]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bn/bn_sqrt.c
Re-align some comments after running the reformat script.
[thirdparty/openssl.git] / crypto / bn / bn_sqrt.c
1 /* crypto/bn/bn_sqrt.c */
2 /*
3 * Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> and Bodo
4 * Moeller for the OpenSSL project.
5 */
6 /* ====================================================================
7 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 *
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in
18 * the documentation and/or other materials provided with the
19 * distribution.
20 *
21 * 3. All advertising materials mentioning features or use of this
22 * software must display the following acknowledgment:
23 * "This product includes software developed by the OpenSSL Project
24 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
25 *
26 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
27 * endorse or promote products derived from this software without
28 * prior written permission. For written permission, please contact
29 * openssl-core@openssl.org.
30 *
31 * 5. Products derived from this software may not be called "OpenSSL"
32 * nor may "OpenSSL" appear in their names without prior written
33 * permission of the OpenSSL Project.
34 *
35 * 6. Redistributions of any form whatsoever must retain the following
36 * acknowledgment:
37 * "This product includes software developed by the OpenSSL Project
38 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
41 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
43 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
44 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
45 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
46 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
49 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
50 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
51 * OF THE POSSIBILITY OF SUCH DAMAGE.
52 * ====================================================================
53 *
54 * This product includes cryptographic software written by Eric Young
55 * (eay@cryptsoft.com). This product includes software written by Tim
56 * Hudson (tjh@cryptsoft.com).
57 *
58 */
59
60 #include "cryptlib.h"
61 #include "bn_lcl.h"
62
63 BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
64 /*
65 * Returns 'ret' such that ret^2 == a (mod p), using the Tonelli/Shanks
66 * algorithm (cf. Henri Cohen, "A Course in Algebraic Computational Number
67 * Theory", algorithm 1.5.1). 'p' must be prime!
68 */
69 {
70 BIGNUM *ret = in;
71 int err = 1;
72 int r;
73 BIGNUM *A, *b, *q, *t, *x, *y;
74 int e, i, j;
75
76 if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) {
77 if (BN_abs_is_word(p, 2)) {
78 if (ret == NULL)
79 ret = BN_new();
80 if (ret == NULL)
81 goto end;
82 if (!BN_set_word(ret, BN_is_bit_set(a, 0))) {
83 if (ret != in)
84 BN_free(ret);
85 return NULL;
86 }
87 bn_check_top(ret);
88 return ret;
89 }
90
91 BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
92 return (NULL);
93 }
94
95 if (BN_is_zero(a) || BN_is_one(a)) {
96 if (ret == NULL)
97 ret = BN_new();
98 if (ret == NULL)
99 goto end;
100 if (!BN_set_word(ret, BN_is_one(a))) {
101 if (ret != in)
102 BN_free(ret);
103 return NULL;
104 }
105 bn_check_top(ret);
106 return ret;
107 }
108
109 BN_CTX_start(ctx);
110 A = BN_CTX_get(ctx);
111 b = BN_CTX_get(ctx);
112 q = BN_CTX_get(ctx);
113 t = BN_CTX_get(ctx);
114 x = BN_CTX_get(ctx);
115 y = BN_CTX_get(ctx);
116 if (y == NULL)
117 goto end;
118
119 if (ret == NULL)
120 ret = BN_new();
121 if (ret == NULL)
122 goto end;
123
124 /* A = a mod p */
125 if (!BN_nnmod(A, a, p, ctx))
126 goto end;
127
128 /* now write |p| - 1 as 2^e*q where q is odd */
129 e = 1;
130 while (!BN_is_bit_set(p, e))
131 e++;
132 /* we'll set q later (if needed) */
133
134 if (e == 1) {
135 /*-
136 * The easy case: (|p|-1)/2 is odd, so 2 has an inverse
137 * modulo (|p|-1)/2, and square roots can be computed
138 * directly by modular exponentiation.
139 * We have
140 * 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2),
141 * so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1.
142 */
143 if (!BN_rshift(q, p, 2))
144 goto end;
145 q->neg = 0;
146 if (!BN_add_word(q, 1))
147 goto end;
148 if (!BN_mod_exp(ret, A, q, p, ctx))
149 goto end;
150 err = 0;
151 goto vrfy;
152 }
153
154 if (e == 2) {
155 /*-
156 * |p| == 5 (mod 8)
157 *
158 * In this case 2 is always a non-square since
159 * Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime.
160 * So if a really is a square, then 2*a is a non-square.
161 * Thus for
162 * b := (2*a)^((|p|-5)/8),
163 * i := (2*a)*b^2
164 * we have
165 * i^2 = (2*a)^((1 + (|p|-5)/4)*2)
166 * = (2*a)^((p-1)/2)
167 * = -1;
168 * so if we set
169 * x := a*b*(i-1),
170 * then
171 * x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
172 * = a^2 * b^2 * (-2*i)
173 * = a*(-i)*(2*a*b^2)
174 * = a*(-i)*i
175 * = a.
176 *
177 * (This is due to A.O.L. Atkin,
178 * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
179 * November 1992.)
180 */
181
182 /* t := 2*a */
183 if (!BN_mod_lshift1_quick(t, A, p))
184 goto end;
185
186 /* b := (2*a)^((|p|-5)/8) */
187 if (!BN_rshift(q, p, 3))
188 goto end;
189 q->neg = 0;
190 if (!BN_mod_exp(b, t, q, p, ctx))
191 goto end;
192
193 /* y := b^2 */
194 if (!BN_mod_sqr(y, b, p, ctx))
195 goto end;
196
197 /* t := (2*a)*b^2 - 1 */
198 if (!BN_mod_mul(t, t, y, p, ctx))
199 goto end;
200 if (!BN_sub_word(t, 1))
201 goto end;
202
203 /* x = a*b*t */
204 if (!BN_mod_mul(x, A, b, p, ctx))
205 goto end;
206 if (!BN_mod_mul(x, x, t, p, ctx))
207 goto end;
208
209 if (!BN_copy(ret, x))
210 goto end;
211 err = 0;
212 goto vrfy;
213 }
214
215 /*
216 * e > 2, so we really have to use the Tonelli/Shanks algorithm. First,
217 * find some y that is not a square.
218 */
219 if (!BN_copy(q, p))
220 goto end; /* use 'q' as temp */
221 q->neg = 0;
222 i = 2;
223 do {
224 /*
225 * For efficiency, try small numbers first; if this fails, try random
226 * numbers.
227 */
228 if (i < 22) {
229 if (!BN_set_word(y, i))
230 goto end;
231 } else {
232 if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0))
233 goto end;
234 if (BN_ucmp(y, p) >= 0) {
235 if (!(p->neg ? BN_add : BN_sub) (y, y, p))
236 goto end;
237 }
238 /* now 0 <= y < |p| */
239 if (BN_is_zero(y))
240 if (!BN_set_word(y, i))
241 goto end;
242 }
243
244 r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
245 if (r < -1)
246 goto end;
247 if (r == 0) {
248 /* m divides p */
249 BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
250 goto end;
251 }
252 }
253 while (r == 1 && ++i < 82);
254
255 if (r != -1) {
256 /*
257 * Many rounds and still no non-square -- this is more likely a bug
258 * than just bad luck. Even if p is not prime, we should have found
259 * some y such that r == -1.
260 */
261 BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS);
262 goto end;
263 }
264
265 /* Here's our actual 'q': */
266 if (!BN_rshift(q, q, e))
267 goto end;
268
269 /*
270 * Now that we have some non-square, we can find an element of order 2^e
271 * by computing its q'th power.
272 */
273 if (!BN_mod_exp(y, y, q, p, ctx))
274 goto end;
275 if (BN_is_one(y)) {
276 BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
277 goto end;
278 }
279
280 /*-
281 * Now we know that (if p is indeed prime) there is an integer
282 * k, 0 <= k < 2^e, such that
283 *
284 * a^q * y^k == 1 (mod p).
285 *
286 * As a^q is a square and y is not, k must be even.
287 * q+1 is even, too, so there is an element
288 *
289 * X := a^((q+1)/2) * y^(k/2),
290 *
291 * and it satisfies
292 *
293 * X^2 = a^q * a * y^k
294 * = a,
295 *
296 * so it is the square root that we are looking for.
297 */
298
299 /* t := (q-1)/2 (note that q is odd) */
300 if (!BN_rshift1(t, q))
301 goto end;
302
303 /* x := a^((q-1)/2) */
304 if (BN_is_zero(t)) { /* special case: p = 2^e + 1 */
305 if (!BN_nnmod(t, A, p, ctx))
306 goto end;
307 if (BN_is_zero(t)) {
308 /* special case: a == 0 (mod p) */
309 BN_zero(ret);
310 err = 0;
311 goto end;
312 } else if (!BN_one(x))
313 goto end;
314 } else {
315 if (!BN_mod_exp(x, A, t, p, ctx))
316 goto end;
317 if (BN_is_zero(x)) {
318 /* special case: a == 0 (mod p) */
319 BN_zero(ret);
320 err = 0;
321 goto end;
322 }
323 }
324
325 /* b := a*x^2 (= a^q) */
326 if (!BN_mod_sqr(b, x, p, ctx))
327 goto end;
328 if (!BN_mod_mul(b, b, A, p, ctx))
329 goto end;
330
331 /* x := a*x (= a^((q+1)/2)) */
332 if (!BN_mod_mul(x, x, A, p, ctx))
333 goto end;
334
335 while (1) {
336 /*-
337 * Now b is a^q * y^k for some even k (0 <= k < 2^E
338 * where E refers to the original value of e, which we
339 * don't keep in a variable), and x is a^((q+1)/2) * y^(k/2).
340 *
341 * We have a*b = x^2,
342 * y^2^(e-1) = -1,
343 * b^2^(e-1) = 1.
344 */
345
346 if (BN_is_one(b)) {
347 if (!BN_copy(ret, x))
348 goto end;
349 err = 0;
350 goto vrfy;
351 }
352
353 /* find smallest i such that b^(2^i) = 1 */
354 i = 1;
355 if (!BN_mod_sqr(t, b, p, ctx))
356 goto end;
357 while (!BN_is_one(t)) {
358 i++;
359 if (i == e) {
360 BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
361 goto end;
362 }
363 if (!BN_mod_mul(t, t, t, p, ctx))
364 goto end;
365 }
366
367 /* t := y^2^(e - i - 1) */
368 if (!BN_copy(t, y))
369 goto end;
370 for (j = e - i - 1; j > 0; j--) {
371 if (!BN_mod_sqr(t, t, p, ctx))
372 goto end;
373 }
374 if (!BN_mod_mul(y, t, t, p, ctx))
375 goto end;
376 if (!BN_mod_mul(x, x, t, p, ctx))
377 goto end;
378 if (!BN_mod_mul(b, b, y, p, ctx))
379 goto end;
380 e = i;
381 }
382
383 vrfy:
384 if (!err) {
385 /*
386 * verify the result -- the input might have been not a square (test
387 * added in 0.9.8)
388 */
389
390 if (!BN_mod_sqr(x, ret, p, ctx))
391 err = 1;
392
393 if (!err && 0 != BN_cmp(x, A)) {
394 BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
395 err = 1;
396 }
397 }
398
399 end:
400 if (err) {
401 if (ret != NULL && ret != in) {
402 BN_clear_free(ret);
403 }
404 ret = NULL;
405 }
406 BN_CTX_end(ctx);
407 bn_check_top(ret);
408 return ret;
409 }