]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/evp/m_sha3.c
Update copyright year
[thirdparty/openssl.git] / crypto / evp / m_sha3.c
1 /*
2 * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <string.h>
12
13 #include <openssl/evp.h>
14 #include <openssl/objects.h>
15 #include "internal/evp_int.h"
16 #include "evp_locl.h"
17
18 size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len,
19 size_t r);
20 void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r);
21
22 #define KECCAK1600_WIDTH 1600
23
24 typedef struct {
25 uint64_t A[5][5];
26 size_t block_size; /* cached ctx->digest->block_size */
27 size_t md_size; /* output length, variable in XOF */
28 size_t num; /* used bytes in below buffer */
29 unsigned char buf[KECCAK1600_WIDTH / 8 - 32];
30 unsigned char pad;
31 } KECCAK1600_CTX;
32
33 static int init(EVP_MD_CTX *evp_ctx, unsigned char pad)
34 {
35 KECCAK1600_CTX *ctx = evp_ctx->md_data;
36 size_t bsz = evp_ctx->digest->block_size;
37
38 if (bsz <= sizeof(ctx->buf)) {
39 memset(ctx->A, 0, sizeof(ctx->A));
40
41 ctx->num = 0;
42 ctx->block_size = bsz;
43 ctx->md_size = evp_ctx->digest->md_size;
44 ctx->pad = pad;
45
46 return 1;
47 }
48
49 return 0;
50 }
51
52 static int sha3_init(EVP_MD_CTX *evp_ctx)
53 {
54 return init(evp_ctx, '\x06');
55 }
56
57 static int shake_init(EVP_MD_CTX *evp_ctx)
58 {
59 return init(evp_ctx, '\x1f');
60 }
61
62 static int sha3_update(EVP_MD_CTX *evp_ctx, const void *_inp, size_t len)
63 {
64 KECCAK1600_CTX *ctx = evp_ctx->md_data;
65 const unsigned char *inp = _inp;
66 size_t bsz = ctx->block_size;
67 size_t num, rem;
68
69 if (len == 0)
70 return 1;
71
72 if ((num = ctx->num) != 0) { /* process intermediate buffer? */
73 rem = bsz - num;
74
75 if (len < rem) {
76 memcpy(ctx->buf + num, inp, len);
77 ctx->num += len;
78 return 1;
79 }
80 /*
81 * We have enough data to fill or overflow the intermediate
82 * buffer. So we append |rem| bytes and process the block,
83 * leaving the rest for later processing...
84 */
85 memcpy(ctx->buf + num, inp, rem);
86 inp += rem, len -= rem;
87 (void)SHA3_absorb(ctx->A, ctx->buf, bsz, bsz);
88 ctx->num = 0;
89 /* ctx->buf is processed, ctx->num is guaranteed to be zero */
90 }
91
92 if (len >= bsz)
93 rem = SHA3_absorb(ctx->A, inp, len, bsz);
94 else
95 rem = len;
96
97 if (rem) {
98 memcpy(ctx->buf, inp + len - rem, rem);
99 ctx->num = rem;
100 }
101
102 return 1;
103 }
104
105 static int sha3_final(EVP_MD_CTX *evp_ctx, unsigned char *md)
106 {
107 KECCAK1600_CTX *ctx = evp_ctx->md_data;
108 size_t bsz = ctx->block_size;
109 size_t num = ctx->num;
110
111 /*
112 * Pad the data with 10*1. Note that |num| can be |bsz - 1|
113 * in which case both byte operations below are performed on
114 * same byte...
115 */
116 memset(ctx->buf + num, 0, bsz - num);
117 ctx->buf[num] = ctx->pad;
118 ctx->buf[bsz - 1] |= 0x80;
119
120 (void)SHA3_absorb(ctx->A, ctx->buf, bsz, bsz);
121
122 SHA3_squeeze(ctx->A, md, ctx->md_size, bsz);
123
124 return 1;
125 }
126
127 static int shake_ctrl(EVP_MD_CTX *evp_ctx, int cmd, int p1, void *p2)
128 {
129 KECCAK1600_CTX *ctx = evp_ctx->md_data;
130
131 switch (cmd) {
132 case EVP_MD_CTRL_XOF_LEN:
133 ctx->md_size = p1;
134 return 1;
135 default:
136 return 0;
137 }
138 }
139
140 #if defined(OPENSSL_CPUID_OBJ) && defined(__s390__) && defined(KECCAK1600_ASM)
141 /*
142 * IBM S390X support
143 */
144 # include "s390x_arch.h"
145
146 # define S390X_SHA3_FC(ctx) ((ctx)->pad)
147
148 # define S390X_sha3_224_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \
149 S390X_CAPBIT(S390X_SHA3_224)) && \
150 (OPENSSL_s390xcap_P.klmd[0] & \
151 S390X_CAPBIT(S390X_SHA3_224)))
152 # define S390X_sha3_256_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \
153 S390X_CAPBIT(S390X_SHA3_256)) && \
154 (OPENSSL_s390xcap_P.klmd[0] & \
155 S390X_CAPBIT(S390X_SHA3_256)))
156 # define S390X_sha3_384_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \
157 S390X_CAPBIT(S390X_SHA3_384)) && \
158 (OPENSSL_s390xcap_P.klmd[0] & \
159 S390X_CAPBIT(S390X_SHA3_384)))
160 # define S390X_sha3_512_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \
161 S390X_CAPBIT(S390X_SHA3_512)) && \
162 (OPENSSL_s390xcap_P.klmd[0] & \
163 S390X_CAPBIT(S390X_SHA3_512)))
164 # define S390X_shake128_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \
165 S390X_CAPBIT(S390X_SHAKE_128)) && \
166 (OPENSSL_s390xcap_P.klmd[0] & \
167 S390X_CAPBIT(S390X_SHAKE_128)))
168 # define S390X_shake256_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \
169 S390X_CAPBIT(S390X_SHAKE_256)) && \
170 (OPENSSL_s390xcap_P.klmd[0] & \
171 S390X_CAPBIT(S390X_SHAKE_256)))
172
173 /* Convert md-size to block-size. */
174 # define S390X_KECCAK1600_BSZ(n) ((KECCAK1600_WIDTH - ((n) << 1)) >> 3)
175
176 static int s390x_sha3_init(EVP_MD_CTX *evp_ctx)
177 {
178 KECCAK1600_CTX *ctx = evp_ctx->md_data;
179 const size_t bsz = evp_ctx->digest->block_size;
180
181 /*-
182 * KECCAK1600_CTX structure's pad field is used to store the KIMD/KLMD
183 * function code.
184 */
185 switch (bsz) {
186 case S390X_KECCAK1600_BSZ(224):
187 ctx->pad = S390X_SHA3_224;
188 break;
189 case S390X_KECCAK1600_BSZ(256):
190 ctx->pad = S390X_SHA3_256;
191 break;
192 case S390X_KECCAK1600_BSZ(384):
193 ctx->pad = S390X_SHA3_384;
194 break;
195 case S390X_KECCAK1600_BSZ(512):
196 ctx->pad = S390X_SHA3_512;
197 break;
198 default:
199 return 0;
200 }
201
202 memset(ctx->A, 0, sizeof(ctx->A));
203 ctx->num = 0;
204 ctx->block_size = bsz;
205 ctx->md_size = evp_ctx->digest->md_size;
206 return 1;
207 }
208
209 static int s390x_shake_init(EVP_MD_CTX *evp_ctx)
210 {
211 KECCAK1600_CTX *ctx = evp_ctx->md_data;
212 const size_t bsz = evp_ctx->digest->block_size;
213
214 /*-
215 * KECCAK1600_CTX structure's pad field is used to store the KIMD/KLMD
216 * function code.
217 */
218 switch (bsz) {
219 case S390X_KECCAK1600_BSZ(128):
220 ctx->pad = S390X_SHAKE_128;
221 break;
222 case S390X_KECCAK1600_BSZ(256):
223 ctx->pad = S390X_SHAKE_256;
224 break;
225 default:
226 return 0;
227 }
228
229 memset(ctx->A, 0, sizeof(ctx->A));
230 ctx->num = 0;
231 ctx->block_size = bsz;
232 ctx->md_size = evp_ctx->digest->md_size;
233 return 1;
234 }
235
236 static int s390x_sha3_update(EVP_MD_CTX *evp_ctx, const void *_inp, size_t len)
237 {
238 KECCAK1600_CTX *ctx = evp_ctx->md_data;
239 const unsigned char *inp = _inp;
240 const size_t bsz = ctx->block_size;
241 size_t num, rem;
242
243 if (len == 0)
244 return 1;
245
246 if ((num = ctx->num) != 0) {
247 rem = bsz - num;
248
249 if (len < rem) {
250 memcpy(ctx->buf + num, inp, len);
251 ctx->num += len;
252 return 1;
253 }
254 memcpy(ctx->buf + num, inp, rem);
255 inp += rem;
256 len -= rem;
257 s390x_kimd(ctx->buf, bsz, ctx->pad, ctx->A);
258 ctx->num = 0;
259 }
260 rem = len % bsz;
261
262 s390x_kimd(inp, len - rem, ctx->pad, ctx->A);
263
264 if (rem) {
265 memcpy(ctx->buf, inp + len - rem, rem);
266 ctx->num = rem;
267 }
268 return 1;
269 }
270
271 static int s390x_sha3_final(EVP_MD_CTX *evp_ctx, unsigned char *md)
272 {
273 KECCAK1600_CTX *ctx = evp_ctx->md_data;
274
275 s390x_klmd(ctx->buf, ctx->num, NULL, 0, ctx->pad, ctx->A);
276 memcpy(md, ctx->A, ctx->md_size);
277 return 1;
278 }
279
280 static int s390x_shake_final(EVP_MD_CTX *evp_ctx, unsigned char *md)
281 {
282 KECCAK1600_CTX *ctx = evp_ctx->md_data;
283
284 s390x_klmd(ctx->buf, ctx->num, md, ctx->md_size, ctx->pad, ctx->A);
285 return 1;
286 }
287
288 # define EVP_MD_SHA3(bitlen) \
289 const EVP_MD *EVP_sha3_##bitlen(void) \
290 { \
291 static const EVP_MD s390x_sha3_##bitlen##_md = { \
292 NID_sha3_##bitlen, \
293 NID_RSA_SHA3_##bitlen, \
294 bitlen / 8, \
295 EVP_MD_FLAG_DIGALGID_ABSENT, \
296 s390x_sha3_init, \
297 s390x_sha3_update, \
298 s390x_sha3_final, \
299 NULL, \
300 NULL, \
301 (KECCAK1600_WIDTH - bitlen * 2) / 8, \
302 sizeof(KECCAK1600_CTX), \
303 }; \
304 static const EVP_MD sha3_##bitlen##_md = { \
305 NID_sha3_##bitlen, \
306 NID_RSA_SHA3_##bitlen, \
307 bitlen / 8, \
308 EVP_MD_FLAG_DIGALGID_ABSENT, \
309 sha3_init, \
310 sha3_update, \
311 sha3_final, \
312 NULL, \
313 NULL, \
314 (KECCAK1600_WIDTH - bitlen * 2) / 8, \
315 sizeof(KECCAK1600_CTX), \
316 }; \
317 return S390X_sha3_##bitlen##_CAPABLE ? \
318 &s390x_sha3_##bitlen##_md : \
319 &sha3_##bitlen##_md; \
320 }
321
322 # define EVP_MD_SHAKE(bitlen) \
323 const EVP_MD *EVP_shake##bitlen(void) \
324 { \
325 static const EVP_MD s390x_shake##bitlen##_md = { \
326 NID_shake##bitlen, \
327 0, \
328 bitlen / 8, \
329 EVP_MD_FLAG_XOF, \
330 s390x_shake_init, \
331 s390x_sha3_update, \
332 s390x_shake_final, \
333 NULL, \
334 NULL, \
335 (KECCAK1600_WIDTH - bitlen * 2) / 8, \
336 sizeof(KECCAK1600_CTX), \
337 shake_ctrl \
338 }; \
339 static const EVP_MD shake##bitlen##_md = { \
340 NID_shake##bitlen, \
341 0, \
342 bitlen / 8, \
343 EVP_MD_FLAG_XOF, \
344 shake_init, \
345 sha3_update, \
346 sha3_final, \
347 NULL, \
348 NULL, \
349 (KECCAK1600_WIDTH - bitlen * 2) / 8, \
350 sizeof(KECCAK1600_CTX), \
351 shake_ctrl \
352 }; \
353 return S390X_shake##bitlen##_CAPABLE ? \
354 &s390x_shake##bitlen##_md : \
355 &shake##bitlen##_md; \
356 }
357
358 #else
359
360 # define EVP_MD_SHA3(bitlen) \
361 const EVP_MD *EVP_sha3_##bitlen(void) \
362 { \
363 static const EVP_MD sha3_##bitlen##_md = { \
364 NID_sha3_##bitlen, \
365 NID_RSA_SHA3_##bitlen, \
366 bitlen / 8, \
367 EVP_MD_FLAG_DIGALGID_ABSENT, \
368 sha3_init, \
369 sha3_update, \
370 sha3_final, \
371 NULL, \
372 NULL, \
373 (KECCAK1600_WIDTH - bitlen * 2) / 8, \
374 sizeof(KECCAK1600_CTX), \
375 }; \
376 return &sha3_##bitlen##_md; \
377 }
378
379 # define EVP_MD_SHAKE(bitlen) \
380 const EVP_MD *EVP_shake##bitlen(void) \
381 { \
382 static const EVP_MD shake##bitlen##_md = { \
383 NID_shake##bitlen, \
384 0, \
385 bitlen / 8, \
386 EVP_MD_FLAG_XOF, \
387 shake_init, \
388 sha3_update, \
389 sha3_final, \
390 NULL, \
391 NULL, \
392 (KECCAK1600_WIDTH - bitlen * 2) / 8, \
393 sizeof(KECCAK1600_CTX), \
394 shake_ctrl \
395 }; \
396 return &shake##bitlen##_md; \
397 }
398 #endif
399
400 EVP_MD_SHA3(224)
401 EVP_MD_SHA3(256)
402 EVP_MD_SHA3(384)
403 EVP_MD_SHA3(512)
404
405 EVP_MD_SHAKE(128)
406 EVP_MD_SHAKE(256)