]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/mem_sec.c
Implement OpenSSL secure memory for Windows
[thirdparty/openssl.git] / crypto / mem_sec.c
1 /*
2 * Copyright 2015-2020 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright 2004-2014, Akamai Technologies. All Rights Reserved.
4 *
5 * Licensed under the Apache License 2.0 (the "License"). You may not use
6 * this file except in compliance with the License. You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 */
10
11 /*
12 * This file is in two halves. The first half implements the public API
13 * to be used by external consumers, and to be used by OpenSSL to store
14 * data in a "secure arena." The second half implements the secure arena.
15 * For details on that implementation, see below (look for uppercase
16 * "SECURE HEAP IMPLEMENTATION").
17 */
18 #include "e_os.h"
19 #include <openssl/crypto.h>
20
21 #include <string.h>
22
23 #ifndef OPENSSL_NO_SECURE_MEMORY
24 # if defined(_WIN32)
25 # include <windows.h>
26 # endif
27 # include <stdlib.h>
28 # include <assert.h>
29 # if defined(OPENSSL_SYS_UNIX)
30 # include <unistd.h>
31 # endif
32 # include <sys/types.h>
33 # if defined(OPENSSL_SYS_UNIX)
34 # include <sys/mman.h>
35 # endif
36 # if defined(OPENSSL_SYS_LINUX)
37 # include <sys/syscall.h>
38 # if defined(SYS_mlock2)
39 # include <linux/mman.h>
40 # include <errno.h>
41 # endif
42 # include <sys/param.h>
43 # endif
44 # include <sys/stat.h>
45 # include <fcntl.h>
46 #endif
47
48 #define CLEAR(p, s) OPENSSL_cleanse(p, s)
49 #ifndef PAGE_SIZE
50 # define PAGE_SIZE 4096
51 #endif
52 #if !defined(MAP_ANON) && defined(MAP_ANONYMOUS)
53 # define MAP_ANON MAP_ANONYMOUS
54 #endif
55
56 #ifndef OPENSSL_NO_SECURE_MEMORY
57 static size_t secure_mem_used;
58
59 static int secure_mem_initialized;
60
61 static CRYPTO_RWLOCK *sec_malloc_lock = NULL;
62
63 /*
64 * These are the functions that must be implemented by a secure heap (sh).
65 */
66 static int sh_init(size_t size, size_t minsize);
67 static void *sh_malloc(size_t size);
68 static void sh_free(void *ptr);
69 static void sh_done(void);
70 static size_t sh_actual_size(char *ptr);
71 static int sh_allocated(const char *ptr);
72 #endif
73
74 int CRYPTO_secure_malloc_init(size_t size, size_t minsize)
75 {
76 #ifndef OPENSSL_NO_SECURE_MEMORY
77 int ret = 0;
78
79 if (!secure_mem_initialized) {
80 sec_malloc_lock = CRYPTO_THREAD_lock_new();
81 if (sec_malloc_lock == NULL)
82 return 0;
83 if ((ret = sh_init(size, minsize)) != 0) {
84 secure_mem_initialized = 1;
85 } else {
86 CRYPTO_THREAD_lock_free(sec_malloc_lock);
87 sec_malloc_lock = NULL;
88 }
89 }
90
91 return ret;
92 #else
93 return 0;
94 #endif /* OPENSSL_NO_SECURE_MEMORY */
95 }
96
97 int CRYPTO_secure_malloc_done(void)
98 {
99 #ifndef OPENSSL_NO_SECURE_MEMORY
100 if (secure_mem_used == 0) {
101 sh_done();
102 secure_mem_initialized = 0;
103 CRYPTO_THREAD_lock_free(sec_malloc_lock);
104 sec_malloc_lock = NULL;
105 return 1;
106 }
107 #endif /* OPENSSL_NO_SECURE_MEMORY */
108 return 0;
109 }
110
111 int CRYPTO_secure_malloc_initialized(void)
112 {
113 #ifndef OPENSSL_NO_SECURE_MEMORY
114 return secure_mem_initialized;
115 #else
116 return 0;
117 #endif /* OPENSSL_NO_SECURE_MEMORY */
118 }
119
120 void *CRYPTO_secure_malloc(size_t num, const char *file, int line)
121 {
122 #ifndef OPENSSL_NO_SECURE_MEMORY
123 void *ret;
124 size_t actual_size;
125
126 if (!secure_mem_initialized) {
127 return CRYPTO_malloc(num, file, line);
128 }
129 CRYPTO_THREAD_write_lock(sec_malloc_lock);
130 ret = sh_malloc(num);
131 actual_size = ret ? sh_actual_size(ret) : 0;
132 secure_mem_used += actual_size;
133 CRYPTO_THREAD_unlock(sec_malloc_lock);
134 return ret;
135 #else
136 return CRYPTO_malloc(num, file, line);
137 #endif /* OPENSSL_NO_SECURE_MEMORY */
138 }
139
140 void *CRYPTO_secure_zalloc(size_t num, const char *file, int line)
141 {
142 #ifndef OPENSSL_NO_SECURE_MEMORY
143 if (secure_mem_initialized)
144 /* CRYPTO_secure_malloc() zeroes allocations when it is implemented */
145 return CRYPTO_secure_malloc(num, file, line);
146 #endif
147 return CRYPTO_zalloc(num, file, line);
148 }
149
150 void CRYPTO_secure_free(void *ptr, const char *file, int line)
151 {
152 #ifndef OPENSSL_NO_SECURE_MEMORY
153 size_t actual_size;
154
155 if (ptr == NULL)
156 return;
157 if (!CRYPTO_secure_allocated(ptr)) {
158 CRYPTO_free(ptr, file, line);
159 return;
160 }
161 CRYPTO_THREAD_write_lock(sec_malloc_lock);
162 actual_size = sh_actual_size(ptr);
163 CLEAR(ptr, actual_size);
164 secure_mem_used -= actual_size;
165 sh_free(ptr);
166 CRYPTO_THREAD_unlock(sec_malloc_lock);
167 #else
168 CRYPTO_free(ptr, file, line);
169 #endif /* OPENSSL_NO_SECURE_MEMORY */
170 }
171
172 void CRYPTO_secure_clear_free(void *ptr, size_t num,
173 const char *file, int line)
174 {
175 #ifndef OPENSSL_NO_SECURE_MEMORY
176 size_t actual_size;
177
178 if (ptr == NULL)
179 return;
180 if (!CRYPTO_secure_allocated(ptr)) {
181 OPENSSL_cleanse(ptr, num);
182 CRYPTO_free(ptr, file, line);
183 return;
184 }
185 CRYPTO_THREAD_write_lock(sec_malloc_lock);
186 actual_size = sh_actual_size(ptr);
187 CLEAR(ptr, actual_size);
188 secure_mem_used -= actual_size;
189 sh_free(ptr);
190 CRYPTO_THREAD_unlock(sec_malloc_lock);
191 #else
192 if (ptr == NULL)
193 return;
194 OPENSSL_cleanse(ptr, num);
195 CRYPTO_free(ptr, file, line);
196 #endif /* OPENSSL_NO_SECURE_MEMORY */
197 }
198
199 int CRYPTO_secure_allocated(const void *ptr)
200 {
201 #ifndef OPENSSL_NO_SECURE_MEMORY
202 int ret;
203
204 if (!secure_mem_initialized)
205 return 0;
206 CRYPTO_THREAD_write_lock(sec_malloc_lock);
207 ret = sh_allocated(ptr);
208 CRYPTO_THREAD_unlock(sec_malloc_lock);
209 return ret;
210 #else
211 return 0;
212 #endif /* OPENSSL_NO_SECURE_MEMORY */
213 }
214
215 size_t CRYPTO_secure_used(void)
216 {
217 #ifndef OPENSSL_NO_SECURE_MEMORY
218 return secure_mem_used;
219 #else
220 return 0;
221 #endif /* OPENSSL_NO_SECURE_MEMORY */
222 }
223
224 size_t CRYPTO_secure_actual_size(void *ptr)
225 {
226 #ifndef OPENSSL_NO_SECURE_MEMORY
227 size_t actual_size;
228
229 CRYPTO_THREAD_write_lock(sec_malloc_lock);
230 actual_size = sh_actual_size(ptr);
231 CRYPTO_THREAD_unlock(sec_malloc_lock);
232 return actual_size;
233 #else
234 return 0;
235 #endif
236 }
237
238 /*
239 * SECURE HEAP IMPLEMENTATION
240 */
241 #ifndef OPENSSL_NO_SECURE_MEMORY
242
243
244 /*
245 * The implementation provided here uses a fixed-sized mmap() heap,
246 * which is locked into memory, not written to core files, and protected
247 * on either side by an unmapped page, which will catch pointer overruns
248 * (or underruns) and an attempt to read data out of the secure heap.
249 * Free'd memory is zero'd or otherwise cleansed.
250 *
251 * This is a pretty standard buddy allocator. We keep areas in a multiple
252 * of "sh.minsize" units. The freelist and bitmaps are kept separately,
253 * so all (and only) data is kept in the mmap'd heap.
254 *
255 * This code assumes eight-bit bytes. The numbers 3 and 7 are all over the
256 * place.
257 */
258
259 #define ONE ((size_t)1)
260
261 # define TESTBIT(t, b) (t[(b) >> 3] & (ONE << ((b) & 7)))
262 # define SETBIT(t, b) (t[(b) >> 3] |= (ONE << ((b) & 7)))
263 # define CLEARBIT(t, b) (t[(b) >> 3] &= (0xFF & ~(ONE << ((b) & 7))))
264
265 #define WITHIN_ARENA(p) \
266 ((char*)(p) >= sh.arena && (char*)(p) < &sh.arena[sh.arena_size])
267 #define WITHIN_FREELIST(p) \
268 ((char*)(p) >= (char*)sh.freelist && (char*)(p) < (char*)&sh.freelist[sh.freelist_size])
269
270
271 typedef struct sh_list_st
272 {
273 struct sh_list_st *next;
274 struct sh_list_st **p_next;
275 } SH_LIST;
276
277 typedef struct sh_st
278 {
279 char* map_result;
280 size_t map_size;
281 char *arena;
282 size_t arena_size;
283 char **freelist;
284 ossl_ssize_t freelist_size;
285 size_t minsize;
286 unsigned char *bittable;
287 unsigned char *bitmalloc;
288 size_t bittable_size; /* size in bits */
289 } SH;
290
291 static SH sh;
292
293 static size_t sh_getlist(char *ptr)
294 {
295 ossl_ssize_t list = sh.freelist_size - 1;
296 size_t bit = (sh.arena_size + ptr - sh.arena) / sh.minsize;
297
298 for (; bit; bit >>= 1, list--) {
299 if (TESTBIT(sh.bittable, bit))
300 break;
301 OPENSSL_assert((bit & 1) == 0);
302 }
303
304 return list;
305 }
306
307
308 static int sh_testbit(char *ptr, int list, unsigned char *table)
309 {
310 size_t bit;
311
312 OPENSSL_assert(list >= 0 && list < sh.freelist_size);
313 OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0);
314 bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list));
315 OPENSSL_assert(bit > 0 && bit < sh.bittable_size);
316 return TESTBIT(table, bit);
317 }
318
319 static void sh_clearbit(char *ptr, int list, unsigned char *table)
320 {
321 size_t bit;
322
323 OPENSSL_assert(list >= 0 && list < sh.freelist_size);
324 OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0);
325 bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list));
326 OPENSSL_assert(bit > 0 && bit < sh.bittable_size);
327 OPENSSL_assert(TESTBIT(table, bit));
328 CLEARBIT(table, bit);
329 }
330
331 static void sh_setbit(char *ptr, int list, unsigned char *table)
332 {
333 size_t bit;
334
335 OPENSSL_assert(list >= 0 && list < sh.freelist_size);
336 OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0);
337 bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list));
338 OPENSSL_assert(bit > 0 && bit < sh.bittable_size);
339 OPENSSL_assert(!TESTBIT(table, bit));
340 SETBIT(table, bit);
341 }
342
343 static void sh_add_to_list(char **list, char *ptr)
344 {
345 SH_LIST *temp;
346
347 OPENSSL_assert(WITHIN_FREELIST(list));
348 OPENSSL_assert(WITHIN_ARENA(ptr));
349
350 temp = (SH_LIST *)ptr;
351 temp->next = *(SH_LIST **)list;
352 OPENSSL_assert(temp->next == NULL || WITHIN_ARENA(temp->next));
353 temp->p_next = (SH_LIST **)list;
354
355 if (temp->next != NULL) {
356 OPENSSL_assert((char **)temp->next->p_next == list);
357 temp->next->p_next = &(temp->next);
358 }
359
360 *list = ptr;
361 }
362
363 static void sh_remove_from_list(char *ptr)
364 {
365 SH_LIST *temp, *temp2;
366
367 temp = (SH_LIST *)ptr;
368 if (temp->next != NULL)
369 temp->next->p_next = temp->p_next;
370 *temp->p_next = temp->next;
371 if (temp->next == NULL)
372 return;
373
374 temp2 = temp->next;
375 OPENSSL_assert(WITHIN_FREELIST(temp2->p_next) || WITHIN_ARENA(temp2->p_next));
376 }
377
378
379 static int sh_init(size_t size, size_t minsize)
380 {
381 int ret;
382 size_t i;
383 size_t pgsize;
384 size_t aligned;
385 #if defined(_WIN32)
386 DWORD flOldProtect;
387 SYSTEM_INFO systemInfo;
388 #endif
389
390 memset(&sh, 0, sizeof(sh));
391
392 /* make sure size is a powers of 2 */
393 OPENSSL_assert(size > 0);
394 OPENSSL_assert((size & (size - 1)) == 0);
395 if (size == 0 || (size & (size - 1)) != 0)
396 goto err;
397
398 if (minsize <= sizeof(SH_LIST)) {
399 OPENSSL_assert(sizeof(SH_LIST) <= 65536);
400 /*
401 * Compute the minimum possible allocation size.
402 * This must be a power of 2 and at least as large as the SH_LIST
403 * structure.
404 */
405 minsize = sizeof(SH_LIST) - 1;
406 minsize |= minsize >> 1;
407 minsize |= minsize >> 2;
408 if (sizeof(SH_LIST) > 16)
409 minsize |= minsize >> 4;
410 if (sizeof(SH_LIST) > 256)
411 minsize |= minsize >> 8;
412 minsize++;
413 } else {
414 /* make sure minsize is a powers of 2 */
415 OPENSSL_assert((minsize & (minsize - 1)) == 0);
416 if ((minsize & (minsize - 1)) != 0)
417 goto err;
418 }
419
420 sh.arena_size = size;
421 sh.minsize = minsize;
422 sh.bittable_size = (sh.arena_size / sh.minsize) * 2;
423
424 /* Prevent allocations of size 0 later on */
425 if (sh.bittable_size >> 3 == 0)
426 goto err;
427
428 sh.freelist_size = -1;
429 for (i = sh.bittable_size; i; i >>= 1)
430 sh.freelist_size++;
431
432 sh.freelist = OPENSSL_zalloc(sh.freelist_size * sizeof(char *));
433 OPENSSL_assert(sh.freelist != NULL);
434 if (sh.freelist == NULL)
435 goto err;
436
437 sh.bittable = OPENSSL_zalloc(sh.bittable_size >> 3);
438 OPENSSL_assert(sh.bittable != NULL);
439 if (sh.bittable == NULL)
440 goto err;
441
442 sh.bitmalloc = OPENSSL_zalloc(sh.bittable_size >> 3);
443 OPENSSL_assert(sh.bitmalloc != NULL);
444 if (sh.bitmalloc == NULL)
445 goto err;
446
447 /* Allocate space for heap, and two extra pages as guards */
448 #if defined(_SC_PAGE_SIZE) || defined (_SC_PAGESIZE)
449 {
450 # if defined(_SC_PAGE_SIZE)
451 long tmppgsize = sysconf(_SC_PAGE_SIZE);
452 # else
453 long tmppgsize = sysconf(_SC_PAGESIZE);
454 # endif
455 if (tmppgsize < 1)
456 pgsize = PAGE_SIZE;
457 else
458 pgsize = (size_t)tmppgsize;
459 }
460 #elif defined(_WIN32)
461 GetSystemInfo(&systemInfo);
462 pgsize = (size_t)systemInfo.dwPageSize;
463 #else
464 pgsize = PAGE_SIZE;
465 #endif
466 sh.map_size = pgsize + sh.arena_size + pgsize;
467
468 #if !defined(_WIN32)
469 # ifdef MAP_ANON
470 sh.map_result = mmap(NULL, sh.map_size,
471 PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
472 # else
473 {
474 int fd;
475
476 sh.map_result = MAP_FAILED;
477 if ((fd = open("/dev/zero", O_RDWR)) >= 0) {
478 sh.map_result = mmap(NULL, sh.map_size,
479 PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
480 close(fd);
481 }
482 }
483 # endif
484 if (sh.map_result == MAP_FAILED)
485 goto err;
486 #else
487 sh.map_result = VirtualAlloc(NULL, sh.map_size, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
488
489 if (sh.map_result == NULL)
490 goto err;
491 #endif
492
493 sh.arena = (char *)(sh.map_result + pgsize);
494 sh_setbit(sh.arena, 0, sh.bittable);
495 sh_add_to_list(&sh.freelist[0], sh.arena);
496
497 /* Now try to add guard pages and lock into memory. */
498 ret = 1;
499
500 #if !defined(_WIN32)
501 /* Starting guard is already aligned from mmap. */
502 if (mprotect(sh.map_result, pgsize, PROT_NONE) < 0)
503 ret = 2;
504 #else
505 if (VirtualProtect(sh.map_result, pgsize, PAGE_NOACCESS, &flOldProtect) == FALSE)
506 ret = 2;
507 #endif
508
509 /* Ending guard page - need to round up to page boundary */
510 aligned = (pgsize + sh.arena_size + (pgsize - 1)) & ~(pgsize - 1);
511 #if !defined(_WIN32)
512 if (mprotect(sh.map_result + aligned, pgsize, PROT_NONE) < 0)
513 ret = 2;
514 #else
515 if (VirtualProtect(sh.map_result + aligned, pgsize, PAGE_NOACCESS, &flOldProtect) == FALSE)
516 ret = 2;
517 #endif
518
519 #if defined(OPENSSL_SYS_LINUX) && defined(MLOCK_ONFAULT) && defined(SYS_mlock2)
520 if (syscall(SYS_mlock2, sh.arena, sh.arena_size, MLOCK_ONFAULT) < 0) {
521 if (errno == ENOSYS) {
522 if (mlock(sh.arena, sh.arena_size) < 0)
523 ret = 2;
524 } else {
525 ret = 2;
526 }
527 }
528 #elif defined(_WIN32)
529 if (VirtualLock(sh.arena, sh.arena_size) == FALSE)
530 ret = 2;
531 #else
532 if (mlock(sh.arena, sh.arena_size) < 0)
533 ret = 2;
534 #endif
535 #ifdef MADV_DONTDUMP
536 if (madvise(sh.arena, sh.arena_size, MADV_DONTDUMP) < 0)
537 ret = 2;
538 #endif
539
540 return ret;
541
542 err:
543 sh_done();
544 return 0;
545 }
546
547 static void sh_done(void)
548 {
549 OPENSSL_free(sh.freelist);
550 OPENSSL_free(sh.bittable);
551 OPENSSL_free(sh.bitmalloc);
552 #if !defined(_WIN32)
553 if (sh.map_result != MAP_FAILED && sh.map_size)
554 munmap(sh.map_result, sh.map_size);
555 #else
556 if (sh.map_result != NULL && sh.map_size)
557 VirtualFree(sh.map_result, 0, MEM_RELEASE);
558 #endif
559 memset(&sh, 0, sizeof(sh));
560 }
561
562 static int sh_allocated(const char *ptr)
563 {
564 return WITHIN_ARENA(ptr) ? 1 : 0;
565 }
566
567 static char *sh_find_my_buddy(char *ptr, int list)
568 {
569 size_t bit;
570 char *chunk = NULL;
571
572 bit = (ONE << list) + (ptr - sh.arena) / (sh.arena_size >> list);
573 bit ^= 1;
574
575 if (TESTBIT(sh.bittable, bit) && !TESTBIT(sh.bitmalloc, bit))
576 chunk = sh.arena + ((bit & ((ONE << list) - 1)) * (sh.arena_size >> list));
577
578 return chunk;
579 }
580
581 static void *sh_malloc(size_t size)
582 {
583 ossl_ssize_t list, slist;
584 size_t i;
585 char *chunk;
586
587 if (size > sh.arena_size)
588 return NULL;
589
590 list = sh.freelist_size - 1;
591 for (i = sh.minsize; i < size; i <<= 1)
592 list--;
593 if (list < 0)
594 return NULL;
595
596 /* try to find a larger entry to split */
597 for (slist = list; slist >= 0; slist--)
598 if (sh.freelist[slist] != NULL)
599 break;
600 if (slist < 0)
601 return NULL;
602
603 /* split larger entry */
604 while (slist != list) {
605 char *temp = sh.freelist[slist];
606
607 /* remove from bigger list */
608 OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc));
609 sh_clearbit(temp, slist, sh.bittable);
610 sh_remove_from_list(temp);
611 OPENSSL_assert(temp != sh.freelist[slist]);
612
613 /* done with bigger list */
614 slist++;
615
616 /* add to smaller list */
617 OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc));
618 sh_setbit(temp, slist, sh.bittable);
619 sh_add_to_list(&sh.freelist[slist], temp);
620 OPENSSL_assert(sh.freelist[slist] == temp);
621
622 /* split in 2 */
623 temp += sh.arena_size >> slist;
624 OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc));
625 sh_setbit(temp, slist, sh.bittable);
626 sh_add_to_list(&sh.freelist[slist], temp);
627 OPENSSL_assert(sh.freelist[slist] == temp);
628
629 OPENSSL_assert(temp-(sh.arena_size >> slist) == sh_find_my_buddy(temp, slist));
630 }
631
632 /* peel off memory to hand back */
633 chunk = sh.freelist[list];
634 OPENSSL_assert(sh_testbit(chunk, list, sh.bittable));
635 sh_setbit(chunk, list, sh.bitmalloc);
636 sh_remove_from_list(chunk);
637
638 OPENSSL_assert(WITHIN_ARENA(chunk));
639
640 /* zero the free list header as a precaution against information leakage */
641 memset(chunk, 0, sizeof(SH_LIST));
642
643 return chunk;
644 }
645
646 static void sh_free(void *ptr)
647 {
648 size_t list;
649 void *buddy;
650
651 if (ptr == NULL)
652 return;
653 OPENSSL_assert(WITHIN_ARENA(ptr));
654 if (!WITHIN_ARENA(ptr))
655 return;
656
657 list = sh_getlist(ptr);
658 OPENSSL_assert(sh_testbit(ptr, list, sh.bittable));
659 sh_clearbit(ptr, list, sh.bitmalloc);
660 sh_add_to_list(&sh.freelist[list], ptr);
661
662 /* Try to coalesce two adjacent free areas. */
663 while ((buddy = sh_find_my_buddy(ptr, list)) != NULL) {
664 OPENSSL_assert(ptr == sh_find_my_buddy(buddy, list));
665 OPENSSL_assert(ptr != NULL);
666 OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc));
667 sh_clearbit(ptr, list, sh.bittable);
668 sh_remove_from_list(ptr);
669 OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc));
670 sh_clearbit(buddy, list, sh.bittable);
671 sh_remove_from_list(buddy);
672
673 list--;
674
675 /* Zero the higher addressed block's free list pointers */
676 memset(ptr > buddy ? ptr : buddy, 0, sizeof(SH_LIST));
677 if (ptr > buddy)
678 ptr = buddy;
679
680 OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc));
681 sh_setbit(ptr, list, sh.bittable);
682 sh_add_to_list(&sh.freelist[list], ptr);
683 OPENSSL_assert(sh.freelist[list] == ptr);
684 }
685 }
686
687 static size_t sh_actual_size(char *ptr)
688 {
689 int list;
690
691 OPENSSL_assert(WITHIN_ARENA(ptr));
692 if (!WITHIN_ARENA(ptr))
693 return 0;
694 list = sh_getlist(ptr);
695 OPENSSL_assert(sh_testbit(ptr, list, sh.bittable));
696 return sh.arena_size / (ONE << list);
697 }
698 #endif /* OPENSSL_NO_SECURE_MEMORY */