]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bn/asm/x86-gf2m.pl
Many spelling fixes/typo's corrected.
[thirdparty/openssl.git] / crypto / bn / asm / x86-gf2m.pl
1 #! /usr/bin/env perl
2 # Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved.
3 #
4 # Licensed under the OpenSSL license (the "License"). You may not use
5 # this file except in compliance with the License. You can obtain a copy
6 # in the file LICENSE in the source distribution or at
7 # https://www.openssl.org/source/license.html
8
9 #
10 # ====================================================================
11 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
12 # project. The module is, however, dual licensed under OpenSSL and
13 # CRYPTOGAMS licenses depending on where you obtain it. For further
14 # details see http://www.openssl.org/~appro/cryptogams/.
15 # ====================================================================
16 #
17 # May 2011
18 #
19 # The module implements bn_GF2m_mul_2x2 polynomial multiplication used
20 # in bn_gf2m.c. It's kind of low-hanging mechanical port from C for
21 # the time being... Except that it has three code paths: pure integer
22 # code suitable for any x86 CPU, MMX code suitable for PIII and later
23 # and PCLMULQDQ suitable for Westmere and later. Improvement varies
24 # from one benchmark and µ-arch to another. Below are interval values
25 # for 163- and 571-bit ECDH benchmarks relative to compiler-generated
26 # code:
27 #
28 # PIII 16%-30%
29 # P4 12%-12%
30 # Opteron 18%-40%
31 # Core2 19%-44%
32 # Atom 38%-64%
33 # Westmere 53%-121%(PCLMULQDQ)/20%-32%(MMX)
34 # Sandy Bridge 72%-127%(PCLMULQDQ)/27%-23%(MMX)
35 #
36 # Note that above improvement coefficients are not coefficients for
37 # bn_GF2m_mul_2x2 itself. For example 120% ECDH improvement is result
38 # of bn_GF2m_mul_2x2 being >4x faster. As it gets faster, benchmark
39 # is more and more dominated by other subroutines, most notably by
40 # BN_GF2m_mod[_mul]_arr...
41
42 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
43 push(@INC,"${dir}","${dir}../../perlasm");
44 require "x86asm.pl";
45
46 $output = pop;
47 open STDOUT,">$output";
48
49 &asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386");
50
51 $sse2=0;
52 for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
53
54 &external_label("OPENSSL_ia32cap_P") if ($sse2);
55
56 $a="eax";
57 $b="ebx";
58 ($a1,$a2,$a4)=("ecx","edx","ebp");
59
60 $R="mm0";
61 @T=("mm1","mm2");
62 ($A,$B,$B30,$B31)=("mm2","mm3","mm4","mm5");
63 @i=("esi","edi");
64
65 if (!$x86only) {
66 &function_begin_B("_mul_1x1_mmx");
67 &sub ("esp",32+4);
68 &mov ($a1,$a);
69 &lea ($a2,&DWP(0,$a,$a));
70 &and ($a1,0x3fffffff);
71 &lea ($a4,&DWP(0,$a2,$a2));
72 &mov (&DWP(0*4,"esp"),0);
73 &and ($a2,0x7fffffff);
74 &movd ($A,$a);
75 &movd ($B,$b);
76 &mov (&DWP(1*4,"esp"),$a1); # a1
77 &xor ($a1,$a2); # a1^a2
78 &pxor ($B31,$B31);
79 &pxor ($B30,$B30);
80 &mov (&DWP(2*4,"esp"),$a2); # a2
81 &xor ($a2,$a4); # a2^a4
82 &mov (&DWP(3*4,"esp"),$a1); # a1^a2
83 &pcmpgtd($B31,$A); # broadcast 31st bit
84 &paddd ($A,$A); # $A<<=1
85 &xor ($a1,$a2); # a1^a4=a1^a2^a2^a4
86 &mov (&DWP(4*4,"esp"),$a4); # a4
87 &xor ($a4,$a2); # a2=a4^a2^a4
88 &pand ($B31,$B);
89 &pcmpgtd($B30,$A); # broadcast 30th bit
90 &mov (&DWP(5*4,"esp"),$a1); # a1^a4
91 &xor ($a4,$a1); # a1^a2^a4
92 &psllq ($B31,31);
93 &pand ($B30,$B);
94 &mov (&DWP(6*4,"esp"),$a2); # a2^a4
95 &mov (@i[0],0x7);
96 &mov (&DWP(7*4,"esp"),$a4); # a1^a2^a4
97 &mov ($a4,@i[0]);
98 &and (@i[0],$b);
99 &shr ($b,3);
100 &mov (@i[1],$a4);
101 &psllq ($B30,30);
102 &and (@i[1],$b);
103 &shr ($b,3);
104 &movd ($R,&DWP(0,"esp",@i[0],4));
105 &mov (@i[0],$a4);
106 &and (@i[0],$b);
107 &shr ($b,3);
108 for($n=1;$n<9;$n++) {
109 &movd (@T[1],&DWP(0,"esp",@i[1],4));
110 &mov (@i[1],$a4);
111 &psllq (@T[1],3*$n);
112 &and (@i[1],$b);
113 &shr ($b,3);
114 &pxor ($R,@T[1]);
115
116 push(@i,shift(@i)); push(@T,shift(@T));
117 }
118 &movd (@T[1],&DWP(0,"esp",@i[1],4));
119 &pxor ($R,$B30);
120 &psllq (@T[1],3*$n++);
121 &pxor ($R,@T[1]);
122
123 &movd (@T[0],&DWP(0,"esp",@i[0],4));
124 &pxor ($R,$B31);
125 &psllq (@T[0],3*$n);
126 &add ("esp",32+4);
127 &pxor ($R,@T[0]);
128 &ret ();
129 &function_end_B("_mul_1x1_mmx");
130 }
131
132 ($lo,$hi)=("eax","edx");
133 @T=("ecx","ebp");
134
135 &function_begin_B("_mul_1x1_ialu");
136 &sub ("esp",32+4);
137 &mov ($a1,$a);
138 &lea ($a2,&DWP(0,$a,$a));
139 &lea ($a4,&DWP(0,"",$a,4));
140 &and ($a1,0x3fffffff);
141 &lea (@i[1],&DWP(0,$lo,$lo));
142 &sar ($lo,31); # broadcast 31st bit
143 &mov (&DWP(0*4,"esp"),0);
144 &and ($a2,0x7fffffff);
145 &mov (&DWP(1*4,"esp"),$a1); # a1
146 &xor ($a1,$a2); # a1^a2
147 &mov (&DWP(2*4,"esp"),$a2); # a2
148 &xor ($a2,$a4); # a2^a4
149 &mov (&DWP(3*4,"esp"),$a1); # a1^a2
150 &xor ($a1,$a2); # a1^a4=a1^a2^a2^a4
151 &mov (&DWP(4*4,"esp"),$a4); # a4
152 &xor ($a4,$a2); # a2=a4^a2^a4
153 &mov (&DWP(5*4,"esp"),$a1); # a1^a4
154 &xor ($a4,$a1); # a1^a2^a4
155 &sar (@i[1],31); # broadcast 30th bit
156 &and ($lo,$b);
157 &mov (&DWP(6*4,"esp"),$a2); # a2^a4
158 &and (@i[1],$b);
159 &mov (&DWP(7*4,"esp"),$a4); # a1^a2^a4
160 &mov ($hi,$lo);
161 &shl ($lo,31);
162 &mov (@T[0],@i[1]);
163 &shr ($hi,1);
164
165 &mov (@i[0],0x7);
166 &shl (@i[1],30);
167 &and (@i[0],$b);
168 &shr (@T[0],2);
169 &xor ($lo,@i[1]);
170
171 &shr ($b,3);
172 &mov (@i[1],0x7); # 5-byte instruction!?
173 &and (@i[1],$b);
174 &shr ($b,3);
175 &xor ($hi,@T[0]);
176 &xor ($lo,&DWP(0,"esp",@i[0],4));
177 &mov (@i[0],0x7);
178 &and (@i[0],$b);
179 &shr ($b,3);
180 for($n=1;$n<9;$n++) {
181 &mov (@T[1],&DWP(0,"esp",@i[1],4));
182 &mov (@i[1],0x7);
183 &mov (@T[0],@T[1]);
184 &shl (@T[1],3*$n);
185 &and (@i[1],$b);
186 &shr (@T[0],32-3*$n);
187 &xor ($lo,@T[1]);
188 &shr ($b,3);
189 &xor ($hi,@T[0]);
190
191 push(@i,shift(@i)); push(@T,shift(@T));
192 }
193 &mov (@T[1],&DWP(0,"esp",@i[1],4));
194 &mov (@T[0],@T[1]);
195 &shl (@T[1],3*$n);
196 &mov (@i[1],&DWP(0,"esp",@i[0],4));
197 &shr (@T[0],32-3*$n); $n++;
198 &mov (@i[0],@i[1]);
199 &xor ($lo,@T[1]);
200 &shl (@i[1],3*$n);
201 &xor ($hi,@T[0]);
202 &shr (@i[0],32-3*$n);
203 &xor ($lo,@i[1]);
204 &xor ($hi,@i[0]);
205
206 &add ("esp",32+4);
207 &ret ();
208 &function_end_B("_mul_1x1_ialu");
209
210 # void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, BN_ULONG b0);
211 &function_begin_B("bn_GF2m_mul_2x2");
212 if (!$x86only) {
213 &picmeup("edx","OPENSSL_ia32cap_P");
214 &mov ("eax",&DWP(0,"edx"));
215 &mov ("edx",&DWP(4,"edx"));
216 &test ("eax",1<<23); # check MMX bit
217 &jz (&label("ialu"));
218 if ($sse2) {
219 &test ("eax",1<<24); # check FXSR bit
220 &jz (&label("mmx"));
221 &test ("edx",1<<1); # check PCLMULQDQ bit
222 &jz (&label("mmx"));
223
224 &movups ("xmm0",&QWP(8,"esp"));
225 &shufps ("xmm0","xmm0",0b10110001);
226 &pclmulqdq ("xmm0","xmm0",1);
227 &mov ("eax",&DWP(4,"esp"));
228 &movups (&QWP(0,"eax"),"xmm0");
229 &ret ();
230
231 &set_label("mmx",16);
232 }
233 &push ("ebp");
234 &push ("ebx");
235 &push ("esi");
236 &push ("edi");
237 &mov ($a,&wparam(1));
238 &mov ($b,&wparam(3));
239 &call ("_mul_1x1_mmx"); # a1·b1
240 &movq ("mm7",$R);
241
242 &mov ($a,&wparam(2));
243 &mov ($b,&wparam(4));
244 &call ("_mul_1x1_mmx"); # a0·b0
245 &movq ("mm6",$R);
246
247 &mov ($a,&wparam(1));
248 &mov ($b,&wparam(3));
249 &xor ($a,&wparam(2));
250 &xor ($b,&wparam(4));
251 &call ("_mul_1x1_mmx"); # (a0+a1)·(b0+b1)
252 &pxor ($R,"mm7");
253 &mov ($a,&wparam(0));
254 &pxor ($R,"mm6"); # (a0+a1)·(b0+b1)-a1·b1-a0·b0
255
256 &movq ($A,$R);
257 &psllq ($R,32);
258 &pop ("edi");
259 &psrlq ($A,32);
260 &pop ("esi");
261 &pxor ($R,"mm6");
262 &pop ("ebx");
263 &pxor ($A,"mm7");
264 &movq (&QWP(0,$a),$R);
265 &pop ("ebp");
266 &movq (&QWP(8,$a),$A);
267 &emms ();
268 &ret ();
269 &set_label("ialu",16);
270 }
271 &push ("ebp");
272 &push ("ebx");
273 &push ("esi");
274 &push ("edi");
275 &stack_push(4+1);
276
277 &mov ($a,&wparam(1));
278 &mov ($b,&wparam(3));
279 &call ("_mul_1x1_ialu"); # a1·b1
280 &mov (&DWP(8,"esp"),$lo);
281 &mov (&DWP(12,"esp"),$hi);
282
283 &mov ($a,&wparam(2));
284 &mov ($b,&wparam(4));
285 &call ("_mul_1x1_ialu"); # a0·b0
286 &mov (&DWP(0,"esp"),$lo);
287 &mov (&DWP(4,"esp"),$hi);
288
289 &mov ($a,&wparam(1));
290 &mov ($b,&wparam(3));
291 &xor ($a,&wparam(2));
292 &xor ($b,&wparam(4));
293 &call ("_mul_1x1_ialu"); # (a0+a1)·(b0+b1)
294
295 &mov ("ebp",&wparam(0));
296 @r=("ebx","ecx","edi","esi");
297 &mov (@r[0],&DWP(0,"esp"));
298 &mov (@r[1],&DWP(4,"esp"));
299 &mov (@r[2],&DWP(8,"esp"));
300 &mov (@r[3],&DWP(12,"esp"));
301
302 &xor ($lo,$hi);
303 &xor ($hi,@r[1]);
304 &xor ($lo,@r[0]);
305 &mov (&DWP(0,"ebp"),@r[0]);
306 &xor ($hi,@r[2]);
307 &mov (&DWP(12,"ebp"),@r[3]);
308 &xor ($lo,@r[3]);
309 &stack_pop(4+1);
310 &xor ($hi,@r[3]);
311 &pop ("edi");
312 &xor ($lo,$hi);
313 &pop ("esi");
314 &mov (&DWP(8,"ebp"),$hi);
315 &pop ("ebx");
316 &mov (&DWP(4,"ebp"),$lo);
317 &pop ("ebp");
318 &ret ();
319 &function_end_B("bn_GF2m_mul_2x2");
320
321 &asciz ("GF(2^m) Multiplication for x86, CRYPTOGAMS by <appro\@openssl.org>");
322
323 &asm_finish();
324
325 close STDOUT;