]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/evp/e_aes_cbc_hmac_sha1.c
Don't use a ssl specific DRBG anymore
[thirdparty/openssl.git] / crypto / evp / e_aes_cbc_hmac_sha1.c
1 /*
2 * Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <openssl/opensslconf.h>
11
12 #include <stdio.h>
13 #include <string.h>
14
15 #include <openssl/evp.h>
16 #include <openssl/objects.h>
17 #include <openssl/aes.h>
18 #include <openssl/sha.h>
19 #include <openssl/rand.h>
20 #include "modes_lcl.h"
21 #include "internal/evp_int.h"
22 #include "internal/constant_time_locl.h"
23
24 typedef struct {
25 AES_KEY ks;
26 SHA_CTX head, tail, md;
27 size_t payload_length; /* AAD length in decrypt case */
28 union {
29 unsigned int tls_ver;
30 unsigned char tls_aad[16]; /* 13 used */
31 } aux;
32 } EVP_AES_HMAC_SHA1;
33
34 #define NO_PAYLOAD_LENGTH ((size_t)-1)
35
36 #if defined(AES_ASM) && ( \
37 defined(__x86_64) || defined(__x86_64__) || \
38 defined(_M_AMD64) || defined(_M_X64) )
39
40 extern unsigned int OPENSSL_ia32cap_P[];
41 # define AESNI_CAPABLE (1<<(57-32))
42
43 int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
44 AES_KEY *key);
45 int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
46 AES_KEY *key);
47
48 void aesni_cbc_encrypt(const unsigned char *in,
49 unsigned char *out,
50 size_t length,
51 const AES_KEY *key, unsigned char *ivec, int enc);
52
53 void aesni_cbc_sha1_enc(const void *inp, void *out, size_t blocks,
54 const AES_KEY *key, unsigned char iv[16],
55 SHA_CTX *ctx, const void *in0);
56
57 void aesni256_cbc_sha1_dec(const void *inp, void *out, size_t blocks,
58 const AES_KEY *key, unsigned char iv[16],
59 SHA_CTX *ctx, const void *in0);
60
61 # define data(ctx) ((EVP_AES_HMAC_SHA1 *)EVP_CIPHER_CTX_get_cipher_data(ctx))
62
63 static int aesni_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
64 const unsigned char *inkey,
65 const unsigned char *iv, int enc)
66 {
67 EVP_AES_HMAC_SHA1 *key = data(ctx);
68 int ret;
69
70 if (enc)
71 ret = aesni_set_encrypt_key(inkey,
72 EVP_CIPHER_CTX_key_length(ctx) * 8,
73 &key->ks);
74 else
75 ret = aesni_set_decrypt_key(inkey,
76 EVP_CIPHER_CTX_key_length(ctx) * 8,
77 &key->ks);
78
79 SHA1_Init(&key->head); /* handy when benchmarking */
80 key->tail = key->head;
81 key->md = key->head;
82
83 key->payload_length = NO_PAYLOAD_LENGTH;
84
85 return ret < 0 ? 0 : 1;
86 }
87
88 # define STITCHED_CALL
89 # undef STITCHED_DECRYPT_CALL
90
91 # if !defined(STITCHED_CALL)
92 # define aes_off 0
93 # endif
94
95 void sha1_block_data_order(void *c, const void *p, size_t len);
96
97 static void sha1_update(SHA_CTX *c, const void *data, size_t len)
98 {
99 const unsigned char *ptr = data;
100 size_t res;
101
102 if ((res = c->num)) {
103 res = SHA_CBLOCK - res;
104 if (len < res)
105 res = len;
106 SHA1_Update(c, ptr, res);
107 ptr += res;
108 len -= res;
109 }
110
111 res = len % SHA_CBLOCK;
112 len -= res;
113
114 if (len) {
115 sha1_block_data_order(c, ptr, len / SHA_CBLOCK);
116
117 ptr += len;
118 c->Nh += len >> 29;
119 c->Nl += len <<= 3;
120 if (c->Nl < (unsigned int)len)
121 c->Nh++;
122 }
123
124 if (res)
125 SHA1_Update(c, ptr, res);
126 }
127
128 # ifdef SHA1_Update
129 # undef SHA1_Update
130 # endif
131 # define SHA1_Update sha1_update
132
133 # if !defined(OPENSSL_NO_MULTIBLOCK)
134
135 typedef struct {
136 unsigned int A[8], B[8], C[8], D[8], E[8];
137 } SHA1_MB_CTX;
138 typedef struct {
139 const unsigned char *ptr;
140 int blocks;
141 } HASH_DESC;
142
143 void sha1_multi_block(SHA1_MB_CTX *, const HASH_DESC *, int);
144
145 typedef struct {
146 const unsigned char *inp;
147 unsigned char *out;
148 int blocks;
149 u64 iv[2];
150 } CIPH_DESC;
151
152 void aesni_multi_cbc_encrypt(CIPH_DESC *, void *, int);
153
154 static size_t tls1_1_multi_block_encrypt(EVP_AES_HMAC_SHA1 *key,
155 unsigned char *out,
156 const unsigned char *inp,
157 size_t inp_len, int n4x)
158 { /* n4x is 1 or 2 */
159 HASH_DESC hash_d[8], edges[8];
160 CIPH_DESC ciph_d[8];
161 unsigned char storage[sizeof(SHA1_MB_CTX) + 32];
162 union {
163 u64 q[16];
164 u32 d[32];
165 u8 c[128];
166 } blocks[8];
167 SHA1_MB_CTX *ctx;
168 unsigned int frag, last, packlen, i, x4 = 4 * n4x, minblocks, processed =
169 0;
170 size_t ret = 0;
171 u8 *IVs;
172 # if defined(BSWAP8)
173 u64 seqnum;
174 # endif
175
176 /* ask for IVs in bulk */
177 if (RAND_bytes((IVs = blocks[0].c), 16 * x4) <= 0)
178 return 0;
179
180 ctx = (SHA1_MB_CTX *) (storage + 32 - ((size_t)storage % 32)); /* align */
181
182 frag = (unsigned int)inp_len >> (1 + n4x);
183 last = (unsigned int)inp_len + frag - (frag << (1 + n4x));
184 if (last > frag && ((last + 13 + 9) % 64) < (x4 - 1)) {
185 frag++;
186 last -= x4 - 1;
187 }
188
189 packlen = 5 + 16 + ((frag + 20 + 16) & -16);
190
191 /* populate descriptors with pointers and IVs */
192 hash_d[0].ptr = inp;
193 ciph_d[0].inp = inp;
194 /* 5+16 is place for header and explicit IV */
195 ciph_d[0].out = out + 5 + 16;
196 memcpy(ciph_d[0].out - 16, IVs, 16);
197 memcpy(ciph_d[0].iv, IVs, 16);
198 IVs += 16;
199
200 for (i = 1; i < x4; i++) {
201 ciph_d[i].inp = hash_d[i].ptr = hash_d[i - 1].ptr + frag;
202 ciph_d[i].out = ciph_d[i - 1].out + packlen;
203 memcpy(ciph_d[i].out - 16, IVs, 16);
204 memcpy(ciph_d[i].iv, IVs, 16);
205 IVs += 16;
206 }
207
208 # if defined(BSWAP8)
209 memcpy(blocks[0].c, key->md.data, 8);
210 seqnum = BSWAP8(blocks[0].q[0]);
211 # endif
212 for (i = 0; i < x4; i++) {
213 unsigned int len = (i == (x4 - 1) ? last : frag);
214 # if !defined(BSWAP8)
215 unsigned int carry, j;
216 # endif
217
218 ctx->A[i] = key->md.h0;
219 ctx->B[i] = key->md.h1;
220 ctx->C[i] = key->md.h2;
221 ctx->D[i] = key->md.h3;
222 ctx->E[i] = key->md.h4;
223
224 /* fix seqnum */
225 # if defined(BSWAP8)
226 blocks[i].q[0] = BSWAP8(seqnum + i);
227 # else
228 for (carry = i, j = 8; j--;) {
229 blocks[i].c[j] = ((u8 *)key->md.data)[j] + carry;
230 carry = (blocks[i].c[j] - carry) >> (sizeof(carry) * 8 - 1);
231 }
232 # endif
233 blocks[i].c[8] = ((u8 *)key->md.data)[8];
234 blocks[i].c[9] = ((u8 *)key->md.data)[9];
235 blocks[i].c[10] = ((u8 *)key->md.data)[10];
236 /* fix length */
237 blocks[i].c[11] = (u8)(len >> 8);
238 blocks[i].c[12] = (u8)(len);
239
240 memcpy(blocks[i].c + 13, hash_d[i].ptr, 64 - 13);
241 hash_d[i].ptr += 64 - 13;
242 hash_d[i].blocks = (len - (64 - 13)) / 64;
243
244 edges[i].ptr = blocks[i].c;
245 edges[i].blocks = 1;
246 }
247
248 /* hash 13-byte headers and first 64-13 bytes of inputs */
249 sha1_multi_block(ctx, edges, n4x);
250 /* hash bulk inputs */
251 # define MAXCHUNKSIZE 2048
252 # if MAXCHUNKSIZE%64
253 # error "MAXCHUNKSIZE is not divisible by 64"
254 # elif MAXCHUNKSIZE
255 /*
256 * goal is to minimize pressure on L1 cache by moving in shorter steps,
257 * so that hashed data is still in the cache by the time we encrypt it
258 */
259 minblocks = ((frag <= last ? frag : last) - (64 - 13)) / 64;
260 if (minblocks > MAXCHUNKSIZE / 64) {
261 for (i = 0; i < x4; i++) {
262 edges[i].ptr = hash_d[i].ptr;
263 edges[i].blocks = MAXCHUNKSIZE / 64;
264 ciph_d[i].blocks = MAXCHUNKSIZE / 16;
265 }
266 do {
267 sha1_multi_block(ctx, edges, n4x);
268 aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);
269
270 for (i = 0; i < x4; i++) {
271 edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE;
272 hash_d[i].blocks -= MAXCHUNKSIZE / 64;
273 edges[i].blocks = MAXCHUNKSIZE / 64;
274 ciph_d[i].inp += MAXCHUNKSIZE;
275 ciph_d[i].out += MAXCHUNKSIZE;
276 ciph_d[i].blocks = MAXCHUNKSIZE / 16;
277 memcpy(ciph_d[i].iv, ciph_d[i].out - 16, 16);
278 }
279 processed += MAXCHUNKSIZE;
280 minblocks -= MAXCHUNKSIZE / 64;
281 } while (minblocks > MAXCHUNKSIZE / 64);
282 }
283 # endif
284 # undef MAXCHUNKSIZE
285 sha1_multi_block(ctx, hash_d, n4x);
286
287 memset(blocks, 0, sizeof(blocks));
288 for (i = 0; i < x4; i++) {
289 unsigned int len = (i == (x4 - 1) ? last : frag),
290 off = hash_d[i].blocks * 64;
291 const unsigned char *ptr = hash_d[i].ptr + off;
292
293 off = (len - processed) - (64 - 13) - off; /* remainder actually */
294 memcpy(blocks[i].c, ptr, off);
295 blocks[i].c[off] = 0x80;
296 len += 64 + 13; /* 64 is HMAC header */
297 len *= 8; /* convert to bits */
298 if (off < (64 - 8)) {
299 # ifdef BSWAP4
300 blocks[i].d[15] = BSWAP4(len);
301 # else
302 PUTU32(blocks[i].c + 60, len);
303 # endif
304 edges[i].blocks = 1;
305 } else {
306 # ifdef BSWAP4
307 blocks[i].d[31] = BSWAP4(len);
308 # else
309 PUTU32(blocks[i].c + 124, len);
310 # endif
311 edges[i].blocks = 2;
312 }
313 edges[i].ptr = blocks[i].c;
314 }
315
316 /* hash input tails and finalize */
317 sha1_multi_block(ctx, edges, n4x);
318
319 memset(blocks, 0, sizeof(blocks));
320 for (i = 0; i < x4; i++) {
321 # ifdef BSWAP4
322 blocks[i].d[0] = BSWAP4(ctx->A[i]);
323 ctx->A[i] = key->tail.h0;
324 blocks[i].d[1] = BSWAP4(ctx->B[i]);
325 ctx->B[i] = key->tail.h1;
326 blocks[i].d[2] = BSWAP4(ctx->C[i]);
327 ctx->C[i] = key->tail.h2;
328 blocks[i].d[3] = BSWAP4(ctx->D[i]);
329 ctx->D[i] = key->tail.h3;
330 blocks[i].d[4] = BSWAP4(ctx->E[i]);
331 ctx->E[i] = key->tail.h4;
332 blocks[i].c[20] = 0x80;
333 blocks[i].d[15] = BSWAP4((64 + 20) * 8);
334 # else
335 PUTU32(blocks[i].c + 0, ctx->A[i]);
336 ctx->A[i] = key->tail.h0;
337 PUTU32(blocks[i].c + 4, ctx->B[i]);
338 ctx->B[i] = key->tail.h1;
339 PUTU32(blocks[i].c + 8, ctx->C[i]);
340 ctx->C[i] = key->tail.h2;
341 PUTU32(blocks[i].c + 12, ctx->D[i]);
342 ctx->D[i] = key->tail.h3;
343 PUTU32(blocks[i].c + 16, ctx->E[i]);
344 ctx->E[i] = key->tail.h4;
345 blocks[i].c[20] = 0x80;
346 PUTU32(blocks[i].c + 60, (64 + 20) * 8);
347 # endif
348 edges[i].ptr = blocks[i].c;
349 edges[i].blocks = 1;
350 }
351
352 /* finalize MACs */
353 sha1_multi_block(ctx, edges, n4x);
354
355 for (i = 0; i < x4; i++) {
356 unsigned int len = (i == (x4 - 1) ? last : frag), pad, j;
357 unsigned char *out0 = out;
358
359 memcpy(ciph_d[i].out, ciph_d[i].inp, len - processed);
360 ciph_d[i].inp = ciph_d[i].out;
361
362 out += 5 + 16 + len;
363
364 /* write MAC */
365 PUTU32(out + 0, ctx->A[i]);
366 PUTU32(out + 4, ctx->B[i]);
367 PUTU32(out + 8, ctx->C[i]);
368 PUTU32(out + 12, ctx->D[i]);
369 PUTU32(out + 16, ctx->E[i]);
370 out += 20;
371 len += 20;
372
373 /* pad */
374 pad = 15 - len % 16;
375 for (j = 0; j <= pad; j++)
376 *(out++) = pad;
377 len += pad + 1;
378
379 ciph_d[i].blocks = (len - processed) / 16;
380 len += 16; /* account for explicit iv */
381
382 /* arrange header */
383 out0[0] = ((u8 *)key->md.data)[8];
384 out0[1] = ((u8 *)key->md.data)[9];
385 out0[2] = ((u8 *)key->md.data)[10];
386 out0[3] = (u8)(len >> 8);
387 out0[4] = (u8)(len);
388
389 ret += len + 5;
390 inp += frag;
391 }
392
393 aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);
394
395 OPENSSL_cleanse(blocks, sizeof(blocks));
396 OPENSSL_cleanse(ctx, sizeof(*ctx));
397
398 return ret;
399 }
400 # endif
401
402 static int aesni_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
403 const unsigned char *in, size_t len)
404 {
405 EVP_AES_HMAC_SHA1 *key = data(ctx);
406 unsigned int l;
407 size_t plen = key->payload_length, iv = 0, /* explicit IV in TLS 1.1 and
408 * later */
409 sha_off = 0;
410 # if defined(STITCHED_CALL)
411 size_t aes_off = 0, blocks;
412
413 sha_off = SHA_CBLOCK - key->md.num;
414 # endif
415
416 key->payload_length = NO_PAYLOAD_LENGTH;
417
418 if (len % AES_BLOCK_SIZE)
419 return 0;
420
421 if (EVP_CIPHER_CTX_encrypting(ctx)) {
422 if (plen == NO_PAYLOAD_LENGTH)
423 plen = len;
424 else if (len !=
425 ((plen + SHA_DIGEST_LENGTH +
426 AES_BLOCK_SIZE) & -AES_BLOCK_SIZE))
427 return 0;
428 else if (key->aux.tls_ver >= TLS1_1_VERSION)
429 iv = AES_BLOCK_SIZE;
430
431 # if defined(STITCHED_CALL)
432 if (plen > (sha_off + iv)
433 && (blocks = (plen - (sha_off + iv)) / SHA_CBLOCK)) {
434 SHA1_Update(&key->md, in + iv, sha_off);
435
436 aesni_cbc_sha1_enc(in, out, blocks, &key->ks,
437 EVP_CIPHER_CTX_iv_noconst(ctx),
438 &key->md, in + iv + sha_off);
439 blocks *= SHA_CBLOCK;
440 aes_off += blocks;
441 sha_off += blocks;
442 key->md.Nh += blocks >> 29;
443 key->md.Nl += blocks <<= 3;
444 if (key->md.Nl < (unsigned int)blocks)
445 key->md.Nh++;
446 } else {
447 sha_off = 0;
448 }
449 # endif
450 sha_off += iv;
451 SHA1_Update(&key->md, in + sha_off, plen - sha_off);
452
453 if (plen != len) { /* "TLS" mode of operation */
454 if (in != out)
455 memcpy(out + aes_off, in + aes_off, plen - aes_off);
456
457 /* calculate HMAC and append it to payload */
458 SHA1_Final(out + plen, &key->md);
459 key->md = key->tail;
460 SHA1_Update(&key->md, out + plen, SHA_DIGEST_LENGTH);
461 SHA1_Final(out + plen, &key->md);
462
463 /* pad the payload|hmac */
464 plen += SHA_DIGEST_LENGTH;
465 for (l = len - plen - 1; plen < len; plen++)
466 out[plen] = l;
467 /* encrypt HMAC|padding at once */
468 aesni_cbc_encrypt(out + aes_off, out + aes_off, len - aes_off,
469 &key->ks, EVP_CIPHER_CTX_iv_noconst(ctx), 1);
470 } else {
471 aesni_cbc_encrypt(in + aes_off, out + aes_off, len - aes_off,
472 &key->ks, EVP_CIPHER_CTX_iv_noconst(ctx), 1);
473 }
474 } else {
475 union {
476 unsigned int u[SHA_DIGEST_LENGTH / sizeof(unsigned int)];
477 unsigned char c[32 + SHA_DIGEST_LENGTH];
478 } mac, *pmac;
479
480 /* arrange cache line alignment */
481 pmac = (void *)(((size_t)mac.c + 31) & ((size_t)0 - 32));
482
483 if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */
484 size_t inp_len, mask, j, i;
485 unsigned int res, maxpad, pad, bitlen;
486 int ret = 1;
487 union {
488 unsigned int u[SHA_LBLOCK];
489 unsigned char c[SHA_CBLOCK];
490 } *data = (void *)key->md.data;
491 # if defined(STITCHED_DECRYPT_CALL)
492 unsigned char tail_iv[AES_BLOCK_SIZE];
493 int stitch = 0;
494 # endif
495
496 if ((key->aux.tls_aad[plen - 4] << 8 | key->aux.tls_aad[plen - 3])
497 >= TLS1_1_VERSION) {
498 if (len < (AES_BLOCK_SIZE + SHA_DIGEST_LENGTH + 1))
499 return 0;
500
501 /* omit explicit iv */
502 memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), in, AES_BLOCK_SIZE);
503
504 in += AES_BLOCK_SIZE;
505 out += AES_BLOCK_SIZE;
506 len -= AES_BLOCK_SIZE;
507 } else if (len < (SHA_DIGEST_LENGTH + 1))
508 return 0;
509
510 # if defined(STITCHED_DECRYPT_CALL)
511 if (len >= 1024 && ctx->key_len == 32) {
512 /* decrypt last block */
513 memcpy(tail_iv, in + len - 2 * AES_BLOCK_SIZE,
514 AES_BLOCK_SIZE);
515 aesni_cbc_encrypt(in + len - AES_BLOCK_SIZE,
516 out + len - AES_BLOCK_SIZE, AES_BLOCK_SIZE,
517 &key->ks, tail_iv, 0);
518 stitch = 1;
519 } else
520 # endif
521 /* decrypt HMAC|padding at once */
522 aesni_cbc_encrypt(in, out, len, &key->ks,
523 EVP_CIPHER_CTX_iv_noconst(ctx), 0);
524
525 /* figure out payload length */
526 pad = out[len - 1];
527 maxpad = len - (SHA_DIGEST_LENGTH + 1);
528 maxpad |= (255 - maxpad) >> (sizeof(maxpad) * 8 - 8);
529 maxpad &= 255;
530
531 mask = constant_time_ge(maxpad, pad);
532 ret &= mask;
533 /*
534 * If pad is invalid then we will fail the above test but we must
535 * continue anyway because we are in constant time code. However,
536 * we'll use the maxpad value instead of the supplied pad to make
537 * sure we perform well defined pointer arithmetic.
538 */
539 pad = constant_time_select(mask, pad, maxpad);
540
541 inp_len = len - (SHA_DIGEST_LENGTH + pad + 1);
542
543 key->aux.tls_aad[plen - 2] = inp_len >> 8;
544 key->aux.tls_aad[plen - 1] = inp_len;
545
546 /* calculate HMAC */
547 key->md = key->head;
548 SHA1_Update(&key->md, key->aux.tls_aad, plen);
549
550 # if defined(STITCHED_DECRYPT_CALL)
551 if (stitch) {
552 blocks = (len - (256 + 32 + SHA_CBLOCK)) / SHA_CBLOCK;
553 aes_off = len - AES_BLOCK_SIZE - blocks * SHA_CBLOCK;
554 sha_off = SHA_CBLOCK - plen;
555
556 aesni_cbc_encrypt(in, out, aes_off, &key->ks, ctx->iv, 0);
557
558 SHA1_Update(&key->md, out, sha_off);
559 aesni256_cbc_sha1_dec(in + aes_off,
560 out + aes_off, blocks, &key->ks,
561 ctx->iv, &key->md, out + sha_off);
562
563 sha_off += blocks *= SHA_CBLOCK;
564 out += sha_off;
565 len -= sha_off;
566 inp_len -= sha_off;
567
568 key->md.Nl += (blocks << 3); /* at most 18 bits */
569 memcpy(ctx->iv, tail_iv, AES_BLOCK_SIZE);
570 }
571 # endif
572
573 # if 1 /* see original reference version in #else */
574 len -= SHA_DIGEST_LENGTH; /* amend mac */
575 if (len >= (256 + SHA_CBLOCK)) {
576 j = (len - (256 + SHA_CBLOCK)) & (0 - SHA_CBLOCK);
577 j += SHA_CBLOCK - key->md.num;
578 SHA1_Update(&key->md, out, j);
579 out += j;
580 len -= j;
581 inp_len -= j;
582 }
583
584 /* but pretend as if we hashed padded payload */
585 bitlen = key->md.Nl + (inp_len << 3); /* at most 18 bits */
586 # ifdef BSWAP4
587 bitlen = BSWAP4(bitlen);
588 # else
589 mac.c[0] = 0;
590 mac.c[1] = (unsigned char)(bitlen >> 16);
591 mac.c[2] = (unsigned char)(bitlen >> 8);
592 mac.c[3] = (unsigned char)bitlen;
593 bitlen = mac.u[0];
594 # endif
595
596 pmac->u[0] = 0;
597 pmac->u[1] = 0;
598 pmac->u[2] = 0;
599 pmac->u[3] = 0;
600 pmac->u[4] = 0;
601
602 for (res = key->md.num, j = 0; j < len; j++) {
603 size_t c = out[j];
604 mask = (j - inp_len) >> (sizeof(j) * 8 - 8);
605 c &= mask;
606 c |= 0x80 & ~mask & ~((inp_len - j) >> (sizeof(j) * 8 - 8));
607 data->c[res++] = (unsigned char)c;
608
609 if (res != SHA_CBLOCK)
610 continue;
611
612 /* j is not incremented yet */
613 mask = 0 - ((inp_len + 7 - j) >> (sizeof(j) * 8 - 1));
614 data->u[SHA_LBLOCK - 1] |= bitlen & mask;
615 sha1_block_data_order(&key->md, data, 1);
616 mask &= 0 - ((j - inp_len - 72) >> (sizeof(j) * 8 - 1));
617 pmac->u[0] |= key->md.h0 & mask;
618 pmac->u[1] |= key->md.h1 & mask;
619 pmac->u[2] |= key->md.h2 & mask;
620 pmac->u[3] |= key->md.h3 & mask;
621 pmac->u[4] |= key->md.h4 & mask;
622 res = 0;
623 }
624
625 for (i = res; i < SHA_CBLOCK; i++, j++)
626 data->c[i] = 0;
627
628 if (res > SHA_CBLOCK - 8) {
629 mask = 0 - ((inp_len + 8 - j) >> (sizeof(j) * 8 - 1));
630 data->u[SHA_LBLOCK - 1] |= bitlen & mask;
631 sha1_block_data_order(&key->md, data, 1);
632 mask &= 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
633 pmac->u[0] |= key->md.h0 & mask;
634 pmac->u[1] |= key->md.h1 & mask;
635 pmac->u[2] |= key->md.h2 & mask;
636 pmac->u[3] |= key->md.h3 & mask;
637 pmac->u[4] |= key->md.h4 & mask;
638
639 memset(data, 0, SHA_CBLOCK);
640 j += 64;
641 }
642 data->u[SHA_LBLOCK - 1] = bitlen;
643 sha1_block_data_order(&key->md, data, 1);
644 mask = 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
645 pmac->u[0] |= key->md.h0 & mask;
646 pmac->u[1] |= key->md.h1 & mask;
647 pmac->u[2] |= key->md.h2 & mask;
648 pmac->u[3] |= key->md.h3 & mask;
649 pmac->u[4] |= key->md.h4 & mask;
650
651 # ifdef BSWAP4
652 pmac->u[0] = BSWAP4(pmac->u[0]);
653 pmac->u[1] = BSWAP4(pmac->u[1]);
654 pmac->u[2] = BSWAP4(pmac->u[2]);
655 pmac->u[3] = BSWAP4(pmac->u[3]);
656 pmac->u[4] = BSWAP4(pmac->u[4]);
657 # else
658 for (i = 0; i < 5; i++) {
659 res = pmac->u[i];
660 pmac->c[4 * i + 0] = (unsigned char)(res >> 24);
661 pmac->c[4 * i + 1] = (unsigned char)(res >> 16);
662 pmac->c[4 * i + 2] = (unsigned char)(res >> 8);
663 pmac->c[4 * i + 3] = (unsigned char)res;
664 }
665 # endif
666 len += SHA_DIGEST_LENGTH;
667 # else /* pre-lucky-13 reference version of above */
668 SHA1_Update(&key->md, out, inp_len);
669 res = key->md.num;
670 SHA1_Final(pmac->c, &key->md);
671
672 {
673 unsigned int inp_blocks, pad_blocks;
674
675 /* but pretend as if we hashed padded payload */
676 inp_blocks =
677 1 + ((SHA_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
678 res += (unsigned int)(len - inp_len);
679 pad_blocks = res / SHA_CBLOCK;
680 res %= SHA_CBLOCK;
681 pad_blocks +=
682 1 + ((SHA_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
683 for (; inp_blocks < pad_blocks; inp_blocks++)
684 sha1_block_data_order(&key->md, data, 1);
685 }
686 # endif
687 key->md = key->tail;
688 SHA1_Update(&key->md, pmac->c, SHA_DIGEST_LENGTH);
689 SHA1_Final(pmac->c, &key->md);
690
691 /* verify HMAC */
692 out += inp_len;
693 len -= inp_len;
694 # if 1 /* see original reference version in #else */
695 {
696 unsigned char *p = out + len - 1 - maxpad - SHA_DIGEST_LENGTH;
697 size_t off = out - p;
698 unsigned int c, cmask;
699
700 maxpad += SHA_DIGEST_LENGTH;
701 for (res = 0, i = 0, j = 0; j < maxpad; j++) {
702 c = p[j];
703 cmask =
704 ((int)(j - off - SHA_DIGEST_LENGTH)) >> (sizeof(int) *
705 8 - 1);
706 res |= (c ^ pad) & ~cmask; /* ... and padding */
707 cmask &= ((int)(off - 1 - j)) >> (sizeof(int) * 8 - 1);
708 res |= (c ^ pmac->c[i]) & cmask;
709 i += 1 & cmask;
710 }
711 maxpad -= SHA_DIGEST_LENGTH;
712
713 res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
714 ret &= (int)~res;
715 }
716 # else /* pre-lucky-13 reference version of above */
717 for (res = 0, i = 0; i < SHA_DIGEST_LENGTH; i++)
718 res |= out[i] ^ pmac->c[i];
719 res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
720 ret &= (int)~res;
721
722 /* verify padding */
723 pad = (pad & ~res) | (maxpad & res);
724 out = out + len - 1 - pad;
725 for (res = 0, i = 0; i < pad; i++)
726 res |= out[i] ^ pad;
727
728 res = (0 - res) >> (sizeof(res) * 8 - 1);
729 ret &= (int)~res;
730 # endif
731 return ret;
732 } else {
733 # if defined(STITCHED_DECRYPT_CALL)
734 if (len >= 1024 && ctx->key_len == 32) {
735 if (sha_off %= SHA_CBLOCK)
736 blocks = (len - 3 * SHA_CBLOCK) / SHA_CBLOCK;
737 else
738 blocks = (len - 2 * SHA_CBLOCK) / SHA_CBLOCK;
739 aes_off = len - blocks * SHA_CBLOCK;
740
741 aesni_cbc_encrypt(in, out, aes_off, &key->ks, ctx->iv, 0);
742 SHA1_Update(&key->md, out, sha_off);
743 aesni256_cbc_sha1_dec(in + aes_off,
744 out + aes_off, blocks, &key->ks,
745 ctx->iv, &key->md, out + sha_off);
746
747 sha_off += blocks *= SHA_CBLOCK;
748 out += sha_off;
749 len -= sha_off;
750
751 key->md.Nh += blocks >> 29;
752 key->md.Nl += blocks <<= 3;
753 if (key->md.Nl < (unsigned int)blocks)
754 key->md.Nh++;
755 } else
756 # endif
757 /* decrypt HMAC|padding at once */
758 aesni_cbc_encrypt(in, out, len, &key->ks,
759 EVP_CIPHER_CTX_iv_noconst(ctx), 0);
760
761 SHA1_Update(&key->md, out, len);
762 }
763 }
764
765 return 1;
766 }
767
768 static int aesni_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
769 void *ptr)
770 {
771 EVP_AES_HMAC_SHA1 *key = data(ctx);
772
773 switch (type) {
774 case EVP_CTRL_AEAD_SET_MAC_KEY:
775 {
776 unsigned int i;
777 unsigned char hmac_key[64];
778
779 memset(hmac_key, 0, sizeof(hmac_key));
780
781 if (arg > (int)sizeof(hmac_key)) {
782 SHA1_Init(&key->head);
783 SHA1_Update(&key->head, ptr, arg);
784 SHA1_Final(hmac_key, &key->head);
785 } else {
786 memcpy(hmac_key, ptr, arg);
787 }
788
789 for (i = 0; i < sizeof(hmac_key); i++)
790 hmac_key[i] ^= 0x36; /* ipad */
791 SHA1_Init(&key->head);
792 SHA1_Update(&key->head, hmac_key, sizeof(hmac_key));
793
794 for (i = 0; i < sizeof(hmac_key); i++)
795 hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */
796 SHA1_Init(&key->tail);
797 SHA1_Update(&key->tail, hmac_key, sizeof(hmac_key));
798
799 OPENSSL_cleanse(hmac_key, sizeof(hmac_key));
800
801 return 1;
802 }
803 case EVP_CTRL_AEAD_TLS1_AAD:
804 {
805 unsigned char *p = ptr;
806 unsigned int len;
807
808 if (arg != EVP_AEAD_TLS1_AAD_LEN)
809 return -1;
810
811 len = p[arg - 2] << 8 | p[arg - 1];
812
813 if (EVP_CIPHER_CTX_encrypting(ctx)) {
814 key->payload_length = len;
815 if ((key->aux.tls_ver =
816 p[arg - 4] << 8 | p[arg - 3]) >= TLS1_1_VERSION) {
817 if (len < AES_BLOCK_SIZE)
818 return 0;
819 len -= AES_BLOCK_SIZE;
820 p[arg - 2] = len >> 8;
821 p[arg - 1] = len;
822 }
823 key->md = key->head;
824 SHA1_Update(&key->md, p, arg);
825
826 return (int)(((len + SHA_DIGEST_LENGTH +
827 AES_BLOCK_SIZE) & -AES_BLOCK_SIZE)
828 - len);
829 } else {
830 memcpy(key->aux.tls_aad, ptr, arg);
831 key->payload_length = arg;
832
833 return SHA_DIGEST_LENGTH;
834 }
835 }
836 # if !defined(OPENSSL_NO_MULTIBLOCK)
837 case EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE:
838 return (int)(5 + 16 + ((arg + 20 + 16) & -16));
839 case EVP_CTRL_TLS1_1_MULTIBLOCK_AAD:
840 {
841 EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
842 (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr;
843 unsigned int n4x = 1, x4;
844 unsigned int frag, last, packlen, inp_len;
845
846 if (arg < (int)sizeof(EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM))
847 return -1;
848
849 inp_len = param->inp[11] << 8 | param->inp[12];
850
851 if (EVP_CIPHER_CTX_encrypting(ctx)) {
852 if ((param->inp[9] << 8 | param->inp[10]) < TLS1_1_VERSION)
853 return -1;
854
855 if (inp_len) {
856 if (inp_len < 4096)
857 return 0; /* too short */
858
859 if (inp_len >= 8192 && OPENSSL_ia32cap_P[2] & (1 << 5))
860 n4x = 2; /* AVX2 */
861 } else if ((n4x = param->interleave / 4) && n4x <= 2)
862 inp_len = param->len;
863 else
864 return -1;
865
866 key->md = key->head;
867 SHA1_Update(&key->md, param->inp, 13);
868
869 x4 = 4 * n4x;
870 n4x += 1;
871
872 frag = inp_len >> n4x;
873 last = inp_len + frag - (frag << n4x);
874 if (last > frag && ((last + 13 + 9) % 64 < (x4 - 1))) {
875 frag++;
876 last -= x4 - 1;
877 }
878
879 packlen = 5 + 16 + ((frag + 20 + 16) & -16);
880 packlen = (packlen << n4x) - packlen;
881 packlen += 5 + 16 + ((last + 20 + 16) & -16);
882
883 param->interleave = x4;
884
885 return (int)packlen;
886 } else
887 return -1; /* not yet */
888 }
889 case EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT:
890 {
891 EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
892 (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr;
893
894 return (int)tls1_1_multi_block_encrypt(key, param->out,
895 param->inp, param->len,
896 param->interleave / 4);
897 }
898 case EVP_CTRL_TLS1_1_MULTIBLOCK_DECRYPT:
899 # endif
900 default:
901 return -1;
902 }
903 }
904
905 static EVP_CIPHER aesni_128_cbc_hmac_sha1_cipher = {
906 # ifdef NID_aes_128_cbc_hmac_sha1
907 NID_aes_128_cbc_hmac_sha1,
908 # else
909 NID_undef,
910 # endif
911 AES_BLOCK_SIZE, 16, AES_BLOCK_SIZE,
912 EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
913 EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
914 aesni_cbc_hmac_sha1_init_key,
915 aesni_cbc_hmac_sha1_cipher,
916 NULL,
917 sizeof(EVP_AES_HMAC_SHA1),
918 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
919 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
920 aesni_cbc_hmac_sha1_ctrl,
921 NULL
922 };
923
924 static EVP_CIPHER aesni_256_cbc_hmac_sha1_cipher = {
925 # ifdef NID_aes_256_cbc_hmac_sha1
926 NID_aes_256_cbc_hmac_sha1,
927 # else
928 NID_undef,
929 # endif
930 AES_BLOCK_SIZE, 32, AES_BLOCK_SIZE,
931 EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
932 EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
933 aesni_cbc_hmac_sha1_init_key,
934 aesni_cbc_hmac_sha1_cipher,
935 NULL,
936 sizeof(EVP_AES_HMAC_SHA1),
937 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
938 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
939 aesni_cbc_hmac_sha1_ctrl,
940 NULL
941 };
942
943 const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
944 {
945 return (OPENSSL_ia32cap_P[1] & AESNI_CAPABLE ?
946 &aesni_128_cbc_hmac_sha1_cipher : NULL);
947 }
948
949 const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
950 {
951 return (OPENSSL_ia32cap_P[1] & AESNI_CAPABLE ?
952 &aesni_256_cbc_hmac_sha1_cipher : NULL);
953 }
954 #else
955 const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
956 {
957 return NULL;
958 }
959
960 const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
961 {
962 return NULL;
963 }
964 #endif