]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/kdf/tls1_prf.c
Teach TLSProxy how to parse CertificateRequest messages
[thirdparty/openssl.git] / crypto / kdf / tls1_prf.c
1 /*
2 * Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /*
11 * Refer to "The TLS Protocol Version 1.0" Section 5
12 * (https://tools.ietf.org/html/rfc2246#section-5) and
13 * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5
14 * (https://tools.ietf.org/html/rfc5246#section-5).
15 *
16 * For TLS v1.0 and TLS v1.1 the TLS PRF algorithm is given by:
17 *
18 * PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR
19 * P_SHA-1(S2, label + seed)
20 *
21 * where P_MD5 and P_SHA-1 are defined by P_<hash>, below, and S1 and S2 are
22 * two halves of the secret (with the possibility of one shared byte, in the
23 * case where the length of the original secret is odd). S1 is taken from the
24 * first half of the secret, S2 from the second half.
25 *
26 * For TLS v1.2 the TLS PRF algorithm is given by:
27 *
28 * PRF(secret, label, seed) = P_<hash>(secret, label + seed)
29 *
30 * where hash is SHA-256 for all cipher suites defined in RFC 5246 as well as
31 * those published prior to TLS v1.2 while the TLS v1.2 protocol is in effect,
32 * unless defined otherwise by the cipher suite.
33 *
34 * P_<hash> is an expansion function that uses a single hash function to expand
35 * a secret and seed into an arbitrary quantity of output:
36 *
37 * P_<hash>(secret, seed) = HMAC_<hash>(secret, A(1) + seed) +
38 * HMAC_<hash>(secret, A(2) + seed) +
39 * HMAC_<hash>(secret, A(3) + seed) + ...
40 *
41 * where + indicates concatenation. P_<hash> can be iterated as many times as
42 * is necessary to produce the required quantity of data.
43 *
44 * A(i) is defined as:
45 * A(0) = seed
46 * A(i) = HMAC_<hash>(secret, A(i-1))
47 */
48 #include <stdio.h>
49 #include <stdarg.h>
50 #include <string.h>
51 #include "internal/cryptlib.h"
52 #include <openssl/evp.h>
53 #include <openssl/kdf.h>
54 #include <openssl/core_names.h>
55 #include <openssl/params.h>
56 #include "internal/evp_int.h"
57 #include "kdf_local.h"
58
59 static void kdf_tls1_prf_reset(EVP_KDF_IMPL *impl);
60 static int tls1_prf_alg(const EVP_MD *md,
61 const unsigned char *sec, size_t slen,
62 const unsigned char *seed, size_t seed_len,
63 unsigned char *out, size_t olen);
64
65 #define TLS1_PRF_MAXBUF 1024
66
67 /* TLS KDF kdf context structure */
68
69 struct evp_kdf_impl_st {
70 /* Digest to use for PRF */
71 const EVP_MD *md;
72 /* Secret value to use for PRF */
73 unsigned char *sec;
74 size_t seclen;
75 /* Buffer of concatenated seed data */
76 unsigned char seed[TLS1_PRF_MAXBUF];
77 size_t seedlen;
78 };
79
80 static EVP_KDF_IMPL *kdf_tls1_prf_new(void)
81 {
82 EVP_KDF_IMPL *impl;
83
84 if ((impl = OPENSSL_zalloc(sizeof(*impl))) == NULL)
85 KDFerr(KDF_F_KDF_TLS1_PRF_NEW, ERR_R_MALLOC_FAILURE);
86 return impl;
87 }
88
89 static void kdf_tls1_prf_free(EVP_KDF_IMPL *impl)
90 {
91 kdf_tls1_prf_reset(impl);
92 OPENSSL_free(impl);
93 }
94
95 static void kdf_tls1_prf_reset(EVP_KDF_IMPL *impl)
96 {
97 OPENSSL_clear_free(impl->sec, impl->seclen);
98 OPENSSL_cleanse(impl->seed, impl->seedlen);
99 memset(impl, 0, sizeof(*impl));
100 }
101
102 static int kdf_tls1_prf_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args)
103 {
104 const unsigned char *p;
105 size_t len;
106 const EVP_MD *md;
107
108 switch (cmd) {
109 case EVP_KDF_CTRL_SET_MD:
110 md = va_arg(args, const EVP_MD *);
111 if (md == NULL)
112 return 0;
113
114 impl->md = md;
115 return 1;
116
117 case EVP_KDF_CTRL_SET_TLS_SECRET:
118 p = va_arg(args, const unsigned char *);
119 len = va_arg(args, size_t);
120 OPENSSL_clear_free(impl->sec, impl->seclen);
121 impl->sec = OPENSSL_memdup(p, len);
122 if (impl->sec == NULL)
123 return 0;
124
125 impl->seclen = len;
126 return 1;
127
128 case EVP_KDF_CTRL_RESET_TLS_SEED:
129 OPENSSL_cleanse(impl->seed, impl->seedlen);
130 impl->seedlen = 0;
131 return 1;
132
133 case EVP_KDF_CTRL_ADD_TLS_SEED:
134 p = va_arg(args, const unsigned char *);
135 len = va_arg(args, size_t);
136 if (len == 0 || p == NULL)
137 return 1;
138
139 if (len > (TLS1_PRF_MAXBUF - impl->seedlen))
140 return 0;
141
142 memcpy(impl->seed + impl->seedlen, p, len);
143 impl->seedlen += len;
144 return 1;
145
146 default:
147 return -2;
148 }
149 }
150
151 static int kdf_tls1_prf_ctrl_str(EVP_KDF_IMPL *impl,
152 const char *type, const char *value)
153 {
154 if (value == NULL) {
155 KDFerr(KDF_F_KDF_TLS1_PRF_CTRL_STR, KDF_R_VALUE_MISSING);
156 return 0;
157 }
158 if (strcmp(type, "digest") == 0)
159 return kdf_md2ctrl(impl, kdf_tls1_prf_ctrl, EVP_KDF_CTRL_SET_MD, value);
160
161 if (strcmp(type, "secret") == 0)
162 return kdf_str2ctrl(impl, kdf_tls1_prf_ctrl,
163 EVP_KDF_CTRL_SET_TLS_SECRET, value);
164
165 if (strcmp(type, "hexsecret") == 0)
166 return kdf_hex2ctrl(impl, kdf_tls1_prf_ctrl,
167 EVP_KDF_CTRL_SET_TLS_SECRET, value);
168
169 if (strcmp(type, "seed") == 0)
170 return kdf_str2ctrl(impl, kdf_tls1_prf_ctrl, EVP_KDF_CTRL_ADD_TLS_SEED,
171 value);
172
173 if (strcmp(type, "hexseed") == 0)
174 return kdf_hex2ctrl(impl, kdf_tls1_prf_ctrl, EVP_KDF_CTRL_ADD_TLS_SEED,
175 value);
176
177 return -2;
178 }
179
180 static int kdf_tls1_prf_derive(EVP_KDF_IMPL *impl, unsigned char *key,
181 size_t keylen)
182 {
183 if (impl->md == NULL) {
184 KDFerr(KDF_F_KDF_TLS1_PRF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST);
185 return 0;
186 }
187 if (impl->sec == NULL) {
188 KDFerr(KDF_F_KDF_TLS1_PRF_DERIVE, KDF_R_MISSING_SECRET);
189 return 0;
190 }
191 if (impl->seedlen == 0) {
192 KDFerr(KDF_F_KDF_TLS1_PRF_DERIVE, KDF_R_MISSING_SEED);
193 return 0;
194 }
195 return tls1_prf_alg(impl->md, impl->sec, impl->seclen,
196 impl->seed, impl->seedlen,
197 key, keylen);
198 }
199
200 const EVP_KDF tls1_prf_kdf_meth = {
201 EVP_KDF_TLS1_PRF,
202 kdf_tls1_prf_new,
203 kdf_tls1_prf_free,
204 kdf_tls1_prf_reset,
205 kdf_tls1_prf_ctrl,
206 kdf_tls1_prf_ctrl_str,
207 NULL,
208 kdf_tls1_prf_derive
209 };
210
211 /*
212 * Refer to "The TLS Protocol Version 1.0" Section 5
213 * (https://tools.ietf.org/html/rfc2246#section-5) and
214 * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5
215 * (https://tools.ietf.org/html/rfc5246#section-5).
216 *
217 * P_<hash> is an expansion function that uses a single hash function to expand
218 * a secret and seed into an arbitrary quantity of output:
219 *
220 * P_<hash>(secret, seed) = HMAC_<hash>(secret, A(1) + seed) +
221 * HMAC_<hash>(secret, A(2) + seed) +
222 * HMAC_<hash>(secret, A(3) + seed) + ...
223 *
224 * where + indicates concatenation. P_<hash> can be iterated as many times as
225 * is necessary to produce the required quantity of data.
226 *
227 * A(i) is defined as:
228 * A(0) = seed
229 * A(i) = HMAC_<hash>(secret, A(i-1))
230 */
231 static int tls1_prf_P_hash(const EVP_MD *md,
232 const unsigned char *sec, size_t sec_len,
233 const unsigned char *seed, size_t seed_len,
234 unsigned char *out, size_t olen)
235 {
236 size_t chunk;
237 EVP_MAC *mac = NULL;
238 EVP_MAC_CTX *ctx = NULL, *ctx_Ai = NULL, *ctx_init = NULL;
239 unsigned char Ai[EVP_MAX_MD_SIZE];
240 size_t Ai_len;
241 int ret = 0;
242 OSSL_PARAM params[4];
243 int mac_flags;
244 const char *mdname = EVP_MD_name(md);
245
246 mac = EVP_MAC_fetch(NULL, OSSL_MAC_NAME_HMAC, NULL); /* Implicit fetch */
247 ctx_init = EVP_MAC_CTX_new(mac);
248 if (ctx_init == NULL)
249 goto err;
250
251 /* TODO(3.0) rethink "flags", also see hmac.c in providers */
252 mac_flags = EVP_MD_CTX_FLAG_NON_FIPS_ALLOW;
253 params[0] = OSSL_PARAM_construct_int(OSSL_MAC_PARAM_FLAGS, &mac_flags);
254 params[1] = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST,
255 (char *)mdname, 0);
256 params[2] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
257 (void *)sec, sec_len);
258 params[3] = OSSL_PARAM_construct_end();
259 if (!EVP_MAC_CTX_set_params(ctx_init, params))
260 goto err;
261 if (!EVP_MAC_init(ctx_init))
262 goto err;
263 chunk = EVP_MAC_size(ctx_init);
264 if (chunk == 0)
265 goto err;
266 /* A(0) = seed */
267 ctx_Ai = EVP_MAC_CTX_dup(ctx_init);
268 if (ctx_Ai == NULL)
269 goto err;
270 if (seed != NULL && !EVP_MAC_update(ctx_Ai, seed, seed_len))
271 goto err;
272
273 for (;;) {
274 /* calc: A(i) = HMAC_<hash>(secret, A(i-1)) */
275 if (!EVP_MAC_final(ctx_Ai, Ai, &Ai_len, sizeof(Ai)))
276 goto err;
277 EVP_MAC_CTX_free(ctx_Ai);
278 ctx_Ai = NULL;
279
280 /* calc next chunk: HMAC_<hash>(secret, A(i) + seed) */
281 ctx = EVP_MAC_CTX_dup(ctx_init);
282 if (ctx == NULL)
283 goto err;
284 if (!EVP_MAC_update(ctx, Ai, Ai_len))
285 goto err;
286 /* save state for calculating next A(i) value */
287 if (olen > chunk) {
288 ctx_Ai = EVP_MAC_CTX_dup(ctx);
289 if (ctx_Ai == NULL)
290 goto err;
291 }
292 if (seed != NULL && !EVP_MAC_update(ctx, seed, seed_len))
293 goto err;
294 if (olen <= chunk) {
295 /* last chunk - use Ai as temp bounce buffer */
296 if (!EVP_MAC_final(ctx, Ai, &Ai_len, sizeof(Ai)))
297 goto err;
298 memcpy(out, Ai, olen);
299 break;
300 }
301 if (!EVP_MAC_final(ctx, out, NULL, olen))
302 goto err;
303 EVP_MAC_CTX_free(ctx);
304 ctx = NULL;
305 out += chunk;
306 olen -= chunk;
307 }
308 ret = 1;
309 err:
310 EVP_MAC_CTX_free(ctx);
311 EVP_MAC_CTX_free(ctx_Ai);
312 EVP_MAC_CTX_free(ctx_init);
313 EVP_MAC_free(mac);
314 OPENSSL_cleanse(Ai, sizeof(Ai));
315 return ret;
316 }
317
318 /*
319 * Refer to "The TLS Protocol Version 1.0" Section 5
320 * (https://tools.ietf.org/html/rfc2246#section-5) and
321 * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5
322 * (https://tools.ietf.org/html/rfc5246#section-5).
323 *
324 * For TLS v1.0 and TLS v1.1:
325 *
326 * PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR
327 * P_SHA-1(S2, label + seed)
328 *
329 * S1 is taken from the first half of the secret, S2 from the second half.
330 *
331 * L_S = length in bytes of secret;
332 * L_S1 = L_S2 = ceil(L_S / 2);
333 *
334 * For TLS v1.2:
335 *
336 * PRF(secret, label, seed) = P_<hash>(secret, label + seed)
337 */
338 static int tls1_prf_alg(const EVP_MD *md,
339 const unsigned char *sec, size_t slen,
340 const unsigned char *seed, size_t seed_len,
341 unsigned char *out, size_t olen)
342 {
343 if (EVP_MD_type(md) == NID_md5_sha1) {
344 /* TLS v1.0 and TLS v1.1 */
345 size_t i;
346 unsigned char *tmp;
347 /* calc: L_S1 = L_S2 = ceil(L_S / 2) */
348 size_t L_S1 = (slen + 1) / 2;
349 size_t L_S2 = L_S1;
350
351 if (!tls1_prf_P_hash(EVP_md5(), sec, L_S1,
352 seed, seed_len, out, olen))
353 return 0;
354
355 if ((tmp = OPENSSL_malloc(olen)) == NULL) {
356 KDFerr(KDF_F_TLS1_PRF_ALG, ERR_R_MALLOC_FAILURE);
357 return 0;
358 }
359 if (!tls1_prf_P_hash(EVP_sha1(), sec + slen - L_S2, L_S2,
360 seed, seed_len, tmp, olen)) {
361 OPENSSL_clear_free(tmp, olen);
362 return 0;
363 }
364 for (i = 0; i < olen; i++)
365 out[i] ^= tmp[i];
366 OPENSSL_clear_free(tmp, olen);
367 return 1;
368 }
369
370 /* TLS v1.2 */
371 if (!tls1_prf_P_hash(md, sec, slen, seed, seed_len, out, olen))
372 return 0;
373
374 return 1;
375 }