]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
bdd7a968abbcd3ed95e082a54220317935791c44
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
45 #define MPB_ATTRIB_PM __cpu_to_le32(0x40000000)
46 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
47 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
48 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
51 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
52 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
53
54 #define MPB_SECTOR_CNT 418
55 #define IMSM_RESERVED_SECTORS 4096
56 #define SECT_PER_MB_SHIFT 11
57
58 /* Disk configuration info. */
59 #define IMSM_MAX_DEVICES 255
60 struct imsm_disk {
61 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
62 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
63 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
64 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
65 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
66 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
67 __u32 status; /* 0xF0 - 0xF3 */
68 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
69 #define IMSM_DISK_FILLERS 4
70 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
71 };
72
73 /* RAID map configuration infos. */
74 struct imsm_map {
75 __u32 pba_of_lba0; /* start address of partition */
76 __u32 blocks_per_member;/* blocks per member */
77 __u32 num_data_stripes; /* number of data stripes */
78 __u16 blocks_per_strip;
79 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
80 #define IMSM_T_STATE_NORMAL 0
81 #define IMSM_T_STATE_UNINITIALIZED 1
82 #define IMSM_T_STATE_DEGRADED 2
83 #define IMSM_T_STATE_FAILED 3
84 __u8 raid_level;
85 #define IMSM_T_RAID0 0
86 #define IMSM_T_RAID1 1
87 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
88 __u8 num_members; /* number of member disks */
89 __u8 num_domains; /* number of parity domains */
90 __u8 failed_disk_num; /* valid only when state is degraded */
91 __u8 ddf;
92 __u32 filler[7]; /* expansion area */
93 #define IMSM_ORD_REBUILD (1 << 24)
94 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
95 * top byte contains some flags
96 */
97 } __attribute__ ((packed));
98
99 struct imsm_vol {
100 __u32 curr_migr_unit;
101 __u32 checkpoint_id; /* id to access curr_migr_unit */
102 __u8 migr_state; /* Normal or Migrating */
103 #define MIGR_INIT 0
104 #define MIGR_REBUILD 1
105 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
106 #define MIGR_GEN_MIGR 3
107 #define MIGR_STATE_CHANGE 4
108 #define MIGR_REPAIR 5
109 __u8 migr_type; /* Initializing, Rebuilding, ... */
110 __u8 dirty;
111 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
112 __u16 verify_errors; /* number of mismatches */
113 __u16 bad_blocks; /* number of bad blocks during verify */
114 __u32 filler[4];
115 struct imsm_map map[1];
116 /* here comes another one if migr_state */
117 } __attribute__ ((packed));
118
119 struct imsm_dev {
120 __u8 volume[MAX_RAID_SERIAL_LEN];
121 __u32 size_low;
122 __u32 size_high;
123 #define DEV_BOOTABLE __cpu_to_le32(0x01)
124 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
125 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
126 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
127 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
128 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
129 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
130 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
131 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
132 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
133 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
134 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
135 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
136 __u32 status; /* Persistent RaidDev status */
137 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
138 __u8 migr_priority;
139 __u8 num_sub_vols;
140 __u8 tid;
141 __u8 cng_master_disk;
142 __u16 cache_policy;
143 __u8 cng_state;
144 __u8 cng_sub_state;
145 #define IMSM_DEV_FILLERS 10
146 __u32 filler[IMSM_DEV_FILLERS];
147 struct imsm_vol vol;
148 } __attribute__ ((packed));
149
150 struct imsm_super {
151 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
152 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
153 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
154 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
155 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
156 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
157 __u32 attributes; /* 0x34 - 0x37 */
158 __u8 num_disks; /* 0x38 Number of configured disks */
159 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
160 __u8 error_log_pos; /* 0x3A */
161 __u8 fill[1]; /* 0x3B */
162 __u32 cache_size; /* 0x3c - 0x40 in mb */
163 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
164 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
165 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
166 #define IMSM_FILLERS 35
167 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
168 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
169 /* here comes imsm_dev[num_raid_devs] */
170 /* here comes BBM logs */
171 } __attribute__ ((packed));
172
173 #define BBM_LOG_MAX_ENTRIES 254
174
175 struct bbm_log_entry {
176 __u64 defective_block_start;
177 #define UNREADABLE 0xFFFFFFFF
178 __u32 spare_block_offset;
179 __u16 remapped_marked_count;
180 __u16 disk_ordinal;
181 } __attribute__ ((__packed__));
182
183 struct bbm_log {
184 __u32 signature; /* 0xABADB10C */
185 __u32 entry_count;
186 __u32 reserved_spare_block_count; /* 0 */
187 __u32 reserved; /* 0xFFFF */
188 __u64 first_spare_lba;
189 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
190 } __attribute__ ((__packed__));
191
192
193 #ifndef MDASSEMBLE
194 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
195 #endif
196
197 static __u8 migr_type(struct imsm_dev *dev)
198 {
199 if (dev->vol.migr_type == MIGR_VERIFY &&
200 dev->status & DEV_VERIFY_AND_FIX)
201 return MIGR_REPAIR;
202 else
203 return dev->vol.migr_type;
204 }
205
206 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
207 {
208 /* for compatibility with older oroms convert MIGR_REPAIR, into
209 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
210 */
211 if (migr_type == MIGR_REPAIR) {
212 dev->vol.migr_type = MIGR_VERIFY;
213 dev->status |= DEV_VERIFY_AND_FIX;
214 } else {
215 dev->vol.migr_type = migr_type;
216 dev->status &= ~DEV_VERIFY_AND_FIX;
217 }
218 }
219
220 static unsigned int sector_count(__u32 bytes)
221 {
222 return ((bytes + (512-1)) & (~(512-1))) / 512;
223 }
224
225 static unsigned int mpb_sectors(struct imsm_super *mpb)
226 {
227 return sector_count(__le32_to_cpu(mpb->mpb_size));
228 }
229
230 struct intel_dev {
231 struct imsm_dev *dev;
232 struct intel_dev *next;
233 int index;
234 };
235
236 /* internal representation of IMSM metadata */
237 struct intel_super {
238 union {
239 void *buf; /* O_DIRECT buffer for reading/writing metadata */
240 struct imsm_super *anchor; /* immovable parameters */
241 };
242 size_t len; /* size of the 'buf' allocation */
243 void *next_buf; /* for realloc'ing buf from the manager */
244 size_t next_len;
245 int updates_pending; /* count of pending updates for mdmon */
246 int current_vol; /* index of raid device undergoing creation */
247 __u32 create_offset; /* common start for 'current_vol' */
248 __u32 random; /* random data for seeding new family numbers */
249 struct intel_dev *devlist;
250 struct dl {
251 struct dl *next;
252 int index;
253 __u8 serial[MAX_RAID_SERIAL_LEN];
254 int major, minor;
255 char *devname;
256 struct imsm_disk disk;
257 int fd;
258 int extent_cnt;
259 struct extent *e; /* for determining freespace @ create */
260 int raiddisk; /* slot to fill in autolayout */
261 } *disks;
262 struct dl *add; /* list of disks to add while mdmon active */
263 struct dl *missing; /* disks removed while we weren't looking */
264 struct bbm_log *bbm_log;
265 const char *hba; /* device path of the raid controller for this metadata */
266 const struct imsm_orom *orom; /* platform firmware support */
267 struct intel_super *next; /* (temp) list for disambiguating family_num */
268 };
269
270 struct intel_disk {
271 struct imsm_disk disk;
272 #define IMSM_UNKNOWN_OWNER (-1)
273 int owner;
274 struct intel_disk *next;
275 };
276
277 struct extent {
278 unsigned long long start, size;
279 };
280
281 /* definition of messages passed to imsm_process_update */
282 enum imsm_update_type {
283 update_activate_spare,
284 update_create_array,
285 update_add_disk,
286 };
287
288 struct imsm_update_activate_spare {
289 enum imsm_update_type type;
290 struct dl *dl;
291 int slot;
292 int array;
293 struct imsm_update_activate_spare *next;
294 };
295
296 struct disk_info {
297 __u8 serial[MAX_RAID_SERIAL_LEN];
298 };
299
300 struct imsm_update_create_array {
301 enum imsm_update_type type;
302 int dev_idx;
303 struct imsm_dev dev;
304 };
305
306 struct imsm_update_add_disk {
307 enum imsm_update_type type;
308 };
309
310 static struct supertype *match_metadata_desc_imsm(char *arg)
311 {
312 struct supertype *st;
313
314 if (strcmp(arg, "imsm") != 0 &&
315 strcmp(arg, "default") != 0
316 )
317 return NULL;
318
319 st = malloc(sizeof(*st));
320 if (!st)
321 return NULL;
322 memset(st, 0, sizeof(*st));
323 st->ss = &super_imsm;
324 st->max_devs = IMSM_MAX_DEVICES;
325 st->minor_version = 0;
326 st->sb = NULL;
327 return st;
328 }
329
330 #ifndef MDASSEMBLE
331 static __u8 *get_imsm_version(struct imsm_super *mpb)
332 {
333 return &mpb->sig[MPB_SIG_LEN];
334 }
335 #endif
336
337 /* retrieve a disk directly from the anchor when the anchor is known to be
338 * up-to-date, currently only at load time
339 */
340 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
341 {
342 if (index >= mpb->num_disks)
343 return NULL;
344 return &mpb->disk[index];
345 }
346
347 #ifndef MDASSEMBLE
348 /* retrieve a disk from the parsed metadata */
349 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
350 {
351 struct dl *d;
352
353 for (d = super->disks; d; d = d->next)
354 if (d->index == index)
355 return &d->disk;
356
357 return NULL;
358 }
359 #endif
360
361 /* generate a checksum directly from the anchor when the anchor is known to be
362 * up-to-date, currently only at load or write_super after coalescing
363 */
364 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
365 {
366 __u32 end = mpb->mpb_size / sizeof(end);
367 __u32 *p = (__u32 *) mpb;
368 __u32 sum = 0;
369
370 while (end--) {
371 sum += __le32_to_cpu(*p);
372 p++;
373 }
374
375 return sum - __le32_to_cpu(mpb->check_sum);
376 }
377
378 static size_t sizeof_imsm_map(struct imsm_map *map)
379 {
380 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
381 }
382
383 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
384 {
385 struct imsm_map *map = &dev->vol.map[0];
386
387 if (second_map && !dev->vol.migr_state)
388 return NULL;
389 else if (second_map) {
390 void *ptr = map;
391
392 return ptr + sizeof_imsm_map(map);
393 } else
394 return map;
395
396 }
397
398 /* return the size of the device.
399 * migr_state increases the returned size if map[0] were to be duplicated
400 */
401 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
402 {
403 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
404 sizeof_imsm_map(get_imsm_map(dev, 0));
405
406 /* migrating means an additional map */
407 if (dev->vol.migr_state)
408 size += sizeof_imsm_map(get_imsm_map(dev, 1));
409 else if (migr_state)
410 size += sizeof_imsm_map(get_imsm_map(dev, 0));
411
412 return size;
413 }
414
415 #ifndef MDASSEMBLE
416 /* retrieve disk serial number list from a metadata update */
417 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
418 {
419 void *u = update;
420 struct disk_info *inf;
421
422 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
423 sizeof_imsm_dev(&update->dev, 0);
424
425 return inf;
426 }
427 #endif
428
429 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
430 {
431 int offset;
432 int i;
433 void *_mpb = mpb;
434
435 if (index >= mpb->num_raid_devs)
436 return NULL;
437
438 /* devices start after all disks */
439 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
440
441 for (i = 0; i <= index; i++)
442 if (i == index)
443 return _mpb + offset;
444 else
445 offset += sizeof_imsm_dev(_mpb + offset, 0);
446
447 return NULL;
448 }
449
450 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
451 {
452 struct intel_dev *dv;
453
454 if (index >= super->anchor->num_raid_devs)
455 return NULL;
456 for (dv = super->devlist; dv; dv = dv->next)
457 if (dv->index == index)
458 return dv->dev;
459 return NULL;
460 }
461
462 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev, int slot)
463 {
464 struct imsm_map *map;
465
466 if (dev->vol.migr_state)
467 map = get_imsm_map(dev, 1);
468 else
469 map = get_imsm_map(dev, 0);
470
471 /* top byte identifies disk under rebuild */
472 return __le32_to_cpu(map->disk_ord_tbl[slot]);
473 }
474
475 #define ord_to_idx(ord) (((ord) << 8) >> 8)
476 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot)
477 {
478 __u32 ord = get_imsm_ord_tbl_ent(dev, slot);
479
480 return ord_to_idx(ord);
481 }
482
483 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
484 {
485 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
486 }
487
488 static int get_imsm_disk_slot(struct imsm_map *map, int idx)
489 {
490 int slot;
491 __u32 ord;
492
493 for (slot = 0; slot < map->num_members; slot++) {
494 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
495 if (ord_to_idx(ord) == idx)
496 return slot;
497 }
498
499 return -1;
500 }
501
502 static int get_imsm_raid_level(struct imsm_map *map)
503 {
504 if (map->raid_level == 1) {
505 if (map->num_members == 2)
506 return 1;
507 else
508 return 10;
509 }
510
511 return map->raid_level;
512 }
513
514 static int cmp_extent(const void *av, const void *bv)
515 {
516 const struct extent *a = av;
517 const struct extent *b = bv;
518 if (a->start < b->start)
519 return -1;
520 if (a->start > b->start)
521 return 1;
522 return 0;
523 }
524
525 static int count_memberships(struct dl *dl, struct intel_super *super)
526 {
527 int memberships = 0;
528 int i;
529
530 for (i = 0; i < super->anchor->num_raid_devs; i++) {
531 struct imsm_dev *dev = get_imsm_dev(super, i);
532 struct imsm_map *map = get_imsm_map(dev, 0);
533
534 if (get_imsm_disk_slot(map, dl->index) >= 0)
535 memberships++;
536 }
537
538 return memberships;
539 }
540
541 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
542 {
543 /* find a list of used extents on the given physical device */
544 struct extent *rv, *e;
545 int i;
546 int memberships = count_memberships(dl, super);
547 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
548
549 rv = malloc(sizeof(struct extent) * (memberships + 1));
550 if (!rv)
551 return NULL;
552 e = rv;
553
554 for (i = 0; i < super->anchor->num_raid_devs; i++) {
555 struct imsm_dev *dev = get_imsm_dev(super, i);
556 struct imsm_map *map = get_imsm_map(dev, 0);
557
558 if (get_imsm_disk_slot(map, dl->index) >= 0) {
559 e->start = __le32_to_cpu(map->pba_of_lba0);
560 e->size = __le32_to_cpu(map->blocks_per_member);
561 e++;
562 }
563 }
564 qsort(rv, memberships, sizeof(*rv), cmp_extent);
565
566 /* determine the start of the metadata
567 * when no raid devices are defined use the default
568 * ...otherwise allow the metadata to truncate the value
569 * as is the case with older versions of imsm
570 */
571 if (memberships) {
572 struct extent *last = &rv[memberships - 1];
573 __u32 remainder;
574
575 remainder = __le32_to_cpu(dl->disk.total_blocks) -
576 (last->start + last->size);
577 /* round down to 1k block to satisfy precision of the kernel
578 * 'size' interface
579 */
580 remainder &= ~1UL;
581 /* make sure remainder is still sane */
582 if (remainder < ROUND_UP(super->len, 512) >> 9)
583 remainder = ROUND_UP(super->len, 512) >> 9;
584 if (reservation > remainder)
585 reservation = remainder;
586 }
587 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
588 e->size = 0;
589 return rv;
590 }
591
592 /* try to determine how much space is reserved for metadata from
593 * the last get_extents() entry, otherwise fallback to the
594 * default
595 */
596 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
597 {
598 struct extent *e;
599 int i;
600 __u32 rv;
601
602 /* for spares just return a minimal reservation which will grow
603 * once the spare is picked up by an array
604 */
605 if (dl->index == -1)
606 return MPB_SECTOR_CNT;
607
608 e = get_extents(super, dl);
609 if (!e)
610 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
611
612 /* scroll to last entry */
613 for (i = 0; e[i].size; i++)
614 continue;
615
616 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
617
618 free(e);
619
620 return rv;
621 }
622
623 static int is_spare(struct imsm_disk *disk)
624 {
625 return (disk->status & SPARE_DISK) == SPARE_DISK;
626 }
627
628 static int is_configured(struct imsm_disk *disk)
629 {
630 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
631 }
632
633 static int is_failed(struct imsm_disk *disk)
634 {
635 return (disk->status & FAILED_DISK) == FAILED_DISK;
636 }
637
638 #ifndef MDASSEMBLE
639 static __u64 blocks_per_migr_unit(struct imsm_dev *dev);
640
641 static void print_imsm_dev(struct imsm_dev *dev, char *uuid, int disk_idx)
642 {
643 __u64 sz;
644 int slot;
645 struct imsm_map *map = get_imsm_map(dev, 0);
646 __u32 ord;
647
648 printf("\n");
649 printf("[%.16s]:\n", dev->volume);
650 printf(" UUID : %s\n", uuid);
651 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
652 printf(" Members : %d\n", map->num_members);
653 slot = get_imsm_disk_slot(map, disk_idx);
654 if (slot >= 0) {
655 ord = get_imsm_ord_tbl_ent(dev, slot);
656 printf(" This Slot : %d%s\n", slot,
657 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
658 } else
659 printf(" This Slot : ?\n");
660 sz = __le32_to_cpu(dev->size_high);
661 sz <<= 32;
662 sz += __le32_to_cpu(dev->size_low);
663 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
664 human_size(sz * 512));
665 sz = __le32_to_cpu(map->blocks_per_member);
666 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
667 human_size(sz * 512));
668 printf(" Sector Offset : %u\n",
669 __le32_to_cpu(map->pba_of_lba0));
670 printf(" Num Stripes : %u\n",
671 __le32_to_cpu(map->num_data_stripes));
672 printf(" Chunk Size : %u KiB\n",
673 __le16_to_cpu(map->blocks_per_strip) / 2);
674 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
675 printf(" Migrate State : ");
676 if (dev->vol.migr_state) {
677 if (migr_type(dev) == MIGR_INIT)
678 printf("initialize\n");
679 else if (migr_type(dev) == MIGR_REBUILD)
680 printf("rebuild\n");
681 else if (migr_type(dev) == MIGR_VERIFY)
682 printf("check\n");
683 else if (migr_type(dev) == MIGR_GEN_MIGR)
684 printf("general migration\n");
685 else if (migr_type(dev) == MIGR_STATE_CHANGE)
686 printf("state change\n");
687 else if (migr_type(dev) == MIGR_REPAIR)
688 printf("repair\n");
689 else
690 printf("<unknown:%d>\n", migr_type(dev));
691 } else
692 printf("idle\n");
693 printf(" Map State : %s", map_state_str[map->map_state]);
694 if (dev->vol.migr_state) {
695 struct imsm_map *map = get_imsm_map(dev, 1);
696
697 printf(" <-- %s", map_state_str[map->map_state]);
698 printf("\n Checkpoint : %u (%llu)",
699 __le32_to_cpu(dev->vol.curr_migr_unit),
700 (unsigned long long)blocks_per_migr_unit(dev));
701 }
702 printf("\n");
703 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
704 }
705
706 static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
707 {
708 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
709 char str[MAX_RAID_SERIAL_LEN + 1];
710 __u64 sz;
711
712 if (index < 0 || !disk)
713 return;
714
715 printf("\n");
716 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
717 printf(" Disk%02d Serial : %s\n", index, str);
718 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
719 is_configured(disk) ? " active" : "",
720 is_failed(disk) ? " failed" : "");
721 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
722 sz = __le32_to_cpu(disk->total_blocks) - reserved;
723 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
724 human_size(sz * 512));
725 }
726
727 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info);
728
729 static void examine_super_imsm(struct supertype *st, char *homehost)
730 {
731 struct intel_super *super = st->sb;
732 struct imsm_super *mpb = super->anchor;
733 char str[MAX_SIGNATURE_LENGTH];
734 int i;
735 struct mdinfo info;
736 char nbuf[64];
737 __u32 sum;
738 __u32 reserved = imsm_reserved_sectors(super, super->disks);
739
740
741 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
742 printf(" Magic : %s\n", str);
743 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
744 printf(" Version : %s\n", get_imsm_version(mpb));
745 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
746 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
747 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
748 getinfo_super_imsm(st, &info);
749 fname_from_uuid(st, &info, nbuf, ':');
750 printf(" UUID : %s\n", nbuf + 5);
751 sum = __le32_to_cpu(mpb->check_sum);
752 printf(" Checksum : %08x %s\n", sum,
753 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
754 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
755 printf(" Disks : %d\n", mpb->num_disks);
756 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
757 print_imsm_disk(mpb, super->disks->index, reserved);
758 if (super->bbm_log) {
759 struct bbm_log *log = super->bbm_log;
760
761 printf("\n");
762 printf("Bad Block Management Log:\n");
763 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
764 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
765 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
766 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
767 printf(" First Spare : %llx\n",
768 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
769 }
770 for (i = 0; i < mpb->num_raid_devs; i++) {
771 struct mdinfo info;
772 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
773
774 super->current_vol = i;
775 getinfo_super_imsm(st, &info);
776 fname_from_uuid(st, &info, nbuf, ':');
777 print_imsm_dev(dev, nbuf + 5, super->disks->index);
778 }
779 for (i = 0; i < mpb->num_disks; i++) {
780 if (i == super->disks->index)
781 continue;
782 print_imsm_disk(mpb, i, reserved);
783 }
784 }
785
786 static void brief_examine_super_imsm(struct supertype *st, int verbose)
787 {
788 /* We just write a generic IMSM ARRAY entry */
789 struct mdinfo info;
790 char nbuf[64];
791 struct intel_super *super = st->sb;
792
793 if (!super->anchor->num_raid_devs) {
794 printf("ARRAY metadata=imsm\n");
795 return;
796 }
797
798 getinfo_super_imsm(st, &info);
799 fname_from_uuid(st, &info, nbuf, ':');
800 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
801 }
802
803 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
804 {
805 /* We just write a generic IMSM ARRAY entry */
806 struct mdinfo info;
807 char nbuf[64];
808 char nbuf1[64];
809 struct intel_super *super = st->sb;
810 int i;
811
812 if (!super->anchor->num_raid_devs)
813 return;
814
815 getinfo_super_imsm(st, &info);
816 fname_from_uuid(st, &info, nbuf, ':');
817 for (i = 0; i < super->anchor->num_raid_devs; i++) {
818 struct imsm_dev *dev = get_imsm_dev(super, i);
819
820 super->current_vol = i;
821 getinfo_super_imsm(st, &info);
822 fname_from_uuid(st, &info, nbuf1, ':');
823 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
824 dev->volume, nbuf + 5, i, nbuf1 + 5);
825 }
826 }
827
828 static void export_examine_super_imsm(struct supertype *st)
829 {
830 struct intel_super *super = st->sb;
831 struct imsm_super *mpb = super->anchor;
832 struct mdinfo info;
833 char nbuf[64];
834
835 getinfo_super_imsm(st, &info);
836 fname_from_uuid(st, &info, nbuf, ':');
837 printf("MD_METADATA=imsm\n");
838 printf("MD_LEVEL=container\n");
839 printf("MD_UUID=%s\n", nbuf+5);
840 printf("MD_DEVICES=%u\n", mpb->num_disks);
841 }
842
843 static void detail_super_imsm(struct supertype *st, char *homehost)
844 {
845 struct mdinfo info;
846 char nbuf[64];
847
848 getinfo_super_imsm(st, &info);
849 fname_from_uuid(st, &info, nbuf, ':');
850 printf("\n UUID : %s\n", nbuf + 5);
851 }
852
853 static void brief_detail_super_imsm(struct supertype *st)
854 {
855 struct mdinfo info;
856 char nbuf[64];
857 getinfo_super_imsm(st, &info);
858 fname_from_uuid(st, &info, nbuf, ':');
859 printf(" UUID=%s", nbuf + 5);
860 }
861
862 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
863 static void fd2devname(int fd, char *name);
864
865 static int imsm_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
866 {
867 /* dump an unsorted list of devices attached to ahci, as well as
868 * non-connected ports
869 */
870 int hba_len = strlen(hba_path) + 1;
871 struct dirent *ent;
872 DIR *dir;
873 char *path = NULL;
874 int err = 0;
875 unsigned long port_mask = (1 << port_count) - 1;
876
877 if (port_count > sizeof(port_mask) * 8) {
878 if (verbose)
879 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
880 return 2;
881 }
882
883 /* scroll through /sys/dev/block looking for devices attached to
884 * this hba
885 */
886 dir = opendir("/sys/dev/block");
887 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
888 int fd;
889 char model[64];
890 char vendor[64];
891 char buf[1024];
892 int major, minor;
893 char *device;
894 char *c;
895 int port;
896 int type;
897
898 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
899 continue;
900 path = devt_to_devpath(makedev(major, minor));
901 if (!path)
902 continue;
903 if (!path_attached_to_hba(path, hba_path)) {
904 free(path);
905 path = NULL;
906 continue;
907 }
908
909 /* retrieve the scsi device type */
910 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
911 if (verbose)
912 fprintf(stderr, Name ": failed to allocate 'device'\n");
913 err = 2;
914 break;
915 }
916 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
917 if (load_sys(device, buf) != 0) {
918 if (verbose)
919 fprintf(stderr, Name ": failed to read device type for %s\n",
920 path);
921 err = 2;
922 free(device);
923 break;
924 }
925 type = strtoul(buf, NULL, 10);
926
927 /* if it's not a disk print the vendor and model */
928 if (!(type == 0 || type == 7 || type == 14)) {
929 vendor[0] = '\0';
930 model[0] = '\0';
931 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
932 if (load_sys(device, buf) == 0) {
933 strncpy(vendor, buf, sizeof(vendor));
934 vendor[sizeof(vendor) - 1] = '\0';
935 c = (char *) &vendor[sizeof(vendor) - 1];
936 while (isspace(*c) || *c == '\0')
937 *c-- = '\0';
938
939 }
940 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
941 if (load_sys(device, buf) == 0) {
942 strncpy(model, buf, sizeof(model));
943 model[sizeof(model) - 1] = '\0';
944 c = (char *) &model[sizeof(model) - 1];
945 while (isspace(*c) || *c == '\0')
946 *c-- = '\0';
947 }
948
949 if (vendor[0] && model[0])
950 sprintf(buf, "%.64s %.64s", vendor, model);
951 else
952 switch (type) { /* numbers from hald/linux/device.c */
953 case 1: sprintf(buf, "tape"); break;
954 case 2: sprintf(buf, "printer"); break;
955 case 3: sprintf(buf, "processor"); break;
956 case 4:
957 case 5: sprintf(buf, "cdrom"); break;
958 case 6: sprintf(buf, "scanner"); break;
959 case 8: sprintf(buf, "media_changer"); break;
960 case 9: sprintf(buf, "comm"); break;
961 case 12: sprintf(buf, "raid"); break;
962 default: sprintf(buf, "unknown");
963 }
964 } else
965 buf[0] = '\0';
966 free(device);
967
968 /* chop device path to 'host%d' and calculate the port number */
969 c = strchr(&path[hba_len], '/');
970 if (!c) {
971 if (verbose)
972 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
973 err = 2;
974 break;
975 }
976 *c = '\0';
977 if (sscanf(&path[hba_len], "host%d", &port) == 1)
978 port -= host_base;
979 else {
980 if (verbose) {
981 *c = '/'; /* repair the full string */
982 fprintf(stderr, Name ": failed to determine port number for %s\n",
983 path);
984 }
985 err = 2;
986 break;
987 }
988
989 /* mark this port as used */
990 port_mask &= ~(1 << port);
991
992 /* print out the device information */
993 if (buf[0]) {
994 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
995 continue;
996 }
997
998 fd = dev_open(ent->d_name, O_RDONLY);
999 if (fd < 0)
1000 printf(" Port%d : - disk info unavailable -\n", port);
1001 else {
1002 fd2devname(fd, buf);
1003 printf(" Port%d : %s", port, buf);
1004 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1005 printf(" (%s)\n", buf);
1006 else
1007 printf("()\n");
1008 }
1009 close(fd);
1010 free(path);
1011 path = NULL;
1012 }
1013 if (path)
1014 free(path);
1015 if (dir)
1016 closedir(dir);
1017 if (err == 0) {
1018 int i;
1019
1020 for (i = 0; i < port_count; i++)
1021 if (port_mask & (1 << i))
1022 printf(" Port%d : - no device attached -\n", i);
1023 }
1024
1025 return err;
1026 }
1027
1028 static int detail_platform_imsm(int verbose, int enumerate_only)
1029 {
1030 /* There are two components to imsm platform support, the ahci SATA
1031 * controller and the option-rom. To find the SATA controller we
1032 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1033 * controller with the Intel vendor id is present. This approach
1034 * allows mdadm to leverage the kernel's ahci detection logic, with the
1035 * caveat that if ahci.ko is not loaded mdadm will not be able to
1036 * detect platform raid capabilities. The option-rom resides in a
1037 * platform "Adapter ROM". We scan for its signature to retrieve the
1038 * platform capabilities. If raid support is disabled in the BIOS the
1039 * option-rom capability structure will not be available.
1040 */
1041 const struct imsm_orom *orom;
1042 struct sys_dev *list, *hba;
1043 DIR *dir;
1044 struct dirent *ent;
1045 const char *hba_path;
1046 int host_base = 0;
1047 int port_count = 0;
1048
1049 if (enumerate_only) {
1050 if (check_env("IMSM_NO_PLATFORM") || find_imsm_orom())
1051 return 0;
1052 return 2;
1053 }
1054
1055 list = find_driver_devices("pci", "ahci");
1056 for (hba = list; hba; hba = hba->next)
1057 if (devpath_to_vendor(hba->path) == 0x8086)
1058 break;
1059
1060 if (!hba) {
1061 if (verbose)
1062 fprintf(stderr, Name ": unable to find active ahci controller\n");
1063 free_sys_dev(&list);
1064 return 2;
1065 } else if (verbose)
1066 fprintf(stderr, Name ": found Intel SATA AHCI Controller\n");
1067 hba_path = hba->path;
1068 hba->path = NULL;
1069 free_sys_dev(&list);
1070
1071 orom = find_imsm_orom();
1072 if (!orom) {
1073 if (verbose)
1074 fprintf(stderr, Name ": imsm option-rom not found\n");
1075 return 2;
1076 }
1077
1078 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1079 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1080 orom->hotfix_ver, orom->build);
1081 printf(" RAID Levels :%s%s%s%s%s\n",
1082 imsm_orom_has_raid0(orom) ? " raid0" : "",
1083 imsm_orom_has_raid1(orom) ? " raid1" : "",
1084 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1085 imsm_orom_has_raid10(orom) ? " raid10" : "",
1086 imsm_orom_has_raid5(orom) ? " raid5" : "");
1087 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1088 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1089 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1090 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1091 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1092 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1093 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1094 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1095 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1096 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1097 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1098 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1099 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1100 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1101 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1102 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1103 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1104 printf(" Max Disks : %d\n", orom->tds);
1105 printf(" Max Volumes : %d\n", orom->vpa);
1106 printf(" I/O Controller : %s\n", hba_path);
1107
1108 /* find the smallest scsi host number to determine a port number base */
1109 dir = opendir(hba_path);
1110 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1111 int host;
1112
1113 if (sscanf(ent->d_name, "host%d", &host) != 1)
1114 continue;
1115 if (port_count == 0)
1116 host_base = host;
1117 else if (host < host_base)
1118 host_base = host;
1119
1120 if (host + 1 > port_count + host_base)
1121 port_count = host + 1 - host_base;
1122
1123 }
1124 if (dir)
1125 closedir(dir);
1126
1127 if (!port_count || imsm_enumerate_ports(hba_path, port_count,
1128 host_base, verbose) != 0) {
1129 if (verbose)
1130 fprintf(stderr, Name ": failed to enumerate ports\n");
1131 return 2;
1132 }
1133
1134 return 0;
1135 }
1136 #endif
1137
1138 static int match_home_imsm(struct supertype *st, char *homehost)
1139 {
1140 /* the imsm metadata format does not specify any host
1141 * identification information. We return -1 since we can never
1142 * confirm nor deny whether a given array is "meant" for this
1143 * host. We rely on compare_super and the 'family_num' fields to
1144 * exclude member disks that do not belong, and we rely on
1145 * mdadm.conf to specify the arrays that should be assembled.
1146 * Auto-assembly may still pick up "foreign" arrays.
1147 */
1148
1149 return -1;
1150 }
1151
1152 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1153 {
1154 /* The uuid returned here is used for:
1155 * uuid to put into bitmap file (Create, Grow)
1156 * uuid for backup header when saving critical section (Grow)
1157 * comparing uuids when re-adding a device into an array
1158 * In these cases the uuid required is that of the data-array,
1159 * not the device-set.
1160 * uuid to recognise same set when adding a missing device back
1161 * to an array. This is a uuid for the device-set.
1162 *
1163 * For each of these we can make do with a truncated
1164 * or hashed uuid rather than the original, as long as
1165 * everyone agrees.
1166 * In each case the uuid required is that of the data-array,
1167 * not the device-set.
1168 */
1169 /* imsm does not track uuid's so we synthesis one using sha1 on
1170 * - The signature (Which is constant for all imsm array, but no matter)
1171 * - the orig_family_num of the container
1172 * - the index number of the volume
1173 * - the 'serial' number of the volume.
1174 * Hopefully these are all constant.
1175 */
1176 struct intel_super *super = st->sb;
1177
1178 char buf[20];
1179 struct sha1_ctx ctx;
1180 struct imsm_dev *dev = NULL;
1181 __u32 family_num;
1182
1183 /* some mdadm versions failed to set ->orig_family_num, in which
1184 * case fall back to ->family_num. orig_family_num will be
1185 * fixed up with the first metadata update.
1186 */
1187 family_num = super->anchor->orig_family_num;
1188 if (family_num == 0)
1189 family_num = super->anchor->family_num;
1190 sha1_init_ctx(&ctx);
1191 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1192 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1193 if (super->current_vol >= 0)
1194 dev = get_imsm_dev(super, super->current_vol);
1195 if (dev) {
1196 __u32 vol = super->current_vol;
1197 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1198 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1199 }
1200 sha1_finish_ctx(&ctx, buf);
1201 memcpy(uuid, buf, 4*4);
1202 }
1203
1204 #if 0
1205 static void
1206 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1207 {
1208 __u8 *v = get_imsm_version(mpb);
1209 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1210 char major[] = { 0, 0, 0 };
1211 char minor[] = { 0 ,0, 0 };
1212 char patch[] = { 0, 0, 0 };
1213 char *ver_parse[] = { major, minor, patch };
1214 int i, j;
1215
1216 i = j = 0;
1217 while (*v != '\0' && v < end) {
1218 if (*v != '.' && j < 2)
1219 ver_parse[i][j++] = *v;
1220 else {
1221 i++;
1222 j = 0;
1223 }
1224 v++;
1225 }
1226
1227 *m = strtol(minor, NULL, 0);
1228 *p = strtol(patch, NULL, 0);
1229 }
1230 #endif
1231
1232 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1233 {
1234 /* migr_strip_size when repairing or initializing parity */
1235 struct imsm_map *map = get_imsm_map(dev, 0);
1236 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1237
1238 switch (get_imsm_raid_level(map)) {
1239 case 5:
1240 case 10:
1241 return chunk;
1242 default:
1243 return 128*1024 >> 9;
1244 }
1245 }
1246
1247 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1248 {
1249 /* migr_strip_size when rebuilding a degraded disk, no idea why
1250 * this is different than migr_strip_size_resync(), but it's good
1251 * to be compatible
1252 */
1253 struct imsm_map *map = get_imsm_map(dev, 1);
1254 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1255
1256 switch (get_imsm_raid_level(map)) {
1257 case 1:
1258 case 10:
1259 if (map->num_members % map->num_domains == 0)
1260 return 128*1024 >> 9;
1261 else
1262 return chunk;
1263 case 5:
1264 return max((__u32) 64*1024 >> 9, chunk);
1265 default:
1266 return 128*1024 >> 9;
1267 }
1268 }
1269
1270 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1271 {
1272 struct imsm_map *lo = get_imsm_map(dev, 0);
1273 struct imsm_map *hi = get_imsm_map(dev, 1);
1274 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1275 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1276
1277 return max((__u32) 1, hi_chunk / lo_chunk);
1278 }
1279
1280 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1281 {
1282 struct imsm_map *lo = get_imsm_map(dev, 0);
1283 int level = get_imsm_raid_level(lo);
1284
1285 if (level == 1 || level == 10) {
1286 struct imsm_map *hi = get_imsm_map(dev, 1);
1287
1288 return hi->num_domains;
1289 } else
1290 return num_stripes_per_unit_resync(dev);
1291 }
1292
1293 static __u8 imsm_num_data_members(struct imsm_dev *dev)
1294 {
1295 /* named 'imsm_' because raid0, raid1 and raid10
1296 * counter-intuitively have the same number of data disks
1297 */
1298 struct imsm_map *map = get_imsm_map(dev, 0);
1299
1300 switch (get_imsm_raid_level(map)) {
1301 case 0:
1302 case 1:
1303 case 10:
1304 return map->num_members;
1305 case 5:
1306 return map->num_members - 1;
1307 default:
1308 dprintf("%s: unsupported raid level\n", __func__);
1309 return 0;
1310 }
1311 }
1312
1313 static __u32 parity_segment_depth(struct imsm_dev *dev)
1314 {
1315 struct imsm_map *map = get_imsm_map(dev, 0);
1316 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1317
1318 switch(get_imsm_raid_level(map)) {
1319 case 1:
1320 case 10:
1321 return chunk * map->num_domains;
1322 case 5:
1323 return chunk * map->num_members;
1324 default:
1325 return chunk;
1326 }
1327 }
1328
1329 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1330 {
1331 struct imsm_map *map = get_imsm_map(dev, 1);
1332 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1333 __u32 strip = block / chunk;
1334
1335 switch (get_imsm_raid_level(map)) {
1336 case 1:
1337 case 10: {
1338 __u32 vol_strip = (strip * map->num_domains) + 1;
1339 __u32 vol_stripe = vol_strip / map->num_members;
1340
1341 return vol_stripe * chunk + block % chunk;
1342 } case 5: {
1343 __u32 stripe = strip / (map->num_members - 1);
1344
1345 return stripe * chunk + block % chunk;
1346 }
1347 default:
1348 return 0;
1349 }
1350 }
1351
1352 static __u64 blocks_per_migr_unit(struct imsm_dev *dev)
1353 {
1354 /* calculate the conversion factor between per member 'blocks'
1355 * (md/{resync,rebuild}_start) and imsm migration units, return
1356 * 0 for the 'not migrating' and 'unsupported migration' cases
1357 */
1358 if (!dev->vol.migr_state)
1359 return 0;
1360
1361 switch (migr_type(dev)) {
1362 case MIGR_VERIFY:
1363 case MIGR_REPAIR:
1364 case MIGR_INIT: {
1365 struct imsm_map *map = get_imsm_map(dev, 0);
1366 __u32 stripes_per_unit;
1367 __u32 blocks_per_unit;
1368 __u32 parity_depth;
1369 __u32 migr_chunk;
1370 __u32 block_map;
1371 __u32 block_rel;
1372 __u32 segment;
1373 __u32 stripe;
1374 __u8 disks;
1375
1376 /* yes, this is really the translation of migr_units to
1377 * per-member blocks in the 'resync' case
1378 */
1379 stripes_per_unit = num_stripes_per_unit_resync(dev);
1380 migr_chunk = migr_strip_blocks_resync(dev);
1381 disks = imsm_num_data_members(dev);
1382 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
1383 stripe = __le32_to_cpu(map->blocks_per_strip) * disks;
1384 segment = blocks_per_unit / stripe;
1385 block_rel = blocks_per_unit - segment * stripe;
1386 parity_depth = parity_segment_depth(dev);
1387 block_map = map_migr_block(dev, block_rel);
1388 return block_map + parity_depth * segment;
1389 }
1390 case MIGR_REBUILD: {
1391 __u32 stripes_per_unit;
1392 __u32 migr_chunk;
1393
1394 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
1395 migr_chunk = migr_strip_blocks_rebuild(dev);
1396 return migr_chunk * stripes_per_unit;
1397 }
1398 case MIGR_GEN_MIGR:
1399 case MIGR_STATE_CHANGE:
1400 default:
1401 return 0;
1402 }
1403 }
1404
1405 static int imsm_level_to_layout(int level)
1406 {
1407 switch (level) {
1408 case 0:
1409 case 1:
1410 return 0;
1411 case 5:
1412 case 6:
1413 return ALGORITHM_LEFT_ASYMMETRIC;
1414 case 10:
1415 return 0x102;
1416 }
1417 return UnSet;
1418 }
1419
1420 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
1421 {
1422 struct intel_super *super = st->sb;
1423 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
1424 struct imsm_map *map = get_imsm_map(dev, 0);
1425 struct dl *dl;
1426 char *devname;
1427
1428 for (dl = super->disks; dl; dl = dl->next)
1429 if (dl->raiddisk == info->disk.raid_disk)
1430 break;
1431 info->container_member = super->current_vol;
1432 info->array.raid_disks = map->num_members;
1433 info->array.level = get_imsm_raid_level(map);
1434 info->array.layout = imsm_level_to_layout(info->array.level);
1435 info->array.md_minor = -1;
1436 info->array.ctime = 0;
1437 info->array.utime = 0;
1438 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
1439 info->array.state = !dev->vol.dirty;
1440 info->custom_array_size = __le32_to_cpu(dev->size_high);
1441 info->custom_array_size <<= 32;
1442 info->custom_array_size |= __le32_to_cpu(dev->size_low);
1443
1444 info->disk.major = 0;
1445 info->disk.minor = 0;
1446 if (dl) {
1447 info->disk.major = dl->major;
1448 info->disk.minor = dl->minor;
1449 }
1450
1451 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
1452 info->component_size = __le32_to_cpu(map->blocks_per_member);
1453 memset(info->uuid, 0, sizeof(info->uuid));
1454 info->recovery_start = MaxSector;
1455 info->reshape_active = 0;
1456
1457 if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty) {
1458 info->resync_start = 0;
1459 } else if (dev->vol.migr_state) {
1460 switch (migr_type(dev)) {
1461 case MIGR_REPAIR:
1462 case MIGR_INIT: {
1463 __u64 blocks_per_unit = blocks_per_migr_unit(dev);
1464 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
1465
1466 info->resync_start = blocks_per_unit * units;
1467 break;
1468 }
1469 case MIGR_VERIFY:
1470 /* we could emulate the checkpointing of
1471 * 'sync_action=check' migrations, but for now
1472 * we just immediately complete them
1473 */
1474 case MIGR_REBUILD:
1475 /* this is handled by container_content_imsm() */
1476 case MIGR_GEN_MIGR:
1477 case MIGR_STATE_CHANGE:
1478 /* FIXME handle other migrations */
1479 default:
1480 /* we are not dirty, so... */
1481 info->resync_start = MaxSector;
1482 }
1483 } else
1484 info->resync_start = MaxSector;
1485
1486 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
1487 info->name[MAX_RAID_SERIAL_LEN] = 0;
1488
1489 info->array.major_version = -1;
1490 info->array.minor_version = -2;
1491 devname = devnum2devname(st->container_dev);
1492 *info->text_version = '\0';
1493 if (devname)
1494 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
1495 free(devname);
1496 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
1497 uuid_from_super_imsm(st, info->uuid);
1498 }
1499
1500 /* check the config file to see if we can return a real uuid for this spare */
1501 static void fixup_container_spare_uuid(struct mdinfo *inf)
1502 {
1503 struct mddev_ident_s *array_list;
1504
1505 if (inf->array.level != LEVEL_CONTAINER ||
1506 memcmp(inf->uuid, uuid_match_any, sizeof(int[4])) != 0)
1507 return;
1508
1509 array_list = conf_get_ident(NULL);
1510
1511 for (; array_list; array_list = array_list->next) {
1512 if (array_list->uuid_set) {
1513 struct supertype *_sst; /* spare supertype */
1514 struct supertype *_cst; /* container supertype */
1515
1516 _cst = array_list->st;
1517 if (_cst)
1518 _sst = _cst->ss->match_metadata_desc(inf->text_version);
1519 else
1520 _sst = NULL;
1521
1522 if (_sst) {
1523 memcpy(inf->uuid, array_list->uuid, sizeof(int[4]));
1524 free(_sst);
1525 break;
1526 }
1527 }
1528 }
1529 }
1530
1531 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
1532 {
1533 struct intel_super *super = st->sb;
1534 struct imsm_disk *disk;
1535
1536 if (super->current_vol >= 0) {
1537 getinfo_super_imsm_volume(st, info);
1538 return;
1539 }
1540
1541 /* Set raid_disks to zero so that Assemble will always pull in valid
1542 * spares
1543 */
1544 info->array.raid_disks = 0;
1545 info->array.level = LEVEL_CONTAINER;
1546 info->array.layout = 0;
1547 info->array.md_minor = -1;
1548 info->array.ctime = 0; /* N/A for imsm */
1549 info->array.utime = 0;
1550 info->array.chunk_size = 0;
1551
1552 info->disk.major = 0;
1553 info->disk.minor = 0;
1554 info->disk.raid_disk = -1;
1555 info->reshape_active = 0;
1556 info->array.major_version = -1;
1557 info->array.minor_version = -2;
1558 strcpy(info->text_version, "imsm");
1559 info->safe_mode_delay = 0;
1560 info->disk.number = -1;
1561 info->disk.state = 0;
1562 info->name[0] = 0;
1563 info->recovery_start = MaxSector;
1564
1565 if (super->disks) {
1566 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1567
1568 disk = &super->disks->disk;
1569 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
1570 info->component_size = reserved;
1571 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
1572 /* we don't change info->disk.raid_disk here because
1573 * this state will be finalized in mdmon after we have
1574 * found the 'most fresh' version of the metadata
1575 */
1576 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
1577 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
1578 }
1579
1580 /* only call uuid_from_super_imsm when this disk is part of a populated container,
1581 * ->compare_super may have updated the 'num_raid_devs' field for spares
1582 */
1583 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
1584 uuid_from_super_imsm(st, info->uuid);
1585 else {
1586 memcpy(info->uuid, uuid_match_any, sizeof(int[4]));
1587 fixup_container_spare_uuid(info);
1588 }
1589 }
1590
1591 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
1592 char *update, char *devname, int verbose,
1593 int uuid_set, char *homehost)
1594 {
1595 /* For 'assemble' and 'force' we need to return non-zero if any
1596 * change was made. For others, the return value is ignored.
1597 * Update options are:
1598 * force-one : This device looks a bit old but needs to be included,
1599 * update age info appropriately.
1600 * assemble: clear any 'faulty' flag to allow this device to
1601 * be assembled.
1602 * force-array: Array is degraded but being forced, mark it clean
1603 * if that will be needed to assemble it.
1604 *
1605 * newdev: not used ????
1606 * grow: Array has gained a new device - this is currently for
1607 * linear only
1608 * resync: mark as dirty so a resync will happen.
1609 * name: update the name - preserving the homehost
1610 * uuid: Change the uuid of the array to match watch is given
1611 *
1612 * Following are not relevant for this imsm:
1613 * sparc2.2 : update from old dodgey metadata
1614 * super-minor: change the preferred_minor number
1615 * summaries: update redundant counters.
1616 * homehost: update the recorded homehost
1617 * _reshape_progress: record new reshape_progress position.
1618 */
1619 int rv = 1;
1620 struct intel_super *super = st->sb;
1621 struct imsm_super *mpb;
1622
1623 /* we can only update container info */
1624 if (!super || super->current_vol >= 0 || !super->anchor)
1625 return 1;
1626
1627 mpb = super->anchor;
1628
1629 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
1630 fprintf(stderr,
1631 Name ": '--uuid' not supported for imsm metadata\n");
1632 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
1633 mpb->orig_family_num = *((__u32 *) info->update_private);
1634 rv = 0;
1635 } else if (strcmp(update, "uuid") == 0) {
1636 __u32 *new_family = malloc(sizeof(*new_family));
1637
1638 /* update orig_family_number with the incoming random
1639 * data, report the new effective uuid, and store the
1640 * new orig_family_num for future updates.
1641 */
1642 if (new_family) {
1643 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
1644 uuid_from_super_imsm(st, info->uuid);
1645 *new_family = mpb->orig_family_num;
1646 info->update_private = new_family;
1647 rv = 0;
1648 }
1649 } else if (strcmp(update, "assemble") == 0)
1650 rv = 0;
1651 else
1652 fprintf(stderr,
1653 Name ": '--update=%s' not supported for imsm metadata\n",
1654 update);
1655
1656 /* successful update? recompute checksum */
1657 if (rv == 0)
1658 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
1659
1660 return rv;
1661 }
1662
1663 static size_t disks_to_mpb_size(int disks)
1664 {
1665 size_t size;
1666
1667 size = sizeof(struct imsm_super);
1668 size += (disks - 1) * sizeof(struct imsm_disk);
1669 size += 2 * sizeof(struct imsm_dev);
1670 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
1671 size += (4 - 2) * sizeof(struct imsm_map);
1672 /* 4 possible disk_ord_tbl's */
1673 size += 4 * (disks - 1) * sizeof(__u32);
1674
1675 return size;
1676 }
1677
1678 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
1679 {
1680 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
1681 return 0;
1682
1683 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
1684 }
1685
1686 static void free_devlist(struct intel_super *super)
1687 {
1688 struct intel_dev *dv;
1689
1690 while (super->devlist) {
1691 dv = super->devlist->next;
1692 free(super->devlist->dev);
1693 free(super->devlist);
1694 super->devlist = dv;
1695 }
1696 }
1697
1698 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
1699 {
1700 memcpy(dest, src, sizeof_imsm_dev(src, 0));
1701 }
1702
1703 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
1704 {
1705 /*
1706 * return:
1707 * 0 same, or first was empty, and second was copied
1708 * 1 second had wrong number
1709 * 2 wrong uuid
1710 * 3 wrong other info
1711 */
1712 struct intel_super *first = st->sb;
1713 struct intel_super *sec = tst->sb;
1714
1715 if (!first) {
1716 st->sb = tst->sb;
1717 tst->sb = NULL;
1718 return 0;
1719 }
1720
1721 /* if an anchor does not have num_raid_devs set then it is a free
1722 * floating spare
1723 */
1724 if (first->anchor->num_raid_devs > 0 &&
1725 sec->anchor->num_raid_devs > 0) {
1726 /* Determine if these disks might ever have been
1727 * related. Further disambiguation can only take place
1728 * in load_super_imsm_all
1729 */
1730 __u32 first_family = first->anchor->orig_family_num;
1731 __u32 sec_family = sec->anchor->orig_family_num;
1732
1733 if (memcmp(first->anchor->sig, sec->anchor->sig,
1734 MAX_SIGNATURE_LENGTH) != 0)
1735 return 3;
1736
1737 if (first_family == 0)
1738 first_family = first->anchor->family_num;
1739 if (sec_family == 0)
1740 sec_family = sec->anchor->family_num;
1741
1742 if (first_family != sec_family)
1743 return 3;
1744
1745 }
1746
1747
1748 /* if 'first' is a spare promote it to a populated mpb with sec's
1749 * family number
1750 */
1751 if (first->anchor->num_raid_devs == 0 &&
1752 sec->anchor->num_raid_devs > 0) {
1753 int i;
1754 struct intel_dev *dv;
1755 struct imsm_dev *dev;
1756
1757 /* we need to copy raid device info from sec if an allocation
1758 * fails here we don't associate the spare
1759 */
1760 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
1761 dv = malloc(sizeof(*dv));
1762 if (!dv)
1763 break;
1764 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
1765 if (!dev) {
1766 free(dv);
1767 break;
1768 }
1769 dv->dev = dev;
1770 dv->index = i;
1771 dv->next = first->devlist;
1772 first->devlist = dv;
1773 }
1774 if (i < sec->anchor->num_raid_devs) {
1775 /* allocation failure */
1776 free_devlist(first);
1777 fprintf(stderr, "imsm: failed to associate spare\n");
1778 return 3;
1779 }
1780 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
1781 first->anchor->orig_family_num = sec->anchor->orig_family_num;
1782 first->anchor->family_num = sec->anchor->family_num;
1783 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
1784 for (i = 0; i < sec->anchor->num_raid_devs; i++)
1785 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
1786 }
1787
1788 return 0;
1789 }
1790
1791 static void fd2devname(int fd, char *name)
1792 {
1793 struct stat st;
1794 char path[256];
1795 char dname[PATH_MAX];
1796 char *nm;
1797 int rv;
1798
1799 name[0] = '\0';
1800 if (fstat(fd, &st) != 0)
1801 return;
1802 sprintf(path, "/sys/dev/block/%d:%d",
1803 major(st.st_rdev), minor(st.st_rdev));
1804
1805 rv = readlink(path, dname, sizeof(dname));
1806 if (rv <= 0)
1807 return;
1808
1809 dname[rv] = '\0';
1810 nm = strrchr(dname, '/');
1811 nm++;
1812 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
1813 }
1814
1815 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
1816
1817 static int imsm_read_serial(int fd, char *devname,
1818 __u8 serial[MAX_RAID_SERIAL_LEN])
1819 {
1820 unsigned char scsi_serial[255];
1821 int rv;
1822 int rsp_len;
1823 int len;
1824 char *dest;
1825 char *src;
1826 char *rsp_buf;
1827 int i;
1828
1829 memset(scsi_serial, 0, sizeof(scsi_serial));
1830
1831 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
1832
1833 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
1834 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1835 fd2devname(fd, (char *) serial);
1836 return 0;
1837 }
1838
1839 if (rv != 0) {
1840 if (devname)
1841 fprintf(stderr,
1842 Name ": Failed to retrieve serial for %s\n",
1843 devname);
1844 return rv;
1845 }
1846
1847 rsp_len = scsi_serial[3];
1848 if (!rsp_len) {
1849 if (devname)
1850 fprintf(stderr,
1851 Name ": Failed to retrieve serial for %s\n",
1852 devname);
1853 return 2;
1854 }
1855 rsp_buf = (char *) &scsi_serial[4];
1856
1857 /* trim all whitespace and non-printable characters and convert
1858 * ':' to ';'
1859 */
1860 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
1861 src = &rsp_buf[i];
1862 if (*src > 0x20) {
1863 /* ':' is reserved for use in placeholder serial
1864 * numbers for missing disks
1865 */
1866 if (*src == ':')
1867 *dest++ = ';';
1868 else
1869 *dest++ = *src;
1870 }
1871 }
1872 len = dest - rsp_buf;
1873 dest = rsp_buf;
1874
1875 /* truncate leading characters */
1876 if (len > MAX_RAID_SERIAL_LEN) {
1877 dest += len - MAX_RAID_SERIAL_LEN;
1878 len = MAX_RAID_SERIAL_LEN;
1879 }
1880
1881 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1882 memcpy(serial, dest, len);
1883
1884 return 0;
1885 }
1886
1887 static int serialcmp(__u8 *s1, __u8 *s2)
1888 {
1889 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
1890 }
1891
1892 static void serialcpy(__u8 *dest, __u8 *src)
1893 {
1894 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
1895 }
1896
1897 #ifndef MDASSEMBLE
1898 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
1899 {
1900 struct dl *dl;
1901
1902 for (dl = super->disks; dl; dl = dl->next)
1903 if (serialcmp(dl->serial, serial) == 0)
1904 break;
1905
1906 return dl;
1907 }
1908 #endif
1909
1910 static struct imsm_disk *
1911 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
1912 {
1913 int i;
1914
1915 for (i = 0; i < mpb->num_disks; i++) {
1916 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
1917
1918 if (serialcmp(disk->serial, serial) == 0) {
1919 if (idx)
1920 *idx = i;
1921 return disk;
1922 }
1923 }
1924
1925 return NULL;
1926 }
1927
1928 static int
1929 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
1930 {
1931 struct imsm_disk *disk;
1932 struct dl *dl;
1933 struct stat stb;
1934 int rv;
1935 char name[40];
1936 __u8 serial[MAX_RAID_SERIAL_LEN];
1937
1938 rv = imsm_read_serial(fd, devname, serial);
1939
1940 if (rv != 0)
1941 return 2;
1942
1943 dl = calloc(1, sizeof(*dl));
1944 if (!dl) {
1945 if (devname)
1946 fprintf(stderr,
1947 Name ": failed to allocate disk buffer for %s\n",
1948 devname);
1949 return 2;
1950 }
1951
1952 fstat(fd, &stb);
1953 dl->major = major(stb.st_rdev);
1954 dl->minor = minor(stb.st_rdev);
1955 dl->next = super->disks;
1956 dl->fd = keep_fd ? fd : -1;
1957 assert(super->disks == NULL);
1958 super->disks = dl;
1959 serialcpy(dl->serial, serial);
1960 dl->index = -2;
1961 dl->e = NULL;
1962 fd2devname(fd, name);
1963 if (devname)
1964 dl->devname = strdup(devname);
1965 else
1966 dl->devname = strdup(name);
1967
1968 /* look up this disk's index in the current anchor */
1969 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
1970 if (disk) {
1971 dl->disk = *disk;
1972 /* only set index on disks that are a member of a
1973 * populated contianer, i.e. one with raid_devs
1974 */
1975 if (is_failed(&dl->disk))
1976 dl->index = -2;
1977 else if (is_spare(&dl->disk))
1978 dl->index = -1;
1979 }
1980
1981 return 0;
1982 }
1983
1984 #ifndef MDASSEMBLE
1985 /* When migrating map0 contains the 'destination' state while map1
1986 * contains the current state. When not migrating map0 contains the
1987 * current state. This routine assumes that map[0].map_state is set to
1988 * the current array state before being called.
1989 *
1990 * Migration is indicated by one of the following states
1991 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
1992 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
1993 * map1state=unitialized)
1994 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
1995 * map1state=normal)
1996 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
1997 * map1state=degraded)
1998 */
1999 static void migrate(struct imsm_dev *dev, __u8 to_state, int migr_type)
2000 {
2001 struct imsm_map *dest;
2002 struct imsm_map *src = get_imsm_map(dev, 0);
2003
2004 dev->vol.migr_state = 1;
2005 set_migr_type(dev, migr_type);
2006 dev->vol.curr_migr_unit = 0;
2007 dest = get_imsm_map(dev, 1);
2008
2009 /* duplicate and then set the target end state in map[0] */
2010 memcpy(dest, src, sizeof_imsm_map(src));
2011 if (migr_type == MIGR_REBUILD) {
2012 __u32 ord;
2013 int i;
2014
2015 for (i = 0; i < src->num_members; i++) {
2016 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
2017 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
2018 }
2019 }
2020
2021 src->map_state = to_state;
2022 }
2023
2024 static void end_migration(struct imsm_dev *dev, __u8 map_state)
2025 {
2026 struct imsm_map *map = get_imsm_map(dev, 0);
2027 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
2028 int i;
2029
2030 /* merge any IMSM_ORD_REBUILD bits that were not successfully
2031 * completed in the last migration.
2032 *
2033 * FIXME add support for online capacity expansion and
2034 * raid-level-migration
2035 */
2036 for (i = 0; i < prev->num_members; i++)
2037 map->disk_ord_tbl[i] |= prev->disk_ord_tbl[i];
2038
2039 dev->vol.migr_state = 0;
2040 dev->vol.curr_migr_unit = 0;
2041 map->map_state = map_state;
2042 }
2043 #endif
2044
2045 static int parse_raid_devices(struct intel_super *super)
2046 {
2047 int i;
2048 struct imsm_dev *dev_new;
2049 size_t len, len_migr;
2050 size_t space_needed = 0;
2051 struct imsm_super *mpb = super->anchor;
2052
2053 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2054 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
2055 struct intel_dev *dv;
2056
2057 len = sizeof_imsm_dev(dev_iter, 0);
2058 len_migr = sizeof_imsm_dev(dev_iter, 1);
2059 if (len_migr > len)
2060 space_needed += len_migr - len;
2061
2062 dv = malloc(sizeof(*dv));
2063 if (!dv)
2064 return 1;
2065 dev_new = malloc(len_migr);
2066 if (!dev_new) {
2067 free(dv);
2068 return 1;
2069 }
2070 imsm_copy_dev(dev_new, dev_iter);
2071 dv->dev = dev_new;
2072 dv->index = i;
2073 dv->next = super->devlist;
2074 super->devlist = dv;
2075 }
2076
2077 /* ensure that super->buf is large enough when all raid devices
2078 * are migrating
2079 */
2080 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
2081 void *buf;
2082
2083 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
2084 if (posix_memalign(&buf, 512, len) != 0)
2085 return 1;
2086
2087 memcpy(buf, super->buf, super->len);
2088 memset(buf + super->len, 0, len - super->len);
2089 free(super->buf);
2090 super->buf = buf;
2091 super->len = len;
2092 }
2093
2094 return 0;
2095 }
2096
2097 /* retrieve a pointer to the bbm log which starts after all raid devices */
2098 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
2099 {
2100 void *ptr = NULL;
2101
2102 if (__le32_to_cpu(mpb->bbm_log_size)) {
2103 ptr = mpb;
2104 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
2105 }
2106
2107 return ptr;
2108 }
2109
2110 static void __free_imsm(struct intel_super *super, int free_disks);
2111
2112 /* load_imsm_mpb - read matrix metadata
2113 * allocates super->mpb to be freed by free_super
2114 */
2115 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
2116 {
2117 unsigned long long dsize;
2118 unsigned long long sectors;
2119 struct stat;
2120 struct imsm_super *anchor;
2121 __u32 check_sum;
2122
2123 get_dev_size(fd, NULL, &dsize);
2124
2125 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
2126 if (devname)
2127 fprintf(stderr,
2128 Name ": Cannot seek to anchor block on %s: %s\n",
2129 devname, strerror(errno));
2130 return 1;
2131 }
2132
2133 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
2134 if (devname)
2135 fprintf(stderr,
2136 Name ": Failed to allocate imsm anchor buffer"
2137 " on %s\n", devname);
2138 return 1;
2139 }
2140 if (read(fd, anchor, 512) != 512) {
2141 if (devname)
2142 fprintf(stderr,
2143 Name ": Cannot read anchor block on %s: %s\n",
2144 devname, strerror(errno));
2145 free(anchor);
2146 return 1;
2147 }
2148
2149 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
2150 if (devname)
2151 fprintf(stderr,
2152 Name ": no IMSM anchor on %s\n", devname);
2153 free(anchor);
2154 return 2;
2155 }
2156
2157 __free_imsm(super, 0);
2158 super->len = ROUND_UP(anchor->mpb_size, 512);
2159 if (posix_memalign(&super->buf, 512, super->len) != 0) {
2160 if (devname)
2161 fprintf(stderr,
2162 Name ": unable to allocate %zu byte mpb buffer\n",
2163 super->len);
2164 free(anchor);
2165 return 2;
2166 }
2167 memcpy(super->buf, anchor, 512);
2168
2169 sectors = mpb_sectors(anchor) - 1;
2170 free(anchor);
2171 if (!sectors) {
2172 check_sum = __gen_imsm_checksum(super->anchor);
2173 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
2174 if (devname)
2175 fprintf(stderr,
2176 Name ": IMSM checksum %x != %x on %s\n",
2177 check_sum,
2178 __le32_to_cpu(super->anchor->check_sum),
2179 devname);
2180 return 2;
2181 }
2182
2183 return 0;
2184 }
2185
2186 /* read the extended mpb */
2187 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
2188 if (devname)
2189 fprintf(stderr,
2190 Name ": Cannot seek to extended mpb on %s: %s\n",
2191 devname, strerror(errno));
2192 return 1;
2193 }
2194
2195 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
2196 if (devname)
2197 fprintf(stderr,
2198 Name ": Cannot read extended mpb on %s: %s\n",
2199 devname, strerror(errno));
2200 return 2;
2201 }
2202
2203 check_sum = __gen_imsm_checksum(super->anchor);
2204 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
2205 if (devname)
2206 fprintf(stderr,
2207 Name ": IMSM checksum %x != %x on %s\n",
2208 check_sum, __le32_to_cpu(super->anchor->check_sum),
2209 devname);
2210 return 3;
2211 }
2212
2213 /* FIXME the BBM log is disk specific so we cannot use this global
2214 * buffer for all disks. Ok for now since we only look at the global
2215 * bbm_log_size parameter to gate assembly
2216 */
2217 super->bbm_log = __get_imsm_bbm_log(super->anchor);
2218
2219 return 0;
2220 }
2221
2222 static int
2223 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
2224 {
2225 int err;
2226
2227 err = load_imsm_mpb(fd, super, devname);
2228 if (err)
2229 return err;
2230 err = load_imsm_disk(fd, super, devname, keep_fd);
2231 if (err)
2232 return err;
2233 err = parse_raid_devices(super);
2234
2235 return err;
2236 }
2237
2238 static void __free_imsm_disk(struct dl *d)
2239 {
2240 if (d->fd >= 0)
2241 close(d->fd);
2242 if (d->devname)
2243 free(d->devname);
2244 if (d->e)
2245 free(d->e);
2246 free(d);
2247
2248 }
2249 static void free_imsm_disks(struct intel_super *super)
2250 {
2251 struct dl *d;
2252
2253 while (super->disks) {
2254 d = super->disks;
2255 super->disks = d->next;
2256 __free_imsm_disk(d);
2257 }
2258 while (super->missing) {
2259 d = super->missing;
2260 super->missing = d->next;
2261 __free_imsm_disk(d);
2262 }
2263
2264 }
2265
2266 /* free all the pieces hanging off of a super pointer */
2267 static void __free_imsm(struct intel_super *super, int free_disks)
2268 {
2269 if (super->buf) {
2270 free(super->buf);
2271 super->buf = NULL;
2272 }
2273 if (free_disks)
2274 free_imsm_disks(super);
2275 free_devlist(super);
2276 if (super->hba) {
2277 free((void *) super->hba);
2278 super->hba = NULL;
2279 }
2280 }
2281
2282 static void free_imsm(struct intel_super *super)
2283 {
2284 __free_imsm(super, 1);
2285 free(super);
2286 }
2287
2288 static void free_super_imsm(struct supertype *st)
2289 {
2290 struct intel_super *super = st->sb;
2291
2292 if (!super)
2293 return;
2294
2295 free_imsm(super);
2296 st->sb = NULL;
2297 }
2298
2299 static struct intel_super *alloc_super(void)
2300 {
2301 struct intel_super *super = malloc(sizeof(*super));
2302
2303 if (super) {
2304 memset(super, 0, sizeof(*super));
2305 super->current_vol = -1;
2306 super->create_offset = ~((__u32 ) 0);
2307 if (!check_env("IMSM_NO_PLATFORM"))
2308 super->orom = find_imsm_orom();
2309 if (super->orom && !check_env("IMSM_TEST_OROM")) {
2310 struct sys_dev *list, *ent;
2311
2312 /* find the first intel ahci controller */
2313 list = find_driver_devices("pci", "ahci");
2314 for (ent = list; ent; ent = ent->next)
2315 if (devpath_to_vendor(ent->path) == 0x8086)
2316 break;
2317 if (ent) {
2318 super->hba = ent->path;
2319 ent->path = NULL;
2320 }
2321 free_sys_dev(&list);
2322 }
2323 }
2324
2325 return super;
2326 }
2327
2328 #ifndef MDASSEMBLE
2329 /* find_missing - helper routine for load_super_imsm_all that identifies
2330 * disks that have disappeared from the system. This routine relies on
2331 * the mpb being uptodate, which it is at load time.
2332 */
2333 static int find_missing(struct intel_super *super)
2334 {
2335 int i;
2336 struct imsm_super *mpb = super->anchor;
2337 struct dl *dl;
2338 struct imsm_disk *disk;
2339
2340 for (i = 0; i < mpb->num_disks; i++) {
2341 disk = __get_imsm_disk(mpb, i);
2342 dl = serial_to_dl(disk->serial, super);
2343 if (dl)
2344 continue;
2345
2346 dl = malloc(sizeof(*dl));
2347 if (!dl)
2348 return 1;
2349 dl->major = 0;
2350 dl->minor = 0;
2351 dl->fd = -1;
2352 dl->devname = strdup("missing");
2353 dl->index = i;
2354 serialcpy(dl->serial, disk->serial);
2355 dl->disk = *disk;
2356 dl->e = NULL;
2357 dl->next = super->missing;
2358 super->missing = dl;
2359 }
2360
2361 return 0;
2362 }
2363
2364 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
2365 {
2366 struct intel_disk *idisk = disk_list;
2367
2368 while (idisk) {
2369 if (serialcmp(idisk->disk.serial, serial) == 0)
2370 break;
2371 idisk = idisk->next;
2372 }
2373
2374 return idisk;
2375 }
2376
2377 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
2378 struct intel_super *super,
2379 struct intel_disk **disk_list)
2380 {
2381 struct imsm_disk *d = &super->disks->disk;
2382 struct imsm_super *mpb = super->anchor;
2383 int i, j;
2384
2385 for (i = 0; i < tbl_size; i++) {
2386 struct imsm_super *tbl_mpb = table[i]->anchor;
2387 struct imsm_disk *tbl_d = &table[i]->disks->disk;
2388
2389 if (tbl_mpb->family_num == mpb->family_num) {
2390 if (tbl_mpb->check_sum == mpb->check_sum) {
2391 dprintf("%s: mpb from %d:%d matches %d:%d\n",
2392 __func__, super->disks->major,
2393 super->disks->minor,
2394 table[i]->disks->major,
2395 table[i]->disks->minor);
2396 break;
2397 }
2398
2399 if (((is_configured(d) && !is_configured(tbl_d)) ||
2400 is_configured(d) == is_configured(tbl_d)) &&
2401 tbl_mpb->generation_num < mpb->generation_num) {
2402 /* current version of the mpb is a
2403 * better candidate than the one in
2404 * super_table, but copy over "cross
2405 * generational" status
2406 */
2407 struct intel_disk *idisk;
2408
2409 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
2410 __func__, super->disks->major,
2411 super->disks->minor,
2412 table[i]->disks->major,
2413 table[i]->disks->minor);
2414
2415 idisk = disk_list_get(tbl_d->serial, *disk_list);
2416 if (idisk && is_failed(&idisk->disk))
2417 tbl_d->status |= FAILED_DISK;
2418 break;
2419 } else {
2420 struct intel_disk *idisk;
2421 struct imsm_disk *disk;
2422
2423 /* tbl_mpb is more up to date, but copy
2424 * over cross generational status before
2425 * returning
2426 */
2427 disk = __serial_to_disk(d->serial, mpb, NULL);
2428 if (disk && is_failed(disk))
2429 d->status |= FAILED_DISK;
2430
2431 idisk = disk_list_get(d->serial, *disk_list);
2432 if (idisk) {
2433 idisk->owner = i;
2434 if (disk && is_configured(disk))
2435 idisk->disk.status |= CONFIGURED_DISK;
2436 }
2437
2438 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
2439 __func__, super->disks->major,
2440 super->disks->minor,
2441 table[i]->disks->major,
2442 table[i]->disks->minor);
2443
2444 return tbl_size;
2445 }
2446 }
2447 }
2448
2449 if (i >= tbl_size)
2450 table[tbl_size++] = super;
2451 else
2452 table[i] = super;
2453
2454 /* update/extend the merged list of imsm_disk records */
2455 for (j = 0; j < mpb->num_disks; j++) {
2456 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
2457 struct intel_disk *idisk;
2458
2459 idisk = disk_list_get(disk->serial, *disk_list);
2460 if (idisk) {
2461 idisk->disk.status |= disk->status;
2462 if (is_configured(&idisk->disk) ||
2463 is_failed(&idisk->disk))
2464 idisk->disk.status &= ~(SPARE_DISK);
2465 } else {
2466 idisk = calloc(1, sizeof(*idisk));
2467 if (!idisk)
2468 return -1;
2469 idisk->owner = IMSM_UNKNOWN_OWNER;
2470 idisk->disk = *disk;
2471 idisk->next = *disk_list;
2472 *disk_list = idisk;
2473 }
2474
2475 if (serialcmp(idisk->disk.serial, d->serial) == 0)
2476 idisk->owner = i;
2477 }
2478
2479 return tbl_size;
2480 }
2481
2482 static struct intel_super *
2483 validate_members(struct intel_super *super, struct intel_disk *disk_list,
2484 const int owner)
2485 {
2486 struct imsm_super *mpb = super->anchor;
2487 int ok_count = 0;
2488 int i;
2489
2490 for (i = 0; i < mpb->num_disks; i++) {
2491 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2492 struct intel_disk *idisk;
2493
2494 idisk = disk_list_get(disk->serial, disk_list);
2495 if (idisk) {
2496 if (idisk->owner == owner ||
2497 idisk->owner == IMSM_UNKNOWN_OWNER)
2498 ok_count++;
2499 else
2500 dprintf("%s: '%.16s' owner %d != %d\n",
2501 __func__, disk->serial, idisk->owner,
2502 owner);
2503 } else {
2504 dprintf("%s: unknown disk %x [%d]: %.16s\n",
2505 __func__, __le32_to_cpu(mpb->family_num), i,
2506 disk->serial);
2507 break;
2508 }
2509 }
2510
2511 if (ok_count == mpb->num_disks)
2512 return super;
2513 return NULL;
2514 }
2515
2516 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
2517 {
2518 struct intel_super *s;
2519
2520 for (s = super_list; s; s = s->next) {
2521 if (family_num != s->anchor->family_num)
2522 continue;
2523 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
2524 __le32_to_cpu(family_num), s->disks->devname);
2525 }
2526 }
2527
2528 static struct intel_super *
2529 imsm_thunderdome(struct intel_super **super_list, int len)
2530 {
2531 struct intel_super *super_table[len];
2532 struct intel_disk *disk_list = NULL;
2533 struct intel_super *champion, *spare;
2534 struct intel_super *s, **del;
2535 int tbl_size = 0;
2536 int conflict;
2537 int i;
2538
2539 memset(super_table, 0, sizeof(super_table));
2540 for (s = *super_list; s; s = s->next)
2541 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
2542
2543 for (i = 0; i < tbl_size; i++) {
2544 struct imsm_disk *d;
2545 struct intel_disk *idisk;
2546 struct imsm_super *mpb = super_table[i]->anchor;
2547
2548 s = super_table[i];
2549 d = &s->disks->disk;
2550
2551 /* 'd' must appear in merged disk list for its
2552 * configuration to be valid
2553 */
2554 idisk = disk_list_get(d->serial, disk_list);
2555 if (idisk && idisk->owner == i)
2556 s = validate_members(s, disk_list, i);
2557 else
2558 s = NULL;
2559
2560 if (!s)
2561 dprintf("%s: marking family: %#x from %d:%d offline\n",
2562 __func__, mpb->family_num,
2563 super_table[i]->disks->major,
2564 super_table[i]->disks->minor);
2565 super_table[i] = s;
2566 }
2567
2568 /* This is where the mdadm implementation differs from the Windows
2569 * driver which has no strict concept of a container. We can only
2570 * assemble one family from a container, so when returning a prodigal
2571 * array member to this system the code will not be able to disambiguate
2572 * the container contents that should be assembled ("foreign" versus
2573 * "local"). It requires user intervention to set the orig_family_num
2574 * to a new value to establish a new container. The Windows driver in
2575 * this situation fixes up the volume name in place and manages the
2576 * foreign array as an independent entity.
2577 */
2578 s = NULL;
2579 spare = NULL;
2580 conflict = 0;
2581 for (i = 0; i < tbl_size; i++) {
2582 struct intel_super *tbl_ent = super_table[i];
2583 int is_spare = 0;
2584
2585 if (!tbl_ent)
2586 continue;
2587
2588 if (tbl_ent->anchor->num_raid_devs == 0) {
2589 spare = tbl_ent;
2590 is_spare = 1;
2591 }
2592
2593 if (s && !is_spare) {
2594 show_conflicts(tbl_ent->anchor->family_num, *super_list);
2595 conflict++;
2596 } else if (!s && !is_spare)
2597 s = tbl_ent;
2598 }
2599
2600 if (!s)
2601 s = spare;
2602 if (!s) {
2603 champion = NULL;
2604 goto out;
2605 }
2606 champion = s;
2607
2608 if (conflict)
2609 fprintf(stderr, "Chose family %#x on '%s', "
2610 "assemble conflicts to new container with '--update=uuid'\n",
2611 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
2612
2613 /* collect all dl's onto 'champion', and update them to
2614 * champion's version of the status
2615 */
2616 for (s = *super_list; s; s = s->next) {
2617 struct imsm_super *mpb = champion->anchor;
2618 struct dl *dl = s->disks;
2619
2620 if (s == champion)
2621 continue;
2622
2623 for (i = 0; i < mpb->num_disks; i++) {
2624 struct imsm_disk *disk;
2625
2626 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
2627 if (disk) {
2628 dl->disk = *disk;
2629 /* only set index on disks that are a member of
2630 * a populated contianer, i.e. one with
2631 * raid_devs
2632 */
2633 if (is_failed(&dl->disk))
2634 dl->index = -2;
2635 else if (is_spare(&dl->disk))
2636 dl->index = -1;
2637 break;
2638 }
2639 }
2640
2641 if (i >= mpb->num_disks) {
2642 struct intel_disk *idisk;
2643
2644 idisk = disk_list_get(dl->serial, disk_list);
2645 if (idisk && is_spare(&idisk->disk) &&
2646 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
2647 dl->index = -1;
2648 else {
2649 dl->index = -2;
2650 continue;
2651 }
2652 }
2653
2654 dl->next = champion->disks;
2655 champion->disks = dl;
2656 s->disks = NULL;
2657 }
2658
2659 /* delete 'champion' from super_list */
2660 for (del = super_list; *del; ) {
2661 if (*del == champion) {
2662 *del = (*del)->next;
2663 break;
2664 } else
2665 del = &(*del)->next;
2666 }
2667 champion->next = NULL;
2668
2669 out:
2670 while (disk_list) {
2671 struct intel_disk *idisk = disk_list;
2672
2673 disk_list = disk_list->next;
2674 free(idisk);
2675 }
2676
2677 return champion;
2678 }
2679
2680 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
2681 char *devname, int keep_fd)
2682 {
2683 struct mdinfo *sra;
2684 struct intel_super *super_list = NULL;
2685 struct intel_super *super = NULL;
2686 int devnum = fd2devnum(fd);
2687 struct mdinfo *sd;
2688 int retry;
2689 int err = 0;
2690 int i;
2691 enum sysfs_read_flags flags;
2692
2693 flags = GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE;
2694 if (mdmon_running(devnum))
2695 flags |= SKIP_GONE_DEVS;
2696
2697 /* check if 'fd' an opened container */
2698 sra = sysfs_read(fd, 0, flags);
2699 if (!sra)
2700 return 1;
2701
2702 if (sra->array.major_version != -1 ||
2703 sra->array.minor_version != -2 ||
2704 strcmp(sra->text_version, "imsm") != 0) {
2705 err = 1;
2706 goto error;
2707 }
2708 /* load all mpbs */
2709 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
2710 struct intel_super *s = alloc_super();
2711 char nm[32];
2712 int dfd;
2713
2714 err = 1;
2715 if (!s)
2716 goto error;
2717 s->next = super_list;
2718 super_list = s;
2719
2720 err = 2;
2721 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2722 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
2723 if (dfd < 0)
2724 goto error;
2725
2726 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
2727
2728 /* retry the load if we might have raced against mdmon */
2729 if (err == 3 && mdmon_running(devnum))
2730 for (retry = 0; retry < 3; retry++) {
2731 usleep(3000);
2732 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
2733 if (err != 3)
2734 break;
2735 }
2736 if (!keep_fd)
2737 close(dfd);
2738 if (err)
2739 goto error;
2740 }
2741
2742 /* all mpbs enter, maybe one leaves */
2743 super = imsm_thunderdome(&super_list, i);
2744 if (!super) {
2745 err = 1;
2746 goto error;
2747 }
2748
2749 if (find_missing(super) != 0) {
2750 free_imsm(super);
2751 err = 2;
2752 goto error;
2753 }
2754
2755 if (st->subarray[0]) {
2756 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
2757 super->current_vol = atoi(st->subarray);
2758 else {
2759 free_imsm(super);
2760 err = 1;
2761 goto error;
2762 }
2763 }
2764 err = 0;
2765
2766 error:
2767 while (super_list) {
2768 struct intel_super *s = super_list;
2769
2770 super_list = super_list->next;
2771 free_imsm(s);
2772 }
2773 sysfs_free(sra);
2774
2775 if (err)
2776 return err;
2777
2778 *sbp = super;
2779 st->container_dev = devnum;
2780 if (err == 0 && st->ss == NULL) {
2781 st->ss = &super_imsm;
2782 st->minor_version = 0;
2783 st->max_devs = IMSM_MAX_DEVICES;
2784 }
2785 st->loaded_container = 1;
2786
2787 return 0;
2788 }
2789 #endif
2790
2791 static int load_super_imsm(struct supertype *st, int fd, char *devname)
2792 {
2793 struct intel_super *super;
2794 int rv;
2795
2796 #ifndef MDASSEMBLE
2797 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
2798 return 0;
2799 #endif
2800
2801 if (test_partition(fd))
2802 /* IMSM not allowed on partitions */
2803 return 1;
2804
2805 free_super_imsm(st);
2806
2807 super = alloc_super();
2808 if (!super) {
2809 fprintf(stderr,
2810 Name ": malloc of %zu failed.\n",
2811 sizeof(*super));
2812 return 1;
2813 }
2814
2815 rv = load_and_parse_mpb(fd, super, devname, 0);
2816
2817 if (rv) {
2818 if (devname)
2819 fprintf(stderr,
2820 Name ": Failed to load all information "
2821 "sections on %s\n", devname);
2822 free_imsm(super);
2823 return rv;
2824 }
2825
2826 if (st->subarray[0]) {
2827 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
2828 super->current_vol = atoi(st->subarray);
2829 else {
2830 free_imsm(super);
2831 return 1;
2832 }
2833 }
2834
2835 st->sb = super;
2836 if (st->ss == NULL) {
2837 st->ss = &super_imsm;
2838 st->minor_version = 0;
2839 st->max_devs = IMSM_MAX_DEVICES;
2840 }
2841 st->loaded_container = 0;
2842
2843 return 0;
2844 }
2845
2846 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
2847 {
2848 if (info->level == 1)
2849 return 128;
2850 return info->chunk_size >> 9;
2851 }
2852
2853 static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
2854 {
2855 __u32 num_stripes;
2856
2857 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
2858 num_stripes /= num_domains;
2859
2860 return num_stripes;
2861 }
2862
2863 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
2864 {
2865 if (info->level == 1)
2866 return info->size * 2;
2867 else
2868 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
2869 }
2870
2871 static void imsm_update_version_info(struct intel_super *super)
2872 {
2873 /* update the version and attributes */
2874 struct imsm_super *mpb = super->anchor;
2875 char *version;
2876 struct imsm_dev *dev;
2877 struct imsm_map *map;
2878 int i;
2879
2880 for (i = 0; i < mpb->num_raid_devs; i++) {
2881 dev = get_imsm_dev(super, i);
2882 map = get_imsm_map(dev, 0);
2883 if (__le32_to_cpu(dev->size_high) > 0)
2884 mpb->attributes |= MPB_ATTRIB_2TB;
2885
2886 /* FIXME detect when an array spans a port multiplier */
2887 #if 0
2888 mpb->attributes |= MPB_ATTRIB_PM;
2889 #endif
2890
2891 if (mpb->num_raid_devs > 1 ||
2892 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
2893 version = MPB_VERSION_ATTRIBS;
2894 switch (get_imsm_raid_level(map)) {
2895 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
2896 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
2897 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
2898 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
2899 }
2900 } else {
2901 if (map->num_members >= 5)
2902 version = MPB_VERSION_5OR6_DISK_ARRAY;
2903 else if (dev->status == DEV_CLONE_N_GO)
2904 version = MPB_VERSION_CNG;
2905 else if (get_imsm_raid_level(map) == 5)
2906 version = MPB_VERSION_RAID5;
2907 else if (map->num_members >= 3)
2908 version = MPB_VERSION_3OR4_DISK_ARRAY;
2909 else if (get_imsm_raid_level(map) == 1)
2910 version = MPB_VERSION_RAID1;
2911 else
2912 version = MPB_VERSION_RAID0;
2913 }
2914 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
2915 }
2916 }
2917
2918 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
2919 unsigned long long size, char *name,
2920 char *homehost, int *uuid)
2921 {
2922 /* We are creating a volume inside a pre-existing container.
2923 * so st->sb is already set.
2924 */
2925 struct intel_super *super = st->sb;
2926 struct imsm_super *mpb = super->anchor;
2927 struct intel_dev *dv;
2928 struct imsm_dev *dev;
2929 struct imsm_vol *vol;
2930 struct imsm_map *map;
2931 int idx = mpb->num_raid_devs;
2932 int i;
2933 unsigned long long array_blocks;
2934 size_t size_old, size_new;
2935 __u32 num_data_stripes;
2936
2937 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
2938 fprintf(stderr, Name": This imsm-container already has the "
2939 "maximum of %d volumes\n", super->orom->vpa);
2940 return 0;
2941 }
2942
2943 /* ensure the mpb is large enough for the new data */
2944 size_old = __le32_to_cpu(mpb->mpb_size);
2945 size_new = disks_to_mpb_size(info->nr_disks);
2946 if (size_new > size_old) {
2947 void *mpb_new;
2948 size_t size_round = ROUND_UP(size_new, 512);
2949
2950 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
2951 fprintf(stderr, Name": could not allocate new mpb\n");
2952 return 0;
2953 }
2954 memcpy(mpb_new, mpb, size_old);
2955 free(mpb);
2956 mpb = mpb_new;
2957 super->anchor = mpb_new;
2958 mpb->mpb_size = __cpu_to_le32(size_new);
2959 memset(mpb_new + size_old, 0, size_round - size_old);
2960 }
2961 super->current_vol = idx;
2962 /* when creating the first raid device in this container set num_disks
2963 * to zero, i.e. delete this spare and add raid member devices in
2964 * add_to_super_imsm_volume()
2965 */
2966 if (super->current_vol == 0)
2967 mpb->num_disks = 0;
2968
2969 for (i = 0; i < super->current_vol; i++) {
2970 dev = get_imsm_dev(super, i);
2971 if (strncmp((char *) dev->volume, name,
2972 MAX_RAID_SERIAL_LEN) == 0) {
2973 fprintf(stderr, Name": '%s' is already defined for this container\n",
2974 name);
2975 return 0;
2976 }
2977 }
2978
2979 sprintf(st->subarray, "%d", idx);
2980 dv = malloc(sizeof(*dv));
2981 if (!dv) {
2982 fprintf(stderr, Name ": failed to allocate device list entry\n");
2983 return 0;
2984 }
2985 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
2986 if (!dev) {
2987 free(dv);
2988 fprintf(stderr, Name": could not allocate raid device\n");
2989 return 0;
2990 }
2991 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
2992 if (info->level == 1)
2993 array_blocks = info_to_blocks_per_member(info);
2994 else
2995 array_blocks = calc_array_size(info->level, info->raid_disks,
2996 info->layout, info->chunk_size,
2997 info->size*2);
2998 /* round array size down to closest MB */
2999 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
3000
3001 dev->size_low = __cpu_to_le32((__u32) array_blocks);
3002 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
3003 dev->status = __cpu_to_le32(0);
3004 dev->reserved_blocks = __cpu_to_le32(0);
3005 vol = &dev->vol;
3006 vol->migr_state = 0;
3007 set_migr_type(dev, MIGR_INIT);
3008 vol->dirty = 0;
3009 vol->curr_migr_unit = 0;
3010 map = get_imsm_map(dev, 0);
3011 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
3012 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
3013 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
3014 map->failed_disk_num = ~0;
3015 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
3016 IMSM_T_STATE_NORMAL;
3017 map->ddf = 1;
3018
3019 if (info->level == 1 && info->raid_disks > 2) {
3020 free(dev);
3021 free(dv);
3022 fprintf(stderr, Name": imsm does not support more than 2 disks"
3023 "in a raid1 volume\n");
3024 return 0;
3025 }
3026
3027 map->raid_level = info->level;
3028 if (info->level == 10) {
3029 map->raid_level = 1;
3030 map->num_domains = info->raid_disks / 2;
3031 } else if (info->level == 1)
3032 map->num_domains = info->raid_disks;
3033 else
3034 map->num_domains = 1;
3035
3036 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
3037 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
3038
3039 map->num_members = info->raid_disks;
3040 for (i = 0; i < map->num_members; i++) {
3041 /* initialized in add_to_super */
3042 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
3043 }
3044 mpb->num_raid_devs++;
3045
3046 dv->dev = dev;
3047 dv->index = super->current_vol;
3048 dv->next = super->devlist;
3049 super->devlist = dv;
3050
3051 imsm_update_version_info(super);
3052
3053 return 1;
3054 }
3055
3056 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
3057 unsigned long long size, char *name,
3058 char *homehost, int *uuid)
3059 {
3060 /* This is primarily called by Create when creating a new array.
3061 * We will then get add_to_super called for each component, and then
3062 * write_init_super called to write it out to each device.
3063 * For IMSM, Create can create on fresh devices or on a pre-existing
3064 * array.
3065 * To create on a pre-existing array a different method will be called.
3066 * This one is just for fresh drives.
3067 */
3068 struct intel_super *super;
3069 struct imsm_super *mpb;
3070 size_t mpb_size;
3071 char *version;
3072
3073 if (st->sb)
3074 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
3075
3076 if (info)
3077 mpb_size = disks_to_mpb_size(info->nr_disks);
3078 else
3079 mpb_size = 512;
3080
3081 super = alloc_super();
3082 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
3083 free(super);
3084 super = NULL;
3085 }
3086 if (!super) {
3087 fprintf(stderr, Name
3088 ": %s could not allocate superblock\n", __func__);
3089 return 0;
3090 }
3091 memset(super->buf, 0, mpb_size);
3092 mpb = super->buf;
3093 mpb->mpb_size = __cpu_to_le32(mpb_size);
3094 st->sb = super;
3095
3096 if (info == NULL) {
3097 /* zeroing superblock */
3098 return 0;
3099 }
3100
3101 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
3102
3103 version = (char *) mpb->sig;
3104 strcpy(version, MPB_SIGNATURE);
3105 version += strlen(MPB_SIGNATURE);
3106 strcpy(version, MPB_VERSION_RAID0);
3107
3108 return 1;
3109 }
3110
3111 #ifndef MDASSEMBLE
3112 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
3113 int fd, char *devname)
3114 {
3115 struct intel_super *super = st->sb;
3116 struct imsm_super *mpb = super->anchor;
3117 struct dl *dl;
3118 struct imsm_dev *dev;
3119 struct imsm_map *map;
3120 int slot;
3121
3122 dev = get_imsm_dev(super, super->current_vol);
3123 map = get_imsm_map(dev, 0);
3124
3125 if (! (dk->state & (1<<MD_DISK_SYNC))) {
3126 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
3127 devname);
3128 return 1;
3129 }
3130
3131 if (fd == -1) {
3132 /* we're doing autolayout so grab the pre-marked (in
3133 * validate_geometry) raid_disk
3134 */
3135 for (dl = super->disks; dl; dl = dl->next)
3136 if (dl->raiddisk == dk->raid_disk)
3137 break;
3138 } else {
3139 for (dl = super->disks; dl ; dl = dl->next)
3140 if (dl->major == dk->major &&
3141 dl->minor == dk->minor)
3142 break;
3143 }
3144
3145 if (!dl) {
3146 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
3147 return 1;
3148 }
3149
3150 /* add a pristine spare to the metadata */
3151 if (dl->index < 0) {
3152 dl->index = super->anchor->num_disks;
3153 super->anchor->num_disks++;
3154 }
3155 /* Check the device has not already been added */
3156 slot = get_imsm_disk_slot(map, dl->index);
3157 if (slot >= 0 &&
3158 (get_imsm_ord_tbl_ent(dev, slot) & IMSM_ORD_REBUILD) == 0) {
3159 fprintf(stderr, Name ": %s has been included in this array twice\n",
3160 devname);
3161 return 1;
3162 }
3163 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
3164 dl->disk.status = CONFIGURED_DISK;
3165
3166 /* if we are creating the first raid device update the family number */
3167 if (super->current_vol == 0) {
3168 __u32 sum;
3169 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
3170 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
3171
3172 if (!_dev || !_disk) {
3173 fprintf(stderr, Name ": BUG mpb setup error\n");
3174 return 1;
3175 }
3176 *_dev = *dev;
3177 *_disk = dl->disk;
3178 sum = random32();
3179 sum += __gen_imsm_checksum(mpb);
3180 mpb->family_num = __cpu_to_le32(sum);
3181 mpb->orig_family_num = mpb->family_num;
3182 }
3183
3184 return 0;
3185 }
3186
3187 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
3188 int fd, char *devname)
3189 {
3190 struct intel_super *super = st->sb;
3191 struct dl *dd;
3192 unsigned long long size;
3193 __u32 id;
3194 int rv;
3195 struct stat stb;
3196
3197 /* if we are on an RAID enabled platform check that the disk is
3198 * attached to the raid controller
3199 */
3200 if (super->hba && !disk_attached_to_hba(fd, super->hba)) {
3201 fprintf(stderr,
3202 Name ": %s is not attached to the raid controller: %s\n",
3203 devname ? : "disk", super->hba);
3204 return 1;
3205 }
3206
3207 if (super->current_vol >= 0)
3208 return add_to_super_imsm_volume(st, dk, fd, devname);
3209
3210 fstat(fd, &stb);
3211 dd = malloc(sizeof(*dd));
3212 if (!dd) {
3213 fprintf(stderr,
3214 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
3215 return 1;
3216 }
3217 memset(dd, 0, sizeof(*dd));
3218 dd->major = major(stb.st_rdev);
3219 dd->minor = minor(stb.st_rdev);
3220 dd->index = -1;
3221 dd->devname = devname ? strdup(devname) : NULL;
3222 dd->fd = fd;
3223 dd->e = NULL;
3224 rv = imsm_read_serial(fd, devname, dd->serial);
3225 if (rv) {
3226 fprintf(stderr,
3227 Name ": failed to retrieve scsi serial, aborting\n");
3228 free(dd);
3229 abort();
3230 }
3231
3232 get_dev_size(fd, NULL, &size);
3233 size /= 512;
3234 serialcpy(dd->disk.serial, dd->serial);
3235 dd->disk.total_blocks = __cpu_to_le32(size);
3236 dd->disk.status = SPARE_DISK;
3237 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
3238 dd->disk.scsi_id = __cpu_to_le32(id);
3239 else
3240 dd->disk.scsi_id = __cpu_to_le32(0);
3241
3242 if (st->update_tail) {
3243 dd->next = super->add;
3244 super->add = dd;
3245 } else {
3246 dd->next = super->disks;
3247 super->disks = dd;
3248 }
3249
3250 return 0;
3251 }
3252
3253 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
3254
3255 static union {
3256 char buf[512];
3257 struct imsm_super anchor;
3258 } spare_record __attribute__ ((aligned(512)));
3259
3260 /* spare records have their own family number and do not have any defined raid
3261 * devices
3262 */
3263 static int write_super_imsm_spares(struct intel_super *super, int doclose)
3264 {
3265 struct imsm_super *mpb = super->anchor;
3266 struct imsm_super *spare = &spare_record.anchor;
3267 __u32 sum;
3268 struct dl *d;
3269
3270 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
3271 spare->generation_num = __cpu_to_le32(1UL),
3272 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
3273 spare->num_disks = 1,
3274 spare->num_raid_devs = 0,
3275 spare->cache_size = mpb->cache_size,
3276 spare->pwr_cycle_count = __cpu_to_le32(1),
3277
3278 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
3279 MPB_SIGNATURE MPB_VERSION_RAID0);
3280
3281 for (d = super->disks; d; d = d->next) {
3282 if (d->index != -1)
3283 continue;
3284
3285 spare->disk[0] = d->disk;
3286 sum = __gen_imsm_checksum(spare);
3287 spare->family_num = __cpu_to_le32(sum);
3288 spare->orig_family_num = 0;
3289 sum = __gen_imsm_checksum(spare);
3290 spare->check_sum = __cpu_to_le32(sum);
3291
3292 if (store_imsm_mpb(d->fd, spare)) {
3293 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3294 __func__, d->major, d->minor, strerror(errno));
3295 return 1;
3296 }
3297 if (doclose) {
3298 close(d->fd);
3299 d->fd = -1;
3300 }
3301 }
3302
3303 return 0;
3304 }
3305
3306 static int write_super_imsm(struct intel_super *super, int doclose)
3307 {
3308 struct imsm_super *mpb = super->anchor;
3309 struct dl *d;
3310 __u32 generation;
3311 __u32 sum;
3312 int spares = 0;
3313 int i;
3314 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
3315
3316 /* 'generation' is incremented everytime the metadata is written */
3317 generation = __le32_to_cpu(mpb->generation_num);
3318 generation++;
3319 mpb->generation_num = __cpu_to_le32(generation);
3320
3321 /* fix up cases where previous mdadm releases failed to set
3322 * orig_family_num
3323 */
3324 if (mpb->orig_family_num == 0)
3325 mpb->orig_family_num = mpb->family_num;
3326
3327 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
3328 for (d = super->disks; d; d = d->next) {
3329 if (d->index == -1)
3330 spares++;
3331 else
3332 mpb->disk[d->index] = d->disk;
3333 }
3334 for (d = super->missing; d; d = d->next)
3335 mpb->disk[d->index] = d->disk;
3336
3337 for (i = 0; i < mpb->num_raid_devs; i++) {
3338 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3339
3340 imsm_copy_dev(dev, get_imsm_dev(super, i));
3341 mpb_size += sizeof_imsm_dev(dev, 0);
3342 }
3343 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
3344 mpb->mpb_size = __cpu_to_le32(mpb_size);
3345
3346 /* recalculate checksum */
3347 sum = __gen_imsm_checksum(mpb);
3348 mpb->check_sum = __cpu_to_le32(sum);
3349
3350 /* write the mpb for disks that compose raid devices */
3351 for (d = super->disks; d ; d = d->next) {
3352 if (d->index < 0)
3353 continue;
3354 if (store_imsm_mpb(d->fd, mpb))
3355 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3356 __func__, d->major, d->minor, strerror(errno));
3357 if (doclose) {
3358 close(d->fd);
3359 d->fd = -1;
3360 }
3361 }
3362
3363 if (spares)
3364 return write_super_imsm_spares(super, doclose);
3365
3366 return 0;
3367 }
3368
3369
3370 static int create_array(struct supertype *st, int dev_idx)
3371 {
3372 size_t len;
3373 struct imsm_update_create_array *u;
3374 struct intel_super *super = st->sb;
3375 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3376 struct imsm_map *map = get_imsm_map(dev, 0);
3377 struct disk_info *inf;
3378 struct imsm_disk *disk;
3379 int i;
3380
3381 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
3382 sizeof(*inf) * map->num_members;
3383 u = malloc(len);
3384 if (!u) {
3385 fprintf(stderr, "%s: failed to allocate update buffer\n",
3386 __func__);
3387 return 1;
3388 }
3389
3390 u->type = update_create_array;
3391 u->dev_idx = dev_idx;
3392 imsm_copy_dev(&u->dev, dev);
3393 inf = get_disk_info(u);
3394 for (i = 0; i < map->num_members; i++) {
3395 int idx = get_imsm_disk_idx(dev, i);
3396
3397 disk = get_imsm_disk(super, idx);
3398 serialcpy(inf[i].serial, disk->serial);
3399 }
3400 append_metadata_update(st, u, len);
3401
3402 return 0;
3403 }
3404
3405 static int _add_disk(struct supertype *st)
3406 {
3407 struct intel_super *super = st->sb;
3408 size_t len;
3409 struct imsm_update_add_disk *u;
3410
3411 if (!super->add)
3412 return 0;
3413
3414 len = sizeof(*u);
3415 u = malloc(len);
3416 if (!u) {
3417 fprintf(stderr, "%s: failed to allocate update buffer\n",
3418 __func__);
3419 return 1;
3420 }
3421
3422 u->type = update_add_disk;
3423 append_metadata_update(st, u, len);
3424
3425 return 0;
3426 }
3427
3428 static int write_init_super_imsm(struct supertype *st)
3429 {
3430 struct intel_super *super = st->sb;
3431 int current_vol = super->current_vol;
3432
3433 /* we are done with current_vol reset it to point st at the container */
3434 super->current_vol = -1;
3435
3436 if (st->update_tail) {
3437 /* queue the recently created array / added disk
3438 * as a metadata update */
3439 struct dl *d;
3440 int rv;
3441
3442 /* determine if we are creating a volume or adding a disk */
3443 if (current_vol < 0) {
3444 /* in the add disk case we are running in mdmon
3445 * context, so don't close fd's
3446 */
3447 return _add_disk(st);
3448 } else
3449 rv = create_array(st, current_vol);
3450
3451 for (d = super->disks; d ; d = d->next) {
3452 close(d->fd);
3453 d->fd = -1;
3454 }
3455
3456 return rv;
3457 } else {
3458 struct dl *d;
3459 for (d = super->disks; d; d = d->next)
3460 Kill(d->devname, NULL, 0, 1, 1);
3461 return write_super_imsm(st->sb, 1);
3462 }
3463 }
3464 #endif
3465
3466 static int store_super_imsm(struct supertype *st, int fd)
3467 {
3468 struct intel_super *super = st->sb;
3469 struct imsm_super *mpb = super ? super->anchor : NULL;
3470
3471 if (!mpb)
3472 return 1;
3473
3474 #ifndef MDASSEMBLE
3475 return store_imsm_mpb(fd, mpb);
3476 #else
3477 return 1;
3478 #endif
3479 }
3480
3481 static int imsm_bbm_log_size(struct imsm_super *mpb)
3482 {
3483 return __le32_to_cpu(mpb->bbm_log_size);
3484 }
3485
3486 #ifndef MDASSEMBLE
3487 static int validate_geometry_imsm_container(struct supertype *st, int level,
3488 int layout, int raiddisks, int chunk,
3489 unsigned long long size, char *dev,
3490 unsigned long long *freesize,
3491 int verbose)
3492 {
3493 int fd;
3494 unsigned long long ldsize;
3495 const struct imsm_orom *orom;
3496
3497 if (level != LEVEL_CONTAINER)
3498 return 0;
3499 if (!dev)
3500 return 1;
3501
3502 if (check_env("IMSM_NO_PLATFORM"))
3503 orom = NULL;
3504 else
3505 orom = find_imsm_orom();
3506 if (orom && raiddisks > orom->tds) {
3507 if (verbose)
3508 fprintf(stderr, Name ": %d exceeds maximum number of"
3509 " platform supported disks: %d\n",
3510 raiddisks, orom->tds);
3511 return 0;
3512 }
3513
3514 fd = open(dev, O_RDONLY|O_EXCL, 0);
3515 if (fd < 0) {
3516 if (verbose)
3517 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
3518 dev, strerror(errno));
3519 return 0;
3520 }
3521 if (!get_dev_size(fd, dev, &ldsize)) {
3522 close(fd);
3523 return 0;
3524 }
3525 close(fd);
3526
3527 *freesize = avail_size_imsm(st, ldsize >> 9);
3528
3529 return 1;
3530 }
3531
3532 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
3533 {
3534 const unsigned long long base_start = e[*idx].start;
3535 unsigned long long end = base_start + e[*idx].size;
3536 int i;
3537
3538 if (base_start == end)
3539 return 0;
3540
3541 *idx = *idx + 1;
3542 for (i = *idx; i < num_extents; i++) {
3543 /* extend overlapping extents */
3544 if (e[i].start >= base_start &&
3545 e[i].start <= end) {
3546 if (e[i].size == 0)
3547 return 0;
3548 if (e[i].start + e[i].size > end)
3549 end = e[i].start + e[i].size;
3550 } else if (e[i].start > end) {
3551 *idx = i;
3552 break;
3553 }
3554 }
3555
3556 return end - base_start;
3557 }
3558
3559 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
3560 {
3561 /* build a composite disk with all known extents and generate a new
3562 * 'maxsize' given the "all disks in an array must share a common start
3563 * offset" constraint
3564 */
3565 struct extent *e = calloc(sum_extents, sizeof(*e));
3566 struct dl *dl;
3567 int i, j;
3568 int start_extent;
3569 unsigned long long pos;
3570 unsigned long long start = 0;
3571 unsigned long long maxsize;
3572 unsigned long reserve;
3573
3574 if (!e)
3575 return 0;
3576
3577 /* coalesce and sort all extents. also, check to see if we need to
3578 * reserve space between member arrays
3579 */
3580 j = 0;
3581 for (dl = super->disks; dl; dl = dl->next) {
3582 if (!dl->e)
3583 continue;
3584 for (i = 0; i < dl->extent_cnt; i++)
3585 e[j++] = dl->e[i];
3586 }
3587 qsort(e, sum_extents, sizeof(*e), cmp_extent);
3588
3589 /* merge extents */
3590 i = 0;
3591 j = 0;
3592 while (i < sum_extents) {
3593 e[j].start = e[i].start;
3594 e[j].size = find_size(e, &i, sum_extents);
3595 j++;
3596 if (e[j-1].size == 0)
3597 break;
3598 }
3599
3600 pos = 0;
3601 maxsize = 0;
3602 start_extent = 0;
3603 i = 0;
3604 do {
3605 unsigned long long esize;
3606
3607 esize = e[i].start - pos;
3608 if (esize >= maxsize) {
3609 maxsize = esize;
3610 start = pos;
3611 start_extent = i;
3612 }
3613 pos = e[i].start + e[i].size;
3614 i++;
3615 } while (e[i-1].size);
3616 free(e);
3617
3618 if (maxsize == 0)
3619 return 0;
3620
3621 /* FIXME assumes volume at offset 0 is the first volume in a
3622 * container
3623 */
3624 if (start_extent > 0)
3625 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
3626 else
3627 reserve = 0;
3628
3629 if (maxsize < reserve)
3630 return 0;
3631
3632 super->create_offset = ~((__u32) 0);
3633 if (start + reserve > super->create_offset)
3634 return 0; /* start overflows create_offset */
3635 super->create_offset = start + reserve;
3636
3637 return maxsize - reserve;
3638 }
3639
3640 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
3641 {
3642 if (level < 0 || level == 6 || level == 4)
3643 return 0;
3644
3645 /* if we have an orom prevent invalid raid levels */
3646 if (orom)
3647 switch (level) {
3648 case 0: return imsm_orom_has_raid0(orom);
3649 case 1:
3650 if (raiddisks > 2)
3651 return imsm_orom_has_raid1e(orom);
3652 return imsm_orom_has_raid1(orom) && raiddisks == 2;
3653 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
3654 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
3655 }
3656 else
3657 return 1; /* not on an Intel RAID platform so anything goes */
3658
3659 return 0;
3660 }
3661
3662 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
3663 static int
3664 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
3665 int raiddisks, int chunk, int verbose)
3666 {
3667 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
3668 pr_vrb(": platform does not support raid%d with %d disk%s\n",
3669 level, raiddisks, raiddisks > 1 ? "s" : "");
3670 return 0;
3671 }
3672 if (super->orom && level != 1 &&
3673 !imsm_orom_has_chunk(super->orom, chunk)) {
3674 pr_vrb(": platform does not support a chunk size of: %d\n", chunk);
3675 return 0;
3676 }
3677 if (layout != imsm_level_to_layout(level)) {
3678 if (level == 5)
3679 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
3680 else if (level == 10)
3681 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
3682 else
3683 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
3684 layout, level);
3685 return 0;
3686 }
3687
3688 return 1;
3689 }
3690
3691 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
3692 * FIX ME add ahci details
3693 */
3694 static int validate_geometry_imsm_volume(struct supertype *st, int level,
3695 int layout, int raiddisks, int chunk,
3696 unsigned long long size, char *dev,
3697 unsigned long long *freesize,
3698 int verbose)
3699 {
3700 struct stat stb;
3701 struct intel_super *super = st->sb;
3702 struct imsm_super *mpb = super->anchor;
3703 struct dl *dl;
3704 unsigned long long pos = 0;
3705 unsigned long long maxsize;
3706 struct extent *e;
3707 int i;
3708
3709 /* We must have the container info already read in. */
3710 if (!super)
3711 return 0;
3712
3713 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose))
3714 return 0;
3715
3716 if (!dev) {
3717 /* General test: make sure there is space for
3718 * 'raiddisks' device extents of size 'size' at a given
3719 * offset
3720 */
3721 unsigned long long minsize = size;
3722 unsigned long long start_offset = MaxSector;
3723 int dcnt = 0;
3724 if (minsize == 0)
3725 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
3726 for (dl = super->disks; dl ; dl = dl->next) {
3727 int found = 0;
3728
3729 pos = 0;
3730 i = 0;
3731 e = get_extents(super, dl);
3732 if (!e) continue;
3733 do {
3734 unsigned long long esize;
3735 esize = e[i].start - pos;
3736 if (esize >= minsize)
3737 found = 1;
3738 if (found && start_offset == MaxSector) {
3739 start_offset = pos;
3740 break;
3741 } else if (found && pos != start_offset) {
3742 found = 0;
3743 break;
3744 }
3745 pos = e[i].start + e[i].size;
3746 i++;
3747 } while (e[i-1].size);
3748 if (found)
3749 dcnt++;
3750 free(e);
3751 }
3752 if (dcnt < raiddisks) {
3753 if (verbose)
3754 fprintf(stderr, Name ": imsm: Not enough "
3755 "devices with space for this array "
3756 "(%d < %d)\n",
3757 dcnt, raiddisks);
3758 return 0;
3759 }
3760 return 1;
3761 }
3762
3763 /* This device must be a member of the set */
3764 if (stat(dev, &stb) < 0)
3765 return 0;
3766 if ((S_IFMT & stb.st_mode) != S_IFBLK)
3767 return 0;
3768 for (dl = super->disks ; dl ; dl = dl->next) {
3769 if (dl->major == major(stb.st_rdev) &&
3770 dl->minor == minor(stb.st_rdev))
3771 break;
3772 }
3773 if (!dl) {
3774 if (verbose)
3775 fprintf(stderr, Name ": %s is not in the "
3776 "same imsm set\n", dev);
3777 return 0;
3778 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
3779 /* If a volume is present then the current creation attempt
3780 * cannot incorporate new spares because the orom may not
3781 * understand this configuration (all member disks must be
3782 * members of each array in the container).
3783 */
3784 fprintf(stderr, Name ": %s is a spare and a volume"
3785 " is already defined for this container\n", dev);
3786 fprintf(stderr, Name ": The option-rom requires all member"
3787 " disks to be a member of all volumes\n");
3788 return 0;
3789 }
3790
3791 /* retrieve the largest free space block */
3792 e = get_extents(super, dl);
3793 maxsize = 0;
3794 i = 0;
3795 if (e) {
3796 do {
3797 unsigned long long esize;
3798
3799 esize = e[i].start - pos;
3800 if (esize >= maxsize)
3801 maxsize = esize;
3802 pos = e[i].start + e[i].size;
3803 i++;
3804 } while (e[i-1].size);
3805 dl->e = e;
3806 dl->extent_cnt = i;
3807 } else {
3808 if (verbose)
3809 fprintf(stderr, Name ": unable to determine free space for: %s\n",
3810 dev);
3811 return 0;
3812 }
3813 if (maxsize < size) {
3814 if (verbose)
3815 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
3816 dev, maxsize, size);
3817 return 0;
3818 }
3819
3820 /* count total number of extents for merge */
3821 i = 0;
3822 for (dl = super->disks; dl; dl = dl->next)
3823 if (dl->e)
3824 i += dl->extent_cnt;
3825
3826 maxsize = merge_extents(super, i);
3827 if (maxsize < size || maxsize == 0) {
3828 if (verbose)
3829 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
3830 maxsize, size);
3831 return 0;
3832 }
3833
3834 *freesize = maxsize;
3835
3836 return 1;
3837 }
3838
3839 static int reserve_space(struct supertype *st, int raiddisks,
3840 unsigned long long size, int chunk,
3841 unsigned long long *freesize)
3842 {
3843 struct intel_super *super = st->sb;
3844 struct imsm_super *mpb = super->anchor;
3845 struct dl *dl;
3846 int i;
3847 int extent_cnt;
3848 struct extent *e;
3849 unsigned long long maxsize;
3850 unsigned long long minsize;
3851 int cnt;
3852 int used;
3853
3854 /* find the largest common start free region of the possible disks */
3855 used = 0;
3856 extent_cnt = 0;
3857 cnt = 0;
3858 for (dl = super->disks; dl; dl = dl->next) {
3859 dl->raiddisk = -1;
3860
3861 if (dl->index >= 0)
3862 used++;
3863
3864 /* don't activate new spares if we are orom constrained
3865 * and there is already a volume active in the container
3866 */
3867 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
3868 continue;
3869
3870 e = get_extents(super, dl);
3871 if (!e)
3872 continue;
3873 for (i = 1; e[i-1].size; i++)
3874 ;
3875 dl->e = e;
3876 dl->extent_cnt = i;
3877 extent_cnt += i;
3878 cnt++;
3879 }
3880
3881 maxsize = merge_extents(super, extent_cnt);
3882 minsize = size;
3883 if (size == 0)
3884 minsize = chunk;
3885
3886 if (cnt < raiddisks ||
3887 (super->orom && used && used != raiddisks) ||
3888 maxsize < minsize ||
3889 maxsize == 0) {
3890 fprintf(stderr, Name ": not enough devices with space to create array.\n");
3891 return 0; /* No enough free spaces large enough */
3892 }
3893
3894 if (size == 0) {
3895 size = maxsize;
3896 if (chunk) {
3897 size /= chunk;
3898 size *= chunk;
3899 }
3900 }
3901
3902 cnt = 0;
3903 for (dl = super->disks; dl; dl = dl->next)
3904 if (dl->e)
3905 dl->raiddisk = cnt++;
3906
3907 *freesize = size;
3908
3909 return 1;
3910 }
3911
3912 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
3913 int raiddisks, int chunk, unsigned long long size,
3914 char *dev, unsigned long long *freesize,
3915 int verbose)
3916 {
3917 int fd, cfd;
3918 struct mdinfo *sra;
3919 int is_member = 0;
3920
3921 /* if given unused devices create a container
3922 * if given given devices in a container create a member volume
3923 */
3924 if (level == LEVEL_CONTAINER) {
3925 /* Must be a fresh device to add to a container */
3926 return validate_geometry_imsm_container(st, level, layout,
3927 raiddisks, chunk, size,
3928 dev, freesize,
3929 verbose);
3930 }
3931
3932 if (!dev) {
3933 if (st->sb && freesize) {
3934 /* we are being asked to automatically layout a
3935 * new volume based on the current contents of
3936 * the container. If the the parameters can be
3937 * satisfied reserve_space will record the disks,
3938 * start offset, and size of the volume to be
3939 * created. add_to_super and getinfo_super
3940 * detect when autolayout is in progress.
3941 */
3942 if (!validate_geometry_imsm_orom(st->sb, level, layout,
3943 raiddisks, chunk,
3944 verbose))
3945 return 0;
3946 return reserve_space(st, raiddisks, size, chunk, freesize);
3947 }
3948 return 1;
3949 }
3950 if (st->sb) {
3951 /* creating in a given container */
3952 return validate_geometry_imsm_volume(st, level, layout,
3953 raiddisks, chunk, size,
3954 dev, freesize, verbose);
3955 }
3956
3957 /* This device needs to be a device in an 'imsm' container */
3958 fd = open(dev, O_RDONLY|O_EXCL, 0);
3959 if (fd >= 0) {
3960 if (verbose)
3961 fprintf(stderr,
3962 Name ": Cannot create this array on device %s\n",
3963 dev);
3964 close(fd);
3965 return 0;
3966 }
3967 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
3968 if (verbose)
3969 fprintf(stderr, Name ": Cannot open %s: %s\n",
3970 dev, strerror(errno));
3971 return 0;
3972 }
3973 /* Well, it is in use by someone, maybe an 'imsm' container. */
3974 cfd = open_container(fd);
3975 close(fd);
3976 if (cfd < 0) {
3977 if (verbose)
3978 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
3979 dev);
3980 return 0;
3981 }
3982 sra = sysfs_read(cfd, 0, GET_VERSION);
3983 if (sra && sra->array.major_version == -1 &&
3984 strcmp(sra->text_version, "imsm") == 0)
3985 is_member = 1;
3986 sysfs_free(sra);
3987 if (is_member) {
3988 /* This is a member of a imsm container. Load the container
3989 * and try to create a volume
3990 */
3991 struct intel_super *super;
3992
3993 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
3994 st->sb = super;
3995 st->container_dev = fd2devnum(cfd);
3996 close(cfd);
3997 return validate_geometry_imsm_volume(st, level, layout,
3998 raiddisks, chunk,
3999 size, dev,
4000 freesize, verbose);
4001 }
4002 }
4003
4004 if (verbose)
4005 fprintf(stderr, Name ": failed container membership check\n");
4006
4007 close(cfd);
4008 return 0;
4009 }
4010 #endif /* MDASSEMBLE */
4011
4012 static int is_rebuilding(struct imsm_dev *dev)
4013 {
4014 struct imsm_map *migr_map;
4015
4016 if (!dev->vol.migr_state)
4017 return 0;
4018
4019 if (migr_type(dev) != MIGR_REBUILD)
4020 return 0;
4021
4022 migr_map = get_imsm_map(dev, 1);
4023
4024 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
4025 return 1;
4026 else
4027 return 0;
4028 }
4029
4030 static void update_recovery_start(struct imsm_dev *dev, struct mdinfo *array)
4031 {
4032 struct mdinfo *rebuild = NULL;
4033 struct mdinfo *d;
4034 __u32 units;
4035
4036 if (!is_rebuilding(dev))
4037 return;
4038
4039 /* Find the rebuild target, but punt on the dual rebuild case */
4040 for (d = array->devs; d; d = d->next)
4041 if (d->recovery_start == 0) {
4042 if (rebuild)
4043 return;
4044 rebuild = d;
4045 }
4046
4047 units = __le32_to_cpu(dev->vol.curr_migr_unit);
4048 rebuild->recovery_start = units * blocks_per_migr_unit(dev);
4049 }
4050
4051
4052 static struct mdinfo *container_content_imsm(struct supertype *st)
4053 {
4054 /* Given a container loaded by load_super_imsm_all,
4055 * extract information about all the arrays into
4056 * an mdinfo tree.
4057 *
4058 * For each imsm_dev create an mdinfo, fill it in,
4059 * then look for matching devices in super->disks
4060 * and create appropriate device mdinfo.
4061 */
4062 struct intel_super *super = st->sb;
4063 struct imsm_super *mpb = super->anchor;
4064 struct mdinfo *rest = NULL;
4065 int i;
4066
4067 /* do not assemble arrays that might have bad blocks */
4068 if (imsm_bbm_log_size(super->anchor)) {
4069 fprintf(stderr, Name ": BBM log found in metadata. "
4070 "Cannot activate array(s).\n");
4071 return NULL;
4072 }
4073
4074 for (i = 0; i < mpb->num_raid_devs; i++) {
4075 struct imsm_dev *dev = get_imsm_dev(super, i);
4076 struct imsm_map *map = get_imsm_map(dev, 0);
4077 struct mdinfo *this;
4078 int slot;
4079
4080 /* do not publish arrays that are in the middle of an
4081 * unsupported migration
4082 */
4083 if (dev->vol.migr_state &&
4084 (migr_type(dev) == MIGR_GEN_MIGR ||
4085 migr_type(dev) == MIGR_STATE_CHANGE)) {
4086 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
4087 " unsupported migration in progress\n",
4088 dev->volume);
4089 continue;
4090 }
4091
4092 this = malloc(sizeof(*this));
4093 if (!this) {
4094 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
4095 sizeof(*this));
4096 break;
4097 }
4098 memset(this, 0, sizeof(*this));
4099 this->next = rest;
4100
4101 super->current_vol = i;
4102 getinfo_super_imsm_volume(st, this);
4103 for (slot = 0 ; slot < map->num_members; slot++) {
4104 unsigned long long recovery_start;
4105 struct mdinfo *info_d;
4106 struct dl *d;
4107 int idx;
4108 int skip;
4109 __u32 ord;
4110
4111 skip = 0;
4112 idx = get_imsm_disk_idx(dev, slot);
4113 ord = get_imsm_ord_tbl_ent(dev, slot);
4114 for (d = super->disks; d ; d = d->next)
4115 if (d->index == idx)
4116 break;
4117
4118 recovery_start = MaxSector;
4119 if (d == NULL)
4120 skip = 1;
4121 if (d && is_failed(&d->disk))
4122 skip = 1;
4123 if (ord & IMSM_ORD_REBUILD)
4124 recovery_start = 0;
4125
4126 /*
4127 * if we skip some disks the array will be assmebled degraded;
4128 * reset resync start to avoid a dirty-degraded
4129 * situation when performing the intial sync
4130 *
4131 * FIXME handle dirty degraded
4132 */
4133 if ((skip || recovery_start == 0) && !dev->vol.dirty)
4134 this->resync_start = MaxSector;
4135 if (skip)
4136 continue;
4137
4138 info_d = calloc(1, sizeof(*info_d));
4139 if (!info_d) {
4140 fprintf(stderr, Name ": failed to allocate disk"
4141 " for volume %.16s\n", dev->volume);
4142 info_d = this->devs;
4143 while (info_d) {
4144 struct mdinfo *d = info_d->next;
4145
4146 free(info_d);
4147 info_d = d;
4148 }
4149 free(this);
4150 this = rest;
4151 break;
4152 }
4153 info_d->next = this->devs;
4154 this->devs = info_d;
4155
4156 info_d->disk.number = d->index;
4157 info_d->disk.major = d->major;
4158 info_d->disk.minor = d->minor;
4159 info_d->disk.raid_disk = slot;
4160 info_d->recovery_start = recovery_start;
4161
4162 if (info_d->recovery_start == MaxSector)
4163 this->array.working_disks++;
4164
4165 info_d->events = __le32_to_cpu(mpb->generation_num);
4166 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
4167 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
4168 }
4169 /* now that the disk list is up-to-date fixup recovery_start */
4170 update_recovery_start(dev, this);
4171 rest = this;
4172 }
4173
4174 return rest;
4175 }
4176
4177
4178 #ifndef MDASSEMBLE
4179 static int imsm_open_new(struct supertype *c, struct active_array *a,
4180 char *inst)
4181 {
4182 struct intel_super *super = c->sb;
4183 struct imsm_super *mpb = super->anchor;
4184
4185 if (atoi(inst) >= mpb->num_raid_devs) {
4186 fprintf(stderr, "%s: subarry index %d, out of range\n",
4187 __func__, atoi(inst));
4188 return -ENODEV;
4189 }
4190
4191 dprintf("imsm: open_new %s\n", inst);
4192 a->info.container_member = atoi(inst);
4193 return 0;
4194 }
4195
4196 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
4197 {
4198 struct imsm_map *map = get_imsm_map(dev, 0);
4199
4200 if (!failed)
4201 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
4202 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
4203
4204 switch (get_imsm_raid_level(map)) {
4205 case 0:
4206 return IMSM_T_STATE_FAILED;
4207 break;
4208 case 1:
4209 if (failed < map->num_members)
4210 return IMSM_T_STATE_DEGRADED;
4211 else
4212 return IMSM_T_STATE_FAILED;
4213 break;
4214 case 10:
4215 {
4216 /**
4217 * check to see if any mirrors have failed, otherwise we
4218 * are degraded. Even numbered slots are mirrored on
4219 * slot+1
4220 */
4221 int i;
4222 /* gcc -Os complains that this is unused */
4223 int insync = insync;
4224
4225 for (i = 0; i < map->num_members; i++) {
4226 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
4227 int idx = ord_to_idx(ord);
4228 struct imsm_disk *disk;
4229
4230 /* reset the potential in-sync count on even-numbered
4231 * slots. num_copies is always 2 for imsm raid10
4232 */
4233 if ((i & 1) == 0)
4234 insync = 2;
4235
4236 disk = get_imsm_disk(super, idx);
4237 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
4238 insync--;
4239
4240 /* no in-sync disks left in this mirror the
4241 * array has failed
4242 */
4243 if (insync == 0)
4244 return IMSM_T_STATE_FAILED;
4245 }
4246
4247 return IMSM_T_STATE_DEGRADED;
4248 }
4249 case 5:
4250 if (failed < 2)
4251 return IMSM_T_STATE_DEGRADED;
4252 else
4253 return IMSM_T_STATE_FAILED;
4254 break;
4255 default:
4256 break;
4257 }
4258
4259 return map->map_state;
4260 }
4261
4262 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
4263 {
4264 int i;
4265 int failed = 0;
4266 struct imsm_disk *disk;
4267 struct imsm_map *map = get_imsm_map(dev, 0);
4268 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
4269 __u32 ord;
4270 int idx;
4271
4272 /* at the beginning of migration we set IMSM_ORD_REBUILD on
4273 * disks that are being rebuilt. New failures are recorded to
4274 * map[0]. So we look through all the disks we started with and
4275 * see if any failures are still present, or if any new ones
4276 * have arrived
4277 *
4278 * FIXME add support for online capacity expansion and
4279 * raid-level-migration
4280 */
4281 for (i = 0; i < prev->num_members; i++) {
4282 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
4283 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
4284 idx = ord_to_idx(ord);
4285
4286 disk = get_imsm_disk(super, idx);
4287 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
4288 failed++;
4289 }
4290
4291 return failed;
4292 }
4293
4294 static int is_resyncing(struct imsm_dev *dev)
4295 {
4296 struct imsm_map *migr_map;
4297
4298 if (!dev->vol.migr_state)
4299 return 0;
4300
4301 if (migr_type(dev) == MIGR_INIT ||
4302 migr_type(dev) == MIGR_REPAIR)
4303 return 1;
4304
4305 migr_map = get_imsm_map(dev, 1);
4306
4307 if (migr_map->map_state == IMSM_T_STATE_NORMAL)
4308 return 1;
4309 else
4310 return 0;
4311 }
4312
4313 /* return true if we recorded new information */
4314 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
4315 {
4316 __u32 ord;
4317 int slot;
4318 struct imsm_map *map;
4319
4320 /* new failures are always set in map[0] */
4321 map = get_imsm_map(dev, 0);
4322
4323 slot = get_imsm_disk_slot(map, idx);
4324 if (slot < 0)
4325 return 0;
4326
4327 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
4328 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
4329 return 0;
4330
4331 disk->status |= FAILED_DISK;
4332 disk->status &= ~CONFIGURED_DISK;
4333 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
4334 if (~map->failed_disk_num == 0)
4335 map->failed_disk_num = slot;
4336 return 1;
4337 }
4338
4339 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
4340 {
4341 mark_failure(dev, disk, idx);
4342
4343 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
4344 return;
4345
4346 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4347 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
4348 }
4349
4350 /* Handle dirty -> clean transititions and resync. Degraded and rebuild
4351 * states are handled in imsm_set_disk() with one exception, when a
4352 * resync is stopped due to a new failure this routine will set the
4353 * 'degraded' state for the array.
4354 */
4355 static int imsm_set_array_state(struct active_array *a, int consistent)
4356 {
4357 int inst = a->info.container_member;
4358 struct intel_super *super = a->container->sb;
4359 struct imsm_dev *dev = get_imsm_dev(super, inst);
4360 struct imsm_map *map = get_imsm_map(dev, 0);
4361 int failed = imsm_count_failed(super, dev);
4362 __u8 map_state = imsm_check_degraded(super, dev, failed);
4363 __u32 blocks_per_unit;
4364
4365 /* before we activate this array handle any missing disks */
4366 if (consistent == 2 && super->missing) {
4367 struct dl *dl;
4368
4369 dprintf("imsm: mark missing\n");
4370 end_migration(dev, map_state);
4371 for (dl = super->missing; dl; dl = dl->next)
4372 mark_missing(dev, &dl->disk, dl->index);
4373 super->updates_pending++;
4374 }
4375
4376 if (consistent == 2 &&
4377 (!is_resync_complete(&a->info) ||
4378 map_state != IMSM_T_STATE_NORMAL ||
4379 dev->vol.migr_state))
4380 consistent = 0;
4381
4382 if (is_resync_complete(&a->info)) {
4383 /* complete intialization / resync,
4384 * recovery and interrupted recovery is completed in
4385 * ->set_disk
4386 */
4387 if (is_resyncing(dev)) {
4388 dprintf("imsm: mark resync done\n");
4389 end_migration(dev, map_state);
4390 super->updates_pending++;
4391 }
4392 } else if (!is_resyncing(dev) && !failed) {
4393 /* mark the start of the init process if nothing is failed */
4394 dprintf("imsm: mark resync start\n");
4395 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
4396 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_INIT);
4397 else
4398 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
4399 super->updates_pending++;
4400 }
4401
4402 /* check if we can update curr_migr_unit from resync_start, recovery_start */
4403 blocks_per_unit = blocks_per_migr_unit(dev);
4404 if (blocks_per_unit && failed <= 1) {
4405 __u32 units32;
4406 __u64 units;
4407
4408 if (migr_type(dev) == MIGR_REBUILD)
4409 units = min_recovery_start(&a->info) / blocks_per_unit;
4410 else
4411 units = a->info.resync_start / blocks_per_unit;
4412 units32 = units;
4413
4414 /* check that we did not overflow 32-bits, and that
4415 * curr_migr_unit needs updating
4416 */
4417 if (units32 == units &&
4418 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
4419 dprintf("imsm: mark checkpoint (%u)\n", units32);
4420 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
4421 super->updates_pending++;
4422 }
4423 }
4424
4425 /* mark dirty / clean */
4426 if (dev->vol.dirty != !consistent) {
4427 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
4428 if (consistent)
4429 dev->vol.dirty = 0;
4430 else
4431 dev->vol.dirty = 1;
4432 super->updates_pending++;
4433 }
4434 return consistent;
4435 }
4436
4437 static void imsm_set_disk(struct active_array *a, int n, int state)
4438 {
4439 int inst = a->info.container_member;
4440 struct intel_super *super = a->container->sb;
4441 struct imsm_dev *dev = get_imsm_dev(super, inst);
4442 struct imsm_map *map = get_imsm_map(dev, 0);
4443 struct imsm_disk *disk;
4444 int failed;
4445 __u32 ord;
4446 __u8 map_state;
4447
4448 if (n > map->num_members)
4449 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
4450 n, map->num_members - 1);
4451
4452 if (n < 0)
4453 return;
4454
4455 dprintf("imsm: set_disk %d:%x\n", n, state);
4456
4457 ord = get_imsm_ord_tbl_ent(dev, n);
4458 disk = get_imsm_disk(super, ord_to_idx(ord));
4459
4460 /* check for new failures */
4461 if (state & DS_FAULTY) {
4462 if (mark_failure(dev, disk, ord_to_idx(ord)))
4463 super->updates_pending++;
4464 }
4465
4466 /* check if in_sync */
4467 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
4468 struct imsm_map *migr_map = get_imsm_map(dev, 1);
4469
4470 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
4471 super->updates_pending++;
4472 }
4473
4474 failed = imsm_count_failed(super, dev);
4475 map_state = imsm_check_degraded(super, dev, failed);
4476
4477 /* check if recovery complete, newly degraded, or failed */
4478 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
4479 end_migration(dev, map_state);
4480 map = get_imsm_map(dev, 0);
4481 map->failed_disk_num = ~0;
4482 super->updates_pending++;
4483 } else if (map_state == IMSM_T_STATE_DEGRADED &&
4484 map->map_state != map_state &&
4485 !dev->vol.migr_state) {
4486 dprintf("imsm: mark degraded\n");
4487 map->map_state = map_state;
4488 super->updates_pending++;
4489 } else if (map_state == IMSM_T_STATE_FAILED &&
4490 map->map_state != map_state) {
4491 dprintf("imsm: mark failed\n");
4492 end_migration(dev, map_state);
4493 super->updates_pending++;
4494 }
4495 }
4496
4497 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
4498 {
4499 void *buf = mpb;
4500 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
4501 unsigned long long dsize;
4502 unsigned long long sectors;
4503
4504 get_dev_size(fd, NULL, &dsize);
4505
4506 if (mpb_size > 512) {
4507 /* -1 to account for anchor */
4508 sectors = mpb_sectors(mpb) - 1;
4509
4510 /* write the extended mpb to the sectors preceeding the anchor */
4511 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
4512 return 1;
4513
4514 if (write(fd, buf + 512, 512 * sectors) != 512 * sectors)
4515 return 1;
4516 }
4517
4518 /* first block is stored on second to last sector of the disk */
4519 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
4520 return 1;
4521
4522 if (write(fd, buf, 512) != 512)
4523 return 1;
4524
4525 return 0;
4526 }
4527
4528 static void imsm_sync_metadata(struct supertype *container)
4529 {
4530 struct intel_super *super = container->sb;
4531
4532 if (!super->updates_pending)
4533 return;
4534
4535 write_super_imsm(super, 0);
4536
4537 super->updates_pending = 0;
4538 }
4539
4540 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
4541 {
4542 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
4543 int i = get_imsm_disk_idx(dev, idx);
4544 struct dl *dl;
4545
4546 for (dl = super->disks; dl; dl = dl->next)
4547 if (dl->index == i)
4548 break;
4549
4550 if (dl && is_failed(&dl->disk))
4551 dl = NULL;
4552
4553 if (dl)
4554 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
4555
4556 return dl;
4557 }
4558
4559 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
4560 struct active_array *a, int activate_new)
4561 {
4562 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
4563 int idx = get_imsm_disk_idx(dev, slot);
4564 struct imsm_super *mpb = super->anchor;
4565 struct imsm_map *map;
4566 unsigned long long pos;
4567 struct mdinfo *d;
4568 struct extent *ex;
4569 int i, j;
4570 int found;
4571 __u32 array_start;
4572 __u32 array_end;
4573 struct dl *dl;
4574
4575 for (dl = super->disks; dl; dl = dl->next) {
4576 /* If in this array, skip */
4577 for (d = a->info.devs ; d ; d = d->next)
4578 if (d->state_fd >= 0 &&
4579 d->disk.major == dl->major &&
4580 d->disk.minor == dl->minor) {
4581 dprintf("%x:%x already in array\n", dl->major, dl->minor);
4582 break;
4583 }
4584 if (d)
4585 continue;
4586
4587 /* skip in use or failed drives */
4588 if (is_failed(&dl->disk) || idx == dl->index ||
4589 dl->index == -2) {
4590 dprintf("%x:%x status (failed: %d index: %d)\n",
4591 dl->major, dl->minor, is_failed(&dl->disk), idx);
4592 continue;
4593 }
4594
4595 /* skip pure spares when we are looking for partially
4596 * assimilated drives
4597 */
4598 if (dl->index == -1 && !activate_new)
4599 continue;
4600
4601 /* Does this unused device have the requisite free space?
4602 * It needs to be able to cover all member volumes
4603 */
4604 ex = get_extents(super, dl);
4605 if (!ex) {
4606 dprintf("cannot get extents\n");
4607 continue;
4608 }
4609 for (i = 0; i < mpb->num_raid_devs; i++) {
4610 dev = get_imsm_dev(super, i);
4611 map = get_imsm_map(dev, 0);
4612
4613 /* check if this disk is already a member of
4614 * this array
4615 */
4616 if (get_imsm_disk_slot(map, dl->index) >= 0)
4617 continue;
4618
4619 found = 0;
4620 j = 0;
4621 pos = 0;
4622 array_start = __le32_to_cpu(map->pba_of_lba0);
4623 array_end = array_start +
4624 __le32_to_cpu(map->blocks_per_member) - 1;
4625
4626 do {
4627 /* check that we can start at pba_of_lba0 with
4628 * blocks_per_member of space
4629 */
4630 if (array_start >= pos && array_end < ex[j].start) {
4631 found = 1;
4632 break;
4633 }
4634 pos = ex[j].start + ex[j].size;
4635 j++;
4636 } while (ex[j-1].size);
4637
4638 if (!found)
4639 break;
4640 }
4641
4642 free(ex);
4643 if (i < mpb->num_raid_devs) {
4644 dprintf("%x:%x does not have %u to %u available\n",
4645 dl->major, dl->minor, array_start, array_end);
4646 /* No room */
4647 continue;
4648 }
4649 return dl;
4650 }
4651
4652 return dl;
4653 }
4654
4655 static struct mdinfo *imsm_activate_spare(struct active_array *a,
4656 struct metadata_update **updates)
4657 {
4658 /**
4659 * Find a device with unused free space and use it to replace a
4660 * failed/vacant region in an array. We replace failed regions one a
4661 * array at a time. The result is that a new spare disk will be added
4662 * to the first failed array and after the monitor has finished
4663 * propagating failures the remainder will be consumed.
4664 *
4665 * FIXME add a capability for mdmon to request spares from another
4666 * container.
4667 */
4668
4669 struct intel_super *super = a->container->sb;
4670 int inst = a->info.container_member;
4671 struct imsm_dev *dev = get_imsm_dev(super, inst);
4672 struct imsm_map *map = get_imsm_map(dev, 0);
4673 int failed = a->info.array.raid_disks;
4674 struct mdinfo *rv = NULL;
4675 struct mdinfo *d;
4676 struct mdinfo *di;
4677 struct metadata_update *mu;
4678 struct dl *dl;
4679 struct imsm_update_activate_spare *u;
4680 int num_spares = 0;
4681 int i;
4682
4683 for (d = a->info.devs ; d ; d = d->next) {
4684 if ((d->curr_state & DS_FAULTY) &&
4685 d->state_fd >= 0)
4686 /* wait for Removal to happen */
4687 return NULL;
4688 if (d->state_fd >= 0)
4689 failed--;
4690 }
4691
4692 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
4693 inst, failed, a->info.array.raid_disks, a->info.array.level);
4694 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
4695 return NULL;
4696
4697 /* For each slot, if it is not working, find a spare */
4698 for (i = 0; i < a->info.array.raid_disks; i++) {
4699 for (d = a->info.devs ; d ; d = d->next)
4700 if (d->disk.raid_disk == i)
4701 break;
4702 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
4703 if (d && (d->state_fd >= 0))
4704 continue;
4705
4706 /*
4707 * OK, this device needs recovery. Try to re-add the
4708 * previous occupant of this slot, if this fails see if
4709 * we can continue the assimilation of a spare that was
4710 * partially assimilated, finally try to activate a new
4711 * spare.
4712 */
4713 dl = imsm_readd(super, i, a);
4714 if (!dl)
4715 dl = imsm_add_spare(super, i, a, 0);
4716 if (!dl)
4717 dl = imsm_add_spare(super, i, a, 1);
4718 if (!dl)
4719 continue;
4720
4721 /* found a usable disk with enough space */
4722 di = malloc(sizeof(*di));
4723 if (!di)
4724 continue;
4725 memset(di, 0, sizeof(*di));
4726
4727 /* dl->index will be -1 in the case we are activating a
4728 * pristine spare. imsm_process_update() will create a
4729 * new index in this case. Once a disk is found to be
4730 * failed in all member arrays it is kicked from the
4731 * metadata
4732 */
4733 di->disk.number = dl->index;
4734
4735 /* (ab)use di->devs to store a pointer to the device
4736 * we chose
4737 */
4738 di->devs = (struct mdinfo *) dl;
4739
4740 di->disk.raid_disk = i;
4741 di->disk.major = dl->major;
4742 di->disk.minor = dl->minor;
4743 di->disk.state = 0;
4744 di->recovery_start = 0;
4745 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
4746 di->component_size = a->info.component_size;
4747 di->container_member = inst;
4748 super->random = random32();
4749 di->next = rv;
4750 rv = di;
4751 num_spares++;
4752 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
4753 i, di->data_offset);
4754
4755 break;
4756 }
4757
4758 if (!rv)
4759 /* No spares found */
4760 return rv;
4761 /* Now 'rv' has a list of devices to return.
4762 * Create a metadata_update record to update the
4763 * disk_ord_tbl for the array
4764 */
4765 mu = malloc(sizeof(*mu));
4766 if (mu) {
4767 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
4768 if (mu->buf == NULL) {
4769 free(mu);
4770 mu = NULL;
4771 }
4772 }
4773 if (!mu) {
4774 while (rv) {
4775 struct mdinfo *n = rv->next;
4776
4777 free(rv);
4778 rv = n;
4779 }
4780 return NULL;
4781 }
4782
4783 mu->space = NULL;
4784 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
4785 mu->next = *updates;
4786 u = (struct imsm_update_activate_spare *) mu->buf;
4787
4788 for (di = rv ; di ; di = di->next) {
4789 u->type = update_activate_spare;
4790 u->dl = (struct dl *) di->devs;
4791 di->devs = NULL;
4792 u->slot = di->disk.raid_disk;
4793 u->array = inst;
4794 u->next = u + 1;
4795 u++;
4796 }
4797 (u-1)->next = NULL;
4798 *updates = mu;
4799
4800 return rv;
4801 }
4802
4803 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
4804 {
4805 struct imsm_dev *dev = get_imsm_dev(super, idx);
4806 struct imsm_map *map = get_imsm_map(dev, 0);
4807 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
4808 struct disk_info *inf = get_disk_info(u);
4809 struct imsm_disk *disk;
4810 int i;
4811 int j;
4812
4813 for (i = 0; i < map->num_members; i++) {
4814 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
4815 for (j = 0; j < new_map->num_members; j++)
4816 if (serialcmp(disk->serial, inf[j].serial) == 0)
4817 return 1;
4818 }
4819
4820 return 0;
4821 }
4822
4823 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index);
4824
4825 static void imsm_process_update(struct supertype *st,
4826 struct metadata_update *update)
4827 {
4828 /**
4829 * crack open the metadata_update envelope to find the update record
4830 * update can be one of:
4831 * update_activate_spare - a spare device has replaced a failed
4832 * device in an array, update the disk_ord_tbl. If this disk is
4833 * present in all member arrays then also clear the SPARE_DISK
4834 * flag
4835 */
4836 struct intel_super *super = st->sb;
4837 struct imsm_super *mpb;
4838 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4839
4840 /* update requires a larger buf but the allocation failed */
4841 if (super->next_len && !super->next_buf) {
4842 super->next_len = 0;
4843 return;
4844 }
4845
4846 if (super->next_buf) {
4847 memcpy(super->next_buf, super->buf, super->len);
4848 free(super->buf);
4849 super->len = super->next_len;
4850 super->buf = super->next_buf;
4851
4852 super->next_len = 0;
4853 super->next_buf = NULL;
4854 }
4855
4856 mpb = super->anchor;
4857
4858 switch (type) {
4859 case update_activate_spare: {
4860 struct imsm_update_activate_spare *u = (void *) update->buf;
4861 struct imsm_dev *dev = get_imsm_dev(super, u->array);
4862 struct imsm_map *map = get_imsm_map(dev, 0);
4863 struct imsm_map *migr_map;
4864 struct active_array *a;
4865 struct imsm_disk *disk;
4866 __u8 to_state;
4867 struct dl *dl;
4868 unsigned int found;
4869 int failed;
4870 int victim = get_imsm_disk_idx(dev, u->slot);
4871 int i;
4872
4873 for (dl = super->disks; dl; dl = dl->next)
4874 if (dl == u->dl)
4875 break;
4876
4877 if (!dl) {
4878 fprintf(stderr, "error: imsm_activate_spare passed "
4879 "an unknown disk (index: %d)\n",
4880 u->dl->index);
4881 return;
4882 }
4883
4884 super->updates_pending++;
4885
4886 /* count failures (excluding rebuilds and the victim)
4887 * to determine map[0] state
4888 */
4889 failed = 0;
4890 for (i = 0; i < map->num_members; i++) {
4891 if (i == u->slot)
4892 continue;
4893 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
4894 if (!disk || is_failed(disk))
4895 failed++;
4896 }
4897
4898 /* adding a pristine spare, assign a new index */
4899 if (dl->index < 0) {
4900 dl->index = super->anchor->num_disks;
4901 super->anchor->num_disks++;
4902 }
4903 disk = &dl->disk;
4904 disk->status |= CONFIGURED_DISK;
4905 disk->status &= ~SPARE_DISK;
4906
4907 /* mark rebuild */
4908 to_state = imsm_check_degraded(super, dev, failed);
4909 map->map_state = IMSM_T_STATE_DEGRADED;
4910 migrate(dev, to_state, MIGR_REBUILD);
4911 migr_map = get_imsm_map(dev, 1);
4912 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
4913 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
4914
4915 /* update the family_num to mark a new container
4916 * generation, being careful to record the existing
4917 * family_num in orig_family_num to clean up after
4918 * earlier mdadm versions that neglected to set it.
4919 */
4920 if (mpb->orig_family_num == 0)
4921 mpb->orig_family_num = mpb->family_num;
4922 mpb->family_num += super->random;
4923
4924 /* count arrays using the victim in the metadata */
4925 found = 0;
4926 for (a = st->arrays; a ; a = a->next) {
4927 dev = get_imsm_dev(super, a->info.container_member);
4928 map = get_imsm_map(dev, 0);
4929
4930 if (get_imsm_disk_slot(map, victim) >= 0)
4931 found++;
4932 }
4933
4934 /* delete the victim if it is no longer being
4935 * utilized anywhere
4936 */
4937 if (!found) {
4938 struct dl **dlp;
4939
4940 /* We know that 'manager' isn't touching anything,
4941 * so it is safe to delete
4942 */
4943 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
4944 if ((*dlp)->index == victim)
4945 break;
4946
4947 /* victim may be on the missing list */
4948 if (!*dlp)
4949 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
4950 if ((*dlp)->index == victim)
4951 break;
4952 imsm_delete(super, dlp, victim);
4953 }
4954 break;
4955 }
4956 case update_create_array: {
4957 /* someone wants to create a new array, we need to be aware of
4958 * a few races/collisions:
4959 * 1/ 'Create' called by two separate instances of mdadm
4960 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
4961 * devices that have since been assimilated via
4962 * activate_spare.
4963 * In the event this update can not be carried out mdadm will
4964 * (FIX ME) notice that its update did not take hold.
4965 */
4966 struct imsm_update_create_array *u = (void *) update->buf;
4967 struct intel_dev *dv;
4968 struct imsm_dev *dev;
4969 struct imsm_map *map, *new_map;
4970 unsigned long long start, end;
4971 unsigned long long new_start, new_end;
4972 int i;
4973 struct disk_info *inf;
4974 struct dl *dl;
4975
4976 /* handle racing creates: first come first serve */
4977 if (u->dev_idx < mpb->num_raid_devs) {
4978 dprintf("%s: subarray %d already defined\n",
4979 __func__, u->dev_idx);
4980 goto create_error;
4981 }
4982
4983 /* check update is next in sequence */
4984 if (u->dev_idx != mpb->num_raid_devs) {
4985 dprintf("%s: can not create array %d expected index %d\n",
4986 __func__, u->dev_idx, mpb->num_raid_devs);
4987 goto create_error;
4988 }
4989
4990 new_map = get_imsm_map(&u->dev, 0);
4991 new_start = __le32_to_cpu(new_map->pba_of_lba0);
4992 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
4993 inf = get_disk_info(u);
4994
4995 /* handle activate_spare versus create race:
4996 * check to make sure that overlapping arrays do not include
4997 * overalpping disks
4998 */
4999 for (i = 0; i < mpb->num_raid_devs; i++) {
5000 dev = get_imsm_dev(super, i);
5001 map = get_imsm_map(dev, 0);
5002 start = __le32_to_cpu(map->pba_of_lba0);
5003 end = start + __le32_to_cpu(map->blocks_per_member);
5004 if ((new_start >= start && new_start <= end) ||
5005 (start >= new_start && start <= new_end))
5006 /* overlap */;
5007 else
5008 continue;
5009
5010 if (disks_overlap(super, i, u)) {
5011 dprintf("%s: arrays overlap\n", __func__);
5012 goto create_error;
5013 }
5014 }
5015
5016 /* check that prepare update was successful */
5017 if (!update->space) {
5018 dprintf("%s: prepare update failed\n", __func__);
5019 goto create_error;
5020 }
5021
5022 /* check that all disks are still active before committing
5023 * changes. FIXME: could we instead handle this by creating a
5024 * degraded array? That's probably not what the user expects,
5025 * so better to drop this update on the floor.
5026 */
5027 for (i = 0; i < new_map->num_members; i++) {
5028 dl = serial_to_dl(inf[i].serial, super);
5029 if (!dl) {
5030 dprintf("%s: disk disappeared\n", __func__);
5031 goto create_error;
5032 }
5033 }
5034
5035 super->updates_pending++;
5036
5037 /* convert spares to members and fixup ord_tbl */
5038 for (i = 0; i < new_map->num_members; i++) {
5039 dl = serial_to_dl(inf[i].serial, super);
5040 if (dl->index == -1) {
5041 dl->index = mpb->num_disks;
5042 mpb->num_disks++;
5043 dl->disk.status |= CONFIGURED_DISK;
5044 dl->disk.status &= ~SPARE_DISK;
5045 }
5046 set_imsm_ord_tbl_ent(new_map, i, dl->index);
5047 }
5048
5049 dv = update->space;
5050 dev = dv->dev;
5051 update->space = NULL;
5052 imsm_copy_dev(dev, &u->dev);
5053 dv->index = u->dev_idx;
5054 dv->next = super->devlist;
5055 super->devlist = dv;
5056 mpb->num_raid_devs++;
5057
5058 imsm_update_version_info(super);
5059 break;
5060 create_error:
5061 /* mdmon knows how to release update->space, but not
5062 * ((struct intel_dev *) update->space)->dev
5063 */
5064 if (update->space) {
5065 dv = update->space;
5066 free(dv->dev);
5067 }
5068 break;
5069 }
5070 case update_add_disk:
5071
5072 /* we may be able to repair some arrays if disks are
5073 * being added */
5074 if (super->add) {
5075 struct active_array *a;
5076
5077 super->updates_pending++;
5078 for (a = st->arrays; a; a = a->next)
5079 a->check_degraded = 1;
5080 }
5081 /* add some spares to the metadata */
5082 while (super->add) {
5083 struct dl *al;
5084
5085 al = super->add;
5086 super->add = al->next;
5087 al->next = super->disks;
5088 super->disks = al;
5089 dprintf("%s: added %x:%x\n",
5090 __func__, al->major, al->minor);
5091 }
5092
5093 break;
5094 }
5095 }
5096
5097 static void imsm_prepare_update(struct supertype *st,
5098 struct metadata_update *update)
5099 {
5100 /**
5101 * Allocate space to hold new disk entries, raid-device entries or a new
5102 * mpb if necessary. The manager synchronously waits for updates to
5103 * complete in the monitor, so new mpb buffers allocated here can be
5104 * integrated by the monitor thread without worrying about live pointers
5105 * in the manager thread.
5106 */
5107 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
5108 struct intel_super *super = st->sb;
5109 struct imsm_super *mpb = super->anchor;
5110 size_t buf_len;
5111 size_t len = 0;
5112
5113 switch (type) {
5114 case update_create_array: {
5115 struct imsm_update_create_array *u = (void *) update->buf;
5116 struct intel_dev *dv;
5117 struct imsm_dev *dev = &u->dev;
5118 struct imsm_map *map = get_imsm_map(dev, 0);
5119 struct dl *dl;
5120 struct disk_info *inf;
5121 int i;
5122 int activate = 0;
5123
5124 inf = get_disk_info(u);
5125 len = sizeof_imsm_dev(dev, 1);
5126 /* allocate a new super->devlist entry */
5127 dv = malloc(sizeof(*dv));
5128 if (dv) {
5129 dv->dev = malloc(len);
5130 if (dv->dev)
5131 update->space = dv;
5132 else {
5133 free(dv);
5134 update->space = NULL;
5135 }
5136 }
5137
5138 /* count how many spares will be converted to members */
5139 for (i = 0; i < map->num_members; i++) {
5140 dl = serial_to_dl(inf[i].serial, super);
5141 if (!dl) {
5142 /* hmm maybe it failed?, nothing we can do about
5143 * it here
5144 */
5145 continue;
5146 }
5147 if (count_memberships(dl, super) == 0)
5148 activate++;
5149 }
5150 len += activate * sizeof(struct imsm_disk);
5151 break;
5152 default:
5153 break;
5154 }
5155 }
5156
5157 /* check if we need a larger metadata buffer */
5158 if (super->next_buf)
5159 buf_len = super->next_len;
5160 else
5161 buf_len = super->len;
5162
5163 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
5164 /* ok we need a larger buf than what is currently allocated
5165 * if this allocation fails process_update will notice that
5166 * ->next_len is set and ->next_buf is NULL
5167 */
5168 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
5169 if (super->next_buf)
5170 free(super->next_buf);
5171
5172 super->next_len = buf_len;
5173 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
5174 memset(super->next_buf, 0, buf_len);
5175 else
5176 super->next_buf = NULL;
5177 }
5178 }
5179
5180 /* must be called while manager is quiesced */
5181 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index)
5182 {
5183 struct imsm_super *mpb = super->anchor;
5184 struct dl *iter;
5185 struct imsm_dev *dev;
5186 struct imsm_map *map;
5187 int i, j, num_members;
5188 __u32 ord;
5189
5190 dprintf("%s: deleting device[%d] from imsm_super\n",
5191 __func__, index);
5192
5193 /* shift all indexes down one */
5194 for (iter = super->disks; iter; iter = iter->next)
5195 if (iter->index > index)
5196 iter->index--;
5197 for (iter = super->missing; iter; iter = iter->next)
5198 if (iter->index > index)
5199 iter->index--;
5200
5201 for (i = 0; i < mpb->num_raid_devs; i++) {
5202 dev = get_imsm_dev(super, i);
5203 map = get_imsm_map(dev, 0);
5204 num_members = map->num_members;
5205 for (j = 0; j < num_members; j++) {
5206 /* update ord entries being careful not to propagate
5207 * ord-flags to the first map
5208 */
5209 ord = get_imsm_ord_tbl_ent(dev, j);
5210
5211 if (ord_to_idx(ord) <= index)
5212 continue;
5213
5214 map = get_imsm_map(dev, 0);
5215 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
5216 map = get_imsm_map(dev, 1);
5217 if (map)
5218 set_imsm_ord_tbl_ent(map, j, ord - 1);
5219 }
5220 }
5221
5222 mpb->num_disks--;
5223 super->updates_pending++;
5224 if (*dlp) {
5225 struct dl *dl = *dlp;
5226
5227 *dlp = (*dlp)->next;
5228 __free_imsm_disk(dl);
5229 }
5230 }
5231 #endif /* MDASSEMBLE */
5232
5233 struct superswitch super_imsm = {
5234 #ifndef MDASSEMBLE
5235 .examine_super = examine_super_imsm,
5236 .brief_examine_super = brief_examine_super_imsm,
5237 .brief_examine_subarrays = brief_examine_subarrays_imsm,
5238 .export_examine_super = export_examine_super_imsm,
5239 .detail_super = detail_super_imsm,
5240 .brief_detail_super = brief_detail_super_imsm,
5241 .write_init_super = write_init_super_imsm,
5242 .validate_geometry = validate_geometry_imsm,
5243 .add_to_super = add_to_super_imsm,
5244 .detail_platform = detail_platform_imsm,
5245 #endif
5246 .match_home = match_home_imsm,
5247 .uuid_from_super= uuid_from_super_imsm,
5248 .getinfo_super = getinfo_super_imsm,
5249 .update_super = update_super_imsm,
5250
5251 .avail_size = avail_size_imsm,
5252
5253 .compare_super = compare_super_imsm,
5254
5255 .load_super = load_super_imsm,
5256 .init_super = init_super_imsm,
5257 .store_super = store_super_imsm,
5258 .free_super = free_super_imsm,
5259 .match_metadata_desc = match_metadata_desc_imsm,
5260 .container_content = container_content_imsm,
5261 .default_layout = imsm_level_to_layout,
5262
5263 .external = 1,
5264 .name = "imsm",
5265
5266 #ifndef MDASSEMBLE
5267 /* for mdmon */
5268 .open_new = imsm_open_new,
5269 .load_super = load_super_imsm,
5270 .set_array_state= imsm_set_array_state,
5271 .set_disk = imsm_set_disk,
5272 .sync_metadata = imsm_sync_metadata,
5273 .activate_spare = imsm_activate_spare,
5274 .process_update = imsm_process_update,
5275 .prepare_update = imsm_prepare_update,
5276 #endif /* MDASSEMBLE */
5277 };