]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/rand/rand_lib.c
Check return value of time() when getting additional data for the DRBG
[thirdparty/openssl.git] / crypto / rand / rand_lib.c
1 /*
2 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <time.h>
12 #include "internal/cryptlib.h"
13 #include <openssl/opensslconf.h>
14 #include "internal/rand_int.h"
15 #include <openssl/engine.h>
16 #include "internal/thread_once.h"
17 #include "rand_lcl.h"
18 #ifdef OPENSSL_SYS_UNIX
19 # include <sys/types.h>
20 # include <unistd.h>
21 # include <sys/time.h>
22 #endif
23 #include "e_os.h"
24
25 /* Macro to convert two thirty two bit values into a sixty four bit one */
26 #define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))
27
28 /*
29 * Check for the existence and support of POSIX timers. The standard
30 * says that the _POSIX_TIMERS macro will have a positive value if they
31 * are available.
32 *
33 * However, we want an additional constraint: that the timer support does
34 * not require an extra library dependency. Early versions of glibc
35 * require -lrt to be specified on the link line to access the timers,
36 * so this needs to be checked for.
37 *
38 * It is worse because some libraries define __GLIBC__ but don't
39 * support the version testing macro (e.g. uClibc). This means
40 * an extra check is needed.
41 *
42 * The final condition is:
43 * "have posix timers and either not glibc or glibc without -lrt"
44 *
45 * The nested #if sequences are required to avoid using a parameterised
46 * macro that might be undefined.
47 */
48 #undef OSSL_POSIX_TIMER_OKAY
49 #if defined(_POSIX_TIMERS) && _POSIX_TIMERS > 0
50 # if defined(__GLIBC__)
51 # if defined(__GLIBC_PREREQ)
52 # if __GLIBC_PREREQ(2, 17)
53 # define OSSL_POSIX_TIMER_OKAY
54 # endif
55 # endif
56 # else
57 # define OSSL_POSIX_TIMER_OKAY
58 # endif
59 #endif
60
61 #ifndef OPENSSL_NO_ENGINE
62 /* non-NULL if default_RAND_meth is ENGINE-provided */
63 static ENGINE *funct_ref;
64 static CRYPTO_RWLOCK *rand_engine_lock;
65 #endif
66 static CRYPTO_RWLOCK *rand_meth_lock;
67 static const RAND_METHOD *default_RAND_meth;
68 static CRYPTO_ONCE rand_init = CRYPTO_ONCE_STATIC_INIT;
69
70 int rand_fork_count;
71
72 #ifdef OPENSSL_RAND_SEED_RDTSC
73 /*
74 * IMPORTANT NOTE: It is not currently possible to use this code
75 * because we are not sure about the amount of randomness it provides.
76 * Some SP900 tests have been run, but there is internal skepticism.
77 * So for now this code is not used.
78 */
79 # error "RDTSC enabled? Should not be possible!"
80
81 /*
82 * Acquire entropy from high-speed clock
83 *
84 * Since we get some randomness from the low-order bits of the
85 * high-speed clock, it can help.
86 *
87 * Returns the total entropy count, if it exceeds the requested
88 * entropy count. Otherwise, returns an entropy count of 0.
89 */
90 size_t rand_acquire_entropy_from_tsc(RAND_POOL *pool)
91 {
92 unsigned char c;
93 int i;
94
95 if ((OPENSSL_ia32cap_P[0] & (1 << 4)) != 0) {
96 for (i = 0; i < TSC_READ_COUNT; i++) {
97 c = (unsigned char)(OPENSSL_rdtsc() & 0xFF);
98 RAND_POOL_add(pool, &c, 1, 4);
99 }
100 }
101 return RAND_POOL_entropy_available(pool);
102 }
103 #endif
104
105 #ifdef OPENSSL_RAND_SEED_RDCPU
106 size_t OPENSSL_ia32_rdseed_bytes(unsigned char *buf, size_t len);
107 size_t OPENSSL_ia32_rdrand_bytes(unsigned char *buf, size_t len);
108
109 extern unsigned int OPENSSL_ia32cap_P[];
110
111 /*
112 * Acquire entropy using Intel-specific cpu instructions
113 *
114 * Uses the RDSEED instruction if available, otherwise uses
115 * RDRAND if available.
116 *
117 * For the differences between RDSEED and RDRAND, and why RDSEED
118 * is the preferred choice, see https://goo.gl/oK3KcN
119 *
120 * Returns the total entropy count, if it exceeds the requested
121 * entropy count. Otherwise, returns an entropy count of 0.
122 */
123 size_t rand_acquire_entropy_from_cpu(RAND_POOL *pool)
124 {
125 size_t bytes_needed;
126 unsigned char *buffer;
127
128 bytes_needed = RAND_POOL_bytes_needed(pool, 8 /*entropy_per_byte*/);
129 if (bytes_needed > 0) {
130 buffer = RAND_POOL_add_begin(pool, bytes_needed);
131
132 if (buffer != NULL) {
133
134 /* If RDSEED is available, use that. */
135 if ((OPENSSL_ia32cap_P[2] & (1 << 18)) != 0) {
136 if (OPENSSL_ia32_rdseed_bytes(buffer, bytes_needed)
137 == bytes_needed)
138 return RAND_POOL_add_end(pool,
139 bytes_needed,
140 8 * bytes_needed);
141 }
142
143 /* Second choice is RDRAND. */
144 if ((OPENSSL_ia32cap_P[1] & (1 << (62 - 32))) != 0) {
145 if (OPENSSL_ia32_rdrand_bytes(buffer, bytes_needed)
146 == bytes_needed)
147 return RAND_POOL_add_end(pool,
148 bytes_needed,
149 8 * bytes_needed);
150 }
151
152 return RAND_POOL_add_end(pool, 0, 0);
153 }
154 }
155
156 return RAND_POOL_entropy_available(pool);
157 }
158 #endif
159
160
161 /*
162 * Implements the get_entropy() callback (see RAND_DRBG_set_callbacks())
163 *
164 * If the DRBG has a parent, then the required amount of entropy input
165 * is fetched using the parent's RAND_DRBG_generate().
166 *
167 * Otherwise, the entropy is polled from the system entropy sources
168 * using RAND_POOL_acquire_entropy().
169 *
170 * If a random pool has been added to the DRBG using RAND_add(), then
171 * its entropy will be used up first.
172 */
173 size_t rand_drbg_get_entropy(RAND_DRBG *drbg,
174 unsigned char **pout,
175 int entropy, size_t min_len, size_t max_len)
176 {
177 size_t ret = 0;
178 size_t entropy_available = 0;
179 RAND_POOL *pool = RAND_POOL_new(entropy, min_len, max_len);
180
181 if (pool == NULL)
182 return 0;
183
184 if (drbg->pool) {
185 RAND_POOL_add(pool,
186 RAND_POOL_buffer(drbg->pool),
187 RAND_POOL_length(drbg->pool),
188 RAND_POOL_entropy(drbg->pool));
189 RAND_POOL_free(drbg->pool);
190 drbg->pool = NULL;
191 }
192
193 if (drbg->parent) {
194 size_t bytes_needed = RAND_POOL_bytes_needed(pool, 8);
195 unsigned char *buffer = RAND_POOL_add_begin(pool, bytes_needed);
196
197 if (buffer != NULL) {
198 size_t bytes = 0;
199
200 /*
201 * Get random from parent, include our state as additional input.
202 * Our lock is already held, but we need to lock our parent before
203 * generating bits from it. (Note: taking the lock will be a no-op
204 * if locking if drbg->parent->lock == NULL.)
205 */
206 rand_drbg_lock(drbg->parent);
207 if (RAND_DRBG_generate(drbg->parent,
208 buffer, bytes_needed,
209 0,
210 (unsigned char *)drbg, sizeof(*drbg)) != 0)
211 bytes = bytes_needed;
212 rand_drbg_unlock(drbg->parent);
213
214 entropy_available = RAND_POOL_add_end(pool, bytes, 8 * bytes);
215 }
216
217 } else {
218 /* Get entropy by polling system entropy sources. */
219 entropy_available = RAND_POOL_acquire_entropy(pool);
220 }
221
222 if (entropy_available > 0) {
223 ret = RAND_POOL_length(pool);
224 *pout = RAND_POOL_detach(pool);
225 }
226
227 RAND_POOL_free(pool);
228 return ret;
229 }
230
231 /*
232 * Find a suitable source of time. Start with the highest resolution source
233 * and work down to the slower ones. This is added as additional data and
234 * isn't counted as randomness, so any result is acceptable.
235 *
236 * Returns 0 when we weren't able to find any time source
237 */
238 static uint64_t get_timer_bits(void)
239 {
240 uint64_t res = OPENSSL_rdtsc();
241
242 if (res != 0)
243 return res;
244 #if defined(_WIN32)
245 {
246 LARGE_INTEGER t;
247 FILETIME ft;
248
249 if (QueryPerformanceCounter(&t) != 0)
250 return t.QuadPart;
251 GetSystemTimeAsFileTime(&ft);
252 return TWO32TO64(ft.dwHighDateTime, ft.dwLowDateTime);
253 }
254 #elif defined(__sun) || defined(__hpux)
255 return gethrtime();
256 #elif defined(_AIX)
257 {
258 timebasestruct_t t;
259
260 read_wall_time(&t, TIMEBASE_SZ);
261 return TWO32TO64(t.tb_high, t.tb_low);
262 }
263 #else
264
265 # if defined(OSSL_POSIX_TIMER_OKAY)
266 {
267 struct timespec ts;
268 clockid_t cid;
269
270 # ifdef CLOCK_BOOTTIME
271 cid = CLOCK_BOOTTIME;
272 # elif defined(_POSIX_MONOTONIC_CLOCK)
273 cid = CLOCK_MONOTONIC;
274 # else
275 cid = CLOCK_REALTIME;
276 # endif
277
278 if (clock_gettime(cid, &ts) == 0)
279 return TWO32TO64(ts.tv_sec, ts.tv_nsec);
280 }
281 # endif
282 # if defined(__unix__) \
283 || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
284 {
285 struct timeval tv;
286
287 if (gettimeofday(&tv, NULL) == 0)
288 return TWO32TO64(tv.tv_sec, tv.tv_usec);
289 }
290 # endif
291 {
292 time_t t = time(NULL);
293 if (t == (time_t)-1)
294 return 0;
295 return t;
296 }
297 #endif
298 }
299
300 /*
301 * Generate additional data that can be used for the drbg. The data does
302 * not need to contain entropy, but it's useful if it contains at least
303 * some bits that are unpredictable.
304 *
305 * Returns 0 on failure.
306 *
307 * On success it allocates a buffer at |*pout| and returns the length of
308 * the data. The buffer should get freed using OPENSSL_secure_clear_free().
309 */
310 size_t rand_drbg_get_additional_data(unsigned char **pout, size_t max_len)
311 {
312 RAND_POOL *pool;
313 CRYPTO_THREAD_ID thread_id;
314 size_t len;
315 #ifdef OPENSSL_SYS_UNIX
316 pid_t pid;
317 #elif defined(OPENSSL_SYS_WIN32)
318 DWORD pid;
319 #endif
320 uint64_t tbits;
321
322 pool = RAND_POOL_new(0, 0, max_len);
323 if (pool == NULL)
324 return 0;
325
326 #ifdef OPENSSL_SYS_UNIX
327 pid = getpid();
328 RAND_POOL_add(pool, (unsigned char *)&pid, sizeof(pid), 0);
329 #elif defined(OPENSSL_SYS_WIN32)
330 pid = GetCurrentProcessId();
331 RAND_POOL_add(pool, (unsigned char *)&pid, sizeof(pid), 0);
332 #endif
333
334 thread_id = CRYPTO_THREAD_get_current_id();
335 if (thread_id != 0)
336 RAND_POOL_add(pool, (unsigned char *)&thread_id, sizeof(thread_id), 0);
337
338 tbits = get_timer_bits();
339 if (tbits != 0)
340 RAND_POOL_add(pool, (unsigned char *)&tbits, sizeof(tbits), 0);
341
342 /* TODO: Use RDSEED? */
343
344 len = RAND_POOL_length(pool);
345 if (len != 0)
346 *pout = RAND_POOL_detach(pool);
347 RAND_POOL_free(pool);
348
349 return len;
350 }
351
352 /*
353 * Implements the cleanup_entropy() callback (see RAND_DRBG_set_callbacks())
354 *
355 */
356 void rand_drbg_cleanup_entropy(RAND_DRBG *drbg,
357 unsigned char *out, size_t outlen)
358 {
359 OPENSSL_secure_clear_free(out, outlen);
360 }
361
362 void rand_fork()
363 {
364 rand_fork_count++;
365 }
366
367 DEFINE_RUN_ONCE_STATIC(do_rand_init)
368 {
369 int ret = 1;
370
371 #ifndef OPENSSL_NO_ENGINE
372 rand_engine_lock = CRYPTO_THREAD_lock_new();
373 ret &= rand_engine_lock != NULL;
374 #endif
375 rand_meth_lock = CRYPTO_THREAD_lock_new();
376 ret &= rand_meth_lock != NULL;
377
378 return ret;
379 }
380
381 void rand_cleanup_int(void)
382 {
383 const RAND_METHOD *meth = default_RAND_meth;
384
385 if (meth != NULL && meth->cleanup != NULL)
386 meth->cleanup();
387 RAND_set_rand_method(NULL);
388 #ifndef OPENSSL_NO_ENGINE
389 CRYPTO_THREAD_lock_free(rand_engine_lock);
390 #endif
391 CRYPTO_THREAD_lock_free(rand_meth_lock);
392 }
393
394 /*
395 * RAND_poll() reseeds the default RNG using random input
396 *
397 * The random input is obtained from polling various entropy
398 * sources which depend on the operating system and are
399 * configurable via the --with-rand-seed configure option.
400 */
401 int RAND_poll(void)
402 {
403 int ret = 0;
404
405 RAND_POOL *pool = NULL;
406
407 const RAND_METHOD *meth = RAND_get_rand_method();
408
409 if (meth == RAND_OpenSSL()) {
410 /* fill random pool and seed the master DRBG */
411 RAND_DRBG *drbg = RAND_DRBG_get0_master();
412
413 if (drbg == NULL)
414 return 0;
415
416 rand_drbg_lock(drbg);
417 ret = rand_drbg_restart(drbg, NULL, 0, 0);
418 rand_drbg_unlock(drbg);
419
420 return ret;
421
422 } else {
423 /* fill random pool and seed the current legacy RNG */
424 pool = RAND_POOL_new(RAND_DRBG_STRENGTH,
425 RAND_DRBG_STRENGTH / 8,
426 DRBG_MINMAX_FACTOR * (RAND_DRBG_STRENGTH / 8));
427 if (pool == NULL)
428 return 0;
429
430 if (RAND_POOL_acquire_entropy(pool) == 0)
431 goto err;
432
433 if (meth->add == NULL
434 || meth->add(RAND_POOL_buffer(pool),
435 RAND_POOL_length(pool),
436 (RAND_POOL_entropy(pool) / 8.0)) == 0)
437 goto err;
438
439 ret = 1;
440 }
441
442 err:
443 RAND_POOL_free(pool);
444 return ret;
445 }
446
447 /*
448 * The 'random pool' acts as a dumb container for collecting random
449 * input from various entropy sources. The pool has no knowledge about
450 * whether its randomness is fed into a legacy RAND_METHOD via RAND_add()
451 * or into a new style RAND_DRBG. It is the callers duty to 1) initialize the
452 * random pool, 2) pass it to the polling callbacks, 3) seed the RNG, and
453 * 4) cleanup the random pool again.
454 *
455 * The random pool contains no locking mechanism because its scope and
456 * lifetime is intended to be restricted to a single stack frame.
457 */
458 struct rand_pool_st {
459 unsigned char *buffer; /* points to the beginning of the random pool */
460 size_t len; /* current number of random bytes contained in the pool */
461
462 size_t min_len; /* minimum number of random bytes requested */
463 size_t max_len; /* maximum number of random bytes (allocated buffer size) */
464 size_t entropy; /* current entropy count in bits */
465 size_t requested_entropy; /* requested entropy count in bits */
466 };
467
468 /*
469 * Allocate memory and initialize a new random pool
470 */
471
472 RAND_POOL *RAND_POOL_new(int entropy, size_t min_len, size_t max_len)
473 {
474 RAND_POOL *pool = OPENSSL_zalloc(sizeof(*pool));
475
476 if (pool == NULL) {
477 RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE);
478 goto err;
479 }
480
481 pool->min_len = min_len;
482 pool->max_len = max_len;
483
484 pool->buffer = OPENSSL_secure_zalloc(pool->max_len);
485 if (pool->buffer == NULL) {
486 RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE);
487 goto err;
488 }
489
490 pool->requested_entropy = entropy;
491
492 return pool;
493
494 err:
495 OPENSSL_free(pool);
496 return NULL;
497 }
498
499 /*
500 * Free |pool|, securely erasing its buffer.
501 */
502 void RAND_POOL_free(RAND_POOL *pool)
503 {
504 if (pool == NULL)
505 return;
506
507 OPENSSL_secure_clear_free(pool->buffer, pool->max_len);
508 OPENSSL_free(pool);
509 }
510
511 /*
512 * Return the |pool|'s buffer to the caller (readonly).
513 */
514 const unsigned char *RAND_POOL_buffer(RAND_POOL *pool)
515 {
516 return pool->buffer;
517 }
518
519 /*
520 * Return the |pool|'s entropy to the caller.
521 */
522 size_t RAND_POOL_entropy(RAND_POOL *pool)
523 {
524 return pool->entropy;
525 }
526
527 /*
528 * Return the |pool|'s buffer length to the caller.
529 */
530 size_t RAND_POOL_length(RAND_POOL *pool)
531 {
532 return pool->len;
533 }
534
535 /*
536 * Detach the |pool| buffer and return it to the caller.
537 * It's the responsibility of the caller to free the buffer
538 * using OPENSSL_secure_clear_free().
539 */
540 unsigned char *RAND_POOL_detach(RAND_POOL *pool)
541 {
542 unsigned char *ret = pool->buffer;
543 pool->buffer = NULL;
544 return ret;
545 }
546
547
548 /*
549 * If every byte of the input contains |entropy_per_bytes| bits of entropy,
550 * how many bytes does one need to obtain at least |bits| bits of entropy?
551 */
552 #define ENTROPY_TO_BYTES(bits, entropy_per_bytes) \
553 (((bits) + ((entropy_per_bytes) - 1))/(entropy_per_bytes))
554
555
556 /*
557 * Checks whether the |pool|'s entropy is available to the caller.
558 * This is the case when entropy count and buffer length are high enough.
559 * Returns
560 *
561 * |entropy| if the entropy count and buffer size is large enough
562 * 0 otherwise
563 */
564 size_t RAND_POOL_entropy_available(RAND_POOL *pool)
565 {
566 if (pool->entropy < pool->requested_entropy)
567 return 0;
568
569 if (pool->len < pool->min_len)
570 return 0;
571
572 return pool->entropy;
573 }
574
575 /*
576 * Returns the (remaining) amount of entropy needed to fill
577 * the random pool.
578 */
579
580 size_t RAND_POOL_entropy_needed(RAND_POOL *pool)
581 {
582 if (pool->entropy < pool->requested_entropy)
583 return pool->requested_entropy - pool->entropy;
584
585 return 0;
586 }
587
588 /*
589 * Returns the number of bytes needed to fill the pool, assuming
590 * the input has 'entropy_per_byte' entropy bits per byte.
591 * In case of an error, 0 is returned.
592 */
593
594 size_t RAND_POOL_bytes_needed(RAND_POOL *pool, unsigned int entropy_per_byte)
595 {
596 size_t bytes_needed;
597 size_t entropy_needed = RAND_POOL_entropy_needed(pool);
598
599 if (entropy_per_byte < 1 || entropy_per_byte > 8) {
600 RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_ARGUMENT_OUT_OF_RANGE);
601 return 0;
602 }
603
604 bytes_needed = ENTROPY_TO_BYTES(entropy_needed, entropy_per_byte);
605
606 if (bytes_needed > pool->max_len - pool->len) {
607 /* not enough space left */
608 RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_RANDOM_POOL_OVERFLOW);
609 return 0;
610 }
611
612 if (pool->len < pool->min_len &&
613 bytes_needed < pool->min_len - pool->len)
614 /* to meet the min_len requirement */
615 bytes_needed = pool->min_len - pool->len;
616
617 return bytes_needed;
618 }
619
620 /* Returns the remaining number of bytes available */
621 size_t RAND_POOL_bytes_remaining(RAND_POOL *pool)
622 {
623 return pool->max_len - pool->len;
624 }
625
626 /*
627 * Add random bytes to the random pool.
628 *
629 * It is expected that the |buffer| contains |len| bytes of
630 * random input which contains at least |entropy| bits of
631 * randomness.
632 *
633 * Return available amount of entropy after this operation.
634 * (see RAND_POOL_entropy_available(pool))
635 */
636 size_t RAND_POOL_add(RAND_POOL *pool,
637 const unsigned char *buffer, size_t len, size_t entropy)
638 {
639 if (len > pool->max_len - pool->len) {
640 RANDerr(RAND_F_RAND_POOL_ADD, RAND_R_ENTROPY_INPUT_TOO_LONG);
641 return 0;
642 }
643
644 if (len > 0) {
645 memcpy(pool->buffer + pool->len, buffer, len);
646 pool->len += len;
647 pool->entropy += entropy;
648 }
649
650 return RAND_POOL_entropy_available(pool);
651 }
652
653 /*
654 * Start to add random bytes to the random pool in-place.
655 *
656 * Reserves the next |len| bytes for adding random bytes in-place
657 * and returns a pointer to the buffer.
658 * The caller is allowed to copy up to |len| bytes into the buffer.
659 * If |len| == 0 this is considered a no-op and a NULL pointer
660 * is returned without producing an error message.
661 *
662 * After updating the buffer, RAND_POOL_add_end() needs to be called
663 * to finish the udpate operation (see next comment).
664 */
665 unsigned char *RAND_POOL_add_begin(RAND_POOL *pool, size_t len)
666 {
667 if (len == 0)
668 return NULL;
669
670 if (len > pool->max_len - pool->len) {
671 RANDerr(RAND_F_RAND_POOL_ADD_BEGIN, RAND_R_RANDOM_POOL_OVERFLOW);
672 return NULL;
673 }
674
675 return pool->buffer + pool->len;
676 }
677
678 /*
679 * Finish to add random bytes to the random pool in-place.
680 *
681 * Finishes an in-place update of the random pool started by
682 * RAND_POOL_add_begin() (see previous comment).
683 * It is expected that |len| bytes of random input have been added
684 * to the buffer which contain at least |entropy| bits of randomness.
685 * It is allowed to add less bytes than originally reserved.
686 */
687 size_t RAND_POOL_add_end(RAND_POOL *pool, size_t len, size_t entropy)
688 {
689 if (len > pool->max_len - pool->len) {
690 RANDerr(RAND_F_RAND_POOL_ADD_END, RAND_R_RANDOM_POOL_OVERFLOW);
691 return 0;
692 }
693
694 if (len > 0) {
695 pool->len += len;
696 pool->entropy += entropy;
697 }
698
699 return RAND_POOL_entropy_available(pool);
700 }
701
702 int RAND_set_rand_method(const RAND_METHOD *meth)
703 {
704 if (!RUN_ONCE(&rand_init, do_rand_init))
705 return 0;
706
707 CRYPTO_THREAD_write_lock(rand_meth_lock);
708 #ifndef OPENSSL_NO_ENGINE
709 ENGINE_finish(funct_ref);
710 funct_ref = NULL;
711 #endif
712 default_RAND_meth = meth;
713 CRYPTO_THREAD_unlock(rand_meth_lock);
714 return 1;
715 }
716
717 const RAND_METHOD *RAND_get_rand_method(void)
718 {
719 const RAND_METHOD *tmp_meth = NULL;
720
721 if (!RUN_ONCE(&rand_init, do_rand_init))
722 return NULL;
723
724 CRYPTO_THREAD_write_lock(rand_meth_lock);
725 if (default_RAND_meth == NULL) {
726 #ifndef OPENSSL_NO_ENGINE
727 ENGINE *e;
728
729 /* If we have an engine that can do RAND, use it. */
730 if ((e = ENGINE_get_default_RAND()) != NULL
731 && (tmp_meth = ENGINE_get_RAND(e)) != NULL) {
732 funct_ref = e;
733 default_RAND_meth = tmp_meth;
734 } else {
735 ENGINE_finish(e);
736 default_RAND_meth = &rand_meth;
737 }
738 #else
739 default_RAND_meth = &rand_meth;
740 #endif
741 }
742 tmp_meth = default_RAND_meth;
743 CRYPTO_THREAD_unlock(rand_meth_lock);
744 return tmp_meth;
745 }
746
747 #ifndef OPENSSL_NO_ENGINE
748 int RAND_set_rand_engine(ENGINE *engine)
749 {
750 const RAND_METHOD *tmp_meth = NULL;
751
752 if (!RUN_ONCE(&rand_init, do_rand_init))
753 return 0;
754
755 if (engine != NULL) {
756 if (!ENGINE_init(engine))
757 return 0;
758 tmp_meth = ENGINE_get_RAND(engine);
759 if (tmp_meth == NULL) {
760 ENGINE_finish(engine);
761 return 0;
762 }
763 }
764 CRYPTO_THREAD_write_lock(rand_engine_lock);
765 /* This function releases any prior ENGINE so call it first */
766 RAND_set_rand_method(tmp_meth);
767 funct_ref = engine;
768 CRYPTO_THREAD_unlock(rand_engine_lock);
769 return 1;
770 }
771 #endif
772
773 void RAND_seed(const void *buf, int num)
774 {
775 const RAND_METHOD *meth = RAND_get_rand_method();
776
777 if (meth->seed != NULL)
778 meth->seed(buf, num);
779 }
780
781 void RAND_add(const void *buf, int num, double randomness)
782 {
783 const RAND_METHOD *meth = RAND_get_rand_method();
784
785 if (meth->add != NULL)
786 meth->add(buf, num, randomness);
787 }
788
789 /*
790 * This function is not part of RAND_METHOD, so if we're not using
791 * the default method, then just call RAND_bytes(). Otherwise make
792 * sure we're instantiated and use the private DRBG.
793 */
794 int RAND_priv_bytes(unsigned char *buf, int num)
795 {
796 const RAND_METHOD *meth = RAND_get_rand_method();
797 RAND_DRBG *drbg;
798 int ret;
799
800 if (meth != RAND_OpenSSL())
801 return RAND_bytes(buf, num);
802
803 drbg = RAND_DRBG_get0_private();
804 if (drbg == NULL)
805 return 0;
806
807 /* We have to lock the DRBG before generating bits from it. */
808 rand_drbg_lock(drbg);
809 ret = RAND_DRBG_bytes(drbg, buf, num);
810 rand_drbg_unlock(drbg);
811 return ret;
812 }
813
814 int RAND_bytes(unsigned char *buf, int num)
815 {
816 const RAND_METHOD *meth = RAND_get_rand_method();
817
818 if (meth->bytes != NULL)
819 return meth->bytes(buf, num);
820 RANDerr(RAND_F_RAND_BYTES, RAND_R_FUNC_NOT_IMPLEMENTED);
821 return -1;
822 }
823
824 #if OPENSSL_API_COMPAT < 0x10100000L
825 int RAND_pseudo_bytes(unsigned char *buf, int num)
826 {
827 const RAND_METHOD *meth = RAND_get_rand_method();
828
829 if (meth->pseudorand != NULL)
830 return meth->pseudorand(buf, num);
831 return -1;
832 }
833 #endif
834
835 int RAND_status(void)
836 {
837 const RAND_METHOD *meth = RAND_get_rand_method();
838
839 if (meth->status != NULL)
840 return meth->status();
841 return 0;
842 }