]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/ec/ec_mult.c
Deprecate the ECDSA and EV_KEY_METHOD functions.
[thirdparty/openssl.git] / crypto / ec / ec_mult.c
1 /*
2 * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 *
5 * Licensed under the Apache License 2.0 (the "License"). You may not use
6 * this file except in compliance with the License. You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 */
10
11 /*
12 * ECDSA low level APIs are deprecated for public use, but still ok for
13 * internal use.
14 */
15 #include "internal/deprecated.h"
16
17 #include <string.h>
18 #include <openssl/err.h>
19
20 #include "internal/cryptlib.h"
21 #include "crypto/bn.h"
22 #include "ec_local.h"
23 #include "internal/refcount.h"
24
25 /*
26 * This file implements the wNAF-based interleaving multi-exponentiation method
27 * Formerly at:
28 * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp
29 * You might now find it here:
30 * http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
31 * http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
32 * For multiplication with precomputation, we use wNAF splitting, formerly at:
33 * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp
34 */
35
36 /* structure for precomputed multiples of the generator */
37 struct ec_pre_comp_st {
38 const EC_GROUP *group; /* parent EC_GROUP object */
39 size_t blocksize; /* block size for wNAF splitting */
40 size_t numblocks; /* max. number of blocks for which we have
41 * precomputation */
42 size_t w; /* window size */
43 EC_POINT **points; /* array with pre-calculated multiples of
44 * generator: 'num' pointers to EC_POINT
45 * objects followed by a NULL */
46 size_t num; /* numblocks * 2^(w-1) */
47 CRYPTO_REF_COUNT references;
48 CRYPTO_RWLOCK *lock;
49 };
50
51 static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
52 {
53 EC_PRE_COMP *ret = NULL;
54
55 if (!group)
56 return NULL;
57
58 ret = OPENSSL_zalloc(sizeof(*ret));
59 if (ret == NULL) {
60 ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
61 return ret;
62 }
63
64 ret->group = group;
65 ret->blocksize = 8; /* default */
66 ret->w = 4; /* default */
67 ret->references = 1;
68
69 ret->lock = CRYPTO_THREAD_lock_new();
70 if (ret->lock == NULL) {
71 ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
72 OPENSSL_free(ret);
73 return NULL;
74 }
75 return ret;
76 }
77
78 EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *pre)
79 {
80 int i;
81 if (pre != NULL)
82 CRYPTO_UP_REF(&pre->references, &i, pre->lock);
83 return pre;
84 }
85
86 void EC_ec_pre_comp_free(EC_PRE_COMP *pre)
87 {
88 int i;
89
90 if (pre == NULL)
91 return;
92
93 CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
94 REF_PRINT_COUNT("EC_ec", pre);
95 if (i > 0)
96 return;
97 REF_ASSERT_ISNT(i < 0);
98
99 if (pre->points != NULL) {
100 EC_POINT **pts;
101
102 for (pts = pre->points; *pts != NULL; pts++)
103 EC_POINT_free(*pts);
104 OPENSSL_free(pre->points);
105 }
106 CRYPTO_THREAD_lock_free(pre->lock);
107 OPENSSL_free(pre);
108 }
109
110 #define EC_POINT_BN_set_flags(P, flags) do { \
111 BN_set_flags((P)->X, (flags)); \
112 BN_set_flags((P)->Y, (flags)); \
113 BN_set_flags((P)->Z, (flags)); \
114 } while(0)
115
116 /*-
117 * This functions computes a single point multiplication over the EC group,
118 * using, at a high level, a Montgomery ladder with conditional swaps, with
119 * various timing attack defenses.
120 *
121 * It performs either a fixed point multiplication
122 * (scalar * generator)
123 * when point is NULL, or a variable point multiplication
124 * (scalar * point)
125 * when point is not NULL.
126 *
127 * `scalar` cannot be NULL and should be in the range [0,n) otherwise all
128 * constant time bets are off (where n is the cardinality of the EC group).
129 *
130 * This function expects `group->order` and `group->cardinality` to be well
131 * defined and non-zero: it fails with an error code otherwise.
132 *
133 * NB: This says nothing about the constant-timeness of the ladder step
134 * implementation (i.e., the default implementation is based on EC_POINT_add and
135 * EC_POINT_dbl, which of course are not constant time themselves) or the
136 * underlying multiprecision arithmetic.
137 *
138 * The product is stored in `r`.
139 *
140 * This is an internal function: callers are in charge of ensuring that the
141 * input parameters `group`, `r`, `scalar` and `ctx` are not NULL.
142 *
143 * Returns 1 on success, 0 otherwise.
144 */
145 int ec_scalar_mul_ladder(const EC_GROUP *group, EC_POINT *r,
146 const BIGNUM *scalar, const EC_POINT *point,
147 BN_CTX *ctx)
148 {
149 int i, cardinality_bits, group_top, kbit, pbit, Z_is_one;
150 EC_POINT *p = NULL;
151 EC_POINT *s = NULL;
152 BIGNUM *k = NULL;
153 BIGNUM *lambda = NULL;
154 BIGNUM *cardinality = NULL;
155 int ret = 0;
156
157 /* early exit if the input point is the point at infinity */
158 if (point != NULL && EC_POINT_is_at_infinity(group, point))
159 return EC_POINT_set_to_infinity(group, r);
160
161 if (BN_is_zero(group->order)) {
162 ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_ORDER);
163 return 0;
164 }
165 if (BN_is_zero(group->cofactor)) {
166 ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_COFACTOR);
167 return 0;
168 }
169
170 BN_CTX_start(ctx);
171
172 if (((p = EC_POINT_new(group)) == NULL)
173 || ((s = EC_POINT_new(group)) == NULL)) {
174 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE);
175 goto err;
176 }
177
178 if (point == NULL) {
179 if (!EC_POINT_copy(p, group->generator)) {
180 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
181 goto err;
182 }
183 } else {
184 if (!EC_POINT_copy(p, point)) {
185 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
186 goto err;
187 }
188 }
189
190 EC_POINT_BN_set_flags(p, BN_FLG_CONSTTIME);
191 EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME);
192 EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME);
193
194 cardinality = BN_CTX_get(ctx);
195 lambda = BN_CTX_get(ctx);
196 k = BN_CTX_get(ctx);
197 if (k == NULL) {
198 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE);
199 goto err;
200 }
201
202 if (!BN_mul(cardinality, group->order, group->cofactor, ctx)) {
203 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
204 goto err;
205 }
206
207 /*
208 * Group cardinalities are often on a word boundary.
209 * So when we pad the scalar, some timing diff might
210 * pop if it needs to be expanded due to carries.
211 * So expand ahead of time.
212 */
213 cardinality_bits = BN_num_bits(cardinality);
214 group_top = bn_get_top(cardinality);
215 if ((bn_wexpand(k, group_top + 2) == NULL)
216 || (bn_wexpand(lambda, group_top + 2) == NULL)) {
217 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
218 goto err;
219 }
220
221 if (!BN_copy(k, scalar)) {
222 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
223 goto err;
224 }
225
226 BN_set_flags(k, BN_FLG_CONSTTIME);
227
228 if ((BN_num_bits(k) > cardinality_bits) || (BN_is_negative(k))) {
229 /*-
230 * this is an unusual input, and we don't guarantee
231 * constant-timeness
232 */
233 if (!BN_nnmod(k, k, cardinality, ctx)) {
234 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
235 goto err;
236 }
237 }
238
239 if (!BN_add(lambda, k, cardinality)) {
240 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
241 goto err;
242 }
243 BN_set_flags(lambda, BN_FLG_CONSTTIME);
244 if (!BN_add(k, lambda, cardinality)) {
245 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
246 goto err;
247 }
248 /*
249 * lambda := scalar + cardinality
250 * k := scalar + 2*cardinality
251 */
252 kbit = BN_is_bit_set(lambda, cardinality_bits);
253 BN_consttime_swap(kbit, k, lambda, group_top + 2);
254
255 group_top = bn_get_top(group->field);
256 if ((bn_wexpand(s->X, group_top) == NULL)
257 || (bn_wexpand(s->Y, group_top) == NULL)
258 || (bn_wexpand(s->Z, group_top) == NULL)
259 || (bn_wexpand(r->X, group_top) == NULL)
260 || (bn_wexpand(r->Y, group_top) == NULL)
261 || (bn_wexpand(r->Z, group_top) == NULL)
262 || (bn_wexpand(p->X, group_top) == NULL)
263 || (bn_wexpand(p->Y, group_top) == NULL)
264 || (bn_wexpand(p->Z, group_top) == NULL)) {
265 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
266 goto err;
267 }
268
269 /*-
270 * Apply coordinate blinding for EC_POINT.
271 *
272 * The underlying EC_METHOD can optionally implement this function:
273 * ec_point_blind_coordinates() returns 0 in case of errors or 1 on
274 * success or if coordinate blinding is not implemented for this
275 * group.
276 */
277 if (!ec_point_blind_coordinates(group, p, ctx)) {
278 ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_POINT_COORDINATES_BLIND_FAILURE);
279 goto err;
280 }
281
282 /* Initialize the Montgomery ladder */
283 if (!ec_point_ladder_pre(group, r, s, p, ctx)) {
284 ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_PRE_FAILURE);
285 goto err;
286 }
287
288 /* top bit is a 1, in a fixed pos */
289 pbit = 1;
290
291 #define EC_POINT_CSWAP(c, a, b, w, t) do { \
292 BN_consttime_swap(c, (a)->X, (b)->X, w); \
293 BN_consttime_swap(c, (a)->Y, (b)->Y, w); \
294 BN_consttime_swap(c, (a)->Z, (b)->Z, w); \
295 t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \
296 (a)->Z_is_one ^= (t); \
297 (b)->Z_is_one ^= (t); \
298 } while(0)
299
300 /*-
301 * The ladder step, with branches, is
302 *
303 * k[i] == 0: S = add(R, S), R = dbl(R)
304 * k[i] == 1: R = add(S, R), S = dbl(S)
305 *
306 * Swapping R, S conditionally on k[i] leaves you with state
307 *
308 * k[i] == 0: T, U = R, S
309 * k[i] == 1: T, U = S, R
310 *
311 * Then perform the ECC ops.
312 *
313 * U = add(T, U)
314 * T = dbl(T)
315 *
316 * Which leaves you with state
317 *
318 * k[i] == 0: U = add(R, S), T = dbl(R)
319 * k[i] == 1: U = add(S, R), T = dbl(S)
320 *
321 * Swapping T, U conditionally on k[i] leaves you with state
322 *
323 * k[i] == 0: R, S = T, U
324 * k[i] == 1: R, S = U, T
325 *
326 * Which leaves you with state
327 *
328 * k[i] == 0: S = add(R, S), R = dbl(R)
329 * k[i] == 1: R = add(S, R), S = dbl(S)
330 *
331 * So we get the same logic, but instead of a branch it's a
332 * conditional swap, followed by ECC ops, then another conditional swap.
333 *
334 * Optimization: The end of iteration i and start of i-1 looks like
335 *
336 * ...
337 * CSWAP(k[i], R, S)
338 * ECC
339 * CSWAP(k[i], R, S)
340 * (next iteration)
341 * CSWAP(k[i-1], R, S)
342 * ECC
343 * CSWAP(k[i-1], R, S)
344 * ...
345 *
346 * So instead of two contiguous swaps, you can merge the condition
347 * bits and do a single swap.
348 *
349 * k[i] k[i-1] Outcome
350 * 0 0 No Swap
351 * 0 1 Swap
352 * 1 0 Swap
353 * 1 1 No Swap
354 *
355 * This is XOR. pbit tracks the previous bit of k.
356 */
357
358 for (i = cardinality_bits - 1; i >= 0; i--) {
359 kbit = BN_is_bit_set(k, i) ^ pbit;
360 EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one);
361
362 /* Perform a single step of the Montgomery ladder */
363 if (!ec_point_ladder_step(group, r, s, p, ctx)) {
364 ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_STEP_FAILURE);
365 goto err;
366 }
367 /*
368 * pbit logic merges this cswap with that of the
369 * next iteration
370 */
371 pbit ^= kbit;
372 }
373 /* one final cswap to move the right value into r */
374 EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one);
375 #undef EC_POINT_CSWAP
376
377 /* Finalize ladder (and recover full point coordinates) */
378 if (!ec_point_ladder_post(group, r, s, p, ctx)) {
379 ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_POST_FAILURE);
380 goto err;
381 }
382
383 ret = 1;
384
385 err:
386 EC_POINT_free(p);
387 EC_POINT_clear_free(s);
388 BN_CTX_end(ctx);
389
390 return ret;
391 }
392
393 #undef EC_POINT_BN_set_flags
394
395 /*
396 * TODO: table should be optimised for the wNAF-based implementation,
397 * sometimes smaller windows will give better performance (thus the
398 * boundaries should be increased)
399 */
400 #define EC_window_bits_for_scalar_size(b) \
401 ((size_t) \
402 ((b) >= 2000 ? 6 : \
403 (b) >= 800 ? 5 : \
404 (b) >= 300 ? 4 : \
405 (b) >= 70 ? 3 : \
406 (b) >= 20 ? 2 : \
407 1))
408
409 /*-
410 * Compute
411 * \sum scalars[i]*points[i],
412 * also including
413 * scalar*generator
414 * in the addition if scalar != NULL
415 */
416 int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
417 size_t num, const EC_POINT *points[], const BIGNUM *scalars[],
418 BN_CTX *ctx)
419 {
420 const EC_POINT *generator = NULL;
421 EC_POINT *tmp = NULL;
422 size_t totalnum;
423 size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
424 size_t pre_points_per_block = 0;
425 size_t i, j;
426 int k;
427 int r_is_inverted = 0;
428 int r_is_at_infinity = 1;
429 size_t *wsize = NULL; /* individual window sizes */
430 signed char **wNAF = NULL; /* individual wNAFs */
431 size_t *wNAF_len = NULL;
432 size_t max_len = 0;
433 size_t num_val;
434 EC_POINT **val = NULL; /* precomputation */
435 EC_POINT **v;
436 EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or
437 * 'pre_comp->points' */
438 const EC_PRE_COMP *pre_comp = NULL;
439 int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be
440 * treated like other scalars, i.e.
441 * precomputation is not available */
442 int ret = 0;
443
444 if (!BN_is_zero(group->order) && !BN_is_zero(group->cofactor)) {
445 /*-
446 * Handle the common cases where the scalar is secret, enforcing a
447 * scalar multiplication implementation based on a Montgomery ladder,
448 * with various timing attack defenses.
449 */
450 if ((scalar != group->order) && (scalar != NULL) && (num == 0)) {
451 /*-
452 * In this case we want to compute scalar * GeneratorPoint: this
453 * codepath is reached most prominently by (ephemeral) key
454 * generation of EC cryptosystems (i.e. ECDSA keygen and sign setup,
455 * ECDH keygen/first half), where the scalar is always secret. This
456 * is why we ignore if BN_FLG_CONSTTIME is actually set and we
457 * always call the ladder version.
458 */
459 return ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);
460 }
461 if ((scalar == NULL) && (num == 1) && (scalars[0] != group->order)) {
462 /*-
463 * In this case we want to compute scalar * VariablePoint: this
464 * codepath is reached most prominently by the second half of ECDH,
465 * where the secret scalar is multiplied by the peer's public point.
466 * To protect the secret scalar, we ignore if BN_FLG_CONSTTIME is
467 * actually set and we always call the ladder version.
468 */
469 return ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx);
470 }
471 }
472
473 if (scalar != NULL) {
474 generator = EC_GROUP_get0_generator(group);
475 if (generator == NULL) {
476 ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
477 goto err;
478 }
479
480 /* look if we can use precomputed multiples of generator */
481
482 pre_comp = group->pre_comp.ec;
483 if (pre_comp && pre_comp->numblocks
484 && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) ==
485 0)) {
486 blocksize = pre_comp->blocksize;
487
488 /*
489 * determine maximum number of blocks that wNAF splitting may
490 * yield (NB: maximum wNAF length is bit length plus one)
491 */
492 numblocks = (BN_num_bits(scalar) / blocksize) + 1;
493
494 /*
495 * we cannot use more blocks than we have precomputation for
496 */
497 if (numblocks > pre_comp->numblocks)
498 numblocks = pre_comp->numblocks;
499
500 pre_points_per_block = (size_t)1 << (pre_comp->w - 1);
501
502 /* check that pre_comp looks sane */
503 if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
504 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
505 goto err;
506 }
507 } else {
508 /* can't use precomputation */
509 pre_comp = NULL;
510 numblocks = 1;
511 num_scalar = 1; /* treat 'scalar' like 'num'-th element of
512 * 'scalars' */
513 }
514 }
515
516 totalnum = num + numblocks;
517
518 wsize = OPENSSL_malloc(totalnum * sizeof(wsize[0]));
519 wNAF_len = OPENSSL_malloc(totalnum * sizeof(wNAF_len[0]));
520 /* include space for pivot */
521 wNAF = OPENSSL_malloc((totalnum + 1) * sizeof(wNAF[0]));
522 val_sub = OPENSSL_malloc(totalnum * sizeof(val_sub[0]));
523
524 /* Ensure wNAF is initialised in case we end up going to err */
525 if (wNAF != NULL)
526 wNAF[0] = NULL; /* preliminary pivot */
527
528 if (wsize == NULL || wNAF_len == NULL || wNAF == NULL || val_sub == NULL) {
529 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
530 goto err;
531 }
532
533 /*
534 * num_val will be the total number of temporarily precomputed points
535 */
536 num_val = 0;
537
538 for (i = 0; i < num + num_scalar; i++) {
539 size_t bits;
540
541 bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
542 wsize[i] = EC_window_bits_for_scalar_size(bits);
543 num_val += (size_t)1 << (wsize[i] - 1);
544 wNAF[i + 1] = NULL; /* make sure we always have a pivot */
545 wNAF[i] =
546 bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i],
547 &wNAF_len[i]);
548 if (wNAF[i] == NULL)
549 goto err;
550 if (wNAF_len[i] > max_len)
551 max_len = wNAF_len[i];
552 }
553
554 if (numblocks) {
555 /* we go here iff scalar != NULL */
556
557 if (pre_comp == NULL) {
558 if (num_scalar != 1) {
559 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
560 goto err;
561 }
562 /* we have already generated a wNAF for 'scalar' */
563 } else {
564 signed char *tmp_wNAF = NULL;
565 size_t tmp_len = 0;
566
567 if (num_scalar != 0) {
568 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
569 goto err;
570 }
571
572 /*
573 * use the window size for which we have precomputation
574 */
575 wsize[num] = pre_comp->w;
576 tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len);
577 if (!tmp_wNAF)
578 goto err;
579
580 if (tmp_len <= max_len) {
581 /*
582 * One of the other wNAFs is at least as long as the wNAF
583 * belonging to the generator, so wNAF splitting will not buy
584 * us anything.
585 */
586
587 numblocks = 1;
588 totalnum = num + 1; /* don't use wNAF splitting */
589 wNAF[num] = tmp_wNAF;
590 wNAF[num + 1] = NULL;
591 wNAF_len[num] = tmp_len;
592 /*
593 * pre_comp->points starts with the points that we need here:
594 */
595 val_sub[num] = pre_comp->points;
596 } else {
597 /*
598 * don't include tmp_wNAF directly into wNAF array - use wNAF
599 * splitting and include the blocks
600 */
601
602 signed char *pp;
603 EC_POINT **tmp_points;
604
605 if (tmp_len < numblocks * blocksize) {
606 /*
607 * possibly we can do with fewer blocks than estimated
608 */
609 numblocks = (tmp_len + blocksize - 1) / blocksize;
610 if (numblocks > pre_comp->numblocks) {
611 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
612 OPENSSL_free(tmp_wNAF);
613 goto err;
614 }
615 totalnum = num + numblocks;
616 }
617
618 /* split wNAF in 'numblocks' parts */
619 pp = tmp_wNAF;
620 tmp_points = pre_comp->points;
621
622 for (i = num; i < totalnum; i++) {
623 if (i < totalnum - 1) {
624 wNAF_len[i] = blocksize;
625 if (tmp_len < blocksize) {
626 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
627 OPENSSL_free(tmp_wNAF);
628 goto err;
629 }
630 tmp_len -= blocksize;
631 } else
632 /*
633 * last block gets whatever is left (this could be
634 * more or less than 'blocksize'!)
635 */
636 wNAF_len[i] = tmp_len;
637
638 wNAF[i + 1] = NULL;
639 wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
640 if (wNAF[i] == NULL) {
641 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
642 OPENSSL_free(tmp_wNAF);
643 goto err;
644 }
645 memcpy(wNAF[i], pp, wNAF_len[i]);
646 if (wNAF_len[i] > max_len)
647 max_len = wNAF_len[i];
648
649 if (*tmp_points == NULL) {
650 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
651 OPENSSL_free(tmp_wNAF);
652 goto err;
653 }
654 val_sub[i] = tmp_points;
655 tmp_points += pre_points_per_block;
656 pp += blocksize;
657 }
658 OPENSSL_free(tmp_wNAF);
659 }
660 }
661 }
662
663 /*
664 * All points we precompute now go into a single array 'val'.
665 * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a
666 * subarray of 'pre_comp->points' if we already have precomputation.
667 */
668 val = OPENSSL_malloc((num_val + 1) * sizeof(val[0]));
669 if (val == NULL) {
670 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
671 goto err;
672 }
673 val[num_val] = NULL; /* pivot element */
674
675 /* allocate points for precomputation */
676 v = val;
677 for (i = 0; i < num + num_scalar; i++) {
678 val_sub[i] = v;
679 for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
680 *v = EC_POINT_new(group);
681 if (*v == NULL)
682 goto err;
683 v++;
684 }
685 }
686 if (!(v == val + num_val)) {
687 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
688 goto err;
689 }
690
691 if ((tmp = EC_POINT_new(group)) == NULL)
692 goto err;
693
694 /*-
695 * prepare precomputed values:
696 * val_sub[i][0] := points[i]
697 * val_sub[i][1] := 3 * points[i]
698 * val_sub[i][2] := 5 * points[i]
699 * ...
700 */
701 for (i = 0; i < num + num_scalar; i++) {
702 if (i < num) {
703 if (!EC_POINT_copy(val_sub[i][0], points[i]))
704 goto err;
705 } else {
706 if (!EC_POINT_copy(val_sub[i][0], generator))
707 goto err;
708 }
709
710 if (wsize[i] > 1) {
711 if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
712 goto err;
713 for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
714 if (!EC_POINT_add
715 (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
716 goto err;
717 }
718 }
719 }
720
721 if (!EC_POINTs_make_affine(group, num_val, val, ctx))
722 goto err;
723
724 r_is_at_infinity = 1;
725
726 for (k = max_len - 1; k >= 0; k--) {
727 if (!r_is_at_infinity) {
728 if (!EC_POINT_dbl(group, r, r, ctx))
729 goto err;
730 }
731
732 for (i = 0; i < totalnum; i++) {
733 if (wNAF_len[i] > (size_t)k) {
734 int digit = wNAF[i][k];
735 int is_neg;
736
737 if (digit) {
738 is_neg = digit < 0;
739
740 if (is_neg)
741 digit = -digit;
742
743 if (is_neg != r_is_inverted) {
744 if (!r_is_at_infinity) {
745 if (!EC_POINT_invert(group, r, ctx))
746 goto err;
747 }
748 r_is_inverted = !r_is_inverted;
749 }
750
751 /* digit > 0 */
752
753 if (r_is_at_infinity) {
754 if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
755 goto err;
756 r_is_at_infinity = 0;
757 } else {
758 if (!EC_POINT_add
759 (group, r, r, val_sub[i][digit >> 1], ctx))
760 goto err;
761 }
762 }
763 }
764 }
765 }
766
767 if (r_is_at_infinity) {
768 if (!EC_POINT_set_to_infinity(group, r))
769 goto err;
770 } else {
771 if (r_is_inverted)
772 if (!EC_POINT_invert(group, r, ctx))
773 goto err;
774 }
775
776 ret = 1;
777
778 err:
779 EC_POINT_free(tmp);
780 OPENSSL_free(wsize);
781 OPENSSL_free(wNAF_len);
782 if (wNAF != NULL) {
783 signed char **w;
784
785 for (w = wNAF; *w != NULL; w++)
786 OPENSSL_free(*w);
787
788 OPENSSL_free(wNAF);
789 }
790 if (val != NULL) {
791 for (v = val; *v != NULL; v++)
792 EC_POINT_clear_free(*v);
793
794 OPENSSL_free(val);
795 }
796 OPENSSL_free(val_sub);
797 return ret;
798 }
799
800 /*-
801 * ec_wNAF_precompute_mult()
802 * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
803 * for use with wNAF splitting as implemented in ec_wNAF_mul().
804 *
805 * 'pre_comp->points' is an array of multiples of the generator
806 * of the following form:
807 * points[0] = generator;
808 * points[1] = 3 * generator;
809 * ...
810 * points[2^(w-1)-1] = (2^(w-1)-1) * generator;
811 * points[2^(w-1)] = 2^blocksize * generator;
812 * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
813 * ...
814 * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) * 2^(blocksize*(numblocks-2)) * generator
815 * points[2^(w-1)*(numblocks-1)] = 2^(blocksize*(numblocks-1)) * generator
816 * ...
817 * points[2^(w-1)*numblocks-1] = (2^(w-1)) * 2^(blocksize*(numblocks-1)) * generator
818 * points[2^(w-1)*numblocks] = NULL
819 */
820 int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
821 {
822 const EC_POINT *generator;
823 EC_POINT *tmp_point = NULL, *base = NULL, **var;
824 const BIGNUM *order;
825 size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
826 EC_POINT **points = NULL;
827 EC_PRE_COMP *pre_comp;
828 int ret = 0;
829 #ifndef FIPS_MODE
830 BN_CTX *new_ctx = NULL;
831 #endif
832
833 /* if there is an old EC_PRE_COMP object, throw it away */
834 EC_pre_comp_free(group);
835 if ((pre_comp = ec_pre_comp_new(group)) == NULL)
836 return 0;
837
838 generator = EC_GROUP_get0_generator(group);
839 if (generator == NULL) {
840 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
841 goto err;
842 }
843
844 #ifndef FIPS_MODE
845 if (ctx == NULL)
846 ctx = new_ctx = BN_CTX_new();
847 #endif
848 if (ctx == NULL)
849 goto err;
850
851 BN_CTX_start(ctx);
852
853 order = EC_GROUP_get0_order(group);
854 if (order == NULL)
855 goto err;
856 if (BN_is_zero(order)) {
857 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
858 goto err;
859 }
860
861 bits = BN_num_bits(order);
862 /*
863 * The following parameters mean we precompute (approximately) one point
864 * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other
865 * bit lengths, other parameter combinations might provide better
866 * efficiency.
867 */
868 blocksize = 8;
869 w = 4;
870 if (EC_window_bits_for_scalar_size(bits) > w) {
871 /* let's not make the window too small ... */
872 w = EC_window_bits_for_scalar_size(bits);
873 }
874
875 numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks
876 * to use for wNAF
877 * splitting */
878
879 pre_points_per_block = (size_t)1 << (w - 1);
880 num = pre_points_per_block * numblocks; /* number of points to compute
881 * and store */
882
883 points = OPENSSL_malloc(sizeof(*points) * (num + 1));
884 if (points == NULL) {
885 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
886 goto err;
887 }
888
889 var = points;
890 var[num] = NULL; /* pivot */
891 for (i = 0; i < num; i++) {
892 if ((var[i] = EC_POINT_new(group)) == NULL) {
893 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
894 goto err;
895 }
896 }
897
898 if ((tmp_point = EC_POINT_new(group)) == NULL
899 || (base = EC_POINT_new(group)) == NULL) {
900 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
901 goto err;
902 }
903
904 if (!EC_POINT_copy(base, generator))
905 goto err;
906
907 /* do the precomputation */
908 for (i = 0; i < numblocks; i++) {
909 size_t j;
910
911 if (!EC_POINT_dbl(group, tmp_point, base, ctx))
912 goto err;
913
914 if (!EC_POINT_copy(*var++, base))
915 goto err;
916
917 for (j = 1; j < pre_points_per_block; j++, var++) {
918 /*
919 * calculate odd multiples of the current base point
920 */
921 if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
922 goto err;
923 }
924
925 if (i < numblocks - 1) {
926 /*
927 * get the next base (multiply current one by 2^blocksize)
928 */
929 size_t k;
930
931 if (blocksize <= 2) {
932 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
933 goto err;
934 }
935
936 if (!EC_POINT_dbl(group, base, tmp_point, ctx))
937 goto err;
938 for (k = 2; k < blocksize; k++) {
939 if (!EC_POINT_dbl(group, base, base, ctx))
940 goto err;
941 }
942 }
943 }
944
945 if (!EC_POINTs_make_affine(group, num, points, ctx))
946 goto err;
947
948 pre_comp->group = group;
949 pre_comp->blocksize = blocksize;
950 pre_comp->numblocks = numblocks;
951 pre_comp->w = w;
952 pre_comp->points = points;
953 points = NULL;
954 pre_comp->num = num;
955 SETPRECOMP(group, ec, pre_comp);
956 pre_comp = NULL;
957 ret = 1;
958
959 err:
960 BN_CTX_end(ctx);
961 #ifndef FIPS_MODE
962 BN_CTX_free(new_ctx);
963 #endif
964 EC_ec_pre_comp_free(pre_comp);
965 if (points) {
966 EC_POINT **p;
967
968 for (p = points; *p != NULL; p++)
969 EC_POINT_free(*p);
970 OPENSSL_free(points);
971 }
972 EC_POINT_free(tmp_point);
973 EC_POINT_free(base);
974 return ret;
975 }
976
977 int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
978 {
979 return HAVEPRECOMP(group, ec);
980 }