]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
0ebf87faa8190588a9bfe85c668bf4a6c9fb5255
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2007 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #include "mdadm.h"
21 #include "mdmon.h"
22 #include <values.h>
23 #include <scsi/sg.h>
24 #include <ctype.h>
25
26 /* MPB == Metadata Parameter Block */
27 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
28 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
29 #define MPB_VERSION_RAID0 "1.0.00"
30 #define MPB_VERSION_RAID1 "1.1.00"
31 #define MPB_VERSION_RAID5 "1.2.02"
32 #define MAX_SIGNATURE_LENGTH 32
33 #define MAX_RAID_SERIAL_LEN 16
34 #define MPB_SECTOR_CNT 418
35 #define IMSM_RESERVED_SECTORS 4096
36
37 /* Disk configuration info. */
38 #define IMSM_MAX_DEVICES 255
39 struct imsm_disk {
40 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
41 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
42 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
43 __u32 status; /* 0xF0 - 0xF3 */
44 #define SPARE_DISK 0x01 /* Spare */
45 #define CONFIGURED_DISK 0x02 /* Member of some RaidDev */
46 #define FAILED_DISK 0x04 /* Permanent failure */
47 #define USABLE_DISK 0x08 /* Fully usable unless FAILED_DISK is set */
48
49 #define IMSM_DISK_FILLERS 5
50 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
51 };
52
53 /* RAID map configuration infos. */
54 struct imsm_map {
55 __u32 pba_of_lba0; /* start address of partition */
56 __u32 blocks_per_member;/* blocks per member */
57 __u32 num_data_stripes; /* number of data stripes */
58 __u16 blocks_per_strip;
59 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
60 #define IMSM_T_STATE_NORMAL 0
61 #define IMSM_T_STATE_UNINITIALIZED 1
62 #define IMSM_T_STATE_DEGRADED 2 /* FIXME: is this correct? */
63 #define IMSM_T_STATE_FAILED 3 /* FIXME: is this correct? */
64 __u8 raid_level;
65 #define IMSM_T_RAID0 0
66 #define IMSM_T_RAID1 1
67 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
68 __u8 num_members; /* number of member disks */
69 __u8 reserved[3];
70 __u32 filler[7]; /* expansion area */
71 #define IMSM_ORD_REBUILD (1 << 24)
72 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
73 * top byte contains some flags
74 */
75 } __attribute__ ((packed));
76
77 struct imsm_vol {
78 __u32 reserved[2];
79 __u8 migr_state; /* Normal or Migrating */
80 __u8 migr_type; /* Initializing, Rebuilding, ... */
81 __u8 dirty;
82 __u8 fill[1];
83 __u32 filler[5];
84 struct imsm_map map[1];
85 /* here comes another one if migr_state */
86 } __attribute__ ((packed));
87
88 struct imsm_dev {
89 __u8 volume[MAX_RAID_SERIAL_LEN];
90 __u32 size_low;
91 __u32 size_high;
92 __u32 status; /* Persistent RaidDev status */
93 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
94 #define IMSM_DEV_FILLERS 12
95 __u32 filler[IMSM_DEV_FILLERS];
96 struct imsm_vol vol;
97 } __attribute__ ((packed));
98
99 struct imsm_super {
100 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
101 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
102 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
103 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
104 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
105 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
106 __u32 attributes; /* 0x34 - 0x37 */
107 __u8 num_disks; /* 0x38 Number of configured disks */
108 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
109 __u8 error_log_pos; /* 0x3A */
110 __u8 fill[1]; /* 0x3B */
111 __u32 cache_size; /* 0x3c - 0x40 in mb */
112 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
113 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
114 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
115 #define IMSM_FILLERS 35
116 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
117 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
118 /* here comes imsm_dev[num_raid_devs] */
119 /* here comes BBM logs */
120 } __attribute__ ((packed));
121
122 #define BBM_LOG_MAX_ENTRIES 254
123
124 struct bbm_log_entry {
125 __u64 defective_block_start;
126 #define UNREADABLE 0xFFFFFFFF
127 __u32 spare_block_offset;
128 __u16 remapped_marked_count;
129 __u16 disk_ordinal;
130 } __attribute__ ((__packed__));
131
132 struct bbm_log {
133 __u32 signature; /* 0xABADB10C */
134 __u32 entry_count;
135 __u32 reserved_spare_block_count; /* 0 */
136 __u32 reserved; /* 0xFFFF */
137 __u64 first_spare_lba;
138 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
139 } __attribute__ ((__packed__));
140
141
142 #ifndef MDASSEMBLE
143 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
144 #endif
145
146 static unsigned int sector_count(__u32 bytes)
147 {
148 return ((bytes + (512-1)) & (~(512-1))) / 512;
149 }
150
151 static unsigned int mpb_sectors(struct imsm_super *mpb)
152 {
153 return sector_count(__le32_to_cpu(mpb->mpb_size));
154 }
155
156 /* internal representation of IMSM metadata */
157 struct intel_super {
158 union {
159 void *buf; /* O_DIRECT buffer for reading/writing metadata */
160 struct imsm_super *anchor; /* immovable parameters */
161 };
162 size_t len; /* size of the 'buf' allocation */
163 void *next_buf; /* for realloc'ing buf from the manager */
164 size_t next_len;
165 int updates_pending; /* count of pending updates for mdmon */
166 int creating_imsm; /* flag to indicate container creation */
167 int current_vol; /* index of raid device undergoing creation */
168 #define IMSM_MAX_RAID_DEVS 2
169 struct imsm_dev *dev_tbl[IMSM_MAX_RAID_DEVS];
170 struct dl {
171 struct dl *next;
172 int index;
173 __u8 serial[MAX_RAID_SERIAL_LEN];
174 int major, minor;
175 char *devname;
176 struct imsm_disk disk;
177 int fd;
178 } *disks;
179 struct dl *add; /* list of disks to add while mdmon active */
180 struct bbm_log *bbm_log;
181 };
182
183 struct extent {
184 unsigned long long start, size;
185 };
186
187 /* definition of messages passed to imsm_process_update */
188 enum imsm_update_type {
189 update_activate_spare,
190 update_create_array,
191 update_add_disk,
192 };
193
194 struct imsm_update_activate_spare {
195 enum imsm_update_type type;
196 struct dl *dl;
197 int slot;
198 int array;
199 struct imsm_update_activate_spare *next;
200 };
201
202 struct imsm_update_create_array {
203 enum imsm_update_type type;
204 int dev_idx;
205 struct imsm_dev dev;
206 };
207
208 struct imsm_update_add_disk {
209 enum imsm_update_type type;
210 };
211
212 static int imsm_env_devname_as_serial(void)
213 {
214 char *val = getenv("IMSM_DEVNAME_AS_SERIAL");
215
216 if (val && atoi(val) == 1)
217 return 1;
218
219 return 0;
220 }
221
222
223 static struct supertype *match_metadata_desc_imsm(char *arg)
224 {
225 struct supertype *st;
226
227 if (strcmp(arg, "imsm") != 0 &&
228 strcmp(arg, "default") != 0
229 )
230 return NULL;
231
232 st = malloc(sizeof(*st));
233 memset(st, 0, sizeof(*st));
234 st->ss = &super_imsm;
235 st->max_devs = IMSM_MAX_DEVICES;
236 st->minor_version = 0;
237 st->sb = NULL;
238 return st;
239 }
240
241 static __u8 *get_imsm_version(struct imsm_super *mpb)
242 {
243 return &mpb->sig[MPB_SIG_LEN];
244 }
245
246 /* retrieve a disk directly from the anchor when the anchor is known to be
247 * up-to-date, currently only at load time
248 */
249 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
250 {
251 if (index >= mpb->num_disks)
252 return NULL;
253 return &mpb->disk[index];
254 }
255
256 /* retrieve a disk from the parsed metadata */
257 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
258 {
259 struct dl *d;
260
261 for (d = super->disks; d; d = d->next)
262 if (d->index == index)
263 return &d->disk;
264
265 return NULL;
266 }
267
268 /* generate a checksum directly from the anchor when the anchor is known to be
269 * up-to-date, currently only at load or write_super after coalescing
270 */
271 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
272 {
273 __u32 end = mpb->mpb_size / sizeof(end);
274 __u32 *p = (__u32 *) mpb;
275 __u32 sum = 0;
276
277 while (end--)
278 sum += __le32_to_cpu(*p++);
279
280 return sum - __le32_to_cpu(mpb->check_sum);
281 }
282
283 static size_t sizeof_imsm_map(struct imsm_map *map)
284 {
285 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
286 }
287
288 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
289 {
290 struct imsm_map *map = &dev->vol.map[0];
291
292 if (second_map && !dev->vol.migr_state)
293 return NULL;
294 else if (second_map) {
295 void *ptr = map;
296
297 return ptr + sizeof_imsm_map(map);
298 } else
299 return map;
300
301 }
302
303 /* return the size of the device.
304 * migr_state increases the returned size if map[0] were to be duplicated
305 */
306 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
307 {
308 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
309 sizeof_imsm_map(get_imsm_map(dev, 0));
310
311 /* migrating means an additional map */
312 if (dev->vol.migr_state)
313 size += sizeof_imsm_map(get_imsm_map(dev, 1));
314 else if (migr_state)
315 size += sizeof_imsm_map(get_imsm_map(dev, 0));
316
317 return size;
318 }
319
320 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
321 {
322 int offset;
323 int i;
324 void *_mpb = mpb;
325
326 if (index >= mpb->num_raid_devs)
327 return NULL;
328
329 /* devices start after all disks */
330 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
331
332 for (i = 0; i <= index; i++)
333 if (i == index)
334 return _mpb + offset;
335 else
336 offset += sizeof_imsm_dev(_mpb + offset, 0);
337
338 return NULL;
339 }
340
341 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
342 {
343 if (index >= super->anchor->num_raid_devs)
344 return NULL;
345 return super->dev_tbl[index];
346 }
347
348 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev, int slot)
349 {
350 struct imsm_map *map;
351
352 if (dev->vol.migr_state)
353 map = get_imsm_map(dev, 1);
354 else
355 map = get_imsm_map(dev, 0);
356
357 /* top byte identifies disk under rebuild */
358 return __le32_to_cpu(map->disk_ord_tbl[slot]);
359 }
360
361 #define ord_to_idx(ord) (((ord) << 8) >> 8)
362 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot)
363 {
364 __u32 ord = get_imsm_ord_tbl_ent(dev, slot);
365
366 return ord_to_idx(ord);
367 }
368
369 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
370 {
371 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
372 }
373
374 static int get_imsm_raid_level(struct imsm_map *map)
375 {
376 if (map->raid_level == 1) {
377 if (map->num_members == 2)
378 return 1;
379 else
380 return 10;
381 }
382
383 return map->raid_level;
384 }
385
386 static int cmp_extent(const void *av, const void *bv)
387 {
388 const struct extent *a = av;
389 const struct extent *b = bv;
390 if (a->start < b->start)
391 return -1;
392 if (a->start > b->start)
393 return 1;
394 return 0;
395 }
396
397 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
398 {
399 /* find a list of used extents on the given physical device */
400 struct extent *rv, *e;
401 int i, j;
402 int memberships = 0;
403
404 for (i = 0; i < super->anchor->num_raid_devs; i++) {
405 struct imsm_dev *dev = get_imsm_dev(super, i);
406 struct imsm_map *map = get_imsm_map(dev, 0);
407
408 for (j = 0; j < map->num_members; j++) {
409 __u32 index = get_imsm_disk_idx(dev, j);
410
411 if (index == dl->index)
412 memberships++;
413 }
414 }
415 rv = malloc(sizeof(struct extent) * (memberships + 1));
416 if (!rv)
417 return NULL;
418 e = rv;
419
420 for (i = 0; i < super->anchor->num_raid_devs; i++) {
421 struct imsm_dev *dev = get_imsm_dev(super, i);
422 struct imsm_map *map = get_imsm_map(dev, 0);
423
424 for (j = 0; j < map->num_members; j++) {
425 __u32 index = get_imsm_disk_idx(dev, j);
426
427 if (index == dl->index) {
428 e->start = __le32_to_cpu(map->pba_of_lba0);
429 e->size = __le32_to_cpu(map->blocks_per_member);
430 e++;
431 }
432 }
433 }
434 qsort(rv, memberships, sizeof(*rv), cmp_extent);
435
436 e->start = __le32_to_cpu(dl->disk.total_blocks) -
437 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
438 e->size = 0;
439 return rv;
440 }
441
442 #ifndef MDASSEMBLE
443 static void print_imsm_dev(struct imsm_dev *dev, int index)
444 {
445 __u64 sz;
446 int slot;
447 struct imsm_map *map = get_imsm_map(dev, 0);
448 __u32 ord;
449
450 printf("\n");
451 printf("[%s]:\n", dev->volume);
452 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
453 printf(" Members : %d\n", map->num_members);
454 for (slot = 0; slot < map->num_members; slot++)
455 if (index == get_imsm_disk_idx(dev, slot))
456 break;
457 if (slot < map->num_members) {
458 ord = get_imsm_ord_tbl_ent(dev, slot);
459 printf(" This Slot : %d%s\n", slot,
460 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
461 } else
462 printf(" This Slot : ?\n");
463 sz = __le32_to_cpu(dev->size_high);
464 sz <<= 32;
465 sz += __le32_to_cpu(dev->size_low);
466 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
467 human_size(sz * 512));
468 sz = __le32_to_cpu(map->blocks_per_member);
469 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
470 human_size(sz * 512));
471 printf(" Sector Offset : %u\n",
472 __le32_to_cpu(map->pba_of_lba0));
473 printf(" Num Stripes : %u\n",
474 __le32_to_cpu(map->num_data_stripes));
475 printf(" Chunk Size : %u KiB\n",
476 __le16_to_cpu(map->blocks_per_strip) / 2);
477 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
478 printf(" Migrate State : %s", dev->vol.migr_state ? "migrating" : "idle");
479 if (dev->vol.migr_state)
480 printf(": %s", dev->vol.migr_type ? "rebuilding" : "initializing");
481 printf("\n");
482 printf(" Map State : %s", map_state_str[map->map_state]);
483 if (dev->vol.migr_state) {
484 struct imsm_map *map = get_imsm_map(dev, 1);
485 printf(" <-- %s", map_state_str[map->map_state]);
486 }
487 printf("\n");
488 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
489 }
490
491 static void print_imsm_disk(struct imsm_super *mpb, int index)
492 {
493 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
494 char str[MAX_RAID_SERIAL_LEN];
495 __u32 s;
496 __u64 sz;
497
498 if (index < 0)
499 return;
500
501 printf("\n");
502 snprintf(str, MAX_RAID_SERIAL_LEN, "%s", disk->serial);
503 printf(" Disk%02d Serial : %s\n", index, str);
504 s = __le32_to_cpu(disk->status);
505 printf(" State :%s%s%s%s\n", s&SPARE_DISK ? " spare" : "",
506 s&CONFIGURED_DISK ? " active" : "",
507 s&FAILED_DISK ? " failed" : "",
508 s&USABLE_DISK ? " usable" : "");
509 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
510 sz = __le32_to_cpu(disk->total_blocks) -
511 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS * mpb->num_raid_devs);
512 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
513 human_size(sz * 512));
514 }
515
516 static void examine_super_imsm(struct supertype *st, char *homehost)
517 {
518 struct intel_super *super = st->sb;
519 struct imsm_super *mpb = super->anchor;
520 char str[MAX_SIGNATURE_LENGTH];
521 int i;
522 __u32 sum;
523
524 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
525 printf(" Magic : %s\n", str);
526 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
527 printf(" Version : %s\n", get_imsm_version(mpb));
528 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
529 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
530 sum = __le32_to_cpu(mpb->check_sum);
531 printf(" Checksum : %08x %s\n", sum,
532 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
533 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
534 printf(" Disks : %d\n", mpb->num_disks);
535 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
536 print_imsm_disk(mpb, super->disks->index);
537 if (super->bbm_log) {
538 struct bbm_log *log = super->bbm_log;
539
540 printf("\n");
541 printf("Bad Block Management Log:\n");
542 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
543 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
544 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
545 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
546 printf(" First Spare : %llx\n", __le64_to_cpu(log->first_spare_lba));
547 }
548 for (i = 0; i < mpb->num_raid_devs; i++)
549 print_imsm_dev(__get_imsm_dev(mpb, i), super->disks->index);
550 for (i = 0; i < mpb->num_disks; i++) {
551 if (i == super->disks->index)
552 continue;
553 print_imsm_disk(mpb, i);
554 }
555 }
556
557 static void brief_examine_super_imsm(struct supertype *st)
558 {
559 printf("ARRAY /dev/imsm metadata=imsm\n");
560 }
561
562 static void detail_super_imsm(struct supertype *st, char *homehost)
563 {
564 printf("%s\n", __FUNCTION__);
565 }
566
567 static void brief_detail_super_imsm(struct supertype *st)
568 {
569 printf("%s\n", __FUNCTION__);
570 }
571 #endif
572
573 static int match_home_imsm(struct supertype *st, char *homehost)
574 {
575 printf("%s\n", __FUNCTION__);
576
577 return 0;
578 }
579
580 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
581 {
582 /* imsm does not track uuid's so just make sure we never return
583 * the same value twice to break uuid matching in Manage_subdevs
584 * FIXME what about the use of uuid's with bitmap's?
585 */
586 static int dummy_id = 0;
587
588 uuid[0] = dummy_id++;
589 }
590
591 #if 0
592 static void
593 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
594 {
595 __u8 *v = get_imsm_version(mpb);
596 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
597 char major[] = { 0, 0, 0 };
598 char minor[] = { 0 ,0, 0 };
599 char patch[] = { 0, 0, 0 };
600 char *ver_parse[] = { major, minor, patch };
601 int i, j;
602
603 i = j = 0;
604 while (*v != '\0' && v < end) {
605 if (*v != '.' && j < 2)
606 ver_parse[i][j++] = *v;
607 else {
608 i++;
609 j = 0;
610 }
611 v++;
612 }
613
614 *m = strtol(minor, NULL, 0);
615 *p = strtol(patch, NULL, 0);
616 }
617 #endif
618
619 static int imsm_level_to_layout(int level)
620 {
621 switch (level) {
622 case 0:
623 case 1:
624 return 0;
625 case 5:
626 case 6:
627 return ALGORITHM_LEFT_ASYMMETRIC;
628 case 10:
629 return 0x102; //FIXME is this correct?
630 }
631 return -1;
632 }
633
634 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
635 {
636 struct intel_super *super = st->sb;
637 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
638 struct imsm_map *map = get_imsm_map(dev, 0);
639
640 info->container_member = super->current_vol;
641 info->array.raid_disks = map->num_members;
642 info->array.level = get_imsm_raid_level(map);
643 info->array.layout = imsm_level_to_layout(info->array.level);
644 info->array.md_minor = -1;
645 info->array.ctime = 0;
646 info->array.utime = 0;
647 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip * 512);
648
649 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
650 info->component_size = __le32_to_cpu(map->blocks_per_member);
651
652 info->disk.major = 0;
653 info->disk.minor = 0;
654
655 sprintf(info->text_version, "/%s/%d",
656 devnum2devname(st->container_dev),
657 info->container_member);
658 }
659
660
661 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
662 {
663 struct intel_super *super = st->sb;
664 struct imsm_disk *disk;
665 __u32 s;
666
667 if (super->current_vol >= 0) {
668 getinfo_super_imsm_volume(st, info);
669 return;
670 }
671
672 /* Set raid_disks to zero so that Assemble will always pull in valid
673 * spares
674 */
675 info->array.raid_disks = 0;
676 info->array.level = LEVEL_CONTAINER;
677 info->array.layout = 0;
678 info->array.md_minor = -1;
679 info->array.ctime = 0; /* N/A for imsm */
680 info->array.utime = 0;
681 info->array.chunk_size = 0;
682
683 info->disk.major = 0;
684 info->disk.minor = 0;
685 info->disk.raid_disk = -1;
686 info->reshape_active = 0;
687 strcpy(info->text_version, "imsm");
688 info->disk.number = -1;
689 info->disk.state = 0;
690
691 if (super->disks) {
692 disk = &super->disks->disk;
693 info->disk.number = super->disks->index;
694 info->disk.raid_disk = super->disks->index;
695 info->data_offset = __le32_to_cpu(disk->total_blocks) -
696 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
697 info->component_size = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
698 s = __le32_to_cpu(disk->status);
699 info->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
700 info->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
701 info->disk.state |= s & USABLE_DISK ? (1 << MD_DISK_SYNC) : 0;
702 }
703 }
704
705 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
706 char *update, char *devname, int verbose,
707 int uuid_set, char *homehost)
708 {
709 /* FIXME */
710
711 /* For 'assemble' and 'force' we need to return non-zero if any
712 * change was made. For others, the return value is ignored.
713 * Update options are:
714 * force-one : This device looks a bit old but needs to be included,
715 * update age info appropriately.
716 * assemble: clear any 'faulty' flag to allow this device to
717 * be assembled.
718 * force-array: Array is degraded but being forced, mark it clean
719 * if that will be needed to assemble it.
720 *
721 * newdev: not used ????
722 * grow: Array has gained a new device - this is currently for
723 * linear only
724 * resync: mark as dirty so a resync will happen.
725 * name: update the name - preserving the homehost
726 *
727 * Following are not relevant for this imsm:
728 * sparc2.2 : update from old dodgey metadata
729 * super-minor: change the preferred_minor number
730 * summaries: update redundant counters.
731 * uuid: Change the uuid of the array to match watch is given
732 * homehost: update the recorded homehost
733 * _reshape_progress: record new reshape_progress position.
734 */
735 int rv = 0;
736 //struct intel_super *super = st->sb;
737 //struct imsm_super *mpb = super->mpb;
738
739 if (strcmp(update, "grow") == 0) {
740 }
741 if (strcmp(update, "resync") == 0) {
742 /* dev->vol.dirty = 1; */
743 }
744
745 /* IMSM has no concept of UUID or homehost */
746
747 return rv;
748 }
749
750 static size_t disks_to_mpb_size(int disks)
751 {
752 size_t size;
753
754 size = sizeof(struct imsm_super);
755 size += (disks - 1) * sizeof(struct imsm_disk);
756 size += 2 * sizeof(struct imsm_dev);
757 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
758 size += (4 - 2) * sizeof(struct imsm_map);
759 /* 4 possible disk_ord_tbl's */
760 size += 4 * (disks - 1) * sizeof(__u32);
761
762 return size;
763 }
764
765 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
766 {
767 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
768 return 0;
769
770 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
771 }
772
773 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
774 {
775 /*
776 * return:
777 * 0 same, or first was empty, and second was copied
778 * 1 second had wrong number
779 * 2 wrong uuid
780 * 3 wrong other info
781 */
782 struct intel_super *first = st->sb;
783 struct intel_super *sec = tst->sb;
784
785 if (!first) {
786 st->sb = tst->sb;
787 tst->sb = NULL;
788 return 0;
789 }
790
791 if (memcmp(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH) != 0)
792 return 3;
793
794 /* if an anchor does not have num_raid_devs set then it is a free
795 * floating spare
796 */
797 if (first->anchor->num_raid_devs > 0 &&
798 sec->anchor->num_raid_devs > 0) {
799 if (first->anchor->family_num != sec->anchor->family_num)
800 return 3;
801 }
802
803 /* if 'first' is a spare promote it to a populated mpb with sec's
804 * family number
805 */
806 if (first->anchor->num_raid_devs == 0 &&
807 sec->anchor->num_raid_devs > 0) {
808 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
809 first->anchor->family_num = sec->anchor->family_num;
810 }
811
812 return 0;
813 }
814
815 static void fd2devname(int fd, char *name)
816 {
817 struct stat st;
818 char path[256];
819 char dname[100];
820 char *nm;
821 int rv;
822
823 name[0] = '\0';
824 if (fstat(fd, &st) != 0)
825 return;
826 sprintf(path, "/sys/dev/block/%d:%d",
827 major(st.st_rdev), minor(st.st_rdev));
828
829 rv = readlink(path, dname, sizeof(dname));
830 if (rv <= 0)
831 return;
832
833 dname[rv] = '\0';
834 nm = strrchr(dname, '/');
835 nm++;
836 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
837 }
838
839
840 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
841
842 static int imsm_read_serial(int fd, char *devname,
843 __u8 serial[MAX_RAID_SERIAL_LEN])
844 {
845 unsigned char scsi_serial[255];
846 int rv;
847 int rsp_len;
848 int i, cnt;
849
850 memset(scsi_serial, 0, sizeof(scsi_serial));
851
852 if (imsm_env_devname_as_serial()) {
853 char name[MAX_RAID_SERIAL_LEN];
854
855 fd2devname(fd, name);
856 strcpy((char *) serial, name);
857 return 0;
858 }
859
860 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
861
862 if (rv != 0) {
863 if (devname)
864 fprintf(stderr,
865 Name ": Failed to retrieve serial for %s\n",
866 devname);
867 return rv;
868 }
869
870 rsp_len = scsi_serial[3];
871 for (i = 0, cnt = 0; i < rsp_len; i++) {
872 if (!isspace(scsi_serial[4 + i]))
873 serial[cnt++] = scsi_serial[4 + i];
874 if (cnt == MAX_RAID_SERIAL_LEN)
875 break;
876 }
877
878 serial[MAX_RAID_SERIAL_LEN - 1] = '\0';
879
880 return 0;
881 }
882
883 static int
884 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
885 {
886 struct dl *dl;
887 struct stat stb;
888 int rv;
889 int i;
890 int alloc = 1;
891 __u8 serial[MAX_RAID_SERIAL_LEN];
892
893 rv = imsm_read_serial(fd, devname, serial);
894
895 if (rv != 0)
896 return 2;
897
898 /* check if this is a disk we have seen before. it may be a spare in
899 * super->disks while the current anchor believes it is a raid member,
900 * check if we need to update dl->index
901 */
902 for (dl = super->disks; dl; dl = dl->next)
903 if (memcmp(dl->serial, serial, MAX_RAID_SERIAL_LEN) == 0)
904 break;
905
906 if (!dl)
907 dl = malloc(sizeof(*dl));
908 else
909 alloc = 0;
910
911 if (!dl) {
912 if (devname)
913 fprintf(stderr,
914 Name ": failed to allocate disk buffer for %s\n",
915 devname);
916 return 2;
917 }
918
919 if (alloc) {
920 fstat(fd, &stb);
921 dl->major = major(stb.st_rdev);
922 dl->minor = minor(stb.st_rdev);
923 dl->next = super->disks;
924 dl->fd = keep_fd ? fd : -1;
925 dl->devname = devname ? strdup(devname) : NULL;
926 strncpy((char *) dl->serial, (char *) serial, MAX_RAID_SERIAL_LEN);
927 dl->index = -2;
928 } else if (keep_fd) {
929 close(dl->fd);
930 dl->fd = fd;
931 }
932
933 /* look up this disk's index in the current anchor */
934 for (i = 0; i < super->anchor->num_disks; i++) {
935 struct imsm_disk *disk_iter;
936
937 disk_iter = __get_imsm_disk(super->anchor, i);
938
939 if (memcmp(disk_iter->serial, dl->serial,
940 MAX_RAID_SERIAL_LEN) == 0) {
941 __u32 status;
942
943 dl->disk = *disk_iter;
944 status = __le32_to_cpu(dl->disk.status);
945 /* only set index on disks that are a member of a
946 * populated contianer, i.e. one with raid_devs
947 */
948 if (status & FAILED_DISK)
949 dl->index = -2;
950 else if (status & SPARE_DISK)
951 dl->index = -1;
952 else
953 dl->index = i;
954
955 break;
956 }
957 }
958
959 if (alloc)
960 super->disks = dl;
961
962 return 0;
963 }
964
965 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
966 {
967 memcpy(dest, src, sizeof_imsm_dev(src, 0));
968 }
969
970 static void dup_map(struct imsm_dev *dev)
971 {
972 struct imsm_map *dest = get_imsm_map(dev, 1);
973 struct imsm_map *src = get_imsm_map(dev, 0);
974
975 memcpy(dest, src, sizeof_imsm_map(src));
976 }
977
978 static int parse_raid_devices(struct intel_super *super)
979 {
980 int i;
981 struct imsm_dev *dev_new;
982 size_t len, len_migr;
983 size_t space_needed = 0;
984 struct imsm_super *mpb = super->anchor;
985
986 for (i = 0; i < super->anchor->num_raid_devs; i++) {
987 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
988
989 len = sizeof_imsm_dev(dev_iter, 0);
990 len_migr = sizeof_imsm_dev(dev_iter, 1);
991 if (len_migr > len)
992 space_needed += len_migr - len;
993
994 dev_new = malloc(len_migr);
995 if (!dev_new)
996 return 1;
997 imsm_copy_dev(dev_new, dev_iter);
998 super->dev_tbl[i] = dev_new;
999 }
1000
1001 /* ensure that super->buf is large enough when all raid devices
1002 * are migrating
1003 */
1004 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
1005 void *buf;
1006
1007 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
1008 if (posix_memalign(&buf, 512, len) != 0)
1009 return 1;
1010
1011 memcpy(buf, super->buf, len);
1012 free(super->buf);
1013 super->buf = buf;
1014 super->len = len;
1015 }
1016
1017 return 0;
1018 }
1019
1020 /* retrieve a pointer to the bbm log which starts after all raid devices */
1021 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
1022 {
1023 void *ptr = NULL;
1024
1025 if (__le32_to_cpu(mpb->bbm_log_size)) {
1026 ptr = mpb;
1027 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
1028 }
1029
1030 return ptr;
1031 }
1032
1033 static void __free_imsm(struct intel_super *super, int free_disks);
1034
1035 /* load_imsm_mpb - read matrix metadata
1036 * allocates super->mpb to be freed by free_super
1037 */
1038 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
1039 {
1040 unsigned long long dsize;
1041 unsigned long long sectors;
1042 struct stat;
1043 struct imsm_super *anchor;
1044 __u32 check_sum;
1045 int rc;
1046
1047 get_dev_size(fd, NULL, &dsize);
1048
1049 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
1050 if (devname)
1051 fprintf(stderr,
1052 Name ": Cannot seek to anchor block on %s: %s\n",
1053 devname, strerror(errno));
1054 return 1;
1055 }
1056
1057 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
1058 if (devname)
1059 fprintf(stderr,
1060 Name ": Failed to allocate imsm anchor buffer"
1061 " on %s\n", devname);
1062 return 1;
1063 }
1064 if (read(fd, anchor, 512) != 512) {
1065 if (devname)
1066 fprintf(stderr,
1067 Name ": Cannot read anchor block on %s: %s\n",
1068 devname, strerror(errno));
1069 free(anchor);
1070 return 1;
1071 }
1072
1073 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
1074 if (devname)
1075 fprintf(stderr,
1076 Name ": no IMSM anchor on %s\n", devname);
1077 free(anchor);
1078 return 2;
1079 }
1080
1081 __free_imsm(super, 0);
1082 super->len = ROUND_UP(anchor->mpb_size, 512);
1083 if (posix_memalign(&super->buf, 512, super->len) != 0) {
1084 if (devname)
1085 fprintf(stderr,
1086 Name ": unable to allocate %zu byte mpb buffer\n",
1087 super->len);
1088 free(anchor);
1089 return 2;
1090 }
1091 memcpy(super->buf, anchor, 512);
1092
1093 sectors = mpb_sectors(anchor) - 1;
1094 free(anchor);
1095 if (!sectors) {
1096 rc = load_imsm_disk(fd, super, devname, 0);
1097 if (rc == 0)
1098 rc = parse_raid_devices(super);
1099 return rc;
1100 }
1101
1102 /* read the extended mpb */
1103 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
1104 if (devname)
1105 fprintf(stderr,
1106 Name ": Cannot seek to extended mpb on %s: %s\n",
1107 devname, strerror(errno));
1108 return 1;
1109 }
1110
1111 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
1112 if (devname)
1113 fprintf(stderr,
1114 Name ": Cannot read extended mpb on %s: %s\n",
1115 devname, strerror(errno));
1116 return 2;
1117 }
1118
1119 check_sum = __gen_imsm_checksum(super->anchor);
1120 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
1121 if (devname)
1122 fprintf(stderr,
1123 Name ": IMSM checksum %x != %x on %s\n",
1124 check_sum, __le32_to_cpu(super->anchor->check_sum),
1125 devname);
1126 return 2;
1127 }
1128
1129 /* FIXME the BBM log is disk specific so we cannot use this global
1130 * buffer for all disks. Ok for now since we only look at the global
1131 * bbm_log_size parameter to gate assembly
1132 */
1133 super->bbm_log = __get_imsm_bbm_log(super->anchor);
1134
1135 rc = load_imsm_disk(fd, super, devname, 0);
1136 if (rc == 0)
1137 rc = parse_raid_devices(super);
1138
1139 return rc;
1140 }
1141
1142 static void __free_imsm_disk(struct dl *d)
1143 {
1144 if (d->fd >= 0)
1145 close(d->fd);
1146 if (d->devname)
1147 free(d->devname);
1148 free(d);
1149
1150 }
1151 static void free_imsm_disks(struct intel_super *super)
1152 {
1153 while (super->disks) {
1154 struct dl *d = super->disks;
1155
1156 super->disks = d->next;
1157 __free_imsm_disk(d);
1158 }
1159 }
1160
1161 /* free all the pieces hanging off of a super pointer */
1162 static void __free_imsm(struct intel_super *super, int free_disks)
1163 {
1164 int i;
1165
1166 if (super->buf) {
1167 free(super->buf);
1168 super->buf = NULL;
1169 }
1170 if (free_disks)
1171 free_imsm_disks(super);
1172 for (i = 0; i < IMSM_MAX_RAID_DEVS; i++)
1173 if (super->dev_tbl[i]) {
1174 free(super->dev_tbl[i]);
1175 super->dev_tbl[i] = NULL;
1176 }
1177 }
1178
1179 static void free_imsm(struct intel_super *super)
1180 {
1181 __free_imsm(super, 1);
1182 free(super);
1183 }
1184
1185 static void free_super_imsm(struct supertype *st)
1186 {
1187 struct intel_super *super = st->sb;
1188
1189 if (!super)
1190 return;
1191
1192 free_imsm(super);
1193 st->sb = NULL;
1194 }
1195
1196 static struct intel_super *alloc_super(int creating_imsm)
1197 {
1198 struct intel_super *super = malloc(sizeof(*super));
1199
1200 if (super) {
1201 memset(super, 0, sizeof(*super));
1202 super->creating_imsm = creating_imsm;
1203 super->current_vol = -1;
1204 }
1205
1206 return super;
1207 }
1208
1209 #ifndef MDASSEMBLE
1210 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
1211 char *devname, int keep_fd)
1212 {
1213 struct mdinfo *sra;
1214 struct intel_super *super;
1215 struct mdinfo *sd, *best = NULL;
1216 __u32 bestgen = 0;
1217 __u32 gen;
1218 char nm[20];
1219 int dfd;
1220 int rv;
1221
1222 /* check if this disk is a member of an active array */
1223 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
1224 if (!sra)
1225 return 1;
1226
1227 if (sra->array.major_version != -1 ||
1228 sra->array.minor_version != -2 ||
1229 strcmp(sra->text_version, "imsm") != 0)
1230 return 1;
1231
1232 super = alloc_super(0);
1233 if (!super)
1234 return 1;
1235
1236 /* find the most up to date disk in this array, skipping spares */
1237 for (sd = sra->devs; sd; sd = sd->next) {
1238 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1239 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
1240 if (!dfd) {
1241 free_imsm(super);
1242 return 2;
1243 }
1244 rv = load_imsm_mpb(dfd, super, NULL);
1245 if (!keep_fd)
1246 close(dfd);
1247 if (rv == 0) {
1248 if (super->anchor->num_raid_devs == 0)
1249 gen = 0;
1250 else
1251 gen = __le32_to_cpu(super->anchor->generation_num);
1252 if (!best || gen > bestgen) {
1253 bestgen = gen;
1254 best = sd;
1255 }
1256 } else {
1257 free_imsm(super);
1258 return 2;
1259 }
1260 }
1261
1262 if (!best) {
1263 free_imsm(super);
1264 return 1;
1265 }
1266
1267 /* load the most up to date anchor */
1268 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
1269 dfd = dev_open(nm, O_RDONLY);
1270 if (!dfd) {
1271 free_imsm(super);
1272 return 1;
1273 }
1274 rv = load_imsm_mpb(dfd, super, NULL);
1275 close(dfd);
1276 if (rv != 0) {
1277 free_imsm(super);
1278 return 2;
1279 }
1280
1281 /* re-parse the disk list with the current anchor */
1282 for (sd = sra->devs ; sd ; sd = sd->next) {
1283 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1284 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
1285 if (!dfd) {
1286 free_imsm(super);
1287 return 2;
1288 }
1289 load_imsm_disk(dfd, super, NULL, keep_fd);
1290 if (!keep_fd)
1291 close(dfd);
1292 }
1293
1294 if (st->subarray[0]) {
1295 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
1296 super->current_vol = atoi(st->subarray);
1297 else
1298 return 1;
1299 }
1300
1301 *sbp = super;
1302 st->container_dev = fd2devnum(fd);
1303 if (st->ss == NULL) {
1304 st->ss = &super_imsm;
1305 st->minor_version = 0;
1306 st->max_devs = IMSM_MAX_DEVICES;
1307 }
1308
1309 return 0;
1310 }
1311 #endif
1312
1313 static int load_super_imsm(struct supertype *st, int fd, char *devname)
1314 {
1315 struct intel_super *super;
1316 int rv;
1317
1318 #ifndef MDASSEMBLE
1319 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
1320 return 0;
1321 #endif
1322 if (st->subarray[0])
1323 return 1; /* FIXME */
1324
1325 super = alloc_super(0);
1326 if (!super) {
1327 fprintf(stderr,
1328 Name ": malloc of %zu failed.\n",
1329 sizeof(*super));
1330 return 1;
1331 }
1332
1333 rv = load_imsm_mpb(fd, super, devname);
1334
1335 if (rv) {
1336 if (devname)
1337 fprintf(stderr,
1338 Name ": Failed to load all information "
1339 "sections on %s\n", devname);
1340 free_imsm(super);
1341 return rv;
1342 }
1343
1344 st->sb = super;
1345 if (st->ss == NULL) {
1346 st->ss = &super_imsm;
1347 st->minor_version = 0;
1348 st->max_devs = IMSM_MAX_DEVICES;
1349 }
1350
1351 return 0;
1352 }
1353
1354 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
1355 {
1356 if (info->level == 1)
1357 return 128;
1358 return info->chunk_size >> 9;
1359 }
1360
1361 static __u32 info_to_num_data_stripes(mdu_array_info_t *info)
1362 {
1363 __u32 num_stripes;
1364
1365 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
1366 if (info->level == 1)
1367 num_stripes /= 2;
1368
1369 return num_stripes;
1370 }
1371
1372 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
1373 {
1374 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
1375 }
1376
1377 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
1378 unsigned long long size, char *name,
1379 char *homehost, int *uuid)
1380 {
1381 /* We are creating a volume inside a pre-existing container.
1382 * so st->sb is already set.
1383 */
1384 struct intel_super *super = st->sb;
1385 struct imsm_super *mpb = super->anchor;
1386 struct imsm_dev *dev;
1387 struct imsm_vol *vol;
1388 struct imsm_map *map;
1389 int idx = mpb->num_raid_devs;
1390 int i;
1391 unsigned long long array_blocks;
1392 __u32 offset = 0;
1393 size_t size_old, size_new;
1394
1395 if (mpb->num_raid_devs >= 2) {
1396 fprintf(stderr, Name": This imsm-container already has the "
1397 "maximum of 2 volumes\n");
1398 return 0;
1399 }
1400
1401 /* ensure the mpb is large enough for the new data */
1402 size_old = __le32_to_cpu(mpb->mpb_size);
1403 size_new = disks_to_mpb_size(info->nr_disks);
1404 if (size_new > size_old) {
1405 void *mpb_new;
1406 size_t size_round = ROUND_UP(size_new, 512);
1407
1408 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
1409 fprintf(stderr, Name": could not allocate new mpb\n");
1410 return 0;
1411 }
1412 memcpy(mpb_new, mpb, size_old);
1413 free(mpb);
1414 mpb = mpb_new;
1415 super->anchor = mpb_new;
1416 mpb->mpb_size = __cpu_to_le32(size_new);
1417 memset(mpb_new + size_old, 0, size_round - size_old);
1418 }
1419 super->current_vol = idx;
1420 /* when creating the first raid device in this container set num_disks
1421 * to zero, i.e. delete this spare and add raid member devices in
1422 * add_to_super_imsm_volume()
1423 */
1424 if (super->current_vol == 0)
1425 mpb->num_disks = 0;
1426 sprintf(st->subarray, "%d", idx);
1427 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
1428 if (!dev) {
1429 fprintf(stderr, Name": could not allocate raid device\n");
1430 return 0;
1431 }
1432 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
1433 array_blocks = calc_array_size(info->level, info->raid_disks,
1434 info->layout, info->chunk_size,
1435 info->size*2);
1436 dev->size_low = __cpu_to_le32((__u32) array_blocks);
1437 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1438 dev->status = __cpu_to_le32(0);
1439 dev->reserved_blocks = __cpu_to_le32(0);
1440 vol = &dev->vol;
1441 vol->migr_state = 0;
1442 vol->migr_type = 0;
1443 vol->dirty = 0;
1444 for (i = 0; i < idx; i++) {
1445 struct imsm_dev *prev = get_imsm_dev(super, i);
1446 struct imsm_map *pmap = get_imsm_map(prev, 0);
1447
1448 offset += __le32_to_cpu(pmap->blocks_per_member);
1449 offset += IMSM_RESERVED_SECTORS;
1450 }
1451 map = get_imsm_map(dev, 0);
1452 map->pba_of_lba0 = __cpu_to_le32(offset);
1453 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
1454 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
1455 map->num_data_stripes = __cpu_to_le32(info_to_num_data_stripes(info));
1456 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
1457 IMSM_T_STATE_NORMAL;
1458
1459 if (info->level == 1 && info->raid_disks > 2) {
1460 fprintf(stderr, Name": imsm does not support more than 2 disks"
1461 "in a raid1 volume\n");
1462 return 0;
1463 }
1464 if (info->level == 10)
1465 map->raid_level = 1;
1466 else
1467 map->raid_level = info->level;
1468
1469 map->num_members = info->raid_disks;
1470 for (i = 0; i < map->num_members; i++) {
1471 /* initialized in add_to_super */
1472 set_imsm_ord_tbl_ent(map, i, 0);
1473 }
1474 mpb->num_raid_devs++;
1475 super->dev_tbl[super->current_vol] = dev;
1476
1477 return 1;
1478 }
1479
1480 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
1481 unsigned long long size, char *name,
1482 char *homehost, int *uuid)
1483 {
1484 /* This is primarily called by Create when creating a new array.
1485 * We will then get add_to_super called for each component, and then
1486 * write_init_super called to write it out to each device.
1487 * For IMSM, Create can create on fresh devices or on a pre-existing
1488 * array.
1489 * To create on a pre-existing array a different method will be called.
1490 * This one is just for fresh drives.
1491 */
1492 struct intel_super *super;
1493 struct imsm_super *mpb;
1494 size_t mpb_size;
1495
1496 if (!info) {
1497 st->sb = NULL;
1498 return 0;
1499 }
1500 if (st->sb)
1501 return init_super_imsm_volume(st, info, size, name, homehost,
1502 uuid);
1503
1504 super = alloc_super(1);
1505 if (!super)
1506 return 0;
1507 mpb_size = disks_to_mpb_size(info->nr_disks);
1508 if (posix_memalign(&super->buf, 512, mpb_size) != 0) {
1509 free(super);
1510 return 0;
1511 }
1512 mpb = super->buf;
1513 memset(mpb, 0, mpb_size);
1514
1515 memcpy(mpb->sig, MPB_SIGNATURE, strlen(MPB_SIGNATURE));
1516 memcpy(mpb->sig + strlen(MPB_SIGNATURE), MPB_VERSION_RAID5,
1517 strlen(MPB_VERSION_RAID5));
1518 mpb->mpb_size = mpb_size;
1519
1520 st->sb = super;
1521 return 1;
1522 }
1523
1524 static void add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
1525 int fd, char *devname)
1526 {
1527 struct intel_super *super = st->sb;
1528 struct imsm_super *mpb = super->anchor;
1529 struct dl *dl;
1530 struct imsm_dev *dev;
1531 struct imsm_map *map;
1532 __u32 status;
1533
1534 dev = get_imsm_dev(super, super->current_vol);
1535 map = get_imsm_map(dev, 0);
1536
1537 for (dl = super->disks; dl ; dl = dl->next)
1538 if (dl->major == dk->major &&
1539 dl->minor == dk->minor)
1540 break;
1541
1542 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1543 return;
1544
1545 /* add a pristine spare to the metadata */
1546 if (dl->index < 0) {
1547 dl->index = super->anchor->num_disks;
1548 super->anchor->num_disks++;
1549 }
1550 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
1551 status = CONFIGURED_DISK | USABLE_DISK;
1552 dl->disk.status = __cpu_to_le32(status);
1553
1554 /* if we are creating the first raid device update the family number */
1555 if (super->current_vol == 0) {
1556 __u32 sum;
1557 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
1558 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
1559
1560 *_dev = *dev;
1561 *_disk = dl->disk;
1562 sum = __gen_imsm_checksum(mpb);
1563 mpb->family_num = __cpu_to_le32(sum);
1564 }
1565 }
1566
1567 static void add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
1568 int fd, char *devname)
1569 {
1570 struct intel_super *super = st->sb;
1571 struct dl *dd;
1572 unsigned long long size;
1573 __u32 status, id;
1574 int rv;
1575 struct stat stb;
1576
1577 if (super->current_vol >= 0) {
1578 add_to_super_imsm_volume(st, dk, fd, devname);
1579 return;
1580 }
1581
1582 fstat(fd, &stb);
1583 dd = malloc(sizeof(*dd));
1584 if (!dd) {
1585 fprintf(stderr,
1586 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
1587 abort();
1588 }
1589 memset(dd, 0, sizeof(*dd));
1590 dd->major = major(stb.st_rdev);
1591 dd->minor = minor(stb.st_rdev);
1592 dd->index = -1;
1593 dd->devname = devname ? strdup(devname) : NULL;
1594 dd->fd = fd;
1595 rv = imsm_read_serial(fd, devname, dd->serial);
1596 if (rv) {
1597 fprintf(stderr,
1598 Name ": failed to retrieve scsi serial, aborting\n");
1599 free(dd);
1600 abort();
1601 }
1602
1603 get_dev_size(fd, NULL, &size);
1604 size /= 512;
1605 status = USABLE_DISK | SPARE_DISK;
1606 strcpy((char *) dd->disk.serial, (char *) dd->serial);
1607 dd->disk.total_blocks = __cpu_to_le32(size);
1608 dd->disk.status = __cpu_to_le32(status);
1609 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
1610 dd->disk.scsi_id = __cpu_to_le32(id);
1611 else
1612 dd->disk.scsi_id = __cpu_to_le32(0);
1613
1614 if (st->update_tail) {
1615 dd->next = super->add;
1616 super->add = dd;
1617 } else {
1618 dd->next = super->disks;
1619 super->disks = dd;
1620 }
1621 }
1622
1623 static int store_imsm_mpb(int fd, struct intel_super *super);
1624
1625 /* spare records have their own family number and do not have any defined raid
1626 * devices
1627 */
1628 static int write_super_imsm_spares(struct intel_super *super, int doclose)
1629 {
1630 struct imsm_super mpb_save;
1631 struct imsm_super *mpb = super->anchor;
1632 __u32 sum;
1633 struct dl *d;
1634
1635 mpb_save = *mpb;
1636 mpb->num_raid_devs = 0;
1637 mpb->num_disks = 1;
1638 mpb->mpb_size = sizeof(struct imsm_super);
1639 mpb->generation_num = __cpu_to_le32(1UL);
1640
1641 for (d = super->disks; d; d = d->next) {
1642 if (d->index != -1)
1643 continue;
1644
1645 mpb->disk[0] = d->disk;
1646 sum = __gen_imsm_checksum(mpb);
1647 mpb->family_num = __cpu_to_le32(sum);
1648 sum = __gen_imsm_checksum(mpb);
1649 mpb->check_sum = __cpu_to_le32(sum);
1650
1651 if (store_imsm_mpb(d->fd, super)) {
1652 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1653 __func__, d->major, d->minor, strerror(errno));
1654 *mpb = mpb_save;
1655 return 1;
1656 }
1657 if (doclose) {
1658 close(d->fd);
1659 d->fd = -1;
1660 }
1661 }
1662
1663 *mpb = mpb_save;
1664 return 0;
1665 }
1666
1667 static int write_super_imsm(struct intel_super *super, int doclose)
1668 {
1669 struct imsm_super *mpb = super->anchor;
1670 struct dl *d;
1671 __u32 generation;
1672 __u32 sum;
1673 int spares = 0;
1674 int i;
1675 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
1676
1677 /* 'generation' is incremented everytime the metadata is written */
1678 generation = __le32_to_cpu(mpb->generation_num);
1679 generation++;
1680 mpb->generation_num = __cpu_to_le32(generation);
1681
1682 for (d = super->disks; d; d = d->next) {
1683 if (d->index == -1)
1684 spares++;
1685 else {
1686 mpb->disk[d->index] = d->disk;
1687 mpb_size += sizeof(struct imsm_disk);
1688 }
1689 }
1690
1691 for (i = 0; i < mpb->num_raid_devs; i++) {
1692 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1693
1694 imsm_copy_dev(dev, super->dev_tbl[i]);
1695 mpb_size += sizeof_imsm_dev(dev, 0);
1696 }
1697 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
1698 mpb->mpb_size = __cpu_to_le32(mpb_size);
1699
1700 /* recalculate checksum */
1701 sum = __gen_imsm_checksum(mpb);
1702 mpb->check_sum = __cpu_to_le32(sum);
1703
1704 /* write the mpb for disks that compose raid devices */
1705 for (d = super->disks; d ; d = d->next) {
1706 if (d->index < 0)
1707 continue;
1708 if (store_imsm_mpb(d->fd, super))
1709 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1710 __func__, d->major, d->minor, strerror(errno));
1711 if (doclose) {
1712 close(d->fd);
1713 d->fd = -1;
1714 }
1715 }
1716
1717 if (spares)
1718 return write_super_imsm_spares(super, doclose);
1719
1720 return 0;
1721 }
1722
1723 static int create_array(struct supertype *st)
1724 {
1725 size_t len;
1726 struct imsm_update_create_array *u;
1727 struct intel_super *super = st->sb;
1728 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
1729
1730 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0);
1731 u = malloc(len);
1732 if (!u) {
1733 fprintf(stderr, "%s: failed to allocate update buffer\n",
1734 __func__);
1735 return 1;
1736 }
1737
1738 u->type = update_create_array;
1739 u->dev_idx = super->current_vol;
1740 imsm_copy_dev(&u->dev, dev);
1741 append_metadata_update(st, u, len);
1742
1743 return 0;
1744 }
1745
1746 static int add_disk(struct supertype *st)
1747 {
1748 struct intel_super *super = st->sb;
1749 size_t len;
1750 struct imsm_update_add_disk *u;
1751
1752 if (!super->add)
1753 return 0;
1754
1755 len = sizeof(*u);
1756 u = malloc(len);
1757 if (!u) {
1758 fprintf(stderr, "%s: failed to allocate update buffer\n",
1759 __func__);
1760 return 1;
1761 }
1762
1763 u->type = update_add_disk;
1764 append_metadata_update(st, u, len);
1765
1766 return 0;
1767 }
1768
1769 static int write_init_super_imsm(struct supertype *st)
1770 {
1771 if (st->update_tail) {
1772 /* queue the recently created array / added disk
1773 * as a metadata update */
1774 struct intel_super *super = st->sb;
1775 struct dl *d;
1776 int rv;
1777
1778 /* determine if we are creating a volume or adding a disk */
1779 if (super->current_vol < 0) {
1780 /* in the add disk case we are running in mdmon
1781 * context, so don't close fd's
1782 */
1783 return add_disk(st);
1784 } else
1785 rv = create_array(st);
1786
1787 for (d = super->disks; d ; d = d->next) {
1788 close(d->fd);
1789 d->fd = -1;
1790 }
1791
1792 return rv;
1793 } else
1794 return write_super_imsm(st->sb, 1);
1795 }
1796
1797 static int store_zero_imsm(struct supertype *st, int fd)
1798 {
1799 unsigned long long dsize;
1800 void *buf;
1801
1802 get_dev_size(fd, NULL, &dsize);
1803
1804 /* first block is stored on second to last sector of the disk */
1805 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
1806 return 1;
1807
1808 if (posix_memalign(&buf, 512, 512) != 0)
1809 return 1;
1810
1811 memset(buf, 0, 512);
1812 if (write(fd, buf, 512) != 512)
1813 return 1;
1814 return 0;
1815 }
1816
1817 static int validate_geometry_imsm_container(struct supertype *st, int level,
1818 int layout, int raiddisks, int chunk,
1819 unsigned long long size, char *dev,
1820 unsigned long long *freesize,
1821 int verbose)
1822 {
1823 int fd;
1824 unsigned long long ldsize;
1825
1826 if (level != LEVEL_CONTAINER)
1827 return 0;
1828 if (!dev)
1829 return 1;
1830
1831 fd = open(dev, O_RDONLY|O_EXCL, 0);
1832 if (fd < 0) {
1833 if (verbose)
1834 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
1835 dev, strerror(errno));
1836 return 0;
1837 }
1838 if (!get_dev_size(fd, dev, &ldsize)) {
1839 close(fd);
1840 return 0;
1841 }
1842 close(fd);
1843
1844 *freesize = avail_size_imsm(st, ldsize >> 9);
1845
1846 return 1;
1847 }
1848
1849 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
1850 * FIX ME add ahci details
1851 */
1852 static int validate_geometry_imsm_volume(struct supertype *st, int level,
1853 int layout, int raiddisks, int chunk,
1854 unsigned long long size, char *dev,
1855 unsigned long long *freesize,
1856 int verbose)
1857 {
1858 struct stat stb;
1859 struct intel_super *super = st->sb;
1860 struct dl *dl;
1861 unsigned long long pos = 0;
1862 unsigned long long maxsize;
1863 struct extent *e;
1864 int i;
1865
1866 if (level == LEVEL_CONTAINER)
1867 return 0;
1868
1869 if (level == 1 && raiddisks > 2) {
1870 if (verbose)
1871 fprintf(stderr, Name ": imsm does not support more "
1872 "than 2 in a raid1 configuration\n");
1873 return 0;
1874 }
1875
1876 /* We must have the container info already read in. */
1877 if (!super)
1878 return 0;
1879
1880 if (!dev) {
1881 /* General test: make sure there is space for
1882 * 'raiddisks' device extents of size 'size' at a given
1883 * offset
1884 */
1885 unsigned long long minsize = size*2 /* convert to blocks */;
1886 unsigned long long start_offset = ~0ULL;
1887 int dcnt = 0;
1888 if (minsize == 0)
1889 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1890 for (dl = super->disks; dl ; dl = dl->next) {
1891 int found = 0;
1892
1893 pos = 0;
1894 i = 0;
1895 e = get_extents(super, dl);
1896 if (!e) continue;
1897 do {
1898 unsigned long long esize;
1899 esize = e[i].start - pos;
1900 if (esize >= minsize)
1901 found = 1;
1902 if (found && start_offset == ~0ULL) {
1903 start_offset = pos;
1904 break;
1905 } else if (found && pos != start_offset) {
1906 found = 0;
1907 break;
1908 }
1909 pos = e[i].start + e[i].size;
1910 i++;
1911 } while (e[i-1].size);
1912 if (found)
1913 dcnt++;
1914 free(e);
1915 }
1916 if (dcnt < raiddisks) {
1917 if (verbose)
1918 fprintf(stderr, Name ": imsm: Not enough "
1919 "devices with space for this array "
1920 "(%d < %d)\n",
1921 dcnt, raiddisks);
1922 return 0;
1923 }
1924 return 1;
1925 }
1926 /* This device must be a member of the set */
1927 if (stat(dev, &stb) < 0)
1928 return 0;
1929 if ((S_IFMT & stb.st_mode) != S_IFBLK)
1930 return 0;
1931 for (dl = super->disks ; dl ; dl = dl->next) {
1932 if (dl->major == major(stb.st_rdev) &&
1933 dl->minor == minor(stb.st_rdev))
1934 break;
1935 }
1936 if (!dl) {
1937 if (verbose)
1938 fprintf(stderr, Name ": %s is not in the "
1939 "same imsm set\n", dev);
1940 return 0;
1941 }
1942 e = get_extents(super, dl);
1943 maxsize = 0;
1944 i = 0;
1945 if (e) do {
1946 unsigned long long esize;
1947 esize = e[i].start - pos;
1948 if (esize >= maxsize)
1949 maxsize = esize;
1950 pos = e[i].start + e[i].size;
1951 i++;
1952 } while (e[i-1].size);
1953 *freesize = maxsize;
1954
1955 return 1;
1956 }
1957
1958 int imsm_bbm_log_size(struct imsm_super *mpb)
1959 {
1960 return __le32_to_cpu(mpb->bbm_log_size);
1961 }
1962
1963 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
1964 int raiddisks, int chunk, unsigned long long size,
1965 char *dev, unsigned long long *freesize,
1966 int verbose)
1967 {
1968 int fd, cfd;
1969 struct mdinfo *sra;
1970
1971 /* if given unused devices create a container
1972 * if given given devices in a container create a member volume
1973 */
1974 if (level == LEVEL_CONTAINER) {
1975 /* Must be a fresh device to add to a container */
1976 return validate_geometry_imsm_container(st, level, layout,
1977 raiddisks, chunk, size,
1978 dev, freesize,
1979 verbose);
1980 }
1981
1982 if (st->sb) {
1983 /* creating in a given container */
1984 return validate_geometry_imsm_volume(st, level, layout,
1985 raiddisks, chunk, size,
1986 dev, freesize, verbose);
1987 }
1988
1989 /* limit creation to the following levels */
1990 if (!dev)
1991 switch (level) {
1992 case 0:
1993 case 1:
1994 case 10:
1995 case 5:
1996 break;
1997 default:
1998 return 1;
1999 }
2000
2001 /* This device needs to be a device in an 'imsm' container */
2002 fd = open(dev, O_RDONLY|O_EXCL, 0);
2003 if (fd >= 0) {
2004 if (verbose)
2005 fprintf(stderr,
2006 Name ": Cannot create this array on device %s\n",
2007 dev);
2008 close(fd);
2009 return 0;
2010 }
2011 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2012 if (verbose)
2013 fprintf(stderr, Name ": Cannot open %s: %s\n",
2014 dev, strerror(errno));
2015 return 0;
2016 }
2017 /* Well, it is in use by someone, maybe an 'imsm' container. */
2018 cfd = open_container(fd);
2019 if (cfd < 0) {
2020 close(fd);
2021 if (verbose)
2022 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
2023 dev);
2024 return 0;
2025 }
2026 sra = sysfs_read(cfd, 0, GET_VERSION);
2027 close(fd);
2028 if (sra && sra->array.major_version == -1 &&
2029 strcmp(sra->text_version, "imsm") == 0) {
2030 /* This is a member of a imsm container. Load the container
2031 * and try to create a volume
2032 */
2033 struct intel_super *super;
2034
2035 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
2036 st->sb = super;
2037 st->container_dev = fd2devnum(cfd);
2038 close(cfd);
2039 return validate_geometry_imsm_volume(st, level, layout,
2040 raiddisks, chunk,
2041 size, dev,
2042 freesize, verbose);
2043 }
2044 close(cfd);
2045 } else /* may belong to another container */
2046 return 0;
2047
2048 return 1;
2049 }
2050
2051 static struct mdinfo *container_content_imsm(struct supertype *st)
2052 {
2053 /* Given a container loaded by load_super_imsm_all,
2054 * extract information about all the arrays into
2055 * an mdinfo tree.
2056 *
2057 * For each imsm_dev create an mdinfo, fill it in,
2058 * then look for matching devices in super->disks
2059 * and create appropriate device mdinfo.
2060 */
2061 struct intel_super *super = st->sb;
2062 struct imsm_super *mpb = super->anchor;
2063 struct mdinfo *rest = NULL;
2064 int i;
2065
2066 /* do not assemble arrays that might have bad blocks */
2067 if (imsm_bbm_log_size(super->anchor)) {
2068 fprintf(stderr, Name ": BBM log found in metadata. "
2069 "Cannot activate array(s).\n");
2070 return NULL;
2071 }
2072
2073 for (i = 0; i < mpb->num_raid_devs; i++) {
2074 struct imsm_dev *dev = get_imsm_dev(super, i);
2075 struct imsm_vol *vol = &dev->vol;
2076 struct imsm_map *map = get_imsm_map(dev, 0);
2077 struct mdinfo *this;
2078 int slot;
2079
2080 this = malloc(sizeof(*this));
2081 memset(this, 0, sizeof(*this));
2082 this->next = rest;
2083
2084 this->array.level = get_imsm_raid_level(map);
2085 this->array.raid_disks = map->num_members;
2086 this->array.layout = imsm_level_to_layout(this->array.level);
2087 this->array.md_minor = -1;
2088 this->array.ctime = 0;
2089 this->array.utime = 0;
2090 this->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
2091 this->array.state = !vol->dirty;
2092 this->container_member = i;
2093 if (map->map_state == IMSM_T_STATE_UNINITIALIZED ||
2094 dev->vol.dirty || dev->vol.migr_state)
2095 this->resync_start = 0;
2096 else
2097 this->resync_start = ~0ULL;
2098
2099 strncpy(this->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2100 this->name[MAX_RAID_SERIAL_LEN] = 0;
2101
2102 sprintf(this->text_version, "/%s/%d",
2103 devnum2devname(st->container_dev),
2104 this->container_member);
2105
2106 memset(this->uuid, 0, sizeof(this->uuid));
2107
2108 this->component_size = __le32_to_cpu(map->blocks_per_member);
2109
2110 for (slot = 0 ; slot < map->num_members; slot++) {
2111 struct mdinfo *info_d;
2112 struct dl *d;
2113 int idx;
2114 int skip;
2115 __u32 s;
2116 __u32 ord;
2117
2118 skip = 0;
2119 idx = get_imsm_disk_idx(dev, slot);
2120 ord = get_imsm_ord_tbl_ent(dev, slot);
2121 for (d = super->disks; d ; d = d->next)
2122 if (d->index == idx)
2123 break;
2124
2125 if (d == NULL)
2126 skip = 1;
2127
2128 s = d ? __le32_to_cpu(d->disk.status) : 0;
2129 if (s & FAILED_DISK)
2130 skip = 1;
2131 if (!(s & USABLE_DISK))
2132 skip = 1;
2133 if (ord & IMSM_ORD_REBUILD)
2134 skip = 1;
2135
2136 /*
2137 * if we skip some disks the array will be assmebled degraded;
2138 * reset resync start to avoid a dirty-degraded situation
2139 *
2140 * FIXME handle dirty degraded
2141 */
2142 if (skip && !dev->vol.dirty)
2143 this->resync_start = ~0ULL;
2144 if (skip)
2145 continue;
2146
2147 info_d = malloc(sizeof(*info_d));
2148 if (!info_d) {
2149 fprintf(stderr, Name ": failed to allocate disk"
2150 " for volume %s\n", (char *) dev->volume);
2151 free(this);
2152 this = rest;
2153 break;
2154 }
2155 memset(info_d, 0, sizeof(*info_d));
2156 info_d->next = this->devs;
2157 this->devs = info_d;
2158
2159 info_d->disk.number = d->index;
2160 info_d->disk.major = d->major;
2161 info_d->disk.minor = d->minor;
2162 info_d->disk.raid_disk = slot;
2163
2164 this->array.working_disks++;
2165
2166 info_d->events = __le32_to_cpu(mpb->generation_num);
2167 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
2168 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
2169 if (d->devname)
2170 strcpy(info_d->name, d->devname);
2171 }
2172 rest = this;
2173 }
2174
2175 return rest;
2176 }
2177
2178
2179 static int imsm_open_new(struct supertype *c, struct active_array *a,
2180 char *inst)
2181 {
2182 struct intel_super *super = c->sb;
2183 struct imsm_super *mpb = super->anchor;
2184
2185 if (atoi(inst) >= mpb->num_raid_devs) {
2186 fprintf(stderr, "%s: subarry index %d, out of range\n",
2187 __func__, atoi(inst));
2188 return -ENODEV;
2189 }
2190
2191 dprintf("imsm: open_new %s\n", inst);
2192 a->info.container_member = atoi(inst);
2193 return 0;
2194 }
2195
2196 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
2197 {
2198 struct imsm_map *map = get_imsm_map(dev, 0);
2199
2200 if (!failed)
2201 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
2202 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
2203
2204 switch (get_imsm_raid_level(map)) {
2205 case 0:
2206 return IMSM_T_STATE_FAILED;
2207 break;
2208 case 1:
2209 if (failed < map->num_members)
2210 return IMSM_T_STATE_DEGRADED;
2211 else
2212 return IMSM_T_STATE_FAILED;
2213 break;
2214 case 10:
2215 {
2216 /**
2217 * check to see if any mirrors have failed,
2218 * otherwise we are degraded
2219 */
2220 int device_per_mirror = 2; /* FIXME is this always the case?
2221 * and are they always adjacent?
2222 */
2223 int r10fail = 0;
2224 int i;
2225
2226 for (i = 0; i < map->num_members; i++) {
2227 int idx = get_imsm_disk_idx(dev, i);
2228 struct imsm_disk *disk = get_imsm_disk(super, idx);
2229
2230 if (!disk)
2231 r10fail++;
2232 else if (__le32_to_cpu(disk->status) & FAILED_DISK)
2233 r10fail++;
2234
2235 if (r10fail >= device_per_mirror)
2236 return IMSM_T_STATE_FAILED;
2237
2238 /* reset 'r10fail' for next mirror set */
2239 if (!((i + 1) % device_per_mirror))
2240 r10fail = 0;
2241 }
2242
2243 return IMSM_T_STATE_DEGRADED;
2244 }
2245 case 5:
2246 if (failed < 2)
2247 return IMSM_T_STATE_DEGRADED;
2248 else
2249 return IMSM_T_STATE_FAILED;
2250 break;
2251 default:
2252 break;
2253 }
2254
2255 return map->map_state;
2256 }
2257
2258 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
2259 {
2260 int i;
2261 int failed = 0;
2262 struct imsm_disk *disk;
2263 struct imsm_map *map = get_imsm_map(dev, 0);
2264
2265 for (i = 0; i < map->num_members; i++) {
2266 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
2267 int idx = ord_to_idx(ord);
2268
2269 disk = get_imsm_disk(super, idx);
2270 if (!disk ||
2271 __le32_to_cpu(disk->status) & FAILED_DISK ||
2272 ord & IMSM_ORD_REBUILD)
2273 failed++;
2274 }
2275
2276 return failed;
2277 }
2278
2279 static int imsm_set_array_state(struct active_array *a, int consistent)
2280 {
2281 int inst = a->info.container_member;
2282 struct intel_super *super = a->container->sb;
2283 struct imsm_dev *dev = get_imsm_dev(super, inst);
2284 struct imsm_map *map = get_imsm_map(dev, 0);
2285 int dirty = !consistent;
2286 int failed;
2287 __u8 map_state;
2288
2289 failed = imsm_count_failed(super, dev);
2290 map_state = imsm_check_degraded(super, dev, failed);
2291
2292 if (consistent && !dev->vol.dirty &&
2293 (dev->vol.migr_state || map_state != IMSM_T_STATE_NORMAL))
2294 a->resync_start = 0ULL;
2295 if (consistent == 2 && a->resync_start != ~0ULL)
2296 consistent = 0;
2297
2298 if (a->resync_start == ~0ULL) {
2299 /* complete recovery or initial resync */
2300 if (map->map_state != map_state) {
2301 dprintf("imsm: map_state %d: %d\n",
2302 inst, map_state);
2303 map->map_state = map_state;
2304 super->updates_pending++;
2305 }
2306 if (dev->vol.migr_state) {
2307 dprintf("imsm: mark resync complete\n");
2308 dev->vol.migr_state = 0;
2309 dev->vol.migr_type = 0;
2310 super->updates_pending++;
2311 }
2312 } else if (!dev->vol.migr_state) {
2313 dprintf("imsm: mark '%s' (%llu)\n",
2314 failed ? "rebuild" : "initializing", a->resync_start);
2315 /* mark that we are rebuilding */
2316 map->map_state = failed ? map_state : IMSM_T_STATE_NORMAL;
2317 dev->vol.migr_state = 1;
2318 dev->vol.migr_type = failed ? 1 : 0;
2319 dup_map(dev);
2320 a->check_degraded = 1;
2321 super->updates_pending++;
2322 }
2323
2324 /* mark dirty / clean */
2325 if (dirty != dev->vol.dirty) {
2326 dprintf("imsm: mark '%s' (%llu)\n",
2327 dirty ? "dirty" : "clean", a->resync_start);
2328 dev->vol.dirty = dirty;
2329 super->updates_pending++;
2330 }
2331 return consistent;
2332 }
2333
2334 static void imsm_set_disk(struct active_array *a, int n, int state)
2335 {
2336 int inst = a->info.container_member;
2337 struct intel_super *super = a->container->sb;
2338 struct imsm_dev *dev = get_imsm_dev(super, inst);
2339 struct imsm_map *map = get_imsm_map(dev, 0);
2340 struct imsm_disk *disk;
2341 __u32 status;
2342 int failed = 0;
2343 int new_failure = 0;
2344 __u32 ord;
2345
2346 if (n > map->num_members)
2347 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
2348 n, map->num_members - 1);
2349
2350 if (n < 0)
2351 return;
2352
2353 dprintf("imsm: set_disk %d:%x\n", n, state);
2354
2355 ord = get_imsm_ord_tbl_ent(dev, n);
2356 disk = get_imsm_disk(super, ord_to_idx(ord));
2357
2358 /* check for new failures */
2359 status = __le32_to_cpu(disk->status);
2360 if ((state & DS_FAULTY) && !(status & FAILED_DISK)) {
2361 status |= FAILED_DISK;
2362 disk->status = __cpu_to_le32(status);
2363 disk->scsi_id = __cpu_to_le32(~0UL);
2364 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
2365 new_failure = 1;
2366 super->updates_pending++;
2367 }
2368 /* check if in_sync */
2369 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD) {
2370 struct imsm_map *migr_map = get_imsm_map(dev, 1);
2371
2372 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
2373 super->updates_pending++;
2374 }
2375
2376 /* the number of failures have changed, count up 'failed' to determine
2377 * degraded / failed status
2378 */
2379 if (new_failure && map->map_state != IMSM_T_STATE_FAILED)
2380 failed = imsm_count_failed(super, dev);
2381
2382 /* determine map_state based on failed or in_sync count */
2383 if (failed)
2384 map->map_state = imsm_check_degraded(super, dev, failed);
2385 else if (map->map_state == IMSM_T_STATE_DEGRADED) {
2386 struct mdinfo *d;
2387 int working = 0;
2388
2389 for (d = a->info.devs ; d ; d = d->next)
2390 if (d->curr_state & DS_INSYNC)
2391 working++;
2392
2393 if (working == a->info.array.raid_disks) {
2394 map->map_state = IMSM_T_STATE_NORMAL;
2395 dev->vol.migr_state = 0;
2396 dev->vol.migr_type = 0;
2397 super->updates_pending++;
2398 }
2399 }
2400 }
2401
2402 static int store_imsm_mpb(int fd, struct intel_super *super)
2403 {
2404 struct imsm_super *mpb = super->anchor;
2405 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
2406 unsigned long long dsize;
2407 unsigned long long sectors;
2408
2409 get_dev_size(fd, NULL, &dsize);
2410
2411 if (mpb_size > 512) {
2412 /* -1 to account for anchor */
2413 sectors = mpb_sectors(mpb) - 1;
2414
2415 /* write the extended mpb to the sectors preceeding the anchor */
2416 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
2417 return 1;
2418
2419 if (write(fd, super->buf + 512, 512 * sectors) != 512 * sectors)
2420 return 1;
2421 }
2422
2423 /* first block is stored on second to last sector of the disk */
2424 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
2425 return 1;
2426
2427 if (write(fd, super->buf, 512) != 512)
2428 return 1;
2429
2430 return 0;
2431 }
2432
2433 static void imsm_sync_metadata(struct supertype *container)
2434 {
2435 struct intel_super *super = container->sb;
2436
2437 if (!super->updates_pending)
2438 return;
2439
2440 write_super_imsm(super, 0);
2441
2442 super->updates_pending = 0;
2443 }
2444
2445 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
2446 {
2447 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
2448 int i = get_imsm_disk_idx(dev, idx);
2449 struct dl *dl;
2450
2451 for (dl = super->disks; dl; dl = dl->next)
2452 if (dl->index == i)
2453 break;
2454
2455 if (dl && __le32_to_cpu(dl->disk.status) & FAILED_DISK)
2456 dl = NULL;
2457
2458 if (dl)
2459 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
2460
2461 return dl;
2462 }
2463
2464 static struct dl *imsm_add_spare(struct intel_super *super, int idx, struct active_array *a)
2465 {
2466 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
2467 struct imsm_map *map = get_imsm_map(dev, 0);
2468 unsigned long long esize;
2469 unsigned long long pos;
2470 struct mdinfo *d;
2471 struct extent *ex;
2472 int j;
2473 int found;
2474 __u32 array_start;
2475 __u32 status;
2476 struct dl *dl;
2477
2478 for (dl = super->disks; dl; dl = dl->next) {
2479 /* If in this array, skip */
2480 for (d = a->info.devs ; d ; d = d->next)
2481 if (d->disk.major == dl->major &&
2482 d->disk.minor == dl->minor) {
2483 dprintf("%x:%x already in array\n", dl->major, dl->minor);
2484 break;
2485 }
2486 if (d)
2487 continue;
2488
2489 /* skip marked in use or failed drives */
2490 status = __le32_to_cpu(dl->disk.status);
2491 if (status & FAILED_DISK || status & CONFIGURED_DISK) {
2492 dprintf("%x:%x status ( %s%s)\n",
2493 dl->major, dl->minor,
2494 status & FAILED_DISK ? "failed " : "",
2495 status & CONFIGURED_DISK ? "configured " : "");
2496 continue;
2497 }
2498
2499 /* Does this unused device have the requisite free space?
2500 * We need a->info.component_size sectors
2501 */
2502 ex = get_extents(super, dl);
2503 if (!ex) {
2504 dprintf("cannot get extents\n");
2505 continue;
2506 }
2507 found = 0;
2508 j = 0;
2509 pos = 0;
2510 array_start = __le32_to_cpu(map->pba_of_lba0);
2511
2512 do {
2513 /* check that we can start at pba_of_lba0 with
2514 * a->info.component_size of space
2515 */
2516 esize = ex[j].start - pos;
2517 if (array_start >= pos &&
2518 array_start + a->info.component_size < ex[j].start) {
2519 found = 1;
2520 break;
2521 }
2522 pos = ex[j].start + ex[j].size;
2523 j++;
2524
2525 } while (ex[j-1].size);
2526
2527 free(ex);
2528 if (!found) {
2529 dprintf("%x:%x does not have %llu at %d\n",
2530 dl->major, dl->minor,
2531 a->info.component_size,
2532 __le32_to_cpu(map->pba_of_lba0));
2533 /* No room */
2534 continue;
2535 } else
2536 break;
2537 }
2538
2539 return dl;
2540 }
2541
2542 static struct mdinfo *imsm_activate_spare(struct active_array *a,
2543 struct metadata_update **updates)
2544 {
2545 /**
2546 * Find a device with unused free space and use it to replace a
2547 * failed/vacant region in an array. We replace failed regions one a
2548 * array at a time. The result is that a new spare disk will be added
2549 * to the first failed array and after the monitor has finished
2550 * propagating failures the remainder will be consumed.
2551 *
2552 * FIXME add a capability for mdmon to request spares from another
2553 * container.
2554 */
2555
2556 struct intel_super *super = a->container->sb;
2557 int inst = a->info.container_member;
2558 struct imsm_dev *dev = get_imsm_dev(super, inst);
2559 struct imsm_map *map = get_imsm_map(dev, 0);
2560 int failed = a->info.array.raid_disks;
2561 struct mdinfo *rv = NULL;
2562 struct mdinfo *d;
2563 struct mdinfo *di;
2564 struct metadata_update *mu;
2565 struct dl *dl;
2566 struct imsm_update_activate_spare *u;
2567 int num_spares = 0;
2568 int i;
2569
2570 for (d = a->info.devs ; d ; d = d->next) {
2571 if ((d->curr_state & DS_FAULTY) &&
2572 d->state_fd >= 0)
2573 /* wait for Removal to happen */
2574 return NULL;
2575 if (d->state_fd >= 0)
2576 failed--;
2577 }
2578
2579 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
2580 inst, failed, a->info.array.raid_disks, a->info.array.level);
2581 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
2582 return NULL;
2583
2584 /* For each slot, if it is not working, find a spare */
2585 for (i = 0; i < a->info.array.raid_disks; i++) {
2586 for (d = a->info.devs ; d ; d = d->next)
2587 if (d->disk.raid_disk == i)
2588 break;
2589 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
2590 if (d && (d->state_fd >= 0))
2591 continue;
2592
2593 /*
2594 * OK, this device needs recovery. Try to re-add the previous
2595 * occupant of this slot, if this fails add a new spare
2596 */
2597 dl = imsm_readd(super, i, a);
2598 if (!dl)
2599 dl = imsm_add_spare(super, i, a);
2600 if (!dl)
2601 continue;
2602
2603 /* found a usable disk with enough space */
2604 di = malloc(sizeof(*di));
2605 memset(di, 0, sizeof(*di));
2606
2607 /* dl->index will be -1 in the case we are activating a
2608 * pristine spare. imsm_process_update() will create a
2609 * new index in this case. Once a disk is found to be
2610 * failed in all member arrays it is kicked from the
2611 * metadata
2612 */
2613 di->disk.number = dl->index;
2614
2615 /* (ab)use di->devs to store a pointer to the device
2616 * we chose
2617 */
2618 di->devs = (struct mdinfo *) dl;
2619
2620 di->disk.raid_disk = i;
2621 di->disk.major = dl->major;
2622 di->disk.minor = dl->minor;
2623 di->disk.state = 0;
2624 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
2625 di->component_size = a->info.component_size;
2626 di->container_member = inst;
2627 di->next = rv;
2628 rv = di;
2629 num_spares++;
2630 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
2631 i, di->data_offset);
2632
2633 break;
2634 }
2635
2636 if (!rv)
2637 /* No spares found */
2638 return rv;
2639 /* Now 'rv' has a list of devices to return.
2640 * Create a metadata_update record to update the
2641 * disk_ord_tbl for the array
2642 */
2643 mu = malloc(sizeof(*mu));
2644 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
2645 mu->space = NULL;
2646 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
2647 mu->next = *updates;
2648 u = (struct imsm_update_activate_spare *) mu->buf;
2649
2650 for (di = rv ; di ; di = di->next) {
2651 u->type = update_activate_spare;
2652 u->dl = (struct dl *) di->devs;
2653 di->devs = NULL;
2654 u->slot = di->disk.raid_disk;
2655 u->array = inst;
2656 u->next = u + 1;
2657 u++;
2658 }
2659 (u-1)->next = NULL;
2660 *updates = mu;
2661
2662 return rv;
2663 }
2664
2665 static int disks_overlap(struct imsm_dev *d1, struct imsm_dev *d2)
2666 {
2667 struct imsm_map *m1 = get_imsm_map(d1, 0);
2668 struct imsm_map *m2 = get_imsm_map(d2, 0);
2669 int i;
2670 int j;
2671 int idx;
2672
2673 for (i = 0; i < m1->num_members; i++) {
2674 idx = get_imsm_disk_idx(d1, i);
2675 for (j = 0; j < m2->num_members; j++)
2676 if (idx == get_imsm_disk_idx(d2, j))
2677 return 1;
2678 }
2679
2680 return 0;
2681 }
2682
2683 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index);
2684
2685 static void imsm_process_update(struct supertype *st,
2686 struct metadata_update *update)
2687 {
2688 /**
2689 * crack open the metadata_update envelope to find the update record
2690 * update can be one of:
2691 * update_activate_spare - a spare device has replaced a failed
2692 * device in an array, update the disk_ord_tbl. If this disk is
2693 * present in all member arrays then also clear the SPARE_DISK
2694 * flag
2695 */
2696 struct intel_super *super = st->sb;
2697 struct imsm_super *mpb;
2698 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
2699
2700 /* update requires a larger buf but the allocation failed */
2701 if (super->next_len && !super->next_buf) {
2702 super->next_len = 0;
2703 return;
2704 }
2705
2706 if (super->next_buf) {
2707 memcpy(super->next_buf, super->buf, super->len);
2708 free(super->buf);
2709 super->len = super->next_len;
2710 super->buf = super->next_buf;
2711
2712 super->next_len = 0;
2713 super->next_buf = NULL;
2714 }
2715
2716 mpb = super->anchor;
2717
2718 switch (type) {
2719 case update_activate_spare: {
2720 struct imsm_update_activate_spare *u = (void *) update->buf;
2721 struct imsm_dev *dev = get_imsm_dev(super, u->array);
2722 struct imsm_map *map = get_imsm_map(dev, 0);
2723 struct active_array *a;
2724 struct imsm_disk *disk;
2725 __u32 status;
2726 struct dl *dl;
2727 unsigned int found;
2728 int victim;
2729 int i;
2730
2731 for (dl = super->disks; dl; dl = dl->next)
2732 if (dl == u->dl)
2733 break;
2734
2735 if (!dl) {
2736 fprintf(stderr, "error: imsm_activate_spare passed "
2737 "an unknown disk (index: %d serial: %s)\n",
2738 u->dl->index, u->dl->serial);
2739 return;
2740 }
2741
2742 super->updates_pending++;
2743
2744 /* adding a pristine spare, assign a new index */
2745 if (dl->index < 0) {
2746 dl->index = super->anchor->num_disks;
2747 super->anchor->num_disks++;
2748 }
2749 victim = get_imsm_disk_idx(dev, u->slot);
2750 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
2751 disk = &dl->disk;
2752 status = __le32_to_cpu(disk->status);
2753 status |= CONFIGURED_DISK;
2754 status &= ~SPARE_DISK;
2755 disk->status = __cpu_to_le32(status);
2756
2757 /* count arrays using the victim in the metadata */
2758 found = 0;
2759 for (a = st->arrays; a ; a = a->next) {
2760 dev = get_imsm_dev(super, a->info.container_member);
2761 for (i = 0; i < map->num_members; i++)
2762 if (victim == get_imsm_disk_idx(dev, i))
2763 found++;
2764 }
2765
2766 /* delete the victim if it is no longer being
2767 * utilized anywhere
2768 */
2769 if (!found) {
2770 struct dl **dlp;
2771
2772 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
2773 if ((*dlp)->index == victim)
2774 break;
2775 /* We know that 'manager' isn't touching anything,
2776 * so it is safe to:
2777 */
2778 imsm_delete(super, dlp, victim);
2779 }
2780 break;
2781 }
2782 case update_create_array: {
2783 /* someone wants to create a new array, we need to be aware of
2784 * a few races/collisions:
2785 * 1/ 'Create' called by two separate instances of mdadm
2786 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
2787 * devices that have since been assimilated via
2788 * activate_spare.
2789 * In the event this update can not be carried out mdadm will
2790 * (FIX ME) notice that its update did not take hold.
2791 */
2792 struct imsm_update_create_array *u = (void *) update->buf;
2793 struct imsm_dev *dev;
2794 struct imsm_map *map, *new_map;
2795 unsigned long long start, end;
2796 unsigned long long new_start, new_end;
2797 int i;
2798 int overlap = 0;
2799
2800 /* handle racing creates: first come first serve */
2801 if (u->dev_idx < mpb->num_raid_devs) {
2802 dprintf("%s: subarray %d already defined\n",
2803 __func__, u->dev_idx);
2804 return;
2805 }
2806
2807 /* check update is next in sequence */
2808 if (u->dev_idx != mpb->num_raid_devs) {
2809 dprintf("%s: can not create array %d expected index %d\n",
2810 __func__, u->dev_idx, mpb->num_raid_devs);
2811 return;
2812 }
2813
2814 new_map = get_imsm_map(&u->dev, 0);
2815 new_start = __le32_to_cpu(new_map->pba_of_lba0);
2816 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
2817
2818 /* handle activate_spare versus create race:
2819 * check to make sure that overlapping arrays do not include
2820 * overalpping disks
2821 */
2822 for (i = 0; i < mpb->num_raid_devs; i++) {
2823 dev = get_imsm_dev(super, i);
2824 map = get_imsm_map(dev, 0);
2825 start = __le32_to_cpu(map->pba_of_lba0);
2826 end = start + __le32_to_cpu(map->blocks_per_member);
2827 if ((new_start >= start && new_start <= end) ||
2828 (start >= new_start && start <= new_end))
2829 overlap = 1;
2830 if (overlap && disks_overlap(dev, &u->dev)) {
2831 dprintf("%s: arrays overlap\n", __func__);
2832 return;
2833 }
2834 }
2835 /* check num_members sanity */
2836 if (new_map->num_members > mpb->num_disks) {
2837 dprintf("%s: num_disks out of range\n", __func__);
2838 return;
2839 }
2840
2841 /* check that prepare update was successful */
2842 if (!update->space) {
2843 dprintf("%s: prepare update failed\n", __func__);
2844 return;
2845 }
2846
2847 super->updates_pending++;
2848 dev = update->space;
2849 map = get_imsm_map(dev, 0);
2850 update->space = NULL;
2851 imsm_copy_dev(dev, &u->dev);
2852 map = get_imsm_map(dev, 0);
2853 super->dev_tbl[u->dev_idx] = dev;
2854 mpb->num_raid_devs++;
2855
2856 /* fix up flags */
2857 for (i = 0; i < map->num_members; i++) {
2858 struct imsm_disk *disk;
2859 __u32 status;
2860
2861 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
2862 status = __le32_to_cpu(disk->status);
2863 status |= CONFIGURED_DISK;
2864 status &= ~SPARE_DISK;
2865 disk->status = __cpu_to_le32(status);
2866 }
2867 break;
2868 }
2869 case update_add_disk:
2870
2871 /* we may be able to repair some arrays if disks are
2872 * being added */
2873 if (super->add) {
2874 struct active_array *a;
2875 for (a = st->arrays; a; a = a->next)
2876 a->check_degraded = 1;
2877 }
2878 /* check if we can add / replace some disks in the
2879 * metadata */
2880 while (super->add) {
2881 struct dl **dlp, *dl, *al;
2882 al = super->add;
2883 super->add = al->next;
2884 for (dlp = &super->disks; *dlp ; ) {
2885 if (memcmp(al->serial, (*dlp)->serial,
2886 MAX_RAID_SERIAL_LEN) == 0) {
2887 dl = *dlp;
2888 *dlp = (*dlp)->next;
2889 __free_imsm_disk(dl);
2890 break;
2891 } else
2892 dlp = &(*dlp)->next;
2893 }
2894 al->next = super->disks;
2895 super->disks = al;
2896 }
2897
2898 break;
2899 }
2900 }
2901
2902 static void imsm_prepare_update(struct supertype *st,
2903 struct metadata_update *update)
2904 {
2905 /**
2906 * Allocate space to hold new disk entries, raid-device entries or a new
2907 * mpb if necessary. The manager synchronously waits for updates to
2908 * complete in the monitor, so new mpb buffers allocated here can be
2909 * integrated by the monitor thread without worrying about live pointers
2910 * in the manager thread.
2911 */
2912 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
2913 struct intel_super *super = st->sb;
2914 struct imsm_super *mpb = super->anchor;
2915 size_t buf_len;
2916 size_t len = 0;
2917
2918 switch (type) {
2919 case update_create_array: {
2920 struct imsm_update_create_array *u = (void *) update->buf;
2921
2922 len = sizeof_imsm_dev(&u->dev, 1);
2923 update->space = malloc(len);
2924 break;
2925 default:
2926 break;
2927 }
2928 }
2929
2930 /* check if we need a larger metadata buffer */
2931 if (super->next_buf)
2932 buf_len = super->next_len;
2933 else
2934 buf_len = super->len;
2935
2936 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
2937 /* ok we need a larger buf than what is currently allocated
2938 * if this allocation fails process_update will notice that
2939 * ->next_len is set and ->next_buf is NULL
2940 */
2941 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
2942 if (super->next_buf)
2943 free(super->next_buf);
2944
2945 super->next_len = buf_len;
2946 if (posix_memalign(&super->next_buf, buf_len, 512) != 0)
2947 super->next_buf = NULL;
2948 }
2949 }
2950
2951 /* must be called while manager is quiesced */
2952 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index)
2953 {
2954 struct imsm_super *mpb = super->anchor;
2955 struct dl *iter;
2956 struct imsm_dev *dev;
2957 struct imsm_map *map;
2958 int i, j, num_members;
2959 __u32 ord;
2960
2961 dprintf("%s: deleting device[%d] from imsm_super\n",
2962 __func__, index);
2963
2964 /* shift all indexes down one */
2965 for (iter = super->disks; iter; iter = iter->next)
2966 if (iter->index > index)
2967 iter->index--;
2968
2969 for (i = 0; i < mpb->num_raid_devs; i++) {
2970 dev = get_imsm_dev(super, i);
2971 map = get_imsm_map(dev, 0);
2972 num_members = map->num_members;
2973 for (j = 0; j < num_members; j++) {
2974 /* update ord entries being careful not to propagate
2975 * ord-flags to the first map
2976 */
2977 ord = get_imsm_ord_tbl_ent(dev, j);
2978
2979 if (ord_to_idx(ord) <= index)
2980 continue;
2981
2982 map = get_imsm_map(dev, 0);
2983 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
2984 map = get_imsm_map(dev, 1);
2985 if (map)
2986 set_imsm_ord_tbl_ent(map, j, ord - 1);
2987 }
2988 }
2989
2990 mpb->num_disks--;
2991 super->updates_pending++;
2992 if (*dlp) {
2993 struct dl *dl = *dlp;
2994
2995 *dlp = (*dlp)->next;
2996 __free_imsm_disk(dl);
2997 }
2998 }
2999
3000 struct superswitch super_imsm = {
3001 #ifndef MDASSEMBLE
3002 .examine_super = examine_super_imsm,
3003 .brief_examine_super = brief_examine_super_imsm,
3004 .detail_super = detail_super_imsm,
3005 .brief_detail_super = brief_detail_super_imsm,
3006 .write_init_super = write_init_super_imsm,
3007 #endif
3008 .match_home = match_home_imsm,
3009 .uuid_from_super= uuid_from_super_imsm,
3010 .getinfo_super = getinfo_super_imsm,
3011 .update_super = update_super_imsm,
3012
3013 .avail_size = avail_size_imsm,
3014
3015 .compare_super = compare_super_imsm,
3016
3017 .load_super = load_super_imsm,
3018 .init_super = init_super_imsm,
3019 .add_to_super = add_to_super_imsm,
3020 .store_super = store_zero_imsm,
3021 .free_super = free_super_imsm,
3022 .match_metadata_desc = match_metadata_desc_imsm,
3023 .container_content = container_content_imsm,
3024
3025 .validate_geometry = validate_geometry_imsm,
3026 .external = 1,
3027
3028 /* for mdmon */
3029 .open_new = imsm_open_new,
3030 .load_super = load_super_imsm,
3031 .set_array_state= imsm_set_array_state,
3032 .set_disk = imsm_set_disk,
3033 .sync_metadata = imsm_sync_metadata,
3034 .activate_spare = imsm_activate_spare,
3035 .process_update = imsm_process_update,
3036 .prepare_update = imsm_prepare_update,
3037 };