]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/evp/m_sha3.c
KMAC implementation using EVP_MAC
[thirdparty/openssl.git] / crypto / evp / m_sha3.c
1 /*
2 * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <string.h>
12
13 #include <openssl/evp.h>
14 #include <openssl/objects.h>
15 #include "internal/evp_int.h"
16 #include "evp_locl.h"
17
18 size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len,
19 size_t r);
20 void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r);
21
22 #define KECCAK1600_WIDTH 1600
23
24 typedef struct {
25 uint64_t A[5][5];
26 size_t block_size; /* cached ctx->digest->block_size */
27 size_t md_size; /* output length, variable in XOF */
28 size_t num; /* used bytes in below buffer */
29 unsigned char buf[KECCAK1600_WIDTH / 8 - 32];
30 unsigned char pad;
31 } KECCAK1600_CTX;
32
33 static int init(EVP_MD_CTX *evp_ctx, unsigned char pad)
34 {
35 KECCAK1600_CTX *ctx = evp_ctx->md_data;
36 size_t bsz = evp_ctx->digest->block_size;
37
38 if (bsz <= sizeof(ctx->buf)) {
39 memset(ctx->A, 0, sizeof(ctx->A));
40
41 ctx->num = 0;
42 ctx->block_size = bsz;
43 ctx->md_size = evp_ctx->digest->md_size;
44 ctx->pad = pad;
45
46 return 1;
47 }
48
49 return 0;
50 }
51
52 static int sha3_init(EVP_MD_CTX *evp_ctx)
53 {
54 return init(evp_ctx, '\x06');
55 }
56
57 static int shake_init(EVP_MD_CTX *evp_ctx)
58 {
59 return init(evp_ctx, '\x1f');
60 }
61
62 static int kmac_init(EVP_MD_CTX *evp_ctx)
63 {
64 return init(evp_ctx, '\x04');
65 }
66
67 static int sha3_update(EVP_MD_CTX *evp_ctx, const void *_inp, size_t len)
68 {
69 KECCAK1600_CTX *ctx = evp_ctx->md_data;
70 const unsigned char *inp = _inp;
71 size_t bsz = ctx->block_size;
72 size_t num, rem;
73
74 if (len == 0)
75 return 1;
76
77 if ((num = ctx->num) != 0) { /* process intermediate buffer? */
78 rem = bsz - num;
79
80 if (len < rem) {
81 memcpy(ctx->buf + num, inp, len);
82 ctx->num += len;
83 return 1;
84 }
85 /*
86 * We have enough data to fill or overflow the intermediate
87 * buffer. So we append |rem| bytes and process the block,
88 * leaving the rest for later processing...
89 */
90 memcpy(ctx->buf + num, inp, rem);
91 inp += rem, len -= rem;
92 (void)SHA3_absorb(ctx->A, ctx->buf, bsz, bsz);
93 ctx->num = 0;
94 /* ctx->buf is processed, ctx->num is guaranteed to be zero */
95 }
96
97 if (len >= bsz)
98 rem = SHA3_absorb(ctx->A, inp, len, bsz);
99 else
100 rem = len;
101
102 if (rem) {
103 memcpy(ctx->buf, inp + len - rem, rem);
104 ctx->num = rem;
105 }
106
107 return 1;
108 }
109
110 static int sha3_final(EVP_MD_CTX *evp_ctx, unsigned char *md)
111 {
112 KECCAK1600_CTX *ctx = evp_ctx->md_data;
113 size_t bsz = ctx->block_size;
114 size_t num = ctx->num;
115
116 /*
117 * Pad the data with 10*1. Note that |num| can be |bsz - 1|
118 * in which case both byte operations below are performed on
119 * same byte...
120 */
121 memset(ctx->buf + num, 0, bsz - num);
122 ctx->buf[num] = ctx->pad;
123 ctx->buf[bsz - 1] |= 0x80;
124
125 (void)SHA3_absorb(ctx->A, ctx->buf, bsz, bsz);
126
127 SHA3_squeeze(ctx->A, md, ctx->md_size, bsz);
128
129 return 1;
130 }
131
132 static int shake_ctrl(EVP_MD_CTX *evp_ctx, int cmd, int p1, void *p2)
133 {
134 KECCAK1600_CTX *ctx = evp_ctx->md_data;
135
136 switch (cmd) {
137 case EVP_MD_CTRL_XOF_LEN:
138 ctx->md_size = p1;
139 return 1;
140 default:
141 return 0;
142 }
143 }
144
145 #if defined(OPENSSL_CPUID_OBJ) && defined(__s390__) && defined(KECCAK1600_ASM)
146 /*
147 * IBM S390X support
148 */
149 # include "s390x_arch.h"
150
151 # define S390X_SHA3_FC(ctx) ((ctx)->pad)
152
153 # define S390X_sha3_224_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \
154 S390X_CAPBIT(S390X_SHA3_224)) && \
155 (OPENSSL_s390xcap_P.klmd[0] & \
156 S390X_CAPBIT(S390X_SHA3_224)))
157 # define S390X_sha3_256_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \
158 S390X_CAPBIT(S390X_SHA3_256)) && \
159 (OPENSSL_s390xcap_P.klmd[0] & \
160 S390X_CAPBIT(S390X_SHA3_256)))
161 # define S390X_sha3_384_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \
162 S390X_CAPBIT(S390X_SHA3_384)) && \
163 (OPENSSL_s390xcap_P.klmd[0] & \
164 S390X_CAPBIT(S390X_SHA3_384)))
165 # define S390X_sha3_512_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \
166 S390X_CAPBIT(S390X_SHA3_512)) && \
167 (OPENSSL_s390xcap_P.klmd[0] & \
168 S390X_CAPBIT(S390X_SHA3_512)))
169 # define S390X_shake128_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \
170 S390X_CAPBIT(S390X_SHAKE_128)) && \
171 (OPENSSL_s390xcap_P.klmd[0] & \
172 S390X_CAPBIT(S390X_SHAKE_128)))
173 # define S390X_shake256_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \
174 S390X_CAPBIT(S390X_SHAKE_256)) && \
175 (OPENSSL_s390xcap_P.klmd[0] & \
176 S390X_CAPBIT(S390X_SHAKE_256)))
177
178 /* Convert md-size to block-size. */
179 # define S390X_KECCAK1600_BSZ(n) ((KECCAK1600_WIDTH - ((n) << 1)) >> 3)
180
181 static int s390x_sha3_init(EVP_MD_CTX *evp_ctx)
182 {
183 KECCAK1600_CTX *ctx = evp_ctx->md_data;
184 const size_t bsz = evp_ctx->digest->block_size;
185
186 /*-
187 * KECCAK1600_CTX structure's pad field is used to store the KIMD/KLMD
188 * function code.
189 */
190 switch (bsz) {
191 case S390X_KECCAK1600_BSZ(224):
192 ctx->pad = S390X_SHA3_224;
193 break;
194 case S390X_KECCAK1600_BSZ(256):
195 ctx->pad = S390X_SHA3_256;
196 break;
197 case S390X_KECCAK1600_BSZ(384):
198 ctx->pad = S390X_SHA3_384;
199 break;
200 case S390X_KECCAK1600_BSZ(512):
201 ctx->pad = S390X_SHA3_512;
202 break;
203 default:
204 return 0;
205 }
206
207 memset(ctx->A, 0, sizeof(ctx->A));
208 ctx->num = 0;
209 ctx->block_size = bsz;
210 ctx->md_size = evp_ctx->digest->md_size;
211 return 1;
212 }
213
214 static int s390x_shake_init(EVP_MD_CTX *evp_ctx)
215 {
216 KECCAK1600_CTX *ctx = evp_ctx->md_data;
217 const size_t bsz = evp_ctx->digest->block_size;
218
219 /*-
220 * KECCAK1600_CTX structure's pad field is used to store the KIMD/KLMD
221 * function code.
222 */
223 switch (bsz) {
224 case S390X_KECCAK1600_BSZ(128):
225 ctx->pad = S390X_SHAKE_128;
226 break;
227 case S390X_KECCAK1600_BSZ(256):
228 ctx->pad = S390X_SHAKE_256;
229 break;
230 default:
231 return 0;
232 }
233
234 memset(ctx->A, 0, sizeof(ctx->A));
235 ctx->num = 0;
236 ctx->block_size = bsz;
237 ctx->md_size = evp_ctx->digest->md_size;
238 return 1;
239 }
240
241 static int s390x_sha3_update(EVP_MD_CTX *evp_ctx, const void *_inp, size_t len)
242 {
243 KECCAK1600_CTX *ctx = evp_ctx->md_data;
244 const unsigned char *inp = _inp;
245 const size_t bsz = ctx->block_size;
246 size_t num, rem;
247
248 if (len == 0)
249 return 1;
250
251 if ((num = ctx->num) != 0) {
252 rem = bsz - num;
253
254 if (len < rem) {
255 memcpy(ctx->buf + num, inp, len);
256 ctx->num += len;
257 return 1;
258 }
259 memcpy(ctx->buf + num, inp, rem);
260 inp += rem;
261 len -= rem;
262 s390x_kimd(ctx->buf, bsz, ctx->pad, ctx->A);
263 ctx->num = 0;
264 }
265 rem = len % bsz;
266
267 s390x_kimd(inp, len - rem, ctx->pad, ctx->A);
268
269 if (rem) {
270 memcpy(ctx->buf, inp + len - rem, rem);
271 ctx->num = rem;
272 }
273 return 1;
274 }
275
276 static int s390x_sha3_final(EVP_MD_CTX *evp_ctx, unsigned char *md)
277 {
278 KECCAK1600_CTX *ctx = evp_ctx->md_data;
279
280 s390x_klmd(ctx->buf, ctx->num, NULL, 0, ctx->pad, ctx->A);
281 memcpy(md, ctx->A, ctx->md_size);
282 return 1;
283 }
284
285 static int s390x_shake_final(EVP_MD_CTX *evp_ctx, unsigned char *md)
286 {
287 KECCAK1600_CTX *ctx = evp_ctx->md_data;
288
289 s390x_klmd(ctx->buf, ctx->num, md, ctx->md_size, ctx->pad, ctx->A);
290 return 1;
291 }
292
293 # define EVP_MD_SHA3(bitlen) \
294 const EVP_MD *EVP_sha3_##bitlen(void) \
295 { \
296 static const EVP_MD s390x_sha3_##bitlen##_md = { \
297 NID_sha3_##bitlen, \
298 NID_RSA_SHA3_##bitlen, \
299 bitlen / 8, \
300 EVP_MD_FLAG_DIGALGID_ABSENT, \
301 s390x_sha3_init, \
302 s390x_sha3_update, \
303 s390x_sha3_final, \
304 NULL, \
305 NULL, \
306 (KECCAK1600_WIDTH - bitlen * 2) / 8, \
307 sizeof(KECCAK1600_CTX), \
308 }; \
309 static const EVP_MD sha3_##bitlen##_md = { \
310 NID_sha3_##bitlen, \
311 NID_RSA_SHA3_##bitlen, \
312 bitlen / 8, \
313 EVP_MD_FLAG_DIGALGID_ABSENT, \
314 sha3_init, \
315 sha3_update, \
316 sha3_final, \
317 NULL, \
318 NULL, \
319 (KECCAK1600_WIDTH - bitlen * 2) / 8, \
320 sizeof(KECCAK1600_CTX), \
321 }; \
322 return S390X_sha3_##bitlen##_CAPABLE ? \
323 &s390x_sha3_##bitlen##_md : \
324 &sha3_##bitlen##_md; \
325 }
326
327 # define EVP_MD_SHAKE(bitlen) \
328 const EVP_MD *EVP_shake##bitlen(void) \
329 { \
330 static const EVP_MD s390x_shake##bitlen##_md = { \
331 NID_shake##bitlen, \
332 0, \
333 bitlen / 8, \
334 EVP_MD_FLAG_XOF, \
335 s390x_shake_init, \
336 s390x_sha3_update, \
337 s390x_shake_final, \
338 NULL, \
339 NULL, \
340 (KECCAK1600_WIDTH - bitlen * 2) / 8, \
341 sizeof(KECCAK1600_CTX), \
342 shake_ctrl \
343 }; \
344 static const EVP_MD shake##bitlen##_md = { \
345 NID_shake##bitlen, \
346 0, \
347 bitlen / 8, \
348 EVP_MD_FLAG_XOF, \
349 shake_init, \
350 sha3_update, \
351 sha3_final, \
352 NULL, \
353 NULL, \
354 (KECCAK1600_WIDTH - bitlen * 2) / 8, \
355 sizeof(KECCAK1600_CTX), \
356 shake_ctrl \
357 }; \
358 return S390X_shake##bitlen##_CAPABLE ? \
359 &s390x_shake##bitlen##_md : \
360 &shake##bitlen##_md; \
361 }
362
363 #else
364
365 # define EVP_MD_SHA3(bitlen) \
366 const EVP_MD *EVP_sha3_##bitlen(void) \
367 { \
368 static const EVP_MD sha3_##bitlen##_md = { \
369 NID_sha3_##bitlen, \
370 NID_RSA_SHA3_##bitlen, \
371 bitlen / 8, \
372 EVP_MD_FLAG_DIGALGID_ABSENT, \
373 sha3_init, \
374 sha3_update, \
375 sha3_final, \
376 NULL, \
377 NULL, \
378 (KECCAK1600_WIDTH - bitlen * 2) / 8, \
379 sizeof(KECCAK1600_CTX), \
380 }; \
381 return &sha3_##bitlen##_md; \
382 }
383
384 # define EVP_MD_SHAKE(bitlen) \
385 const EVP_MD *EVP_shake##bitlen(void) \
386 { \
387 static const EVP_MD shake##bitlen##_md = { \
388 NID_shake##bitlen, \
389 0, \
390 bitlen / 8, \
391 EVP_MD_FLAG_XOF, \
392 shake_init, \
393 sha3_update, \
394 sha3_final, \
395 NULL, \
396 NULL, \
397 (KECCAK1600_WIDTH - bitlen * 2) / 8, \
398 sizeof(KECCAK1600_CTX), \
399 shake_ctrl \
400 }; \
401 return &shake##bitlen##_md; \
402 }
403
404 #endif
405
406 EVP_MD_SHA3(224)
407 EVP_MD_SHA3(256)
408 EVP_MD_SHA3(384)
409 EVP_MD_SHA3(512)
410
411 EVP_MD_SHAKE(128)
412 EVP_MD_SHAKE(256)
413
414
415 # define EVP_MD_KECCAK_KMAC(bitlen) \
416 const EVP_MD *evp_keccak_kmac##bitlen(void) \
417 { \
418 static const EVP_MD kmac_##bitlen##_md = { \
419 -1, \
420 0, \
421 2 * bitlen / 8, \
422 EVP_MD_FLAG_XOF, \
423 kmac_init, \
424 sha3_update, \
425 sha3_final, \
426 NULL, \
427 NULL, \
428 (KECCAK1600_WIDTH - bitlen * 2) / 8, \
429 sizeof(KECCAK1600_CTX), \
430 shake_ctrl \
431 }; \
432 return &kmac_##bitlen##_md; \
433 }
434
435 EVP_MD_KECCAK_KMAC(128)
436 EVP_MD_KECCAK_KMAC(256)