]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
28b26d98a7b61595d0c3cd662502e2e88ce2cd43
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2007 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #include "mdadm.h"
21 #include "mdmon.h"
22 #include <values.h>
23 #include <scsi/sg.h>
24 #include <ctype.h>
25
26 /* MPB == Metadata Parameter Block */
27 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
28 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
29 #define MPB_VERSION_RAID0 "1.0.00"
30 #define MPB_VERSION_RAID1 "1.1.00"
31 #define MPB_VERSION_RAID5 "1.2.02"
32 #define MAX_SIGNATURE_LENGTH 32
33 #define MAX_RAID_SERIAL_LEN 16
34 #define MPB_SECTOR_CNT 418
35 #define IMSM_RESERVED_SECTORS 4096
36
37 /* Disk configuration info. */
38 #define IMSM_MAX_DEVICES 255
39 struct imsm_disk {
40 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
41 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
42 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
43 __u32 status; /* 0xF0 - 0xF3 */
44 #define SPARE_DISK 0x01 /* Spare */
45 #define CONFIGURED_DISK 0x02 /* Member of some RaidDev */
46 #define FAILED_DISK 0x04 /* Permanent failure */
47 #define USABLE_DISK 0x08 /* Fully usable unless FAILED_DISK is set */
48
49 #define IMSM_DISK_FILLERS 5
50 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
51 };
52
53 /* RAID map configuration infos. */
54 struct imsm_map {
55 __u32 pba_of_lba0; /* start address of partition */
56 __u32 blocks_per_member;/* blocks per member */
57 __u32 num_data_stripes; /* number of data stripes */
58 __u16 blocks_per_strip;
59 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
60 #define IMSM_T_STATE_NORMAL 0
61 #define IMSM_T_STATE_UNINITIALIZED 1
62 #define IMSM_T_STATE_DEGRADED 2 /* FIXME: is this correct? */
63 #define IMSM_T_STATE_FAILED 3 /* FIXME: is this correct? */
64 __u8 raid_level;
65 #define IMSM_T_RAID0 0
66 #define IMSM_T_RAID1 1
67 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
68 __u8 num_members; /* number of member disks */
69 __u8 reserved[3];
70 __u32 filler[7]; /* expansion area */
71 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
72 top byte special */
73 } __attribute__ ((packed));
74
75 struct imsm_vol {
76 __u32 reserved[2];
77 __u8 migr_state; /* Normal or Migrating */
78 __u8 migr_type; /* Initializing, Rebuilding, ... */
79 __u8 dirty;
80 __u8 fill[1];
81 __u32 filler[5];
82 struct imsm_map map[1];
83 /* here comes another one if migr_state */
84 } __attribute__ ((packed));
85
86 struct imsm_dev {
87 __u8 volume[MAX_RAID_SERIAL_LEN];
88 __u32 size_low;
89 __u32 size_high;
90 __u32 status; /* Persistent RaidDev status */
91 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
92 #define IMSM_DEV_FILLERS 12
93 __u32 filler[IMSM_DEV_FILLERS];
94 struct imsm_vol vol;
95 } __attribute__ ((packed));
96
97 struct imsm_super {
98 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
99 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
100 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
101 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
102 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
103 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
104 __u32 attributes; /* 0x34 - 0x37 */
105 __u8 num_disks; /* 0x38 Number of configured disks */
106 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
107 __u8 error_log_pos; /* 0x3A */
108 __u8 fill[1]; /* 0x3B */
109 __u32 cache_size; /* 0x3c - 0x40 in mb */
110 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
111 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
112 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
113 #define IMSM_FILLERS 35
114 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
115 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
116 /* here comes imsm_dev[num_raid_devs] */
117 /* here comes BBM logs */
118 } __attribute__ ((packed));
119
120 #define BBM_LOG_MAX_ENTRIES 254
121
122 struct bbm_log_entry {
123 __u64 defective_block_start;
124 #define UNREADABLE 0xFFFFFFFF
125 __u32 spare_block_offset;
126 __u16 remapped_marked_count;
127 __u16 disk_ordinal;
128 } __attribute__ ((__packed__));
129
130 struct bbm_log {
131 __u32 signature; /* 0xABADB10C */
132 __u32 entry_count;
133 __u32 reserved_spare_block_count; /* 0 */
134 __u32 reserved; /* 0xFFFF */
135 __u64 first_spare_lba;
136 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
137 } __attribute__ ((__packed__));
138
139
140 #ifndef MDASSEMBLE
141 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
142 #endif
143
144 static unsigned int sector_count(__u32 bytes)
145 {
146 return ((bytes + (512-1)) & (~(512-1))) / 512;
147 }
148
149 static unsigned int mpb_sectors(struct imsm_super *mpb)
150 {
151 return sector_count(__le32_to_cpu(mpb->mpb_size));
152 }
153
154 /* internal representation of IMSM metadata */
155 struct intel_super {
156 union {
157 void *buf; /* O_DIRECT buffer for reading/writing metadata */
158 struct imsm_super *anchor; /* immovable parameters */
159 };
160 size_t len; /* size of the 'buf' allocation */
161 int updates_pending; /* count of pending updates for mdmon */
162 int creating_imsm; /* flag to indicate container creation */
163 int current_vol; /* index of raid device undergoing creation */
164 #define IMSM_MAX_RAID_DEVS 2
165 struct imsm_dev *dev_tbl[IMSM_MAX_RAID_DEVS];
166 struct dl {
167 struct dl *next;
168 int index;
169 __u8 serial[MAX_RAID_SERIAL_LEN];
170 int major, minor;
171 char *devname;
172 struct imsm_disk disk;
173 int fd;
174 } *disks;
175 struct bbm_log *bbm_log;
176 };
177
178 struct extent {
179 unsigned long long start, size;
180 };
181
182 /* definition of messages passed to imsm_process_update */
183 enum imsm_update_type {
184 update_activate_spare,
185 update_create_array,
186 };
187
188 struct imsm_update_activate_spare {
189 enum imsm_update_type type;
190 struct dl *dl;
191 int slot;
192 int array;
193 struct imsm_update_activate_spare *next;
194 };
195
196 struct imsm_update_create_array {
197 enum imsm_update_type type;
198 struct imsm_dev dev;
199 int dev_idx;
200 };
201
202 static int imsm_env_devname_as_serial(void)
203 {
204 char *val = getenv("IMSM_DEVNAME_AS_SERIAL");
205
206 if (val && atoi(val) == 1)
207 return 1;
208
209 return 0;
210 }
211
212
213 static struct supertype *match_metadata_desc_imsm(char *arg)
214 {
215 struct supertype *st;
216
217 if (strcmp(arg, "imsm") != 0 &&
218 strcmp(arg, "default") != 0
219 )
220 return NULL;
221
222 st = malloc(sizeof(*st));
223 memset(st, 0, sizeof(*st));
224 st->ss = &super_imsm;
225 st->max_devs = IMSM_MAX_DEVICES;
226 st->minor_version = 0;
227 st->sb = NULL;
228 return st;
229 }
230
231 static __u8 *get_imsm_version(struct imsm_super *mpb)
232 {
233 return &mpb->sig[MPB_SIG_LEN];
234 }
235
236 /* retrieve a disk directly from the anchor when the anchor is known to be
237 * up-to-date, currently only at load time
238 */
239 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
240 {
241 if (index >= mpb->num_disks)
242 return NULL;
243 return &mpb->disk[index];
244 }
245
246 /* retrieve a disk from the parsed metadata */
247 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
248 {
249 struct dl *d;
250
251 for (d = super->disks; d; d = d->next)
252 if (d->index == index)
253 return &d->disk;
254
255 return NULL;
256 }
257
258 /* generate a checksum directly from the anchor when the anchor is known to be
259 * up-to-date, currently only at load or write_super after coalescing
260 */
261 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
262 {
263 __u32 end = mpb->mpb_size / sizeof(end);
264 __u32 *p = (__u32 *) mpb;
265 __u32 sum = 0;
266
267 while (end--)
268 sum += __le32_to_cpu(*p++);
269
270 return sum - __le32_to_cpu(mpb->check_sum);
271 }
272
273 static size_t sizeof_imsm_map(struct imsm_map *map)
274 {
275 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
276 }
277
278 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
279 {
280 struct imsm_map *map = &dev->vol.map[0];
281
282 if (second_map && !dev->vol.migr_state)
283 return NULL;
284 else if (second_map) {
285 void *ptr = map;
286
287 return ptr + sizeof_imsm_map(map);
288 } else
289 return map;
290
291 }
292
293 /* return the size of the device.
294 * migr_state increases the returned size if map[0] were to be duplicated
295 */
296 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
297 {
298 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
299 sizeof_imsm_map(get_imsm_map(dev, 0));
300
301 /* migrating means an additional map */
302 if (dev->vol.migr_state)
303 size += sizeof_imsm_map(get_imsm_map(dev, 1));
304 else if (migr_state)
305 size += sizeof_imsm_map(get_imsm_map(dev, 0));
306
307 return size;
308 }
309
310 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
311 {
312 int offset;
313 int i;
314 void *_mpb = mpb;
315
316 if (index >= mpb->num_raid_devs)
317 return NULL;
318
319 /* devices start after all disks */
320 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
321
322 for (i = 0; i <= index; i++)
323 if (i == index)
324 return _mpb + offset;
325 else
326 offset += sizeof_imsm_dev(_mpb + offset, 0);
327
328 return NULL;
329 }
330
331 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
332 {
333 if (index >= super->anchor->num_raid_devs)
334 return NULL;
335 return super->dev_tbl[index];
336 }
337
338 static __u32 get_imsm_disk_idx(struct imsm_map *map, int slot)
339 {
340 __u32 *ord_tbl = &map->disk_ord_tbl[slot];
341
342 /* top byte is 'special' */
343 return __le32_to_cpu(*ord_tbl & ~(0xff << 24));
344 }
345
346 static int get_imsm_raid_level(struct imsm_map *map)
347 {
348 if (map->raid_level == 1) {
349 if (map->num_members == 2)
350 return 1;
351 else
352 return 10;
353 }
354
355 return map->raid_level;
356 }
357
358 static int cmp_extent(const void *av, const void *bv)
359 {
360 const struct extent *a = av;
361 const struct extent *b = bv;
362 if (a->start < b->start)
363 return -1;
364 if (a->start > b->start)
365 return 1;
366 return 0;
367 }
368
369 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
370 {
371 /* find a list of used extents on the given physical device */
372 struct extent *rv, *e;
373 int i, j;
374 int memberships = 0;
375
376 for (i = 0; i < super->anchor->num_raid_devs; i++) {
377 struct imsm_dev *dev = get_imsm_dev(super, i);
378 struct imsm_map *map = get_imsm_map(dev, 0);
379
380 for (j = 0; j < map->num_members; j++) {
381 __u32 index = get_imsm_disk_idx(map, j);
382
383 if (index == dl->index)
384 memberships++;
385 }
386 }
387 rv = malloc(sizeof(struct extent) * (memberships + 1));
388 if (!rv)
389 return NULL;
390 e = rv;
391
392 for (i = 0; i < super->anchor->num_raid_devs; i++) {
393 struct imsm_dev *dev = get_imsm_dev(super, i);
394 struct imsm_map *map = get_imsm_map(dev, 0);
395
396 for (j = 0; j < map->num_members; j++) {
397 __u32 index = get_imsm_disk_idx(map, j);
398
399 if (index == dl->index) {
400 e->start = __le32_to_cpu(map->pba_of_lba0);
401 e->size = __le32_to_cpu(map->blocks_per_member);
402 e++;
403 }
404 }
405 }
406 qsort(rv, memberships, sizeof(*rv), cmp_extent);
407
408 e->start = __le32_to_cpu(dl->disk.total_blocks) -
409 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
410 e->size = 0;
411 return rv;
412 }
413
414 #ifndef MDASSEMBLE
415 static void print_imsm_dev(struct imsm_dev *dev, int index)
416 {
417 __u64 sz;
418 int slot;
419 struct imsm_map *map = get_imsm_map(dev, 0);
420
421 printf("\n");
422 printf("[%s]:\n", dev->volume);
423 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
424 printf(" Members : %d\n", map->num_members);
425 for (slot = 0; slot < map->num_members; slot++)
426 if (index == get_imsm_disk_idx(map, slot))
427 break;
428 if (slot < map->num_members)
429 printf(" This Slot : %d\n", slot);
430 else
431 printf(" This Slot : ?\n");
432 sz = __le32_to_cpu(dev->size_high);
433 sz <<= 32;
434 sz += __le32_to_cpu(dev->size_low);
435 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
436 human_size(sz * 512));
437 sz = __le32_to_cpu(map->blocks_per_member);
438 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
439 human_size(sz * 512));
440 printf(" Sector Offset : %u\n",
441 __le32_to_cpu(map->pba_of_lba0));
442 printf(" Num Stripes : %u\n",
443 __le32_to_cpu(map->num_data_stripes));
444 printf(" Chunk Size : %u KiB\n",
445 __le16_to_cpu(map->blocks_per_strip) / 2);
446 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
447 printf(" Migrate State : %s", dev->vol.migr_state ? "migrating" : "idle");
448 if (dev->vol.migr_state)
449 printf(": %s", dev->vol.migr_type ? "rebuilding" : "initializing");
450 printf("\n");
451 printf(" Map State : %s", map_state_str[map->map_state]);
452 if (dev->vol.migr_state) {
453 struct imsm_map *map = get_imsm_map(dev, 1);
454 printf(", %s", map_state_str[map->map_state]);
455 }
456 printf("\n");
457 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
458 }
459
460 static void print_imsm_disk(struct imsm_super *mpb, int index)
461 {
462 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
463 char str[MAX_RAID_SERIAL_LEN];
464 __u32 s;
465 __u64 sz;
466
467 if (index < 0)
468 return;
469
470 printf("\n");
471 snprintf(str, MAX_RAID_SERIAL_LEN, "%s", disk->serial);
472 printf(" Disk%02d Serial : %s\n", index, str);
473 s = __le32_to_cpu(disk->status);
474 printf(" State :%s%s%s%s\n", s&SPARE_DISK ? " spare" : "",
475 s&CONFIGURED_DISK ? " active" : "",
476 s&FAILED_DISK ? " failed" : "",
477 s&USABLE_DISK ? " usable" : "");
478 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
479 sz = __le32_to_cpu(disk->total_blocks) -
480 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS * mpb->num_raid_devs);
481 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
482 human_size(sz * 512));
483 }
484
485 static void examine_super_imsm(struct supertype *st, char *homehost)
486 {
487 struct intel_super *super = st->sb;
488 struct imsm_super *mpb = super->anchor;
489 char str[MAX_SIGNATURE_LENGTH];
490 int i;
491 __u32 sum;
492
493 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
494 printf(" Magic : %s\n", str);
495 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
496 printf(" Version : %s\n", get_imsm_version(mpb));
497 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
498 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
499 sum = __le32_to_cpu(mpb->check_sum);
500 printf(" Checksum : %08x %s\n", sum,
501 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
502 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
503 printf(" Disks : %d\n", mpb->num_disks);
504 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
505 print_imsm_disk(mpb, super->disks->index);
506 if (super->bbm_log) {
507 struct bbm_log *log = super->bbm_log;
508
509 printf("\n");
510 printf("Bad Block Management Log:\n");
511 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
512 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
513 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
514 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
515 printf(" First Spare : %llx\n", __le64_to_cpu(log->first_spare_lba));
516 }
517 for (i = 0; i < mpb->num_raid_devs; i++)
518 print_imsm_dev(__get_imsm_dev(mpb, i), super->disks->index);
519 for (i = 0; i < mpb->num_disks; i++) {
520 if (i == super->disks->index)
521 continue;
522 print_imsm_disk(mpb, i);
523 }
524 }
525
526 static void brief_examine_super_imsm(struct supertype *st)
527 {
528 printf("ARRAY /dev/imsm metadata=imsm\n");
529 }
530
531 static void detail_super_imsm(struct supertype *st, char *homehost)
532 {
533 printf("%s\n", __FUNCTION__);
534 }
535
536 static void brief_detail_super_imsm(struct supertype *st)
537 {
538 printf("%s\n", __FUNCTION__);
539 }
540 #endif
541
542 static int match_home_imsm(struct supertype *st, char *homehost)
543 {
544 printf("%s\n", __FUNCTION__);
545
546 return 0;
547 }
548
549 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
550 {
551 printf("%s\n", __FUNCTION__);
552 }
553
554 #if 0
555 static void
556 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
557 {
558 __u8 *v = get_imsm_version(mpb);
559 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
560 char major[] = { 0, 0, 0 };
561 char minor[] = { 0 ,0, 0 };
562 char patch[] = { 0, 0, 0 };
563 char *ver_parse[] = { major, minor, patch };
564 int i, j;
565
566 i = j = 0;
567 while (*v != '\0' && v < end) {
568 if (*v != '.' && j < 2)
569 ver_parse[i][j++] = *v;
570 else {
571 i++;
572 j = 0;
573 }
574 v++;
575 }
576
577 *m = strtol(minor, NULL, 0);
578 *p = strtol(patch, NULL, 0);
579 }
580 #endif
581
582 static int imsm_level_to_layout(int level)
583 {
584 switch (level) {
585 case 0:
586 case 1:
587 return 0;
588 case 5:
589 case 6:
590 return ALGORITHM_LEFT_ASYMMETRIC;
591 case 10:
592 return 0x102; //FIXME is this correct?
593 }
594 return -1;
595 }
596
597 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
598 {
599 struct intel_super *super = st->sb;
600 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
601 struct imsm_map *map = get_imsm_map(dev, 0);
602
603 info->container_member = super->current_vol;
604 info->array.raid_disks = map->num_members;
605 info->array.level = get_imsm_raid_level(map);
606 info->array.layout = imsm_level_to_layout(info->array.level);
607 info->array.md_minor = -1;
608 info->array.ctime = 0;
609 info->array.utime = 0;
610 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip * 512);
611
612 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
613 info->component_size = __le32_to_cpu(map->blocks_per_member);
614
615 info->disk.major = 0;
616 info->disk.minor = 0;
617
618 sprintf(info->text_version, "/%s/%d",
619 devnum2devname(st->container_dev),
620 info->container_member);
621 }
622
623
624 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
625 {
626 struct intel_super *super = st->sb;
627 struct imsm_disk *disk;
628 __u32 s;
629
630 if (super->current_vol >= 0) {
631 getinfo_super_imsm_volume(st, info);
632 return;
633 }
634
635 /* Set raid_disks to zero so that Assemble will always pull in valid
636 * spares
637 */
638 info->array.raid_disks = 0;
639 info->array.level = LEVEL_CONTAINER;
640 info->array.layout = 0;
641 info->array.md_minor = -1;
642 info->array.ctime = 0; /* N/A for imsm */
643 info->array.utime = 0;
644 info->array.chunk_size = 0;
645
646 info->disk.major = 0;
647 info->disk.minor = 0;
648 info->disk.raid_disk = -1;
649 info->reshape_active = 0;
650 strcpy(info->text_version, "imsm");
651 info->disk.number = -1;
652 info->disk.state = 0;
653
654 if (super->disks) {
655 disk = &super->disks->disk;
656 info->disk.number = super->disks->index;
657 info->disk.raid_disk = super->disks->index;
658 info->data_offset = __le32_to_cpu(disk->total_blocks) -
659 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
660 info->component_size = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
661 s = __le32_to_cpu(disk->status);
662 info->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
663 info->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
664 info->disk.state |= s & USABLE_DISK ? (1 << MD_DISK_SYNC) : 0;
665 }
666 }
667
668 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
669 char *update, char *devname, int verbose,
670 int uuid_set, char *homehost)
671 {
672 /* FIXME */
673
674 /* For 'assemble' and 'force' we need to return non-zero if any
675 * change was made. For others, the return value is ignored.
676 * Update options are:
677 * force-one : This device looks a bit old but needs to be included,
678 * update age info appropriately.
679 * assemble: clear any 'faulty' flag to allow this device to
680 * be assembled.
681 * force-array: Array is degraded but being forced, mark it clean
682 * if that will be needed to assemble it.
683 *
684 * newdev: not used ????
685 * grow: Array has gained a new device - this is currently for
686 * linear only
687 * resync: mark as dirty so a resync will happen.
688 * name: update the name - preserving the homehost
689 *
690 * Following are not relevant for this imsm:
691 * sparc2.2 : update from old dodgey metadata
692 * super-minor: change the preferred_minor number
693 * summaries: update redundant counters.
694 * uuid: Change the uuid of the array to match watch is given
695 * homehost: update the recorded homehost
696 * _reshape_progress: record new reshape_progress position.
697 */
698 int rv = 0;
699 //struct intel_super *super = st->sb;
700 //struct imsm_super *mpb = super->mpb;
701
702 if (strcmp(update, "grow") == 0) {
703 }
704 if (strcmp(update, "resync") == 0) {
705 /* dev->vol.dirty = 1; */
706 }
707
708 /* IMSM has no concept of UUID or homehost */
709
710 return rv;
711 }
712
713 static size_t disks_to_mpb_size(int disks)
714 {
715 size_t size;
716
717 size = sizeof(struct imsm_super);
718 size += (disks - 1) * sizeof(struct imsm_disk);
719 size += 2 * sizeof(struct imsm_dev);
720 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
721 size += (4 - 2) * sizeof(struct imsm_map);
722 /* 4 possible disk_ord_tbl's */
723 size += 4 * (disks - 1) * sizeof(__u32);
724
725 return size;
726 }
727
728 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
729 {
730 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
731 return 0;
732
733 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
734 }
735
736 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
737 {
738 /*
739 * return:
740 * 0 same, or first was empty, and second was copied
741 * 1 second had wrong number
742 * 2 wrong uuid
743 * 3 wrong other info
744 */
745 struct intel_super *first = st->sb;
746 struct intel_super *sec = tst->sb;
747
748 if (!first) {
749 st->sb = tst->sb;
750 tst->sb = NULL;
751 return 0;
752 }
753
754 if (memcmp(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH) != 0)
755 return 3;
756
757 /* if an anchor does not have num_raid_devs set then it is a free
758 * floating spare
759 */
760 if (first->anchor->num_raid_devs > 0 &&
761 sec->anchor->num_raid_devs > 0) {
762 if (first->anchor->family_num != sec->anchor->family_num)
763 return 3;
764 if (first->anchor->mpb_size != sec->anchor->mpb_size)
765 return 3;
766 if (first->anchor->check_sum != sec->anchor->check_sum)
767 return 3;
768 }
769
770 return 0;
771 }
772
773 static void fd2devname(int fd, char *name)
774 {
775 struct stat st;
776 char path[256];
777 char dname[100];
778 char *nm;
779 int rv;
780
781 name[0] = '\0';
782 if (fstat(fd, &st) != 0)
783 return;
784 sprintf(path, "/sys/dev/block/%d:%d",
785 major(st.st_rdev), minor(st.st_rdev));
786
787 rv = readlink(path, dname, sizeof(dname));
788 if (rv <= 0)
789 return;
790
791 dname[rv] = '\0';
792 nm = strrchr(dname, '/');
793 nm++;
794 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
795 }
796
797
798 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
799
800 static int imsm_read_serial(int fd, char *devname,
801 __u8 serial[MAX_RAID_SERIAL_LEN])
802 {
803 unsigned char scsi_serial[255];
804 int rv;
805 int rsp_len;
806 int i, cnt;
807
808 memset(scsi_serial, 0, sizeof(scsi_serial));
809
810 if (imsm_env_devname_as_serial()) {
811 char name[MAX_RAID_SERIAL_LEN];
812
813 fd2devname(fd, name);
814 strcpy((char *) serial, name);
815 return 0;
816 }
817
818 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
819
820 if (rv != 0) {
821 if (devname)
822 fprintf(stderr,
823 Name ": Failed to retrieve serial for %s\n",
824 devname);
825 return rv;
826 }
827
828 rsp_len = scsi_serial[3];
829 for (i = 0, cnt = 0; i < rsp_len; i++) {
830 if (!isspace(scsi_serial[4 + i]))
831 serial[cnt++] = scsi_serial[4 + i];
832 if (cnt == MAX_RAID_SERIAL_LEN)
833 break;
834 }
835
836 serial[MAX_RAID_SERIAL_LEN - 1] = '\0';
837
838 return 0;
839 }
840
841 static int
842 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
843 {
844 struct dl *dl;
845 struct stat stb;
846 int rv;
847 int i;
848 int alloc = 1;
849 __u8 serial[MAX_RAID_SERIAL_LEN];
850
851 rv = imsm_read_serial(fd, devname, serial);
852
853 if (rv != 0)
854 return 2;
855
856 /* check if this is a disk we have seen before. it may be a spare in
857 * super->disks while the current anchor believes it is a raid member,
858 * check if we need to update dl->index
859 */
860 for (dl = super->disks; dl; dl = dl->next)
861 if (memcmp(dl->serial, serial, MAX_RAID_SERIAL_LEN) == 0)
862 break;
863
864 if (!dl)
865 dl = malloc(sizeof(*dl));
866 else
867 alloc = 0;
868
869 if (!dl) {
870 if (devname)
871 fprintf(stderr,
872 Name ": failed to allocate disk buffer for %s\n",
873 devname);
874 return 2;
875 }
876
877 if (alloc) {
878 fstat(fd, &stb);
879 dl->major = major(stb.st_rdev);
880 dl->minor = minor(stb.st_rdev);
881 dl->next = super->disks;
882 dl->fd = keep_fd ? fd : -1;
883 dl->devname = devname ? strdup(devname) : NULL;
884 strncpy((char *) dl->serial, (char *) serial, MAX_RAID_SERIAL_LEN);
885 } else if (keep_fd) {
886 close(dl->fd);
887 dl->fd = fd;
888 }
889
890 /* look up this disk's index in the current anchor */
891 for (i = 0; i < super->anchor->num_disks; i++) {
892 struct imsm_disk *disk_iter;
893
894 disk_iter = __get_imsm_disk(super->anchor, i);
895
896 if (memcmp(disk_iter->serial, dl->serial,
897 MAX_RAID_SERIAL_LEN) == 0) {
898 __u32 status;
899
900 dl->disk = *disk_iter;
901 status = __le32_to_cpu(dl->disk.status);
902 /* only set index on disks that are a member of a
903 * populated contianer, i.e. one with raid_devs
904 */
905 if (status & SPARE_DISK)
906 dl->index = -1;
907 else
908 dl->index = i;
909 break;
910 }
911 }
912
913 if (i == super->anchor->num_disks && alloc) {
914 if (devname)
915 fprintf(stderr,
916 Name ": failed to load disk with serial \'%s\' for %s\n",
917 dl->serial, devname);
918 free(dl);
919 return 1;
920 }
921 if (i == super->anchor->num_disks && dl->index >= 0) {
922 if (devname)
923 fprintf(stderr,
924 Name ": confused... disk %d with serial \'%s\' "
925 "is not listed in the current anchor\n",
926 dl->index, dl->serial);
927 return 1;
928 }
929
930 if (alloc)
931 super->disks = dl;
932
933 return 0;
934 }
935
936 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
937 {
938 memcpy(dest, src, sizeof_imsm_dev(src, 0));
939 }
940
941 static void dup_map(struct imsm_dev *dev)
942 {
943 struct imsm_map *dest = get_imsm_map(dev, 1);
944 struct imsm_map *src = get_imsm_map(dev, 0);
945
946 memcpy(dest, src, sizeof_imsm_map(src));
947 }
948
949 static int parse_raid_devices(struct intel_super *super)
950 {
951 int i;
952 struct imsm_dev *dev_new;
953 size_t len;
954
955 for (i = 0; i < super->anchor->num_raid_devs; i++) {
956 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
957
958 len = sizeof_imsm_dev(dev_iter, 1);
959 dev_new = malloc(len);
960 if (!dev_new)
961 return 1;
962 imsm_copy_dev(dev_new, dev_iter);
963 super->dev_tbl[i] = dev_new;
964 }
965
966 return 0;
967 }
968
969 /* retrieve a pointer to the bbm log which starts after all raid devices */
970 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
971 {
972 void *ptr = NULL;
973
974 if (__le32_to_cpu(mpb->bbm_log_size)) {
975 ptr = mpb;
976 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
977 }
978
979 return ptr;
980 }
981
982 static void __free_imsm(struct intel_super *super, int free_disks);
983
984 /* load_imsm_mpb - read matrix metadata
985 * allocates super->mpb to be freed by free_super
986 */
987 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
988 {
989 unsigned long long dsize;
990 unsigned long long sectors;
991 struct stat;
992 struct imsm_super *anchor;
993 __u32 check_sum;
994 int rc;
995
996 get_dev_size(fd, NULL, &dsize);
997
998 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
999 if (devname)
1000 fprintf(stderr,
1001 Name ": Cannot seek to anchor block on %s: %s\n",
1002 devname, strerror(errno));
1003 return 1;
1004 }
1005
1006 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
1007 if (devname)
1008 fprintf(stderr,
1009 Name ": Failed to allocate imsm anchor buffer"
1010 " on %s\n", devname);
1011 return 1;
1012 }
1013 if (read(fd, anchor, 512) != 512) {
1014 if (devname)
1015 fprintf(stderr,
1016 Name ": Cannot read anchor block on %s: %s\n",
1017 devname, strerror(errno));
1018 free(anchor);
1019 return 1;
1020 }
1021
1022 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
1023 if (devname)
1024 fprintf(stderr,
1025 Name ": no IMSM anchor on %s\n", devname);
1026 free(anchor);
1027 return 2;
1028 }
1029
1030 __free_imsm(super, 0);
1031 super->len = __le32_to_cpu(anchor->mpb_size);
1032 super->len = ROUND_UP(anchor->mpb_size, 512);
1033 if (posix_memalign(&super->buf, 512, super->len) != 0) {
1034 if (devname)
1035 fprintf(stderr,
1036 Name ": unable to allocate %zu byte mpb buffer\n",
1037 super->len);
1038 free(anchor);
1039 return 2;
1040 }
1041 memcpy(super->buf, anchor, 512);
1042
1043 sectors = mpb_sectors(anchor) - 1;
1044 free(anchor);
1045 if (!sectors) {
1046 rc = load_imsm_disk(fd, super, devname, 0);
1047 if (rc == 0)
1048 rc = parse_raid_devices(super);
1049 return rc;
1050 }
1051
1052 /* read the extended mpb */
1053 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
1054 if (devname)
1055 fprintf(stderr,
1056 Name ": Cannot seek to extended mpb on %s: %s\n",
1057 devname, strerror(errno));
1058 return 1;
1059 }
1060
1061 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
1062 if (devname)
1063 fprintf(stderr,
1064 Name ": Cannot read extended mpb on %s: %s\n",
1065 devname, strerror(errno));
1066 return 2;
1067 }
1068
1069 check_sum = __gen_imsm_checksum(super->anchor);
1070 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
1071 if (devname)
1072 fprintf(stderr,
1073 Name ": IMSM checksum %x != %x on %s\n",
1074 check_sum, __le32_to_cpu(super->anchor->check_sum),
1075 devname);
1076 return 2;
1077 }
1078
1079 /* FIXME the BBM log is disk specific so we cannot use this global
1080 * buffer for all disks. Ok for now since we only look at the global
1081 * bbm_log_size parameter to gate assembly
1082 */
1083 super->bbm_log = __get_imsm_bbm_log(super->anchor);
1084
1085 rc = load_imsm_disk(fd, super, devname, 0);
1086 if (rc == 0)
1087 rc = parse_raid_devices(super);
1088 return rc;
1089 }
1090
1091 static void free_imsm_disks(struct intel_super *super)
1092 {
1093 while (super->disks) {
1094 struct dl *d = super->disks;
1095
1096 super->disks = d->next;
1097 if (d->fd >= 0)
1098 close(d->fd);
1099 if (d->devname)
1100 free(d->devname);
1101 free(d);
1102 }
1103 }
1104
1105 /* free all the pieces hanging off of a super pointer */
1106 static void __free_imsm(struct intel_super *super, int free_disks)
1107 {
1108 int i;
1109
1110 if (super->buf) {
1111 free(super->buf);
1112 super->buf = NULL;
1113 }
1114 if (free_disks)
1115 free_imsm_disks(super);
1116 for (i = 0; i < IMSM_MAX_RAID_DEVS; i++)
1117 if (super->dev_tbl[i]) {
1118 free(super->dev_tbl[i]);
1119 super->dev_tbl[i] = NULL;
1120 }
1121 }
1122
1123 static void free_imsm(struct intel_super *super)
1124 {
1125 __free_imsm(super, 1);
1126 free(super);
1127 }
1128
1129 static void free_super_imsm(struct supertype *st)
1130 {
1131 struct intel_super *super = st->sb;
1132
1133 if (!super)
1134 return;
1135
1136 free_imsm(super);
1137 st->sb = NULL;
1138 }
1139
1140 static struct intel_super *alloc_super(int creating_imsm)
1141 {
1142 struct intel_super *super = malloc(sizeof(*super));
1143
1144 if (super) {
1145 memset(super, 0, sizeof(*super));
1146 super->creating_imsm = creating_imsm;
1147 super->current_vol = -1;
1148 }
1149
1150 return super;
1151 }
1152
1153 #ifndef MDASSEMBLE
1154 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
1155 char *devname, int keep_fd)
1156 {
1157 struct mdinfo *sra;
1158 struct intel_super *super;
1159 struct mdinfo *sd, *best = NULL;
1160 __u32 bestgen = 0;
1161 __u32 gen;
1162 char nm[20];
1163 int dfd;
1164 int rv;
1165
1166 /* check if this disk is a member of an active array */
1167 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
1168 if (!sra)
1169 return 1;
1170
1171 if (sra->array.major_version != -1 ||
1172 sra->array.minor_version != -2 ||
1173 strcmp(sra->text_version, "imsm") != 0)
1174 return 1;
1175
1176 super = alloc_super(0);
1177 if (!super)
1178 return 1;
1179
1180 /* find the most up to date disk in this array, skipping spares */
1181 for (sd = sra->devs; sd; sd = sd->next) {
1182 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1183 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
1184 if (!dfd) {
1185 free_imsm(super);
1186 return 2;
1187 }
1188 rv = load_imsm_mpb(dfd, super, NULL);
1189 if (!keep_fd)
1190 close(dfd);
1191 if (rv == 0) {
1192 if (super->anchor->num_raid_devs == 0)
1193 gen = 0;
1194 else
1195 gen = __le32_to_cpu(super->anchor->generation_num);
1196 if (!best || gen > bestgen) {
1197 bestgen = gen;
1198 best = sd;
1199 }
1200 } else {
1201 free_imsm(super);
1202 return 2;
1203 }
1204 }
1205
1206 if (!best) {
1207 free_imsm(super);
1208 return 1;
1209 }
1210
1211 /* load the most up to date anchor */
1212 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
1213 dfd = dev_open(nm, O_RDONLY);
1214 if (!dfd) {
1215 free_imsm(super);
1216 return 1;
1217 }
1218 rv = load_imsm_mpb(dfd, super, NULL);
1219 close(dfd);
1220 if (rv != 0) {
1221 free_imsm(super);
1222 return 2;
1223 }
1224
1225 /* re-parse the disk list with the current anchor */
1226 for (sd = sra->devs ; sd ; sd = sd->next) {
1227 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1228 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
1229 if (!dfd) {
1230 free_imsm(super);
1231 return 2;
1232 }
1233 load_imsm_disk(dfd, super, NULL, keep_fd);
1234 if (!keep_fd)
1235 close(dfd);
1236 }
1237
1238 if (st->subarray[0]) {
1239 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
1240 super->current_vol = atoi(st->subarray);
1241 else
1242 return 1;
1243 }
1244
1245 *sbp = super;
1246 if (st->ss == NULL) {
1247 st->ss = &super_imsm;
1248 st->minor_version = 0;
1249 st->max_devs = IMSM_MAX_DEVICES;
1250 st->container_dev = fd2devnum(fd);
1251 }
1252
1253 return 0;
1254 }
1255 #endif
1256
1257 static int load_super_imsm(struct supertype *st, int fd, char *devname)
1258 {
1259 struct intel_super *super;
1260 int rv;
1261
1262 #ifndef MDASSEMBLE
1263 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
1264 return 0;
1265 #endif
1266 if (st->subarray[0])
1267 return 1; /* FIXME */
1268
1269 super = alloc_super(0);
1270 if (!super) {
1271 fprintf(stderr,
1272 Name ": malloc of %zu failed.\n",
1273 sizeof(*super));
1274 return 1;
1275 }
1276
1277 rv = load_imsm_mpb(fd, super, devname);
1278
1279 if (rv) {
1280 if (devname)
1281 fprintf(stderr,
1282 Name ": Failed to load all information "
1283 "sections on %s\n", devname);
1284 free_imsm(super);
1285 return rv;
1286 }
1287
1288 st->sb = super;
1289 if (st->ss == NULL) {
1290 st->ss = &super_imsm;
1291 st->minor_version = 0;
1292 st->max_devs = IMSM_MAX_DEVICES;
1293 }
1294
1295 return 0;
1296 }
1297
1298 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
1299 {
1300 if (info->level == 1)
1301 return 128;
1302 return info->chunk_size >> 9;
1303 }
1304
1305 static __u32 info_to_num_data_stripes(mdu_array_info_t *info)
1306 {
1307 __u32 num_stripes;
1308
1309 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
1310 if (info->level == 1)
1311 num_stripes /= 2;
1312
1313 return num_stripes;
1314 }
1315
1316 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
1317 {
1318 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
1319 }
1320
1321 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
1322 unsigned long long size, char *name,
1323 char *homehost, int *uuid)
1324 {
1325 /* We are creating a volume inside a pre-existing container.
1326 * so st->sb is already set.
1327 */
1328 struct intel_super *super = st->sb;
1329 struct imsm_super *mpb = super->anchor;
1330 struct imsm_dev *dev;
1331 struct imsm_vol *vol;
1332 struct imsm_map *map;
1333 int idx = mpb->num_raid_devs;
1334 int i;
1335 unsigned long long array_blocks;
1336 __u32 offset = 0;
1337 size_t size_old, size_new;
1338
1339 if (mpb->num_raid_devs >= 2) {
1340 fprintf(stderr, Name": This imsm-container already has the "
1341 "maximum of 2 volumes\n");
1342 return 0;
1343 }
1344
1345 /* ensure the mpb is large enough for the new data */
1346 size_old = __le32_to_cpu(mpb->mpb_size);
1347 size_new = disks_to_mpb_size(info->nr_disks);
1348 if (size_new > size_old) {
1349 void *mpb_new;
1350 size_t size_round = ROUND_UP(size_new, 512);
1351
1352 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
1353 fprintf(stderr, Name": could not allocate new mpb\n");
1354 return 0;
1355 }
1356 memcpy(mpb_new, mpb, size_old);
1357 free(mpb);
1358 mpb = mpb_new;
1359 super->anchor = mpb_new;
1360 mpb->mpb_size = __cpu_to_le32(size_new);
1361 memset(mpb_new + size_old, 0, size_round - size_old);
1362 }
1363 super->current_vol = idx;
1364 /* when creating the first raid device in this container set num_disks
1365 * to zero, i.e. delete this spare and add raid member devices in
1366 * add_to_super_imsm_volume()
1367 */
1368 if (super->current_vol == 0)
1369 mpb->num_disks = 0;
1370 sprintf(st->subarray, "%d", idx);
1371 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
1372 if (!dev) {
1373 fprintf(stderr, Name": could not allocate raid device\n");
1374 return 0;
1375 }
1376 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
1377 array_blocks = calc_array_size(info->level, info->raid_disks,
1378 info->layout, info->chunk_size,
1379 info->size*2);
1380 dev->size_low = __cpu_to_le32((__u32) array_blocks);
1381 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1382 dev->status = __cpu_to_le32(0);
1383 dev->reserved_blocks = __cpu_to_le32(0);
1384 vol = &dev->vol;
1385 vol->migr_state = 0;
1386 vol->migr_type = 0;
1387 vol->dirty = 0;
1388 for (i = 0; i < idx; i++) {
1389 struct imsm_dev *prev = get_imsm_dev(super, i);
1390 struct imsm_map *pmap = get_imsm_map(prev, 0);
1391
1392 offset += __le32_to_cpu(pmap->blocks_per_member);
1393 offset += IMSM_RESERVED_SECTORS;
1394 }
1395 map = get_imsm_map(dev, 0);
1396 map->pba_of_lba0 = __cpu_to_le32(offset);
1397 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
1398 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
1399 map->num_data_stripes = __cpu_to_le32(info_to_num_data_stripes(info));
1400 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
1401 IMSM_T_STATE_NORMAL;
1402
1403 if (info->level == 1 && info->raid_disks > 2) {
1404 fprintf(stderr, Name": imsm does not support more than 2 disks"
1405 "in a raid1 volume\n");
1406 return 0;
1407 }
1408 if (info->level == 10)
1409 map->raid_level = 1;
1410 else
1411 map->raid_level = info->level;
1412
1413 map->num_members = info->raid_disks;
1414 for (i = 0; i < map->num_members; i++) {
1415 /* initialized in add_to_super */
1416 map->disk_ord_tbl[i] = __cpu_to_le32(0);
1417 }
1418 mpb->num_raid_devs++;
1419 super->dev_tbl[super->current_vol] = dev;
1420
1421 return 1;
1422 }
1423
1424 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
1425 unsigned long long size, char *name,
1426 char *homehost, int *uuid)
1427 {
1428 /* This is primarily called by Create when creating a new array.
1429 * We will then get add_to_super called for each component, and then
1430 * write_init_super called to write it out to each device.
1431 * For IMSM, Create can create on fresh devices or on a pre-existing
1432 * array.
1433 * To create on a pre-existing array a different method will be called.
1434 * This one is just for fresh drives.
1435 */
1436 struct intel_super *super;
1437 struct imsm_super *mpb;
1438 size_t mpb_size;
1439
1440 if (!info) {
1441 st->sb = NULL;
1442 return 0;
1443 }
1444 if (st->sb)
1445 return init_super_imsm_volume(st, info, size, name, homehost,
1446 uuid);
1447
1448 super = alloc_super(1);
1449 if (!super)
1450 return 0;
1451 mpb_size = disks_to_mpb_size(info->nr_disks);
1452 if (posix_memalign(&super->buf, 512, mpb_size) != 0) {
1453 free(super);
1454 return 0;
1455 }
1456 mpb = super->buf;
1457 memset(mpb, 0, mpb_size);
1458
1459 memcpy(mpb->sig, MPB_SIGNATURE, strlen(MPB_SIGNATURE));
1460 memcpy(mpb->sig + strlen(MPB_SIGNATURE), MPB_VERSION_RAID5,
1461 strlen(MPB_VERSION_RAID5));
1462 mpb->mpb_size = mpb_size;
1463
1464 st->sb = super;
1465 return 1;
1466 }
1467
1468 static void add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
1469 int fd, char *devname)
1470 {
1471 struct intel_super *super = st->sb;
1472 struct imsm_super *mpb = super->anchor;
1473 struct dl *dl;
1474 struct imsm_dev *dev;
1475 struct imsm_map *map;
1476 __u32 status;
1477
1478 dev = get_imsm_dev(super, super->current_vol);
1479 map = get_imsm_map(dev, 0);
1480
1481 for (dl = super->disks; dl ; dl = dl->next)
1482 if (dl->major == dk->major &&
1483 dl->minor == dk->minor)
1484 break;
1485
1486 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1487 return;
1488
1489 /* add a pristine spare to the metadata */
1490 if (dl->index < 0) {
1491 dl->index = super->anchor->num_disks;
1492 super->anchor->num_disks++;
1493 }
1494 map->disk_ord_tbl[dk->number] = __cpu_to_le32(dl->index);
1495 status = CONFIGURED_DISK | USABLE_DISK;
1496 dl->disk.status = __cpu_to_le32(status);
1497
1498 /* if we are creating the first raid device update the family number */
1499 if (super->current_vol == 0) {
1500 __u32 sum;
1501 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
1502 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
1503
1504 *_dev = *dev;
1505 *_disk = dl->disk;
1506 sum = __gen_imsm_checksum(mpb);
1507 mpb->family_num = __cpu_to_le32(sum);
1508 }
1509 }
1510
1511 static void add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
1512 int fd, char *devname)
1513 {
1514 struct intel_super *super = st->sb;
1515 struct dl *dd;
1516 unsigned long long size;
1517 __u32 status, id;
1518 int rv;
1519 struct stat stb;
1520
1521 if (super->current_vol >= 0) {
1522 add_to_super_imsm_volume(st, dk, fd, devname);
1523 return;
1524 }
1525
1526 fstat(fd, &stb);
1527 dd = malloc(sizeof(*dd));
1528 if (!dd) {
1529 fprintf(stderr,
1530 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
1531 abort();
1532 }
1533 memset(dd, 0, sizeof(*dd));
1534 dd->major = major(stb.st_rdev);
1535 dd->minor = minor(stb.st_rdev);
1536 dd->index = -1;
1537 dd->devname = devname ? strdup(devname) : NULL;
1538 dd->next = super->disks;
1539 dd->fd = fd;
1540 rv = imsm_read_serial(fd, devname, dd->serial);
1541 if (rv) {
1542 fprintf(stderr,
1543 Name ": failed to retrieve scsi serial, aborting\n");
1544 free(dd);
1545 abort();
1546 }
1547
1548 get_dev_size(fd, NULL, &size);
1549 size /= 512;
1550 status = USABLE_DISK | SPARE_DISK;
1551 strcpy((char *) dd->disk.serial, (char *) dd->serial);
1552 dd->disk.total_blocks = __cpu_to_le32(size);
1553 dd->disk.status = __cpu_to_le32(status);
1554 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
1555 dd->disk.scsi_id = __cpu_to_le32(id);
1556 else
1557 dd->disk.scsi_id = __cpu_to_le32(0);
1558 super->disks = dd;
1559 }
1560
1561 static int store_imsm_mpb(int fd, struct intel_super *super);
1562
1563 /* spare records have their own family number and do not have any defined raid
1564 * devices
1565 */
1566 static int write_super_imsm_spares(struct intel_super *super, int doclose)
1567 {
1568 struct imsm_super mpb_save;
1569 struct imsm_super *mpb = super->anchor;
1570 __u32 sum;
1571 struct dl *d;
1572
1573 mpb_save = *mpb;
1574 mpb->num_raid_devs = 0;
1575 mpb->num_disks = 1;
1576 mpb->mpb_size = sizeof(struct imsm_super);
1577 mpb->generation_num = __cpu_to_le32(1UL);
1578
1579 for (d = super->disks; d; d = d->next) {
1580 if (d->index >= 0)
1581 continue;
1582
1583 mpb->disk[0] = d->disk;
1584 sum = __gen_imsm_checksum(mpb);
1585 mpb->family_num = __cpu_to_le32(sum);
1586 sum = __gen_imsm_checksum(mpb);
1587 mpb->check_sum = __cpu_to_le32(sum);
1588
1589 if (store_imsm_mpb(d->fd, super)) {
1590 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1591 __func__, d->major, d->minor, strerror(errno));
1592 *mpb = mpb_save;
1593 return 0;
1594 }
1595 if (doclose) {
1596 close(d->fd);
1597 d->fd = -1;
1598 }
1599 }
1600
1601 *mpb = mpb_save;
1602 return 1;
1603 }
1604
1605 static int write_super_imsm(struct intel_super *super, int doclose)
1606 {
1607 struct imsm_super *mpb = super->anchor;
1608 struct dl *d;
1609 __u32 generation;
1610 __u32 sum;
1611 int spares = 0;
1612 int raid_disks = 0;
1613 int i;
1614
1615 /* 'generation' is incremented everytime the metadata is written */
1616 generation = __le32_to_cpu(mpb->generation_num);
1617 generation++;
1618 mpb->generation_num = __cpu_to_le32(generation);
1619
1620 for (d = super->disks; d; d = d->next) {
1621 if (d->index < 0)
1622 spares++;
1623 else {
1624 raid_disks++;
1625 mpb->disk[d->index] = d->disk;
1626 }
1627 }
1628 if (raid_disks != mpb->num_disks) {
1629 fprintf(stderr, "%s: expected %d disks only found %d\n",
1630 __func__, mpb->num_disks, raid_disks);
1631 return 0;
1632 }
1633
1634 for (i = 0; i < mpb->num_raid_devs; i++) {
1635 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1636
1637 imsm_copy_dev(dev, super->dev_tbl[i]);
1638 }
1639
1640 /* recalculate checksum */
1641 sum = __gen_imsm_checksum(mpb);
1642 mpb->check_sum = __cpu_to_le32(sum);
1643
1644 /* write the mpb for disks that compose raid devices */
1645 for (d = super->disks; d ; d = d->next) {
1646 if (d->index < 0)
1647 continue;
1648 if (store_imsm_mpb(d->fd, super)) {
1649 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1650 __func__, d->major, d->minor, strerror(errno));
1651 return 0;
1652 }
1653 if (doclose) {
1654 close(d->fd);
1655 d->fd = -1;
1656 }
1657 }
1658
1659 if (spares)
1660 return write_super_imsm_spares(super, doclose);
1661
1662 return 1;
1663 }
1664
1665 static int write_init_super_imsm(struct supertype *st)
1666 {
1667 if (st->update_tail) {
1668 /* queue the recently created array as a metadata update */
1669 size_t len;
1670 struct imsm_update_create_array *u;
1671 struct intel_super *super = st->sb;
1672 struct imsm_dev *dev;
1673 struct dl *d;
1674
1675 if (super->current_vol < 0 ||
1676 !(dev = get_imsm_dev(super, super->current_vol))) {
1677 fprintf(stderr, "%s: could not determine sub-array\n",
1678 __func__);
1679 return 1;
1680 }
1681
1682
1683 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0);
1684 u = malloc(len);
1685 if (!u) {
1686 fprintf(stderr, "%s: failed to allocate update buffer\n",
1687 __func__);
1688 return 1;
1689 }
1690
1691 u->type = update_create_array;
1692 u->dev_idx = super->current_vol;
1693 imsm_copy_dev(&u->dev, dev);
1694 append_metadata_update(st, u, len);
1695
1696 for (d = super->disks; d ; d = d->next) {
1697 close(d->fd);
1698 d->fd = -1;
1699 }
1700
1701 return 0;
1702 } else
1703 return write_super_imsm(st->sb, 1);
1704 }
1705
1706 static int store_zero_imsm(struct supertype *st, int fd)
1707 {
1708 unsigned long long dsize;
1709 void *buf;
1710
1711 get_dev_size(fd, NULL, &dsize);
1712
1713 /* first block is stored on second to last sector of the disk */
1714 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
1715 return 1;
1716
1717 if (posix_memalign(&buf, 512, 512) != 0)
1718 return 1;
1719
1720 memset(buf, 0, 512);
1721 if (write(fd, buf, 512) != 512)
1722 return 1;
1723 return 0;
1724 }
1725
1726 static int validate_geometry_imsm_container(struct supertype *st, int level,
1727 int layout, int raiddisks, int chunk,
1728 unsigned long long size, char *dev,
1729 unsigned long long *freesize,
1730 int verbose)
1731 {
1732 int fd;
1733 unsigned long long ldsize;
1734
1735 if (level != LEVEL_CONTAINER)
1736 return 0;
1737 if (!dev)
1738 return 1;
1739
1740 fd = open(dev, O_RDONLY|O_EXCL, 0);
1741 if (fd < 0) {
1742 if (verbose)
1743 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
1744 dev, strerror(errno));
1745 return 0;
1746 }
1747 if (!get_dev_size(fd, dev, &ldsize)) {
1748 close(fd);
1749 return 0;
1750 }
1751 close(fd);
1752
1753 *freesize = avail_size_imsm(st, ldsize >> 9);
1754
1755 return 1;
1756 }
1757
1758 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
1759 * FIX ME add ahci details
1760 */
1761 static int validate_geometry_imsm_volume(struct supertype *st, int level,
1762 int layout, int raiddisks, int chunk,
1763 unsigned long long size, char *dev,
1764 unsigned long long *freesize,
1765 int verbose)
1766 {
1767 struct stat stb;
1768 struct intel_super *super = st->sb;
1769 struct dl *dl;
1770 unsigned long long pos = 0;
1771 unsigned long long maxsize;
1772 struct extent *e;
1773 int i;
1774
1775 if (level == LEVEL_CONTAINER)
1776 return 0;
1777
1778 if (level == 1 && raiddisks > 2) {
1779 if (verbose)
1780 fprintf(stderr, Name ": imsm does not support more "
1781 "than 2 in a raid1 configuration\n");
1782 return 0;
1783 }
1784
1785 /* We must have the container info already read in. */
1786 if (!super)
1787 return 0;
1788
1789 if (!dev) {
1790 /* General test: make sure there is space for
1791 * 'raiddisks' device extents of size 'size' at a given
1792 * offset
1793 */
1794 unsigned long long minsize = size*2 /* convert to blocks */;
1795 unsigned long long start_offset = ~0ULL;
1796 int dcnt = 0;
1797 if (minsize == 0)
1798 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1799 for (dl = super->disks; dl ; dl = dl->next) {
1800 int found = 0;
1801
1802 pos = 0;
1803 i = 0;
1804 e = get_extents(super, dl);
1805 if (!e) continue;
1806 do {
1807 unsigned long long esize;
1808 esize = e[i].start - pos;
1809 if (esize >= minsize)
1810 found = 1;
1811 if (found && start_offset == ~0ULL) {
1812 start_offset = pos;
1813 break;
1814 } else if (found && pos != start_offset) {
1815 found = 0;
1816 break;
1817 }
1818 pos = e[i].start + e[i].size;
1819 i++;
1820 } while (e[i-1].size);
1821 if (found)
1822 dcnt++;
1823 free(e);
1824 }
1825 if (dcnt < raiddisks) {
1826 if (verbose)
1827 fprintf(stderr, Name ": imsm: Not enough "
1828 "devices with space for this array "
1829 "(%d < %d)\n",
1830 dcnt, raiddisks);
1831 return 0;
1832 }
1833 return 1;
1834 }
1835 /* This device must be a member of the set */
1836 if (stat(dev, &stb) < 0)
1837 return 0;
1838 if ((S_IFMT & stb.st_mode) != S_IFBLK)
1839 return 0;
1840 for (dl = super->disks ; dl ; dl = dl->next) {
1841 if (dl->major == major(stb.st_rdev) &&
1842 dl->minor == minor(stb.st_rdev))
1843 break;
1844 }
1845 if (!dl) {
1846 if (verbose)
1847 fprintf(stderr, Name ": %s is not in the "
1848 "same imsm set\n", dev);
1849 return 0;
1850 }
1851 e = get_extents(super, dl);
1852 maxsize = 0;
1853 i = 0;
1854 if (e) do {
1855 unsigned long long esize;
1856 esize = e[i].start - pos;
1857 if (esize >= maxsize)
1858 maxsize = esize;
1859 pos = e[i].start + e[i].size;
1860 i++;
1861 } while (e[i-1].size);
1862 *freesize = maxsize;
1863
1864 return 1;
1865 }
1866
1867 int imsm_bbm_log_size(struct imsm_super *mpb)
1868 {
1869 return __le32_to_cpu(mpb->bbm_log_size);
1870 }
1871
1872 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
1873 int raiddisks, int chunk, unsigned long long size,
1874 char *dev, unsigned long long *freesize,
1875 int verbose)
1876 {
1877 int fd, cfd;
1878 struct mdinfo *sra;
1879
1880 /* if given unused devices create a container
1881 * if given given devices in a container create a member volume
1882 */
1883 if (level == LEVEL_CONTAINER) {
1884 /* Must be a fresh device to add to a container */
1885 return validate_geometry_imsm_container(st, level, layout,
1886 raiddisks, chunk, size,
1887 dev, freesize,
1888 verbose);
1889 }
1890
1891 if (st->sb) {
1892 /* creating in a given container */
1893 return validate_geometry_imsm_volume(st, level, layout,
1894 raiddisks, chunk, size,
1895 dev, freesize, verbose);
1896 }
1897
1898 /* limit creation to the following levels */
1899 if (!dev)
1900 switch (level) {
1901 case 0:
1902 case 1:
1903 case 10:
1904 case 5:
1905 break;
1906 default:
1907 return 1;
1908 }
1909
1910 /* This device needs to be a device in an 'imsm' container */
1911 fd = open(dev, O_RDONLY|O_EXCL, 0);
1912 if (fd >= 0) {
1913 if (verbose)
1914 fprintf(stderr,
1915 Name ": Cannot create this array on device %s\n",
1916 dev);
1917 close(fd);
1918 return 0;
1919 }
1920 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
1921 if (verbose)
1922 fprintf(stderr, Name ": Cannot open %s: %s\n",
1923 dev, strerror(errno));
1924 return 0;
1925 }
1926 /* Well, it is in use by someone, maybe an 'imsm' container. */
1927 cfd = open_container(fd);
1928 if (cfd < 0) {
1929 close(fd);
1930 if (verbose)
1931 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
1932 dev);
1933 return 0;
1934 }
1935 sra = sysfs_read(cfd, 0, GET_VERSION);
1936 close(fd);
1937 if (sra && sra->array.major_version == -1 &&
1938 strcmp(sra->text_version, "imsm") == 0) {
1939 /* This is a member of a imsm container. Load the container
1940 * and try to create a volume
1941 */
1942 struct intel_super *super;
1943
1944 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
1945 st->sb = super;
1946 st->container_dev = fd2devnum(cfd);
1947 close(cfd);
1948 return validate_geometry_imsm_volume(st, level, layout,
1949 raiddisks, chunk,
1950 size, dev,
1951 freesize, verbose);
1952 }
1953 close(cfd);
1954 } else /* may belong to another container */
1955 return 0;
1956
1957 return 1;
1958 }
1959
1960 static struct mdinfo *container_content_imsm(struct supertype *st)
1961 {
1962 /* Given a container loaded by load_super_imsm_all,
1963 * extract information about all the arrays into
1964 * an mdinfo tree.
1965 *
1966 * For each imsm_dev create an mdinfo, fill it in,
1967 * then look for matching devices in super->disks
1968 * and create appropriate device mdinfo.
1969 */
1970 struct intel_super *super = st->sb;
1971 struct imsm_super *mpb = super->anchor;
1972 struct mdinfo *rest = NULL;
1973 int i;
1974
1975 /* do not assemble arrays that might have bad blocks */
1976 if (imsm_bbm_log_size(super->anchor)) {
1977 fprintf(stderr, Name ": BBM log found in metadata. "
1978 "Cannot activate array(s).\n");
1979 return NULL;
1980 }
1981
1982 for (i = 0; i < mpb->num_raid_devs; i++) {
1983 struct imsm_dev *dev = get_imsm_dev(super, i);
1984 struct imsm_vol *vol = &dev->vol;
1985 struct imsm_map *map = get_imsm_map(dev, 0);
1986 struct mdinfo *this;
1987 int slot;
1988
1989 this = malloc(sizeof(*this));
1990 memset(this, 0, sizeof(*this));
1991 this->next = rest;
1992 rest = this;
1993
1994 this->array.level = get_imsm_raid_level(map);
1995 this->array.raid_disks = map->num_members;
1996 this->array.layout = imsm_level_to_layout(this->array.level);
1997 this->array.md_minor = -1;
1998 this->array.ctime = 0;
1999 this->array.utime = 0;
2000 this->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
2001 this->array.state = !vol->dirty;
2002 this->container_member = i;
2003 if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty)
2004 this->resync_start = 0;
2005 else
2006 this->resync_start = ~0ULL;
2007
2008 strncpy(this->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2009 this->name[MAX_RAID_SERIAL_LEN] = 0;
2010
2011 sprintf(this->text_version, "/%s/%d",
2012 devnum2devname(st->container_dev),
2013 this->container_member);
2014
2015 memset(this->uuid, 0, sizeof(this->uuid));
2016
2017 this->component_size = __le32_to_cpu(map->blocks_per_member);
2018
2019 for (slot = 0 ; slot < map->num_members; slot++) {
2020 struct mdinfo *info_d;
2021 struct dl *d;
2022 int idx;
2023 __u32 s;
2024
2025 idx = get_imsm_disk_idx(map, slot);
2026 for (d = super->disks; d ; d = d->next)
2027 if (d->index == idx)
2028 break;
2029
2030 if (d == NULL)
2031 break; /* shouldn't this be continue ?? */
2032
2033 info_d = malloc(sizeof(*info_d));
2034 if (!info_d)
2035 break; /* ditto ?? */
2036 memset(info_d, 0, sizeof(*info_d));
2037 info_d->next = this->devs;
2038 this->devs = info_d;
2039
2040 s = __le32_to_cpu(d->disk.status);
2041
2042 info_d->disk.number = d->index;
2043 info_d->disk.major = d->major;
2044 info_d->disk.minor = d->minor;
2045 info_d->disk.raid_disk = slot;
2046 info_d->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
2047 info_d->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
2048 info_d->disk.state |= s & USABLE_DISK ? (1 << MD_DISK_SYNC) : 0;
2049
2050 this->array.working_disks++;
2051
2052 info_d->events = __le32_to_cpu(mpb->generation_num);
2053 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
2054 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
2055 if (d->devname)
2056 strcpy(info_d->name, d->devname);
2057 }
2058 }
2059
2060 return rest;
2061 }
2062
2063
2064 static int imsm_open_new(struct supertype *c, struct active_array *a,
2065 char *inst)
2066 {
2067 struct intel_super *super = c->sb;
2068 struct imsm_super *mpb = super->anchor;
2069
2070 if (atoi(inst) >= mpb->num_raid_devs) {
2071 fprintf(stderr, "%s: subarry index %d, out of range\n",
2072 __func__, atoi(inst));
2073 return -ENODEV;
2074 }
2075
2076 dprintf("imsm: open_new %s\n", inst);
2077 a->info.container_member = atoi(inst);
2078 return 0;
2079 }
2080
2081 static __u8 imsm_check_degraded(struct intel_super *super, int n, int failed)
2082 {
2083 struct imsm_dev *dev = get_imsm_dev(super, n);
2084 struct imsm_map *map = get_imsm_map(dev, 0);
2085
2086 if (!failed)
2087 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
2088 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
2089
2090 switch (get_imsm_raid_level(map)) {
2091 case 0:
2092 return IMSM_T_STATE_FAILED;
2093 break;
2094 case 1:
2095 if (failed < map->num_members)
2096 return IMSM_T_STATE_DEGRADED;
2097 else
2098 return IMSM_T_STATE_FAILED;
2099 break;
2100 case 10:
2101 {
2102 /**
2103 * check to see if any mirrors have failed,
2104 * otherwise we are degraded
2105 */
2106 int device_per_mirror = 2; /* FIXME is this always the case?
2107 * and are they always adjacent?
2108 */
2109 int failed = 0;
2110 int i;
2111
2112 for (i = 0; i < map->num_members; i++) {
2113 int idx = get_imsm_disk_idx(map, i);
2114 struct imsm_disk *disk = get_imsm_disk(super, idx);
2115
2116 if (__le32_to_cpu(disk->status) & FAILED_DISK)
2117 failed++;
2118
2119 if (failed >= device_per_mirror)
2120 return IMSM_T_STATE_FAILED;
2121
2122 /* reset 'failed' for next mirror set */
2123 if (!((i + 1) % device_per_mirror))
2124 failed = 0;
2125 }
2126
2127 return IMSM_T_STATE_DEGRADED;
2128 }
2129 case 5:
2130 if (failed < 2)
2131 return IMSM_T_STATE_DEGRADED;
2132 else
2133 return IMSM_T_STATE_FAILED;
2134 break;
2135 default:
2136 break;
2137 }
2138
2139 return map->map_state;
2140 }
2141
2142 static int imsm_count_failed(struct intel_super *super, struct imsm_map *map)
2143 {
2144 int i;
2145 int failed = 0;
2146 struct imsm_disk *disk;
2147
2148 for (i = 0; i < map->num_members; i++) {
2149 int idx = get_imsm_disk_idx(map, i);
2150
2151 disk = get_imsm_disk(super, idx);
2152 if (__le32_to_cpu(disk->status) & FAILED_DISK)
2153 failed++;
2154 }
2155
2156 return failed;
2157 }
2158
2159 static void imsm_set_array_state(struct active_array *a, int consistent)
2160 {
2161 int inst = a->info.container_member;
2162 struct intel_super *super = a->container->sb;
2163 struct imsm_dev *dev = get_imsm_dev(super, inst);
2164 struct imsm_map *map = get_imsm_map(dev, 0);
2165 int dirty = !consistent;
2166 int failed;
2167 __u8 map_state;
2168
2169 failed = imsm_count_failed(super, map);
2170 map_state = imsm_check_degraded(super, inst, failed);
2171
2172 if (consistent && !dev->vol.dirty &&
2173 (dev->vol.migr_state || map_state != IMSM_T_STATE_NORMAL))
2174 a->resync_start = 0ULL;
2175
2176 if (a->resync_start == ~0ULL) {
2177 /* complete recovery or initial resync */
2178 if (map->map_state != map_state) {
2179 dprintf("imsm: map_state %d: %d\n",
2180 inst, map_state);
2181 map->map_state = map_state;
2182 super->updates_pending++;
2183 }
2184 if (dev->vol.migr_state) {
2185 dprintf("imsm: mark resync complete\n");
2186 dev->vol.migr_state = 0;
2187 dev->vol.migr_type = 0;
2188 super->updates_pending++;
2189 }
2190 } else if (!dev->vol.migr_state) {
2191 dprintf("imsm: mark '%s' (%llu)\n",
2192 failed ? "rebuild" : "initializing", a->resync_start);
2193 /* mark that we are rebuilding */
2194 map->map_state = failed ? map_state : IMSM_T_STATE_NORMAL;
2195 dev->vol.migr_state = 1;
2196 dev->vol.migr_type = failed ? 1 : 0;
2197 dup_map(dev);
2198 a->check_degraded = 1;
2199 super->updates_pending++;
2200 }
2201
2202 /* mark dirty / clean */
2203 if (dirty != dev->vol.dirty) {
2204 dprintf("imsm: mark '%s' (%llu)\n",
2205 dirty ? "dirty" : "clean", a->resync_start);
2206 dev->vol.dirty = dirty;
2207 super->updates_pending++;
2208 }
2209 }
2210
2211 static void imsm_set_disk(struct active_array *a, int n, int state)
2212 {
2213 int inst = a->info.container_member;
2214 struct intel_super *super = a->container->sb;
2215 struct imsm_dev *dev = get_imsm_dev(super, inst);
2216 struct imsm_map *map = get_imsm_map(dev, 0);
2217 struct imsm_disk *disk;
2218 __u32 status;
2219 int failed = 0;
2220 int new_failure = 0;
2221
2222 if (n > map->num_members)
2223 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
2224 n, map->num_members - 1);
2225
2226 if (n < 0)
2227 return;
2228
2229 dprintf("imsm: set_disk %d:%x\n", n, state);
2230
2231 disk = get_imsm_disk(super, get_imsm_disk_idx(map, n));
2232
2233 /* check for new failures */
2234 status = __le32_to_cpu(disk->status);
2235 if ((state & DS_FAULTY) && !(status & FAILED_DISK)) {
2236 status |= FAILED_DISK;
2237 disk->status = __cpu_to_le32(status);
2238 new_failure = 1;
2239 super->updates_pending++;
2240 }
2241 /* check if in_sync */
2242 if ((state & DS_INSYNC) && !(status & USABLE_DISK)) {
2243 status |= USABLE_DISK;
2244 disk->status = __cpu_to_le32(status);
2245 super->updates_pending++;
2246 }
2247
2248 /* the number of failures have changed, count up 'failed' to determine
2249 * degraded / failed status
2250 */
2251 if (new_failure && map->map_state != IMSM_T_STATE_FAILED)
2252 failed = imsm_count_failed(super, map);
2253
2254 /* determine map_state based on failed or in_sync count */
2255 if (failed)
2256 map->map_state = imsm_check_degraded(super, inst, failed);
2257 else if (map->map_state == IMSM_T_STATE_DEGRADED) {
2258 struct mdinfo *d;
2259 int working = 0;
2260
2261 for (d = a->info.devs ; d ; d = d->next)
2262 if (d->curr_state & DS_INSYNC)
2263 working++;
2264
2265 if (working == a->info.array.raid_disks) {
2266 map->map_state = IMSM_T_STATE_NORMAL;
2267 dev->vol.migr_state = 0;
2268 dev->vol.migr_type = 0;
2269 super->updates_pending++;
2270 }
2271 }
2272 }
2273
2274 static int store_imsm_mpb(int fd, struct intel_super *super)
2275 {
2276 struct imsm_super *mpb = super->anchor;
2277 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
2278 unsigned long long dsize;
2279 unsigned long long sectors;
2280
2281 get_dev_size(fd, NULL, &dsize);
2282
2283 if (mpb_size > 512) {
2284 /* -1 to account for anchor */
2285 sectors = mpb_sectors(mpb) - 1;
2286
2287 /* write the extended mpb to the sectors preceeding the anchor */
2288 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
2289 return 1;
2290
2291 if (write(fd, super->buf + 512, 512 * sectors) != 512 * sectors)
2292 return 1;
2293 }
2294
2295 /* first block is stored on second to last sector of the disk */
2296 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
2297 return 1;
2298
2299 if (write(fd, super->buf, 512) != 512)
2300 return 1;
2301
2302 return 0;
2303 }
2304
2305 static void imsm_sync_metadata(struct supertype *container)
2306 {
2307 struct intel_super *super = container->sb;
2308
2309 if (!super->updates_pending)
2310 return;
2311
2312 write_super_imsm(super, 0);
2313
2314 super->updates_pending = 0;
2315 }
2316
2317 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
2318 {
2319 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
2320 struct imsm_map *map = get_imsm_map(dev, 0);
2321 int i = get_imsm_disk_idx(map, idx);
2322 struct dl *dl;
2323
2324 for (dl = super->disks; dl; dl = dl->next)
2325 if (dl->index == i)
2326 break;
2327
2328 if (__le32_to_cpu(dl->disk.status) & FAILED_DISK)
2329 dl = NULL;
2330
2331 if (dl)
2332 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
2333
2334 return dl;
2335 }
2336
2337 static struct dl *imsm_add_spare(struct intel_super *super, int idx, struct active_array *a)
2338 {
2339 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
2340 struct imsm_map *map = get_imsm_map(dev, 0);
2341 unsigned long long esize;
2342 unsigned long long pos;
2343 struct mdinfo *d;
2344 struct extent *ex;
2345 int j;
2346 int found;
2347 __u32 array_start;
2348 struct dl *dl;
2349
2350 for (dl = super->disks; dl; dl = dl->next) {
2351 /* If in this array, skip */
2352 for (d = a->info.devs ; d ; d = d->next)
2353 if (d->disk.major == dl->major &&
2354 d->disk.minor == dl->minor) {
2355 dprintf("%x:%x already in array\n", dl->major, dl->minor);
2356 break;
2357 }
2358 if (d)
2359 continue;
2360
2361 /* Does this unused device have the requisite free space?
2362 * We need a->info.component_size sectors
2363 */
2364 ex = get_extents(super, dl);
2365 if (!ex) {
2366 dprintf("cannot get extents\n");
2367 continue;
2368 }
2369 found = 0;
2370 j = 0;
2371 pos = 0;
2372 array_start = __le32_to_cpu(map->pba_of_lba0);
2373
2374 do {
2375 /* check that we can start at pba_of_lba0 with
2376 * a->info.component_size of space
2377 */
2378 esize = ex[j].start - pos;
2379 if (array_start >= pos &&
2380 array_start + a->info.component_size < ex[j].start) {
2381 found = 1;
2382 break;
2383 }
2384 pos = ex[j].start + ex[j].size;
2385 j++;
2386
2387 } while (ex[j-1].size);
2388
2389 free(ex);
2390 if (!found) {
2391 dprintf("%x:%x does not have %llu at %d\n",
2392 dl->major, dl->minor,
2393 a->info.component_size,
2394 __le32_to_cpu(map->pba_of_lba0));
2395 /* No room */
2396 continue;
2397 } else
2398 break;
2399 }
2400
2401 return dl;
2402 }
2403
2404 static struct mdinfo *imsm_activate_spare(struct active_array *a,
2405 struct metadata_update **updates)
2406 {
2407 /**
2408 * Find a device with unused free space and use it to replace a
2409 * failed/vacant region in an array. We replace failed regions one a
2410 * array at a time. The result is that a new spare disk will be added
2411 * to the first failed array and after the monitor has finished
2412 * propagating failures the remainder will be consumed.
2413 *
2414 * FIXME add a capability for mdmon to request spares from another
2415 * container.
2416 */
2417
2418 struct intel_super *super = a->container->sb;
2419 int inst = a->info.container_member;
2420 struct imsm_dev *dev = get_imsm_dev(super, inst);
2421 struct imsm_map *map = get_imsm_map(dev, 0);
2422 int failed = a->info.array.raid_disks;
2423 struct mdinfo *rv = NULL;
2424 struct mdinfo *d;
2425 struct mdinfo *di;
2426 struct metadata_update *mu;
2427 struct dl *dl;
2428 struct imsm_update_activate_spare *u;
2429 int num_spares = 0;
2430 int i;
2431
2432 for (d = a->info.devs ; d ; d = d->next) {
2433 if ((d->curr_state & DS_FAULTY) &&
2434 d->state_fd >= 0)
2435 /* wait for Removal to happen */
2436 return NULL;
2437 if (d->state_fd >= 0)
2438 failed--;
2439 }
2440
2441 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
2442 inst, failed, a->info.array.raid_disks, a->info.array.level);
2443 if (imsm_check_degraded(super, inst, failed) != IMSM_T_STATE_DEGRADED)
2444 return NULL;
2445
2446 /* For each slot, if it is not working, find a spare */
2447 for (i = 0; i < a->info.array.raid_disks; i++) {
2448 for (d = a->info.devs ; d ; d = d->next)
2449 if (d->disk.raid_disk == i)
2450 break;
2451 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
2452 if (d && (d->state_fd >= 0))
2453 continue;
2454
2455 /*
2456 * OK, this device needs recovery. Try to re-add the previous
2457 * occupant of this slot, if this fails add a new spare
2458 */
2459 dl = imsm_readd(super, i, a);
2460 if (!dl)
2461 dl = imsm_add_spare(super, i, a);
2462 if (!dl)
2463 continue;
2464
2465 /* found a usable disk with enough space */
2466 di = malloc(sizeof(*di));
2467 memset(di, 0, sizeof(*di));
2468
2469 /* dl->index will be -1 in the case we are activating a
2470 * pristine spare. imsm_process_update() will create a
2471 * new index in this case. Once a disk is found to be
2472 * failed in all member arrays it is kicked from the
2473 * metadata
2474 */
2475 di->disk.number = dl->index;
2476
2477 /* (ab)use di->devs to store a pointer to the device
2478 * we chose
2479 */
2480 di->devs = (struct mdinfo *) dl;
2481
2482 di->disk.raid_disk = i;
2483 di->disk.major = dl->major;
2484 di->disk.minor = dl->minor;
2485 di->disk.state = 0;
2486 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
2487 di->component_size = a->info.component_size;
2488 di->container_member = inst;
2489 di->next = rv;
2490 rv = di;
2491 num_spares++;
2492 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
2493 i, di->data_offset);
2494
2495 break;
2496 }
2497
2498 if (!rv)
2499 /* No spares found */
2500 return rv;
2501 /* Now 'rv' has a list of devices to return.
2502 * Create a metadata_update record to update the
2503 * disk_ord_tbl for the array
2504 */
2505 mu = malloc(sizeof(*mu));
2506 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
2507 mu->space = NULL;
2508 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
2509 mu->next = *updates;
2510 u = (struct imsm_update_activate_spare *) mu->buf;
2511
2512 for (di = rv ; di ; di = di->next) {
2513 u->type = update_activate_spare;
2514 u->dl = (struct dl *) di->devs;
2515 di->devs = NULL;
2516 u->slot = di->disk.raid_disk;
2517 u->array = inst;
2518 u->next = u + 1;
2519 u++;
2520 }
2521 (u-1)->next = NULL;
2522 *updates = mu;
2523
2524 return rv;
2525 }
2526
2527 static int disks_overlap(struct imsm_map *m1, struct imsm_map *m2)
2528 {
2529 int i;
2530 int j;
2531 int idx;
2532
2533 for (i = 0; i < m1->num_members; i++) {
2534 idx = get_imsm_disk_idx(m1, i);
2535 for (j = 0; j < m2->num_members; j++)
2536 if (idx == get_imsm_disk_idx(m2, j))
2537 return 1;
2538 }
2539
2540 return 0;
2541 }
2542
2543 static void imsm_process_update(struct supertype *st,
2544 struct metadata_update *update)
2545 {
2546 /**
2547 * crack open the metadata_update envelope to find the update record
2548 * update can be one of:
2549 * update_activate_spare - a spare device has replaced a failed
2550 * device in an array, update the disk_ord_tbl. If this disk is
2551 * present in all member arrays then also clear the SPARE_DISK
2552 * flag
2553 */
2554 struct intel_super *super = st->sb;
2555 struct imsm_super *mpb = super->anchor;
2556 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
2557
2558 switch (type) {
2559 case update_activate_spare: {
2560 struct imsm_update_activate_spare *u = (void *) update->buf;
2561 struct imsm_dev *dev = get_imsm_dev(super, u->array);
2562 struct imsm_map *map = get_imsm_map(dev, 0);
2563 struct active_array *a;
2564 struct imsm_disk *disk;
2565 __u32 status;
2566 struct dl *dl;
2567 unsigned int found;
2568 int victim;
2569 int i;
2570
2571 for (dl = super->disks; dl; dl = dl->next)
2572 if (dl == u->dl)
2573 break;
2574
2575 if (!dl) {
2576 fprintf(stderr, "error: imsm_activate_spare passed "
2577 "an unknown disk (index: %d serial: %s)\n",
2578 u->dl->index, u->dl->serial);
2579 return;
2580 }
2581
2582 super->updates_pending++;
2583
2584 /* adding a pristine spare, assign a new index */
2585 if (dl->index < 0) {
2586 dl->index = super->anchor->num_disks;
2587 super->anchor->num_disks++;
2588 }
2589 victim = get_imsm_disk_idx(map, u->slot);
2590 map->disk_ord_tbl[u->slot] = __cpu_to_le32(dl->index);
2591 disk = &dl->disk;
2592 status = __le32_to_cpu(disk->status);
2593 status |= CONFIGURED_DISK;
2594 status &= ~(SPARE_DISK | USABLE_DISK);
2595 disk->status = __cpu_to_le32(status);
2596
2597 /* count arrays using the victim in the metadata */
2598 found = 0;
2599 for (a = st->arrays; a ; a = a->next) {
2600 dev = get_imsm_dev(super, a->info.container_member);
2601 map = get_imsm_map(dev, 0);
2602 for (i = 0; i < map->num_members; i++)
2603 if (victim == get_imsm_disk_idx(map, i))
2604 found++;
2605 }
2606
2607 /* clear some flags if the victim is no longer being
2608 * utilized anywhere
2609 */
2610 if (!found) {
2611 disk = get_imsm_disk(super, victim);
2612 status = __le32_to_cpu(disk->status);
2613 status &= ~(CONFIGURED_DISK | USABLE_DISK);
2614 disk->status = __cpu_to_le32(status);
2615 /* at this point the disk can be removed from the
2616 * metadata, however we need to guarantee that we do
2617 * not race with any manager thread routine that relies
2618 * on dl->index or map->disk_ord_tbl
2619 */
2620 }
2621 break;
2622 }
2623 case update_create_array: {
2624 /* someone wants to create a new array, we need to be aware of
2625 * a few races/collisions:
2626 * 1/ 'Create' called by two separate instances of mdadm
2627 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
2628 * devices that have since been assimilated via
2629 * activate_spare.
2630 * In the event this update can not be carried out mdadm will
2631 * (FIX ME) notice that its update did not take hold.
2632 */
2633 struct imsm_update_create_array *u = (void *) update->buf;
2634 struct imsm_dev *dev;
2635 struct imsm_map *map, *new_map;
2636 unsigned long long start, end;
2637 unsigned long long new_start, new_end;
2638 int i;
2639 int overlap = 0;
2640
2641 /* handle racing creates: first come first serve */
2642 if (u->dev_idx < mpb->num_raid_devs) {
2643 dprintf("%s: subarray %d already defined\n",
2644 __func__, u->dev_idx);
2645 return;
2646 }
2647
2648 /* check update is next in sequence */
2649 if (u->dev_idx != mpb->num_raid_devs) {
2650 dprintf("%s: can not create arrays out of sequence\n",
2651 __func__);
2652 return;
2653 }
2654
2655 new_map = get_imsm_map(&u->dev, 0);
2656 new_start = __le32_to_cpu(new_map->pba_of_lba0);
2657 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
2658
2659 /* handle activate_spare versus create race:
2660 * check to make sure that overlapping arrays do not include
2661 * overalpping disks
2662 */
2663 for (i = 0; i < mpb->num_raid_devs; i++) {
2664 dev = get_imsm_dev(super, i);
2665 map = get_imsm_map(dev, 0);
2666 start = __le32_to_cpu(map->pba_of_lba0);
2667 end = start + __le32_to_cpu(map->blocks_per_member);
2668 if ((new_start >= start && new_start <= end) ||
2669 (start >= new_start && start <= new_end))
2670 overlap = 1;
2671 if (overlap && disks_overlap(map, new_map)) {
2672 dprintf("%s: arrays overlap\n", __func__);
2673 return;
2674 }
2675 }
2676 /* check num_members sanity */
2677 if (new_map->num_members > mpb->num_disks) {
2678 dprintf("%s: num_disks out of range\n", __func__);
2679 return;
2680 }
2681
2682 /* check that prepare update was successful */
2683 if (!update->space) {
2684 dprintf("%s: prepare update failed\n", __func__);
2685 return;
2686 }
2687
2688 super->updates_pending++;
2689 dev = update->space;
2690 update->space = NULL;
2691 imsm_copy_dev(dev, &u->dev);
2692 super->dev_tbl[u->dev_idx] = dev;
2693 mpb->num_raid_devs++;
2694
2695 /* fix up flags, if arrays overlap then the drives can not be
2696 * spares
2697 */
2698 for (i = 0; i < map->num_members; i++) {
2699 struct imsm_disk *disk;
2700 __u32 status;
2701
2702 disk = get_imsm_disk(super, get_imsm_disk_idx(map, i));
2703 status = __le32_to_cpu(disk->status);
2704 status |= CONFIGURED_DISK;
2705 if (overlap)
2706 status &= ~SPARE_DISK;
2707 disk->status = __cpu_to_le32(status);
2708 }
2709 break;
2710 }
2711 }
2712 }
2713
2714 static void imsm_prepare_update(struct supertype *st,
2715 struct metadata_update *update)
2716 {
2717 /**
2718 * Allocate space to hold new disk entries, raid-device entries or a
2719 * new mpb if necessary. We currently maintain an mpb large enough to
2720 * hold 2 subarrays for the given number of disks. This may not be
2721 * sufficient when reshaping.
2722 *
2723 * FIX ME handle the reshape case.
2724 *
2725 * The monitor will be able to safely change super->mpb by arranging
2726 * for it to be freed in check_update_queue(). I.e. the monitor thread
2727 * will start using the new pointer and the manager can continue to use
2728 * the old value until check_update_queue() runs.
2729 */
2730 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
2731
2732 switch (type) {
2733 case update_create_array: {
2734 struct imsm_update_create_array *u = (void *) update->buf;
2735 size_t len = sizeof_imsm_dev(&u->dev, 1);
2736
2737 update->space = malloc(len);
2738 break;
2739 default:
2740 break;
2741 }
2742 }
2743
2744 return;
2745 }
2746
2747 struct superswitch super_imsm = {
2748 #ifndef MDASSEMBLE
2749 .examine_super = examine_super_imsm,
2750 .brief_examine_super = brief_examine_super_imsm,
2751 .detail_super = detail_super_imsm,
2752 .brief_detail_super = brief_detail_super_imsm,
2753 .write_init_super = write_init_super_imsm,
2754 #endif
2755 .match_home = match_home_imsm,
2756 .uuid_from_super= uuid_from_super_imsm,
2757 .getinfo_super = getinfo_super_imsm,
2758 .update_super = update_super_imsm,
2759
2760 .avail_size = avail_size_imsm,
2761
2762 .compare_super = compare_super_imsm,
2763
2764 .load_super = load_super_imsm,
2765 .init_super = init_super_imsm,
2766 .add_to_super = add_to_super_imsm,
2767 .store_super = store_zero_imsm,
2768 .free_super = free_super_imsm,
2769 .match_metadata_desc = match_metadata_desc_imsm,
2770 .container_content = container_content_imsm,
2771
2772 .validate_geometry = validate_geometry_imsm,
2773 .external = 1,
2774
2775 /* for mdmon */
2776 .open_new = imsm_open_new,
2777 .load_super = load_super_imsm,
2778 .set_array_state= imsm_set_array_state,
2779 .set_disk = imsm_set_disk,
2780 .sync_metadata = imsm_sync_metadata,
2781 .activate_spare = imsm_activate_spare,
2782 .process_update = imsm_process_update,
2783 .prepare_update = imsm_prepare_update,
2784 };