]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/ec/ec2_mult.c
Run util/openssl-format-source -v -c .
[thirdparty/openssl.git] / crypto / ec / ec2_mult.c
1 /* crypto/ec/ec2_mult.c */
2 /* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * The software is originally written by Sheueling Chang Shantz and
13 * Douglas Stebila of Sun Microsystems Laboratories.
14 *
15 */
16 /* ====================================================================
17 * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 *
23 * 1. Redistributions of source code must retain the above copyright
24 * notice, this list of conditions and the following disclaimer.
25 *
26 * 2. Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 *
31 * 3. All advertising materials mentioning features or use of this
32 * software must display the following acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
35 *
36 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
37 * endorse or promote products derived from this software without
38 * prior written permission. For written permission, please contact
39 * openssl-core@openssl.org.
40 *
41 * 5. Products derived from this software may not be called "OpenSSL"
42 * nor may "OpenSSL" appear in their names without prior written
43 * permission of the OpenSSL Project.
44 *
45 * 6. Redistributions of any form whatsoever must retain the following
46 * acknowledgment:
47 * "This product includes software developed by the OpenSSL Project
48 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
51 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
54 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
56 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
57 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
61 * OF THE POSSIBILITY OF SUCH DAMAGE.
62 * ====================================================================
63 *
64 * This product includes cryptographic software written by Eric Young
65 * (eay@cryptsoft.com). This product includes software written by Tim
66 * Hudson (tjh@cryptsoft.com).
67 *
68 */
69
70 #include <openssl/err.h>
71
72 #include "ec_lcl.h"
73
74 /*-
75 * Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective
76 * coordinates.
77 * Uses algorithm Mdouble in appendix of
78 * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
79 * GF(2^m) without precomputation".
80 * modified to not require precomputation of c=b^{2^{m-1}}.
81 */
82 static int gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z,
83 BN_CTX *ctx)
84 {
85 BIGNUM *t1;
86 int ret = 0;
87
88 /* Since Mdouble is static we can guarantee that ctx != NULL. */
89 BN_CTX_start(ctx);
90 t1 = BN_CTX_get(ctx);
91 if (t1 == NULL)
92 goto err;
93
94 if (!group->meth->field_sqr(group, x, x, ctx))
95 goto err;
96 if (!group->meth->field_sqr(group, t1, z, ctx))
97 goto err;
98 if (!group->meth->field_mul(group, z, x, t1, ctx))
99 goto err;
100 if (!group->meth->field_sqr(group, x, x, ctx))
101 goto err;
102 if (!group->meth->field_sqr(group, t1, t1, ctx))
103 goto err;
104 if (!group->meth->field_mul(group, t1, &group->b, t1, ctx))
105 goto err;
106 if (!BN_GF2m_add(x, x, t1))
107 goto err;
108
109 ret = 1;
110
111 err:
112 BN_CTX_end(ctx);
113 return ret;
114 }
115
116 /*-
117 * Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery
118 * projective coordinates.
119 * Uses algorithm Madd in appendix of
120 * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over
121 * GF(2^m) without precomputation".
122 */
123 static int gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1,
124 BIGNUM *z1, const BIGNUM *x2, const BIGNUM *z2,
125 BN_CTX *ctx)
126 {
127 BIGNUM *t1, *t2;
128 int ret = 0;
129
130 /* Since Madd is static we can guarantee that ctx != NULL. */
131 BN_CTX_start(ctx);
132 t1 = BN_CTX_get(ctx);
133 t2 = BN_CTX_get(ctx);
134 if (t2 == NULL)
135 goto err;
136
137 if (!BN_copy(t1, x))
138 goto err;
139 if (!group->meth->field_mul(group, x1, x1, z2, ctx))
140 goto err;
141 if (!group->meth->field_mul(group, z1, z1, x2, ctx))
142 goto err;
143 if (!group->meth->field_mul(group, t2, x1, z1, ctx))
144 goto err;
145 if (!BN_GF2m_add(z1, z1, x1))
146 goto err;
147 if (!group->meth->field_sqr(group, z1, z1, ctx))
148 goto err;
149 if (!group->meth->field_mul(group, x1, z1, t1, ctx))
150 goto err;
151 if (!BN_GF2m_add(x1, x1, t2))
152 goto err;
153
154 ret = 1;
155
156 err:
157 BN_CTX_end(ctx);
158 return ret;
159 }
160
161 /*-
162 * Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
163 * using Montgomery point multiplication algorithm Mxy() in appendix of
164 * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over
165 * GF(2^m) without precomputation".
166 * Returns:
167 * 0 on error
168 * 1 if return value should be the point at infinity
169 * 2 otherwise
170 */
171 static int gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y,
172 BIGNUM *x1, BIGNUM *z1, BIGNUM *x2, BIGNUM *z2,
173 BN_CTX *ctx)
174 {
175 BIGNUM *t3, *t4, *t5;
176 int ret = 0;
177
178 if (BN_is_zero(z1)) {
179 BN_zero(x2);
180 BN_zero(z2);
181 return 1;
182 }
183
184 if (BN_is_zero(z2)) {
185 if (!BN_copy(x2, x))
186 return 0;
187 if (!BN_GF2m_add(z2, x, y))
188 return 0;
189 return 2;
190 }
191
192 /* Since Mxy is static we can guarantee that ctx != NULL. */
193 BN_CTX_start(ctx);
194 t3 = BN_CTX_get(ctx);
195 t4 = BN_CTX_get(ctx);
196 t5 = BN_CTX_get(ctx);
197 if (t5 == NULL)
198 goto err;
199
200 if (!BN_one(t5))
201 goto err;
202
203 if (!group->meth->field_mul(group, t3, z1, z2, ctx))
204 goto err;
205
206 if (!group->meth->field_mul(group, z1, z1, x, ctx))
207 goto err;
208 if (!BN_GF2m_add(z1, z1, x1))
209 goto err;
210 if (!group->meth->field_mul(group, z2, z2, x, ctx))
211 goto err;
212 if (!group->meth->field_mul(group, x1, z2, x1, ctx))
213 goto err;
214 if (!BN_GF2m_add(z2, z2, x2))
215 goto err;
216
217 if (!group->meth->field_mul(group, z2, z2, z1, ctx))
218 goto err;
219 if (!group->meth->field_sqr(group, t4, x, ctx))
220 goto err;
221 if (!BN_GF2m_add(t4, t4, y))
222 goto err;
223 if (!group->meth->field_mul(group, t4, t4, t3, ctx))
224 goto err;
225 if (!BN_GF2m_add(t4, t4, z2))
226 goto err;
227
228 if (!group->meth->field_mul(group, t3, t3, x, ctx))
229 goto err;
230 if (!group->meth->field_div(group, t3, t5, t3, ctx))
231 goto err;
232 if (!group->meth->field_mul(group, t4, t3, t4, ctx))
233 goto err;
234 if (!group->meth->field_mul(group, x2, x1, t3, ctx))
235 goto err;
236 if (!BN_GF2m_add(z2, x2, x))
237 goto err;
238
239 if (!group->meth->field_mul(group, z2, z2, t4, ctx))
240 goto err;
241 if (!BN_GF2m_add(z2, z2, y))
242 goto err;
243
244 ret = 2;
245
246 err:
247 BN_CTX_end(ctx);
248 return ret;
249 }
250
251 /*-
252 * Computes scalar*point and stores the result in r.
253 * point can not equal r.
254 * Uses a modified algorithm 2P of
255 * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over
256 * GF(2^m) without precomputation".
257 *
258 * To protect against side-channel attack the function uses constant time
259 * swap avoiding conditional branches.
260 */
261 static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group,
262 EC_POINT *r,
263 const BIGNUM *scalar,
264 const EC_POINT *point,
265 BN_CTX *ctx)
266 {
267 BIGNUM *x1, *x2, *z1, *z2;
268 int ret = 0, i, j;
269 BN_ULONG mask;
270
271 if (r == point) {
272 ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT);
273 return 0;
274 }
275
276 /* if result should be point at infinity */
277 if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) ||
278 EC_POINT_is_at_infinity(group, point)) {
279 return EC_POINT_set_to_infinity(group, r);
280 }
281
282 /* only support affine coordinates */
283 if (!point->Z_is_one)
284 return 0;
285
286 /*
287 * Since point_multiply is static we can guarantee that ctx != NULL.
288 */
289 BN_CTX_start(ctx);
290 x1 = BN_CTX_get(ctx);
291 z1 = BN_CTX_get(ctx);
292 if (z1 == NULL)
293 goto err;
294
295 x2 = &r->X;
296 z2 = &r->Y;
297
298 bn_wexpand(x1, group->field.top);
299 bn_wexpand(z1, group->field.top);
300 bn_wexpand(x2, group->field.top);
301 bn_wexpand(z2, group->field.top);
302
303 if (!BN_GF2m_mod_arr(x1, &point->X, group->poly))
304 goto err; /* x1 = x */
305 if (!BN_one(z1))
306 goto err; /* z1 = 1 */
307 if (!group->meth->field_sqr(group, z2, x1, ctx))
308 goto err; /* z2 = x1^2 = x^2 */
309 if (!group->meth->field_sqr(group, x2, z2, ctx))
310 goto err;
311 if (!BN_GF2m_add(x2, x2, &group->b))
312 goto err; /* x2 = x^4 + b */
313
314 /* find top most bit and go one past it */
315 i = scalar->top - 1;
316 j = BN_BITS2 - 1;
317 mask = BN_TBIT;
318 while (!(scalar->d[i] & mask)) {
319 mask >>= 1;
320 j--;
321 }
322 mask >>= 1;
323 j--;
324 /* if top most bit was at word break, go to next word */
325 if (!mask) {
326 i--;
327 j = BN_BITS2 - 1;
328 mask = BN_TBIT;
329 }
330
331 for (; i >= 0; i--) {
332 for (; j >= 0; j--) {
333 BN_consttime_swap(scalar->d[i] & mask, x1, x2, group->field.top);
334 BN_consttime_swap(scalar->d[i] & mask, z1, z2, group->field.top);
335 if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx))
336 goto err;
337 if (!gf2m_Mdouble(group, x1, z1, ctx))
338 goto err;
339 BN_consttime_swap(scalar->d[i] & mask, x1, x2, group->field.top);
340 BN_consttime_swap(scalar->d[i] & mask, z1, z2, group->field.top);
341 mask >>= 1;
342 }
343 j = BN_BITS2 - 1;
344 mask = BN_TBIT;
345 }
346
347 /* convert out of "projective" coordinates */
348 i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx);
349 if (i == 0)
350 goto err;
351 else if (i == 1) {
352 if (!EC_POINT_set_to_infinity(group, r))
353 goto err;
354 } else {
355 if (!BN_one(&r->Z))
356 goto err;
357 r->Z_is_one = 1;
358 }
359
360 /* GF(2^m) field elements should always have BIGNUM::neg = 0 */
361 BN_set_negative(&r->X, 0);
362 BN_set_negative(&r->Y, 0);
363
364 ret = 1;
365
366 err:
367 BN_CTX_end(ctx);
368 return ret;
369 }
370
371 /*-
372 * Computes the sum
373 * scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1]
374 * gracefully ignoring NULL scalar values.
375 */
376 int ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r,
377 const BIGNUM *scalar, size_t num,
378 const EC_POINT *points[], const BIGNUM *scalars[],
379 BN_CTX *ctx)
380 {
381 BN_CTX *new_ctx = NULL;
382 int ret = 0;
383 size_t i;
384 EC_POINT *p = NULL;
385 EC_POINT *acc = NULL;
386
387 if (ctx == NULL) {
388 ctx = new_ctx = BN_CTX_new();
389 if (ctx == NULL)
390 return 0;
391 }
392
393 /*
394 * This implementation is more efficient than the wNAF implementation for
395 * 2 or fewer points. Use the ec_wNAF_mul implementation for 3 or more
396 * points, or if we can perform a fast multiplication based on
397 * precomputation.
398 */
399 if ((scalar && (num > 1)) || (num > 2)
400 || (num == 0 && EC_GROUP_have_precompute_mult(group))) {
401 ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
402 goto err;
403 }
404
405 if ((p = EC_POINT_new(group)) == NULL)
406 goto err;
407 if ((acc = EC_POINT_new(group)) == NULL)
408 goto err;
409
410 if (!EC_POINT_set_to_infinity(group, acc))
411 goto err;
412
413 if (scalar) {
414 if (!ec_GF2m_montgomery_point_multiply
415 (group, p, scalar, group->generator, ctx))
416 goto err;
417 if (BN_is_negative(scalar))
418 if (!group->meth->invert(group, p, ctx))
419 goto err;
420 if (!group->meth->add(group, acc, acc, p, ctx))
421 goto err;
422 }
423
424 for (i = 0; i < num; i++) {
425 if (!ec_GF2m_montgomery_point_multiply
426 (group, p, scalars[i], points[i], ctx))
427 goto err;
428 if (BN_is_negative(scalars[i]))
429 if (!group->meth->invert(group, p, ctx))
430 goto err;
431 if (!group->meth->add(group, acc, acc, p, ctx))
432 goto err;
433 }
434
435 if (!EC_POINT_copy(r, acc))
436 goto err;
437
438 ret = 1;
439
440 err:
441 if (p)
442 EC_POINT_free(p);
443 if (acc)
444 EC_POINT_free(acc);
445 if (new_ctx != NULL)
446 BN_CTX_free(new_ctx);
447 return ret;
448 }
449
450 /*
451 * Precomputation for point multiplication: fall back to wNAF methods because
452 * ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate
453 */
454
455 int ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
456 {
457 return ec_wNAF_precompute_mult(group, ctx);
458 }
459
460 int ec_GF2m_have_precompute_mult(const EC_GROUP *group)
461 {
462 return ec_wNAF_have_precompute_mult(group);
463 }