cpu(vc->prim_elmnt_count))
2157 ddf->virt->entries[i].state =
2158 (ddf->virt->entries[i].state & ~DDF_state_mask)
2159 | DDF_state_optimal;
2160
2161 if (vc->prl == DDF_RAID6 &&
2162 working+1 == __be16_to_cpu(vc->prim_elmnt_count))
2163 ddf->virt->entries[i].state =
2164 (ddf->virt->entries[i].state & ~DDF_state_mask)
2165 | DDF_state_part_optimal;
2166
2167 ddf->phys->entries[dl->pdnum].type &= ~__cpu_to_be16(DDF_Global_Spare);
2168 ddf->phys->entries[dl->pdnum].type |= __cpu_to_be16(DDF_Active_in_VD);
2169 ddf->updates_pending = 1;
2170 }
2171
2172 /* add a device to a container, either while creating it or while
2173 * expanding a pre-existing container
2174 */
2175 static int add_to_super_ddf(struct supertype *st,
2176 mdu_disk_info_t *dk, int fd, char *devname,
2177 unsigned long long data_offset)
2178 {
2179 struct ddf_super *ddf = st->sb;
2180 struct dl *dd;
2181 time_t now;
2182 struct tm *tm;
2183 unsigned long long size;
2184 struct phys_disk_entry *pde;
2185 unsigned int n, i;
2186 struct stat stb;
2187 __u32 *tptr;
2188
2189 if (ddf->currentconf) {
2190 add_to_super_ddf_bvd(st, dk, fd, devname);
2191 return 0;
2192 }
2193
2194 /* This is device numbered dk->number. We need to create
2195 * a phys_disk entry and a more detailed disk_data entry.
2196 */
2197 fstat(fd, &stb);
2198 if (posix_memalign((void**)&dd, 512,
2199 sizeof(*dd) + sizeof(dd->vlist[0]) * ddf->max_part) != 0) {
2200 pr_err("%s could allocate buffer for new disk, aborting\n",
2201 __func__);
2202 return 1;
2203 }
2204 dd->major = major(stb.st_rdev);
2205 dd->minor = minor(stb.st_rdev);
2206 dd->devname = devname;
2207 dd->fd = fd;
2208 dd->spare = NULL;
2209
2210 dd->disk.magic = DDF_PHYS_DATA_MAGIC;
2211 now = time(0);
2212 tm = localtime(&now);
2213 sprintf(dd->disk.guid, "%8s%04d%02d%02d",
2214 T10, tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
2215 tptr = (__u32 *)(dd->disk.guid + 16);
2216 *tptr++ = random32();
2217 *tptr = random32();
2218
2219 do {
2220 /* Cannot be bothered finding a CRC of some irrelevant details*/
2221 dd->disk.refnum = random32();
2222 for (i = __be16_to_cpu(ddf->active->max_pd_entries);
2223 i > 0; i--)
2224 if (ddf->phys->entries[i-1].refnum == dd->disk.refnum)
2225 break;
2226 } while (i > 0);
2227
2228 dd->disk.forced_ref = 1;
2229 dd->disk.forced_guid = 1;
2230 memset(dd->disk.vendor, ' ', 32);
2231 memcpy(dd->disk.vendor, "Linux", 5);
2232 memset(dd->disk.pad, 0xff, 442);
2233 for (i = 0; i < ddf->max_part ; i++)
2234 dd->vlist[i] = NULL;
2235
2236 n = __be16_to_cpu(ddf->phys->used_pdes);
2237 pde = &ddf->phys->entries[n];
2238 dd->pdnum = n;
2239
2240 if (st->update_tail) {
2241 int len = (sizeof(struct phys_disk) +
2242 sizeof(struct phys_disk_entry));
2243 struct phys_disk *pd;
2244
2245 pd = xmalloc(len);
2246 pd->magic = DDF_PHYS_RECORDS_MAGIC;
2247 pd->used_pdes = __cpu_to_be16(n);
2248 pde = &pd->entries[0];
2249 dd->mdupdate = pd;
2250 } else {
2251 n++;
2252 ddf->phys->used_pdes = __cpu_to_be16(n);
2253 }
2254
2255 memcpy(pde->guid, dd->disk.guid, DDF_GUID_LEN);
2256 pde->refnum = dd->disk.refnum;
2257 pde->type = __cpu_to_be16(DDF_Forced_PD_GUID | DDF_Global_Spare);
2258 pde->state = __cpu_to_be16(DDF_Online);
2259 get_dev_size(fd, NULL, &size);
2260 /* We are required to reserve 32Meg, and record the size in sectors */
2261 pde->config_size = __cpu_to_be64( (size - 32*1024*1024) / 512);
2262 sprintf(pde->path, "%17.17s","Information: nil") ;
2263 memset(pde->pad, 0xff, 6);
2264
2265 dd->size = size >> 9;
2266 if (st->update_tail) {
2267 dd->next = ddf->add_list;
2268 ddf->add_list = dd;
2269 } else {
2270 dd->next = ddf->dlist;
2271 ddf->dlist = dd;
2272 ddf->updates_pending = 1;
2273 }
2274
2275 return 0;
2276 }
2277
2278 static int remove_from_super_ddf(struct supertype *st, mdu_disk_info_t *dk)
2279 {
2280 struct ddf_super *ddf = st->sb;
2281 struct dl *dl;
2282
2283 /* mdmon has noticed that this disk (dk->major/dk->minor) has
2284 * disappeared from the container.
2285 * We need to arrange that it disappears from the metadata and
2286 * internal data structures too.
2287 * Most of the work is done by ddf_process_update which edits
2288 * the metadata and closes the file handle and attaches the memory
2289 * where free_updates will free it.
2290 */
2291 for (dl = ddf->dlist; dl ; dl = dl->next)
2292 if (dl->major == dk->major &&
2293 dl->minor == dk->minor)
2294 break;
2295 if (!dl)
2296 return -1;
2297
2298 if (st->update_tail) {
2299 int len = (sizeof(struct phys_disk) +
2300 sizeof(struct phys_disk_entry));
2301 struct phys_disk *pd;
2302
2303 pd = xmalloc(len);
2304 pd->magic = DDF_PHYS_RECORDS_MAGIC;
2305 pd->used_pdes = __cpu_to_be16(dl->pdnum);
2306 pd->entries[0].state = __cpu_to_be16(DDF_Missing);
2307 append_metadata_update(st, pd, len);
2308 }
2309 return 0;
2310 }
2311
2312 /*
2313 * This is the write_init_super method for a ddf container. It is
2314 * called when creating a container or adding another device to a
2315 * container.
2316 */
2317 #define NULL_CONF_SZ 4096
2318
2319 static int __write_init_super_ddf(struct supertype *st)
2320 {
2321
2322 struct ddf_super *ddf = st->sb;
2323 int i;
2324 struct dl *d;
2325 int n_config;
2326 int conf_size;
2327 int attempts = 0;
2328 int successes = 0;
2329 unsigned long long size, sector;
2330 char *null_aligned;
2331
2332 if (posix_memalign((void**)&null_aligned, 4096, NULL_CONF_SZ) != 0) {
2333 return -ENOMEM;
2334 }
2335 memset(null_aligned, 0xff, NULL_CONF_SZ);
2336
2337 /* try to write updated metadata,
2338 * if we catch a failure move on to the next disk
2339 */
2340 for (d = ddf->dlist; d; d=d->next) {
2341 int fd = d->fd;
2342
2343 if (fd < 0)
2344 continue;
2345
2346 attempts++;
2347 /* We need to fill in the primary, (secondary) and workspace
2348 * lba's in the headers, set their checksums,
2349 * Also checksum phys, virt....
2350 *
2351 * Then write everything out, finally the anchor is written.
2352 */
2353 get_dev_size(fd, NULL, &size);
2354 size /= 512;
2355 ddf->anchor.workspace_lba = __cpu_to_be64(size - 32*1024*2);
2356 ddf->anchor.primary_lba = __cpu_to_be64(size - 16*1024*2);
2357 ddf->anchor.seq = __cpu_to_be32(1);
2358 memcpy(&ddf->primary, &ddf->anchor, 512);
2359 memcpy(&ddf->secondary, &ddf->anchor, 512);
2360
2361 ddf->anchor.openflag = 0xFF; /* 'open' means nothing */
2362 ddf->anchor.seq = 0xFFFFFFFF; /* no sequencing in anchor */
2363 ddf->anchor.crc = calc_crc(&ddf->anchor, 512);
2364
2365 ddf->primary.openflag = 0;
2366 ddf->primary.type = DDF_HEADER_PRIMARY;
2367
2368 ddf->secondary.openflag = 0;
2369 ddf->secondary.type = DDF_HEADER_SECONDARY;
2370
2371 ddf->primary.crc = calc_crc(&ddf->primary, 512);
2372 ddf->secondary.crc = calc_crc(&ddf->secondary, 512);
2373
2374 sector = size - 16*1024*2;
2375 lseek64(fd, sector<<9, 0);
2376 if (write(fd, &ddf->primary, 512) < 0)
2377 continue;
2378
2379 ddf->controller.crc = calc_crc(&ddf->controller, 512);
2380 if (write(fd, &ddf->controller, 512) < 0)
2381 continue;
2382
2383 ddf->phys->crc = calc_crc(ddf->phys, ddf->pdsize);
2384
2385 if (write(fd, ddf->phys, ddf->pdsize) < 0)
2386 continue;
2387
2388 ddf->virt->crc = calc_crc(ddf->virt, ddf->vdsize);
2389 if (write(fd, ddf->virt, ddf->vdsize) < 0)
2390 continue;
2391
2392 /* Now write lots of config records. */
2393 n_config = ddf->max_part;
2394 conf_size = ddf->conf_rec_len * 512;
2395 for (i = 0 ; i <= n_config ; i++) {
2396 struct vcl *c = d->vlist[i];
2397 if (i == n_config)
2398 c = (struct vcl*)d->spare;
2399
2400 if (c) {
2401 c->conf.crc = calc_crc(&c->conf, conf_size);
2402 if (write(fd, &c->conf, conf_size) < 0)
2403 break;
2404 } else {
2405 unsigned int togo = conf_size;
2406 while (togo > NULL_CONF_SZ) {
2407 if (write(fd, null_aligned, NULL_CONF_SZ) < 0)
2408 break;
2409 togo -= NULL_CONF_SZ;
2410 }
2411 if (write(fd, null_aligned, togo) < 0)
2412 break;
2413 }
2414 }
2415 if (i <= n_config)
2416 continue;
2417 d->disk.crc = calc_crc(&d->disk, 512);
2418 if (write(fd, &d->disk, 512) < 0)
2419 continue;
2420
2421 /* Maybe do the same for secondary */
2422
2423 lseek64(fd, (size-1)*512, SEEK_SET);
2424 if (write(fd, &ddf->anchor, 512) < 0)
2425 continue;
2426 successes++;
2427 }
2428 free(null_aligned);
2429
2430 return attempts != successes;
2431 }
2432
2433 static int write_init_super_ddf(struct supertype *st)
2434 {
2435 struct ddf_super *ddf = st->sb;
2436 struct vcl *currentconf = ddf->currentconf;
2437
2438 /* we are done with currentconf reset it to point st at the container */
2439 ddf->currentconf = NULL;
2440
2441 if (st->update_tail) {
2442 /* queue the virtual_disk and vd_config as metadata updates */
2443 struct virtual_disk *vd;
2444 struct vd_config *vc;
2445 int len;
2446
2447 if (!currentconf) {
2448 int len = (sizeof(struct phys_disk) +
2449 sizeof(struct phys_disk_entry));
2450
2451 /* adding a disk to the container. */
2452 if (!ddf->add_list)
2453 return 0;
2454
2455 append_metadata_update(st, ddf->add_list->mdupdate, len);
2456 ddf->add_list->mdupdate = NULL;
2457 return 0;
2458 }
2459
2460 /* Newly created VD */
2461
2462 /* First the virtual disk. We have a slightly fake header */
2463 len = sizeof(struct virtual_disk) + sizeof(struct virtual_entry);
2464 vd = xmalloc(len);
2465 *vd = *ddf->virt;
2466 vd->entries[0] = ddf->virt->entries[currentconf->vcnum];
2467 vd->populated_vdes = __cpu_to_be16(currentconf->vcnum);
2468 append_metadata_update(st, vd, len);
2469
2470 /* Then the vd_config */
2471 len = ddf->conf_rec_len * 512;
2472 vc = xmalloc(len);
2473 memcpy(vc, &currentconf->conf, len);
2474 append_metadata_update(st, vc, len);
2475
2476 /* FIXME I need to close the fds! */
2477 return 0;
2478 } else {
2479 struct dl *d;
2480 for (d = ddf->dlist; d; d=d->next)
2481 while (Kill(d->devname, NULL, 0, -1, 1) == 0);
2482 return __write_init_super_ddf(st);
2483 }
2484 }
2485
2486 #endif
2487
2488 static __u64 avail_size_ddf(struct supertype *st, __u64 devsize,
2489 unsigned long long data_offset)
2490 {
2491 /* We must reserve the last 32Meg */
2492 if (devsize <= 32*1024*2)
2493 return 0;
2494 return devsize - 32*1024*2;
2495 }
2496
2497 #ifndef MDASSEMBLE
2498
2499 static int reserve_space(struct supertype *st, int raiddisks,
2500 unsigned long long size, int chunk,
2501 unsigned long long *freesize)
2502 {
2503 /* Find 'raiddisks' spare extents at least 'size' big (but
2504 * only caring about multiples of 'chunk') and remember
2505 * them.
2506 * If the cannot be found, fail.
2507 */
2508 struct dl *dl;
2509 struct ddf_super *ddf = st->sb;
2510 int cnt = 0;
2511
2512 for (dl = ddf->dlist; dl ; dl=dl->next) {
2513 dl->raiddisk = -1;
2514 dl->esize = 0;
2515 }
2516 /* Now find largest extent on each device */
2517 for (dl = ddf->dlist ; dl ; dl=dl->next) {
2518 struct extent *e = get_extents(ddf, dl);
2519 unsigned long long pos = 0;
2520 int i = 0;
2521 int found = 0;
2522 unsigned long long minsize = size;
2523
2524 if (size == 0)
2525 minsize = chunk;
2526
2527 if (!e)
2528 continue;
2529 do {
2530 unsigned long long esize;
2531 esize = e[i].start - pos;
2532 if (esize >= minsize) {
2533 found = 1;
2534 minsize = esize;
2535 }
2536 pos = e[i].start + e[i].size;
2537 i++;
2538 } while (e[i-1].size);
2539 if (found) {
2540 cnt++;
2541 dl->esize = minsize;
2542 }
2543 free(e);
2544 }
2545 if (cnt < raiddisks) {
2546 pr_err("not enough devices with space to create array.\n");
2547 return 0; /* No enough free spaces large enough */
2548 }
2549 if (size == 0) {
2550 /* choose the largest size of which there are at least 'raiddisk' */
2551 for (dl = ddf->dlist ; dl ; dl=dl->next) {
2552 struct dl *dl2;
2553 if (dl->esize <= size)
2554 continue;
2555 /* This is bigger than 'size', see if there are enough */
2556 cnt = 0;
2557 for (dl2 = ddf->dlist; dl2 ; dl2=dl2->next)
2558 if (dl2->esize >= dl->esize)
2559 cnt++;
2560 if (cnt >= raiddisks)
2561 size = dl->esize;
2562 }
2563 if (chunk) {
2564 size = size / chunk;
2565 size *= chunk;
2566 }
2567 *freesize = size;
2568 if (size < 32) {
2569 pr_err("not enough spare devices to create array.\n");
2570 return 0;
2571 }
2572 }
2573 /* We have a 'size' of which there are enough spaces.
2574 * We simply do a first-fit */
2575 cnt = 0;
2576 for (dl = ddf->dlist ; dl && cnt < raiddisks ; dl=dl->next) {
2577 if (dl->esize < size)
2578 continue;
2579
2580 dl->raiddisk = cnt;
2581 cnt++;
2582 }
2583 return 1;
2584 }
2585
2586 static int
2587 validate_geometry_ddf_container(struct supertype *st,
2588 int level, int layout, int raiddisks,
2589 int chunk, unsigned long long size,
2590 unsigned long long data_offset,
2591 char *dev, unsigned long long *freesize,
2592 int verbose);
2593
2594 static int validate_geometry_ddf_bvd(struct supertype *st,
2595 int level, int layout, int raiddisks,
2596 int *chunk, unsigned long long size,
2597 unsigned long long data_offset,
2598 char *dev, unsigned long long *freesize,
2599 int verbose);
2600
2601 static int validate_geometry_ddf(struct supertype *st,
2602 int level, int layout, int raiddisks,
2603 int *chunk, unsigned long long size,
2604 unsigned long long data_offset,
2605 char *dev, unsigned long long *freesize,
2606 int verbose)
2607 {
2608 int fd;
2609 struct mdinfo *sra;
2610 int cfd;
2611
2612 /* ddf potentially supports lots of things, but it depends on
2613 * what devices are offered (and maybe kernel version?)
2614 * If given unused devices, we will make a container.
2615 * If given devices in a container, we will make a BVD.
2616 * If given BVDs, we make an SVD, changing all the GUIDs in the process.
2617 */
2618
2619 if (chunk && *chunk == UnSet)
2620 *chunk = DEFAULT_CHUNK;
2621
2622 if (level == -1000000) level = LEVEL_CONTAINER;
2623 if (level == LEVEL_CONTAINER) {
2624 /* Must be a fresh device to add to a container */
2625 return validate_geometry_ddf_container(st, level, layout,
2626 raiddisks, chunk?*chunk:0,
2627 size, data_offset, dev,
2628 freesize,
2629 verbose);
2630 }
2631
2632 if (!dev) {
2633 /* Initial sanity check. Exclude illegal levels. */
2634 int i;
2635 for (i=0; ddf_level_num[i].num1 != MAXINT; i++)
2636 if (ddf_level_num[i].num2 == level)
2637 break;
2638 if (ddf_level_num[i].num1 == MAXINT) {
2639 if (verbose)
2640 pr_err("DDF does not support level %d arrays\n",
2641 level);
2642 return 0;
2643 }
2644 /* Should check layout? etc */
2645
2646 if (st->sb && freesize) {
2647 /* --create was given a container to create in.
2648 * So we need to check that there are enough
2649 * free spaces and return the amount of space.
2650 * We may as well remember which drives were
2651 * chosen so that add_to_super/getinfo_super
2652 * can return them.
2653 */
2654 return reserve_space(st, raiddisks, size, chunk?*chunk:0, freesize);
2655 }
2656 return 1;
2657 }
2658
2659 if (st->sb) {
2660 /* A container has already been opened, so we are
2661 * creating in there. Maybe a BVD, maybe an SVD.
2662 * Should make a distinction one day.
2663 */
2664 return validate_geometry_ddf_bvd(st, level, layout, raiddisks,
2665 chunk, size, data_offset, dev,
2666 freesize,
2667 verbose);
2668 }
2669 /* This is the first device for the array.
2670 * If it is a container, we read it in and do automagic allocations,
2671 * no other devices should be given.
2672 * Otherwise it must be a member device of a container, and we
2673 * do manual allocation.
2674 * Later we should check for a BVD and make an SVD.
2675 */
2676 fd = open(dev, O_RDONLY|O_EXCL, 0);
2677 if (fd >= 0) {
2678 sra = sysfs_read(fd, NULL, GET_VERSION);
2679 close(fd);
2680 if (sra && sra->array.major_version == -1 &&
2681 strcmp(sra->text_version, "ddf") == 0) {
2682
2683 /* load super */
2684 /* find space for 'n' devices. */
2685 /* remember the devices */
2686 /* Somehow return the fact that we have enough */
2687 }
2688
2689 if (verbose)
2690 pr_err("ddf: Cannot create this array "
2691 "on device %s - a container is required.\n",
2692 dev);
2693 return 0;
2694 }
2695 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2696 if (verbose)
2697 pr_err("ddf: Cannot open %s: %s\n",
2698 dev, strerror(errno));
2699 return 0;
2700 }
2701 /* Well, it is in use by someone, maybe a 'ddf' container. */
2702 cfd = open_container(fd);
2703 if (cfd < 0) {
2704 close(fd);
2705 if (verbose)
2706 pr_err("ddf: Cannot use %s: %s\n",
2707 dev, strerror(EBUSY));
2708 return 0;
2709 }
2710 sra = sysfs_read(cfd, NULL, GET_VERSION);
2711 close(fd);
2712 if (sra && sra->array.major_version == -1 &&
2713 strcmp(sra->text_version, "ddf") == 0) {
2714 /* This is a member of a ddf container. Load the container
2715 * and try to create a bvd
2716 */
2717 struct ddf_super *ddf;
2718 if (load_super_ddf_all(st, cfd, (void **)&ddf, NULL) == 0) {
2719 st->sb = ddf;
2720 strcpy(st->container_devnm, fd2devnm(cfd));
2721 close(cfd);
2722 return validate_geometry_ddf_bvd(st, level, layout,
2723 raiddisks, chunk, size,
2724 data_offset,
2725 dev, freesize,
2726 verbose);
2727 }
2728 close(cfd);
2729 } else /* device may belong to a different container */
2730 return 0;
2731
2732 return 1;
2733 }
2734
2735 static int
2736 validate_geometry_ddf_container(struct supertype *st,
2737 int level, int layout, int raiddisks,
2738 int chunk, unsigned long long size,
2739 unsigned long long data_offset,
2740 char *dev, unsigned long long *freesize,
2741 int verbose)
2742 {
2743 int fd;
2744 unsigned long long ldsize;
2745
2746 if (level != LEVEL_CONTAINER)
2747 return 0;
2748 if (!dev)
2749 return 1;
2750
2751 fd = open(dev, O_RDONLY|O_EXCL, 0);
2752 if (fd < 0) {
2753 if (verbose)
2754 pr_err("ddf: Cannot open %s: %s\n",
2755 dev, strerror(errno));
2756 return 0;
2757 }
2758 if (!get_dev_size(fd, dev, &ldsize)) {
2759 close(fd);
2760 return 0;
2761 }
2762 close(fd);
2763
2764 *freesize = avail_size_ddf(st, ldsize >> 9, INVALID_SECTORS);
2765 if (*freesize == 0)
2766 return 0;
2767
2768 return 1;
2769 }
2770
2771 static int validate_geometry_ddf_bvd(struct supertype *st,
2772 int level, int layout, int raiddisks,
2773 int *chunk, unsigned long long size,
2774 unsigned long long data_offset,
2775 char *dev, unsigned long long *freesize,
2776 int verbose)
2777 {
2778 struct stat stb;
2779 struct ddf_super *ddf = st->sb;
2780 struct dl *dl;
2781 unsigned long long pos = 0;
2782 unsigned long long maxsize;
2783 struct extent *e;
2784 int i;
2785 /* ddf/bvd supports lots of things, but not containers */
2786 if (level == LEVEL_CONTAINER) {
2787 if (verbose)
2788 pr_err("DDF cannot create a container within an container\n");
2789 return 0;
2790 }
2791 /* We must have the container info already read in. */
2792 if (!ddf)
2793 return 0;
2794
2795 if (!dev) {
2796 /* General test: make sure there is space for
2797 * 'raiddisks' device extents of size 'size'.
2798 */
2799 unsigned long long minsize = size;
2800 int dcnt = 0;
2801 if (minsize == 0)
2802 minsize = 8;
2803 for (dl = ddf->dlist; dl ; dl = dl->next)
2804 {
2805 int found = 0;
2806 pos = 0;
2807
2808 i = 0;
2809 e = get_extents(ddf, dl);
2810 if (!e) continue;
2811 do {
2812 unsigned long long esize;
2813 esize = e[i].start - pos;
2814 if (esize >= minsize)
2815 found = 1;
2816 pos = e[i].start + e[i].size;
2817 i++;
2818 } while (e[i-1].size);
2819 if (found)
2820 dcnt++;
2821 free(e);
2822 }
2823 if (dcnt < raiddisks) {
2824 if (verbose)
2825 pr_err("ddf: Not enough devices with "
2826 "space for this array (%d < %d)\n",
2827 dcnt, raiddisks);
2828 return 0;
2829 }
2830 return 1;
2831 }
2832 /* This device must be a member of the set */
2833 if (stat(dev, &stb) < 0)
2834 return 0;
2835 if ((S_IFMT & stb.st_mode) != S_IFBLK)
2836 return 0;
2837 for (dl = ddf->dlist ; dl ; dl = dl->next) {
2838 if (dl->major == (int)major(stb.st_rdev) &&
2839 dl->minor == (int)minor(stb.st_rdev))
2840 break;
2841 }
2842 if (!dl) {
2843 if (verbose)
2844 pr_err("ddf: %s is not in the "
2845 "same DDF set\n",
2846 dev);
2847 return 0;
2848 }
2849 e = get_extents(ddf, dl);
2850 maxsize = 0;
2851 i = 0;
2852 if (e) do {
2853 unsigned long long esize;
2854 esize = e[i].start - pos;
2855 if (esize >= maxsize)
2856 maxsize = esize;
2857 pos = e[i].start + e[i].size;
2858 i++;
2859 } while (e[i-1].size);
2860 *freesize = maxsize;
2861 // FIXME here I am
2862
2863 return 1;
2864 }
2865
2866 static int load_super_ddf_all(struct supertype *st, int fd,
2867 void **sbp, char *devname)
2868 {
2869 struct mdinfo *sra;
2870 struct ddf_super *super;
2871 struct mdinfo *sd, *best = NULL;
2872 int bestseq = 0;
2873 int seq;
2874 char nm[20];
2875 int dfd;
2876
2877 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
2878 if (!sra)
2879 return 1;
2880 if (sra->array.major_version != -1 ||
2881 sra->array.minor_version != -2 ||
2882 strcmp(sra->text_version, "ddf") != 0)
2883 return 1;
2884
2885 if (posix_memalign((void**)&super, 512, sizeof(*super)) != 0)
2886 return 1;
2887 memset(super, 0, sizeof(*super));
2888
2889 /* first, try each device, and choose the best ddf */
2890 for (sd = sra->devs ; sd ; sd = sd->next) {
2891 int rv;
2892 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2893 dfd = dev_open(nm, O_RDONLY);
2894 if (dfd < 0)
2895 return 2;
2896 rv = load_ddf_headers(dfd, super, NULL);
2897 close(dfd);
2898 if (rv == 0) {
2899 seq = __be32_to_cpu(super->active->seq);
2900 if (super->active->openflag)
2901 seq--;
2902 if (!best || seq > bestseq) {
2903 bestseq = seq;
2904 best = sd;
2905 }
2906 }
2907 }
2908 if (!best)
2909 return 1;
2910 /* OK, load this ddf */
2911 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
2912 dfd = dev_open(nm, O_RDONLY);
2913 if (dfd < 0)
2914 return 1;
2915 load_ddf_headers(dfd, super, NULL);
2916 load_ddf_global(dfd, super, NULL);
2917 close(dfd);
2918 /* Now we need the device-local bits */
2919 for (sd = sra->devs ; sd ; sd = sd->next) {
2920 int rv;
2921
2922 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2923 dfd = dev_open(nm, O_RDWR);
2924 if (dfd < 0)
2925 return 2;
2926 rv = load_ddf_headers(dfd, super, NULL);
2927 if (rv == 0)
2928 rv = load_ddf_local(dfd, super, NULL, 1);
2929 if (rv)
2930 return 1;
2931 }
2932
2933 *sbp = super;
2934 if (st->ss == NULL) {
2935 st->ss = &super_ddf;
2936 st->minor_version = 0;
2937 st->max_devs = 512;
2938 }
2939 strcpy(st->container_devnm, fd2devnm(fd));
2940 return 0;
2941 }
2942
2943 static int load_container_ddf(struct supertype *st, int fd,
2944 char *devname)
2945 {
2946 return load_super_ddf_all(st, fd, &st->sb, devname);
2947 }
2948
2949 #endif /* MDASSEMBLE */
2950
2951 static struct mdinfo *container_content_ddf(struct supertype *st, char *subarray)
2952 {
2953 /* Given a container loaded by load_super_ddf_all,
2954 * extract information about all the arrays into
2955 * an mdinfo tree.
2956 *
2957 * For each vcl in conflist: create an mdinfo, fill it in,
2958 * then look for matching devices (phys_refnum) in dlist
2959 * and create appropriate device mdinfo.
2960 */
2961 struct ddf_super *ddf = st->sb;
2962 struct mdinfo *rest = NULL;
2963 struct vcl *vc;
2964
2965 for (vc = ddf->conflist ; vc ; vc=vc->next)
2966 {
2967 unsigned int i;
2968 unsigned int j;
2969 struct mdinfo *this;
2970 char *ep;
2971 __u32 *cptr;
2972
2973 if (subarray &&
2974 (strtoul(subarray, &ep, 10) != vc->vcnum ||
2975 *ep != '\0'))
2976 continue;
2977
2978 this = xcalloc(1, sizeof(*this));
2979 this->next = rest;
2980 rest = this;
2981
2982 this->array.level = map_num1(ddf_level_num, vc->conf.prl);
2983 this->array.raid_disks =
2984 __be16_to_cpu(vc->conf.prim_elmnt_count);
2985 this->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
2986 this->array.raid_disks);
2987 this->array.md_minor = -1;
2988 this->array.major_version = -1;
2989 this->array.minor_version = -2;
2990 cptr = (__u32 *)(vc->conf.guid + 16);
2991 this->array.ctime = DECADE + __be32_to_cpu(*cptr);
2992 this->array.utime = DECADE +
2993 __be32_to_cpu(vc->conf.timestamp);
2994 this->array.chunk_size = 512 << vc->conf.chunk_shift;
2995
2996 i = vc->vcnum;
2997 if ((ddf->virt->entries[i].state & DDF_state_inconsistent) ||
2998 (ddf->virt->entries[i].init_state & DDF_initstate_mask) !=
2999 DDF_init_full) {
3000 this->array.state = 0;
3001 this->resync_start = 0;
3002 } else {
3003 this->array.state = 1;
3004 this->resync_start = MaxSector;
3005 }
3006 memcpy(this->name, ddf->virt->entries[i].name, 16);
3007 this->name[16]=0;
3008 for(j=0; j<16; j++)
3009 if (this->name[j] == ' ')
3010 this->name[j] = 0;
3011
3012 memset(this->uuid, 0, sizeof(this->uuid));
3013 this->component_size = __be64_to_cpu(vc->conf.blocks);
3014 this->array.size = this->component_size / 2;
3015 this->container_member = i;
3016
3017 ddf->currentconf = vc;
3018 uuid_from_super_ddf(st, this->uuid);
3019 ddf->currentconf = NULL;
3020
3021 sprintf(this->text_version, "/%s/%d",
3022 st->container_devnm, this->container_member);
3023
3024 for (i = 0 ; i < ddf->mppe ; i++) {
3025 struct mdinfo *dev;
3026 struct dl *d;
3027 int stt;
3028 int pd;
3029
3030 if (vc->conf.phys_refnum[i] == 0xFFFFFFFF)
3031 continue;
3032
3033 for (pd = __be16_to_cpu(ddf->phys->used_pdes);
3034 pd--;)
3035 if (ddf->phys->entries[pd].refnum
3036 == vc->conf.phys_refnum[i])
3037 break;
3038 if (pd < 0)
3039 continue;
3040
3041 stt = __be16_to_cpu(ddf->phys->entries[pd].state);
3042 if ((stt & (DDF_Online|DDF_Failed|DDF_Rebuilding))
3043 != DDF_Online)
3044 continue;
3045
3046 this->array.working_disks++;
3047
3048 for (d = ddf->dlist; d ; d=d->next)
3049 if (d->disk.refnum == vc->conf.phys_refnum[i])
3050 break;
3051 if (d == NULL)
3052 /* Haven't found that one yet, maybe there are others */
3053 continue;
3054
3055 dev = xcalloc(1, sizeof(*dev));
3056 dev->next = this->devs;
3057 this->devs = dev;
3058
3059 dev->disk.number = __be32_to_cpu(d->disk.refnum);
3060 dev->disk.major = d->major;
3061 dev->disk.minor = d->minor;
3062 dev->disk.raid_disk = i;
3063 dev->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
3064 dev->recovery_start = MaxSector;
3065
3066 dev->events = __be32_to_cpu(ddf->primary.seq);
3067 dev->data_offset = __be64_to_cpu(vc->lba_offset[i]);
3068 dev->component_size = __be64_to_cpu(vc->conf.blocks);
3069 if (d->devname)
3070 strcpy(dev->name, d->devname);
3071 }
3072 }
3073 return rest;
3074 }
3075
3076 static int store_super_ddf(struct supertype *st, int fd)
3077 {
3078 struct ddf_super *ddf = st->sb;
3079 unsigned long long dsize;
3080 void *buf;
3081 int rc;
3082
3083 if (!ddf)
3084 return 1;
3085
3086 /* ->dlist and ->conflist will be set for updates, currently not
3087 * supported
3088 */
3089 if (ddf->dlist || ddf->conflist)
3090 return 1;
3091
3092 if (!get_dev_size(fd, NULL, &dsize))
3093 return 1;
3094
3095 if (posix_memalign(&buf, 512, 512) != 0)
3096 return 1;
3097 memset(buf, 0, 512);
3098
3099 lseek64(fd, dsize-512, 0);
3100 rc = write(fd, buf, 512);
3101 free(buf);
3102 if (rc < 0)
3103 return 1;
3104 return 0;
3105 }
3106
3107 static int compare_super_ddf(struct supertype *st, struct supertype *tst)
3108 {
3109 /*
3110 * return:
3111 * 0 same, or first was empty, and second was copied
3112 * 1 second had wrong number
3113 * 2 wrong uuid
3114 * 3 wrong other info
3115 */
3116 struct ddf_super *first = st->sb;
3117 struct ddf_super *second = tst->sb;
3118
3119 if (!first) {
3120 st->sb = tst->sb;
3121 tst->sb = NULL;
3122 return 0;
3123 }
3124
3125 if (memcmp(first->anchor.guid, second->anchor.guid, DDF_GUID_LEN) != 0)
3126 return 2;
3127
3128 /* FIXME should I look at anything else? */
3129 return 0;
3130 }
3131
3132 #ifndef MDASSEMBLE
3133 /*
3134 * A new array 'a' has been started which claims to be instance 'inst'
3135 * within container 'c'.
3136 * We need to confirm that the array matches the metadata in 'c' so
3137 * that we don't corrupt any metadata.
3138 */
3139 static int ddf_open_new(struct supertype *c, struct active_array *a, char *inst)
3140 {
3141 dprintf("ddf: open_new %s\n", inst);
3142 a->info.container_member = atoi(inst);
3143 return 0;
3144 }
3145
3146 /*
3147 * The array 'a' is to be marked clean in the metadata.
3148 * If '->resync_start' is not ~(unsigned long long)0, then the array is only
3149 * clean up to the point (in sectors). If that cannot be recorded in the
3150 * metadata, then leave it as dirty.
3151 *
3152 * For DDF, we need to clear the DDF_state_inconsistent bit in the
3153 * !global! virtual_disk.virtual_entry structure.
3154 */
3155 static int ddf_set_array_state(struct active_array *a, int consistent)
3156 {
3157 struct ddf_super *ddf = a->container->sb;
3158 int inst = a->info.container_member;
3159 int old = ddf->virt->entries[inst].state;
3160 if (consistent == 2) {
3161 /* Should check if a recovery should be started FIXME */
3162 consistent = 1;
3163 if (!is_resync_complete(&a->info))
3164 consistent = 0;
3165 }
3166 if (consistent)
3167 ddf->virt->entries[inst].state &= ~DDF_state_inconsistent;
3168 else
3169 ddf->virt->entries[inst].state |= DDF_state_inconsistent;
3170 if (old != ddf->virt->entries[inst].state)
3171 ddf->updates_pending = 1;
3172
3173 old = ddf->virt->entries[inst].init_state;
3174 ddf->virt->entries[inst].init_state &= ~DDF_initstate_mask;
3175 if (is_resync_complete(&a->info))
3176 ddf->virt->entries[inst].init_state |= DDF_init_full;
3177 else if (a->info.resync_start == 0)
3178 ddf->virt->entries[inst].init_state |= DDF_init_not;
3179 else
3180 ddf->virt->entries[inst].init_state |= DDF_init_quick;
3181 if (old != ddf->virt->entries[inst].init_state)
3182 ddf->updates_pending = 1;
3183
3184 dprintf("ddf mark %d %s %llu\n", inst, consistent?"clean":"dirty",
3185 a->info.resync_start);
3186 return consistent;
3187 }
3188
3189 #define container_of(ptr, type, member) ({ \
3190 const typeof( ((type *)0)->member ) *__mptr = (ptr); \
3191 (type *)( (char *)__mptr - offsetof(type,member) );})
3192 /*
3193 * The state of each disk is stored in the global phys_disk structure
3194 * in phys_disk.entries[n].state.
3195 * This makes various combinations awkward.
3196 * - When a device fails in any array, it must be failed in all arrays
3197 * that include a part of this device.
3198 * - When a component is rebuilding, we cannot include it officially in the
3199 * array unless this is the only array that uses the device.
3200 *
3201 * So: when transitioning:
3202 * Online -> failed, just set failed flag. monitor will propagate
3203 * spare -> online, the device might need to be added to the array.
3204 * spare -> failed, just set failed. Don't worry if in array or not.
3205 */
3206 static void ddf_set_disk(struct active_array *a, int n, int state)
3207 {
3208 struct ddf_super *ddf = a->container->sb;
3209 unsigned int inst = a->info.container_member;
3210 struct vd_config *vc = find_vdcr(ddf, inst);
3211 int pd = find_phys(ddf, vc->phys_refnum[n]);
3212 int i, st, working;
3213 struct mdinfo *mdi;
3214 struct dl *dl;
3215
3216 if (vc == NULL) {
3217 dprintf("ddf: cannot find instance %d!!\n", inst);
3218 return;
3219 }
3220 /* Find the matching slot in 'info'. */
3221 for (mdi = a->info.devs; mdi; mdi = mdi->next)
3222 if (mdi->disk.raid_disk == n)
3223 break;
3224 if (!mdi)
3225 return;
3226
3227 /* and find the 'dl' entry corresponding to that. */
3228 for (dl = ddf->dlist; dl; dl = dl->next)
3229 if (mdi->state_fd >= 0 &&
3230 mdi->disk.major == dl->major &&
3231 mdi->disk.minor == dl->minor)
3232 break;
3233 if (!dl)
3234 return;
3235
3236 if (pd < 0 || pd != dl->pdnum) {
3237 /* disk doesn't currently exist or has changed.
3238 * If it is now in_sync, insert it. */
3239 if ((state & DS_INSYNC) && ! (state & DS_FAULTY)) {
3240 struct vcl *vcl;
3241 pd = dl->pdnum;
3242 vc->phys_refnum[n] = dl->disk.refnum;
3243 vcl = container_of(vc, struct vcl, conf);
3244 vcl->lba_offset[n] = mdi->data_offset;
3245 ddf->phys->entries[pd].type &=
3246 ~__cpu_to_be16(DDF_Global_Spare);
3247 ddf->phys->entries[pd].type |=
3248 __cpu_to_be16(DDF_Active_in_VD);
3249 ddf->updates_pending = 1;
3250 }
3251 } else {
3252 int old = ddf->phys->entries[pd].state;
3253 if (state & DS_FAULTY)
3254 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Failed);
3255 if (state & DS_INSYNC) {
3256 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Online);
3257 ddf->phys->entries[pd].state &= __cpu_to_be16(~DDF_Rebuilding);
3258 }
3259 if (old != ddf->phys->entries[pd].state)
3260 ddf->updates_pending = 1;
3261 }
3262
3263 dprintf("ddf: set_disk %d to %x\n", n, state);
3264
3265 /* Now we need to check the state of the array and update
3266 * virtual_disk.entries[n].state.
3267 * It needs to be one of "optimal", "degraded", "failed".
3268 * I don't understand 'deleted' or 'missing'.
3269 */
3270 working = 0;
3271 for (i=0; i < a->info.array.raid_disks; i++) {
3272 pd = find_phys(ddf, vc->phys_refnum[i]);
3273 if (pd < 0)
3274 continue;
3275 st = __be16_to_cpu(ddf->phys->entries[pd].state);
3276 if ((st & (DDF_Online|DDF_Failed|DDF_Rebuilding))
3277 == DDF_Online)
3278 working++;
3279 }
3280 state = DDF_state_degraded;
3281 if (working == a->info.array.raid_disks)
3282 state = DDF_state_optimal;
3283 else switch(vc->prl) {
3284 case DDF_RAID0:
3285 case DDF_CONCAT:
3286 case DDF_JBOD:
3287 state = DDF_state_failed;
3288 break;
3289 case DDF_RAID1:
3290 if (working == 0)
3291 state = DDF_state_failed;
3292 else if (working == 2 && state == DDF_state_degraded)
3293 state = DDF_state_part_optimal;
3294 break;
3295 case DDF_RAID4:
3296 case DDF_RAID5:
3297 if (working < a->info.array.raid_disks-1)
3298 state = DDF_state_failed;
3299 break;
3300 case DDF_RAID6:
3301 if (working < a->info.array.raid_disks-2)
3302 state = DDF_state_failed;
3303 else if (working == a->info.array.raid_disks-1)
3304 state = DDF_state_part_optimal;
3305 break;
3306 }
3307
3308 if (ddf->virt->entries[inst].state !=
3309 ((ddf->virt->entries[inst].state & ~DDF_state_mask)
3310 | state)) {
3311
3312 ddf->virt->entries[inst].state =
3313 (ddf->virt->entries[inst].state & ~DDF_state_mask)
3314 | state;
3315 ddf->updates_pending = 1;
3316 }
3317
3318 }
3319
3320 static void ddf_sync_metadata(struct supertype *st)
3321 {
3322
3323 /*
3324 * Write all data to all devices.
3325 * Later, we might be able to track whether only local changes
3326 * have been made, or whether any global data has been changed,
3327 * but ddf is sufficiently weird that it probably always
3328 * changes global data ....
3329 */
3330 struct ddf_super *ddf = st->sb;
3331 if (!ddf->updates_pending)
3332 return;
3333 ddf->updates_pending = 0;
3334 __write_init_super_ddf(st);
3335 dprintf("ddf: sync_metadata\n");
3336 }
3337
3338 static void ddf_process_update(struct supertype *st,
3339 struct metadata_update *update)
3340 {
3341 /* Apply this update to the metadata.
3342 * The first 4 bytes are a DDF_*_MAGIC which guides
3343 * our actions.
3344 * Possible update are:
3345 * DDF_PHYS_RECORDS_MAGIC
3346 * Add a new physical device or remove an old one.
3347 * Changes to this record only happen implicitly.
3348 * used_pdes is the device number.
3349 * DDF_VIRT_RECORDS_MAGIC
3350 * Add a new VD. Possibly also change the 'access' bits.
3351 * populated_vdes is the entry number.
3352 * DDF_VD_CONF_MAGIC
3353 * New or updated VD. the VIRT_RECORD must already
3354 * exist. For an update, phys_refnum and lba_offset
3355 * (at least) are updated, and the VD_CONF must
3356 * be written to precisely those devices listed with
3357 * a phys_refnum.
3358 * DDF_SPARE_ASSIGN_MAGIC
3359 * replacement Spare Assignment Record... but for which device?
3360 *
3361 * So, e.g.:
3362 * - to create a new array, we send a VIRT_RECORD and
3363 * a VD_CONF. Then assemble and start the array.
3364 * - to activate a spare we send a VD_CONF to add the phys_refnum
3365 * and offset. This will also mark the spare as active with
3366 * a spare-assignment record.
3367 */
3368 struct ddf_super *ddf = st->sb;
3369 __u32 *magic = (__u32*)update->buf;
3370 struct phys_disk *pd;
3371 struct virtual_disk *vd;
3372 struct vd_config *vc;
3373 struct vcl *vcl;
3374 struct dl *dl;
3375 unsigned int mppe;
3376 unsigned int ent;
3377 unsigned int pdnum, pd2;
3378
3379 dprintf("Process update %x\n", *magic);
3380
3381 switch (*magic) {
3382 case DDF_PHYS_RECORDS_MAGIC:
3383
3384 if (update->len != (sizeof(struct phys_disk) +
3385 sizeof(struct phys_disk_entry)))
3386 return;
3387 pd = (struct phys_disk*)update->buf;
3388
3389 ent = __be16_to_cpu(pd->used_pdes);
3390 if (ent >= __be16_to_cpu(ddf->phys->max_pdes))
3391 return;
3392 if (pd->entries[0].state & __cpu_to_be16(DDF_Missing)) {
3393 struct dl **dlp;
3394 /* removing this disk. */
3395 ddf->phys->entries[ent].state |= __cpu_to_be16(DDF_Missing);
3396 for (dlp = &ddf->dlist; *dlp; dlp = &(*dlp)->next) {
3397 struct dl *dl = *dlp;
3398 if (dl->pdnum == (signed)ent) {
3399 close(dl->fd);
3400 dl->fd = -1;
3401 /* FIXME this doesn't free
3402 * dl->devname */
3403 update->space = dl;
3404 *dlp = dl->next;
3405 break;
3406 }
3407 }
3408 ddf->updates_pending = 1;
3409 return;
3410 }
3411 if (!all_ff(ddf->phys->entries[ent].guid))
3412 return;
3413 ddf->phys->entries[ent] = pd->entries[0];
3414 ddf->phys->used_pdes = __cpu_to_be16(1 +
3415 __be16_to_cpu(ddf->phys->used_pdes));
3416 ddf->updates_pending = 1;
3417 if (ddf->add_list) {
3418 struct active_array *a;
3419 struct dl *al = ddf->add_list;
3420 ddf->add_list = al->next;
3421
3422 al->next = ddf->dlist;
3423 ddf->dlist = al;
3424
3425 /* As a device has been added, we should check
3426 * for any degraded devices that might make
3427 * use of this spare */
3428 for (a = st->arrays ; a; a=a->next)
3429 a->check_degraded = 1;
3430 }
3431 break;
3432
3433 case DDF_VIRT_RECORDS_MAGIC:
3434
3435 if (update->len != (sizeof(struct virtual_disk) +
3436 sizeof(struct virtual_entry)))
3437 return;
3438 vd = (struct virtual_disk*)update->buf;
3439
3440 ent = __be16_to_cpu(vd->populated_vdes);
3441 if (ent >= __be16_to_cpu(ddf->virt->max_vdes))
3442 return;
3443 if (!all_ff(ddf->virt->entries[ent].guid))
3444 return;
3445 ddf->virt->entries[ent] = vd->entries[0];
3446 ddf->virt->populated_vdes = __cpu_to_be16(1 +
3447 __be16_to_cpu(ddf->virt->populated_vdes));
3448 ddf->updates_pending = 1;
3449 break;
3450
3451 case DDF_VD_CONF_MAGIC:
3452 dprintf("len %d %d\n", update->len, ddf->conf_rec_len);
3453
3454 mppe = __be16_to_cpu(ddf->anchor.max_primary_element_entries);
3455 if ((unsigned)update->len != ddf->conf_rec_len * 512)
3456 return;
3457 vc = (struct vd_config*)update->buf;
3458 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
3459 if (memcmp(vcl->conf.guid, vc->guid, DDF_GUID_LEN) == 0)
3460 break;
3461 dprintf("vcl = %p\n", vcl);
3462 if (vcl) {
3463 /* An update, just copy the phys_refnum and lba_offset
3464 * fields
3465 */
3466 memcpy(vcl->conf.phys_refnum, vc->phys_refnum,
3467 mppe * (sizeof(__u32) + sizeof(__u64)));
3468 } else {
3469 /* A new VD_CONF */
3470 if (!update->space)
3471 return;
3472 vcl = update->space;
3473 update->space = NULL;
3474 vcl->next = ddf->conflist;
3475 memcpy(&vcl->conf, vc, update->len);
3476 vcl->lba_offset = (__u64*)
3477 &vcl->conf.phys_refnum[mppe];
3478 for (ent = 0;
3479 ent < __be16_to_cpu(ddf->virt->populated_vdes);
3480 ent++)
3481 if (memcmp(vc->guid, ddf->virt->entries[ent].guid,
3482 DDF_GUID_LEN) == 0) {
3483 vcl->vcnum = ent;
3484 break;
3485 }
3486 ddf->conflist = vcl;
3487 }
3488 /* Set DDF_Transition on all Failed devices - to help
3489 * us detect those that are no longer in use
3490 */
3491 for (pdnum = 0; pdnum < __be16_to_cpu(ddf->phys->used_pdes); pdnum++)
3492 if (ddf->phys->entries[pdnum].state
3493 & __be16_to_cpu(DDF_Failed))
3494 ddf->phys->entries[pdnum].state
3495 |= __be16_to_cpu(DDF_Transition);
3496 /* Now make sure vlist is correct for each dl. */
3497 for (dl = ddf->dlist; dl; dl = dl->next) {
3498 unsigned int dn;
3499 unsigned int vn = 0;
3500 int in_degraded = 0;
3501 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
3502 for (dn=0; dn < ddf->mppe ; dn++)
3503 if (vcl->conf.phys_refnum[dn] ==
3504 dl->disk.refnum) {
3505 int vstate;
3506 dprintf("dev %d has %p at %d\n",
3507 dl->pdnum, vcl, vn);
3508 /* Clear the Transition flag */
3509 if (ddf->phys->entries[dl->pdnum].state
3510 & __be16_to_cpu(DDF_Failed))
3511 ddf->phys->entries[dl->pdnum].state &=
3512 ~__be16_to_cpu(DDF_Transition);
3513
3514 dl->vlist[vn++] = vcl;
3515 vstate = ddf->virt->entries[vcl->vcnum].state
3516 & DDF_state_mask;
3517 if (vstate == DDF_state_degraded ||
3518 vstate == DDF_state_part_optimal)
3519 in_degraded = 1;
3520 break;
3521 }
3522 while (vn < ddf->max_part)
3523 dl->vlist[vn++] = NULL;
3524 if (dl->vlist[0]) {
3525 ddf->phys->entries[dl->pdnum].type &=
3526 ~__cpu_to_be16(DDF_Global_Spare);
3527 if (!(ddf->phys->entries[dl->pdnum].type &
3528 __cpu_to_be16(DDF_Active_in_VD))) {
3529 ddf->phys->entries[dl->pdnum].type |=
3530 __cpu_to_be16(DDF_Active_in_VD);
3531 if (in_degraded)
3532 ddf->phys->entries[dl->pdnum].state |=
3533 __cpu_to_be16(DDF_Rebuilding);
3534 }
3535 }
3536 if (dl->spare) {
3537 ddf->phys->entries[dl->pdnum].type &=
3538 ~__cpu_to_be16(DDF_Global_Spare);
3539 ddf->phys->entries[dl->pdnum].type |=
3540 __cpu_to_be16(DDF_Spare);
3541 }
3542 if (!dl->vlist[0] && !dl->spare) {
3543 ddf->phys->entries[dl->pdnum].type |=
3544 __cpu_to_be16(DDF_Global_Spare);
3545 ddf->phys->entries[dl->pdnum].type &=
3546 ~__cpu_to_be16(DDF_Spare |
3547 DDF_Active_in_VD);
3548 }
3549 }
3550
3551 /* Now remove any 'Failed' devices that are not part
3552 * of any VD. They will have the Transition flag set.
3553 * Once done, we need to update all dl->pdnum numbers.
3554 */
3555 pd2 = 0;
3556 for (pdnum = 0; pdnum < __be16_to_cpu(ddf->phys->used_pdes); pdnum++)
3557 if ((ddf->phys->entries[pdnum].state
3558 & __be16_to_cpu(DDF_Failed))
3559 && (ddf->phys->entries[pdnum].state
3560 & __be16_to_cpu(DDF_Transition)))
3561 /* skip this one */;
3562 else if (pdnum == pd2)
3563 pd2++;
3564 else {
3565 ddf->phys->entries[pd2] = ddf->phys->entries[pdnum];
3566 for (dl = ddf->dlist; dl; dl = dl->next)
3567 if (dl->pdnum == (int)pdnum)
3568 dl->pdnum = pd2;
3569 pd2++;
3570 }
3571 ddf->phys->used_pdes = __cpu_to_be16(pd2);
3572 while (pd2 < pdnum) {
3573 memset(ddf->phys->entries[pd2].guid, 0xff, DDF_GUID_LEN);
3574 pd2++;
3575 }
3576
3577 ddf->updates_pending = 1;
3578 break;
3579 case DDF_SPARE_ASSIGN_MAGIC:
3580 default: break;
3581 }
3582 }
3583
3584 static void ddf_prepare_update(struct supertype *st,
3585 struct metadata_update *update)
3586 {
3587 /* This update arrived at managemon.
3588 * We are about to pass it to monitor.
3589 * If a malloc is needed, do it here.
3590 */
3591 struct ddf_super *ddf = st->sb;
3592 __u32 *magic = (__u32*)update->buf;
3593 if (*magic == DDF_VD_CONF_MAGIC)
3594 if (posix_memalign(&update->space, 512,
3595 offsetof(struct vcl, conf)
3596 + ddf->conf_rec_len * 512) != 0)
3597 update->space = NULL;
3598 }
3599
3600 /*
3601 * Check if the array 'a' is degraded but not failed.
3602 * If it is, find as many spares as are available and needed and
3603 * arrange for their inclusion.
3604 * We only choose devices which are not already in the array,
3605 * and prefer those with a spare-assignment to this array.
3606 * otherwise we choose global spares - assuming always that
3607 * there is enough room.
3608 * For each spare that we assign, we return an 'mdinfo' which
3609 * describes the position for the device in the array.
3610 * We also add to 'updates' a DDF_VD_CONF_MAGIC update with
3611 * the new phys_refnum and lba_offset values.
3612 *
3613 * Only worry about BVDs at the moment.
3614 */
3615 static struct mdinfo *ddf_activate_spare(struct active_array *a,
3616 struct metadata_update **updates)
3617 {
3618 int working = 0;
3619 struct mdinfo *d;
3620 struct ddf_super *ddf = a->container->sb;
3621 int global_ok = 0;
3622 struct mdinfo *rv = NULL;
3623 struct mdinfo *di;
3624 struct metadata_update *mu;
3625 struct dl *dl;
3626 int i;
3627 struct vd_config *vc;
3628 __u64 *lba;
3629
3630 for (d = a->info.devs ; d ; d = d->next) {
3631 if ((d->curr_state & DS_FAULTY) &&
3632 d->state_fd >= 0)
3633 /* wait for Removal to happen */
3634 return NULL;
3635 if (d->state_fd >= 0)
3636 working ++;
3637 }
3638
3639 dprintf("ddf_activate: working=%d (%d) level=%d\n", working, a->info.array.raid_disks,
3640 a->info.array.level);
3641 if (working == a->info.array.raid_disks)
3642 return NULL; /* array not degraded */
3643 switch (a->info.array.level) {
3644 case 1:
3645 if (working == 0)
3646 return NULL; /* failed */
3647 break;
3648 case 4:
3649 case 5:
3650 if (working < a->info.array.raid_disks - 1)
3651 return NULL; /* failed */
3652 break;
3653 case 6:
3654 if (working < a->info.array.raid_disks - 2)
3655 return NULL; /* failed */
3656 break;
3657 default: /* concat or stripe */
3658 return NULL; /* failed */
3659 }
3660
3661 /* For each slot, if it is not working, find a spare */
3662 dl = ddf->dlist;
3663 for (i = 0; i < a->info.array.raid_disks; i++) {
3664 for (d = a->info.devs ; d ; d = d->next)
3665 if (d->disk.raid_disk == i)
3666 break;
3667 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
3668 if (d && (d->state_fd >= 0))
3669 continue;
3670
3671 /* OK, this device needs recovery. Find a spare */
3672 again:
3673 for ( ; dl ; dl = dl->next) {
3674 unsigned long long esize;
3675 unsigned long long pos;
3676 struct mdinfo *d2;
3677 int is_global = 0;
3678 int is_dedicated = 0;
3679 struct extent *ex;
3680 unsigned int j;
3681 /* If in this array, skip */
3682 for (d2 = a->info.devs ; d2 ; d2 = d2->next)
3683 if (d2->state_fd >= 0 &&
3684 d2->disk.major == dl->major &&
3685 d2->disk.minor == dl->minor) {
3686 dprintf("%x:%x already in array\n", dl->major, dl->minor);
3687 break;
3688 }
3689 if (d2)
3690 continue;
3691 if (ddf->phys->entries[dl->pdnum].type &
3692 __cpu_to_be16(DDF_Spare)) {
3693 /* Check spare assign record */
3694 if (dl->spare) {
3695 if (dl->spare->type & DDF_spare_dedicated) {
3696 /* check spare_ents for guid */
3697 for (j = 0 ;
3698 j < __be16_to_cpu(dl->spare->populated);
3699 j++) {
3700 if (memcmp(dl->spare->spare_ents[j].guid,
3701 ddf->virt->entries[a->info.container_member].guid,
3702 DDF_GUID_LEN) == 0)
3703 is_dedicated = 1;
3704 }
3705 } else
3706 is_global = 1;
3707 }
3708 } else if (ddf->phys->entries[dl->pdnum].type &
3709 __cpu_to_be16(DDF_Global_Spare)) {
3710 is_global = 1;
3711 } else if (!(ddf->phys->entries[dl->pdnum].state &
3712 __cpu_to_be16(DDF_Failed))) {
3713 /* we can possibly use some of this */
3714 is_global = 1;
3715 }
3716 if ( ! (is_dedicated ||
3717 (is_global && global_ok))) {
3718 dprintf("%x:%x not suitable: %d %d\n", dl->major, dl->minor,
3719 is_dedicated, is_global);
3720 continue;
3721 }
3722
3723 /* We are allowed to use this device - is there space?
3724 * We need a->info.component_size sectors */
3725 ex = get_extents(ddf, dl);
3726 if (!ex) {
3727 dprintf("cannot get extents\n");
3728 continue;
3729 }
3730 j = 0; pos = 0;
3731 esize = 0;
3732
3733 do {
3734 esize = ex[j].start - pos;
3735 if (esize >= a->info.component_size)
3736 break;
3737 pos = ex[j].start + ex[j].size;
3738 j++;
3739 } while (ex[j-1].size);
3740
3741 free(ex);
3742 if (esize < a->info.component_size) {
3743 dprintf("%x:%x has no room: %llu %llu\n",
3744 dl->major, dl->minor,
3745 esize, a->info.component_size);
3746 /* No room */
3747 continue;
3748 }
3749
3750 /* Cool, we have a device with some space at pos */
3751 di = xcalloc(1, sizeof(*di));
3752 di->disk.number = i;
3753 di->disk.raid_disk = i;
3754 di->disk.major = dl->major;
3755 di->disk.minor = dl->minor;
3756 di->disk.state = 0;
3757 di->recovery_start = 0;
3758 di->data_offset = pos;
3759 di->component_size = a->info.component_size;
3760 di->container_member = dl->pdnum;
3761 di->next = rv;
3762 rv = di;
3763 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
3764 i, pos);
3765
3766 break;
3767 }
3768 if (!dl && ! global_ok) {
3769 /* not enough dedicated spares, try global */
3770 global_ok = 1;
3771 dl = ddf->dlist;
3772 goto again;
3773 }
3774 }
3775
3776 if (!rv)
3777 /* No spares found */
3778 return rv;
3779 /* Now 'rv' has a list of devices to return.
3780 * Create a metadata_update record to update the
3781 * phys_refnum and lba_offset values
3782 */
3783 mu = xmalloc(sizeof(*mu));
3784 if (posix_memalign(&mu->space, 512, sizeof(struct vcl)) != 0) {
3785 free(mu);
3786 mu = NULL;
3787 }
3788 mu->buf = xmalloc(ddf->conf_rec_len * 512);
3789 mu->len = ddf->conf_rec_len * 512;
3790 mu->space = NULL;
3791 mu->space_list = NULL;
3792 mu->next = *updates;
3793 vc = find_vdcr(ddf, a->info.container_member);
3794 memcpy(mu->buf, vc, ddf->conf_rec_len * 512);
3795
3796 vc = (struct vd_config*)mu->buf;
3797 lba = (__u64*)&vc->phys_refnum[ddf->mppe];
3798 for (di = rv ; di ; di = di->next) {
3799 vc->phys_refnum[di->disk.raid_disk] =
3800 ddf->phys->entries[dl->pdnum].refnum;
3801 lba[di->disk.raid_disk] = di->data_offset;
3802 }
3803 *updates = mu;
3804 return rv;
3805 }
3806 #endif /* MDASSEMBLE */
3807
3808 static int ddf_level_to_layout(int level)
3809 {
3810 switch(level) {
3811 case 0:
3812 case 1:
3813 return 0;
3814 case 5:
3815 return ALGORITHM_LEFT_SYMMETRIC;
3816 case 6:
3817 return ALGORITHM_ROTATING_N_CONTINUE;
3818 case 10:
3819 return 0x102;
3820 default:
3821 return UnSet;
3822 }
3823 }
3824
3825 static void default_geometry_ddf(struct supertype *st, int *level, int *layout, int *chunk)
3826 {
3827 if (level && *level == UnSet)
3828 *level = LEVEL_CONTAINER;
3829
3830 if (level && layout && *layout == UnSet)
3831 *layout = ddf_level_to_layout(*level);
3832 }
3833
3834 struct superswitch super_ddf = {
3835 #ifndef MDASSEMBLE
3836 .examine_super = examine_super_ddf,
3837 .brief_examine_super = brief_examine_super_ddf,
3838 .brief_examine_subarrays = brief_examine_subarrays_ddf,
3839 .export_examine_super = export_examine_super_ddf,
3840 .detail_super = detail_super_ddf,
3841 .brief_detail_super = brief_detail_super_ddf,
3842 .validate_geometry = validate_geometry_ddf,
3843 .write_init_super = write_init_super_ddf,
3844 .add_to_super = add_to_super_ddf,
3845 .remove_from_super = remove_from_super_ddf,
3846 .load_container = load_container_ddf,
3847 #endif
3848 .match_home = match_home_ddf,
3849 .uuid_from_super= uuid_from_super_ddf,
3850 .getinfo_super = getinfo_super_ddf,
3851 .update_super = update_super_ddf,
3852
3853 .avail_size = avail_size_ddf,
3854
3855 .compare_super = compare_super_ddf,
3856
3857 .load_super = load_super_ddf,
3858 .init_super = init_super_ddf,
3859 .store_super = store_super_ddf,
3860 .free_super = free_super_ddf,
3861 .match_metadata_desc = match_metadata_desc_ddf,
3862 .container_content = container_content_ddf,
3863 .default_geometry = default_geometry_ddf,
3864
3865 .external = 1,
3866
3867 #ifndef MDASSEMBLE
3868 /* for mdmon */
3869 .open_new = ddf_open_new,
3870 .set_array_state= ddf_set_array_state,
3871 .set_disk = ddf_set_disk,
3872 .sync_metadata = ddf_sync_metadata,
3873 .process_update = ddf_process_update,
3874 .prepare_update = ddf_prepare_update,
3875 .activate_spare = ddf_activate_spare,
3876 #endif
3877 .name = "ddf",
3878 };