]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/rand/rand_unix.c
Revert "Move random-related defines from e_os.h to rand_unix.c"
[thirdparty/openssl.git] / crypto / rand / rand_unix.c
1 /*
2 * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #ifndef _GNU_SOURCE
11 # define _GNU_SOURCE
12 #endif
13 #include "e_os.h"
14 #include <stdio.h>
15 #include "internal/cryptlib.h"
16 #include <openssl/rand.h>
17 #include <openssl/crypto.h>
18 #include "rand_local.h"
19 #include "crypto/rand.h"
20 #include <stdio.h>
21 #include "internal/dso.h"
22 #ifdef __linux
23 # include <sys/syscall.h>
24 # ifdef DEVRANDOM_WAIT
25 # include <sys/shm.h>
26 # include <sys/utsname.h>
27 # endif
28 #endif
29 #if defined(__FreeBSD__) && !defined(OPENSSL_SYS_UEFI)
30 # include <sys/types.h>
31 # include <sys/sysctl.h>
32 # include <sys/param.h>
33 #endif
34 #if defined(__OpenBSD__) || defined(__NetBSD__)
35 # include <sys/param.h>
36 #endif
37
38 #if defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__)
39 # include <sys/types.h>
40 # include <sys/stat.h>
41 # include <fcntl.h>
42 # include <unistd.h>
43 # include <sys/time.h>
44
45 static uint64_t get_time_stamp(void);
46 static uint64_t get_timer_bits(void);
47
48 /* Macro to convert two thirty two bit values into a sixty four bit one */
49 # define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))
50
51 /*
52 * Check for the existence and support of POSIX timers. The standard
53 * says that the _POSIX_TIMERS macro will have a positive value if they
54 * are available.
55 *
56 * However, we want an additional constraint: that the timer support does
57 * not require an extra library dependency. Early versions of glibc
58 * require -lrt to be specified on the link line to access the timers,
59 * so this needs to be checked for.
60 *
61 * It is worse because some libraries define __GLIBC__ but don't
62 * support the version testing macro (e.g. uClibc). This means
63 * an extra check is needed.
64 *
65 * The final condition is:
66 * "have posix timers and either not glibc or glibc without -lrt"
67 *
68 * The nested #if sequences are required to avoid using a parameterised
69 * macro that might be undefined.
70 */
71 # undef OSSL_POSIX_TIMER_OKAY
72 # if defined(_POSIX_TIMERS) && _POSIX_TIMERS > 0
73 # if defined(__GLIBC__)
74 # if defined(__GLIBC_PREREQ)
75 # if __GLIBC_PREREQ(2, 17)
76 # define OSSL_POSIX_TIMER_OKAY
77 # endif
78 # endif
79 # else
80 # define OSSL_POSIX_TIMER_OKAY
81 # endif
82 # endif
83 #endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
84 || defined(__DJGPP__) */
85
86 #if defined(OPENSSL_RAND_SEED_NONE)
87 /* none means none. this simplifies the following logic */
88 # undef OPENSSL_RAND_SEED_OS
89 # undef OPENSSL_RAND_SEED_GETRANDOM
90 # undef OPENSSL_RAND_SEED_LIBRANDOM
91 # undef OPENSSL_RAND_SEED_DEVRANDOM
92 # undef OPENSSL_RAND_SEED_RDTSC
93 # undef OPENSSL_RAND_SEED_RDCPU
94 # undef OPENSSL_RAND_SEED_EGD
95 #endif
96
97 #if (defined(OPENSSL_SYS_VXWORKS) || defined(OPENSSL_SYS_UEFI)) && \
98 !defined(OPENSSL_RAND_SEED_NONE)
99 # error "UEFI and VXWorks only support seeding NONE"
100 #endif
101
102 #if defined(OPENSSL_SYS_VXWORKS)
103 /* empty implementation */
104 int rand_pool_init(void)
105 {
106 return 1;
107 }
108
109 void rand_pool_cleanup(void)
110 {
111 }
112
113 void rand_pool_keep_random_devices_open(int keep)
114 {
115 }
116
117 size_t rand_pool_acquire_entropy(RAND_POOL *pool)
118 {
119 return rand_pool_entropy_available(pool);
120 }
121 #endif
122
123 #if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \
124 || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \
125 || defined(OPENSSL_SYS_UEFI))
126
127 # if defined(OPENSSL_SYS_VOS)
128
129 # ifndef OPENSSL_RAND_SEED_OS
130 # error "Unsupported seeding method configured; must be os"
131 # endif
132
133 # if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32)
134 # error "Unsupported HP-PA and IA32 at the same time."
135 # endif
136 # if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32)
137 # error "Must have one of HP-PA or IA32"
138 # endif
139
140 /*
141 * The following algorithm repeatedly samples the real-time clock (RTC) to
142 * generate a sequence of unpredictable data. The algorithm relies upon the
143 * uneven execution speed of the code (due to factors such as cache misses,
144 * interrupts, bus activity, and scheduling) and upon the rather large
145 * relative difference between the speed of the clock and the rate at which
146 * it can be read. If it is ported to an environment where execution speed
147 * is more constant or where the RTC ticks at a much slower rate, or the
148 * clock can be read with fewer instructions, it is likely that the results
149 * would be far more predictable. This should only be used for legacy
150 * platforms.
151 *
152 * As a precaution, we assume only 2 bits of entropy per byte.
153 */
154 size_t rand_pool_acquire_entropy(RAND_POOL *pool)
155 {
156 short int code;
157 int i, k;
158 size_t bytes_needed;
159 struct timespec ts;
160 unsigned char v;
161 # ifdef OPENSSL_SYS_VOS_HPPA
162 long duration;
163 extern void s$sleep(long *_duration, short int *_code);
164 # else
165 long long duration;
166 extern void s$sleep2(long long *_duration, short int *_code);
167 # endif
168
169 bytes_needed = rand_pool_bytes_needed(pool, 4 /*entropy_factor*/);
170
171 for (i = 0; i < bytes_needed; i++) {
172 /*
173 * burn some cpu; hope for interrupts, cache collisions, bus
174 * interference, etc.
175 */
176 for (k = 0; k < 99; k++)
177 ts.tv_nsec = random();
178
179 # ifdef OPENSSL_SYS_VOS_HPPA
180 /* sleep for 1/1024 of a second (976 us). */
181 duration = 1;
182 s$sleep(&duration, &code);
183 # else
184 /* sleep for 1/65536 of a second (15 us). */
185 duration = 1;
186 s$sleep2(&duration, &code);
187 # endif
188
189 /* Get wall clock time, take 8 bits. */
190 clock_gettime(CLOCK_REALTIME, &ts);
191 v = (unsigned char)(ts.tv_nsec & 0xFF);
192 rand_pool_add(pool, arg, &v, sizeof(v) , 2);
193 }
194 return rand_pool_entropy_available(pool);
195 }
196
197 void rand_pool_cleanup(void)
198 {
199 }
200
201 void rand_pool_keep_random_devices_open(int keep)
202 {
203 }
204
205 # else
206
207 # if defined(OPENSSL_RAND_SEED_EGD) && \
208 (defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD))
209 # error "Seeding uses EGD but EGD is turned off or no device given"
210 # endif
211
212 # if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM)
213 # error "Seeding uses urandom but DEVRANDOM is not configured"
214 # endif
215
216 # if defined(OPENSSL_RAND_SEED_OS)
217 # if !defined(DEVRANDOM)
218 # error "OS seeding requires DEVRANDOM to be configured"
219 # endif
220 # define OPENSSL_RAND_SEED_GETRANDOM
221 # define OPENSSL_RAND_SEED_DEVRANDOM
222 # endif
223
224 # if defined(OPENSSL_RAND_SEED_LIBRANDOM)
225 # error "librandom not (yet) supported"
226 # endif
227
228 # if (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
229 /*
230 * sysctl_random(): Use sysctl() to read a random number from the kernel
231 * Returns the number of bytes returned in buf on success, -1 on failure.
232 */
233 static ssize_t sysctl_random(char *buf, size_t buflen)
234 {
235 int mib[2];
236 size_t done = 0;
237 size_t len;
238
239 /*
240 * Note: sign conversion between size_t and ssize_t is safe even
241 * without a range check, see comment in syscall_random()
242 */
243
244 /*
245 * On FreeBSD old implementations returned longs, newer versions support
246 * variable sizes up to 256 byte. The code below would not work properly
247 * when the sysctl returns long and we want to request something not a
248 * multiple of longs, which should never be the case.
249 */
250 if (!ossl_assert(buflen % sizeof(long) == 0)) {
251 errno = EINVAL;
252 return -1;
253 }
254
255 /*
256 * On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only
257 * filled in an int, leaving the rest uninitialized. Since NetBSD 4.0
258 * it returns a variable number of bytes with the current version supporting
259 * up to 256 bytes.
260 * Just return an error on older NetBSD versions.
261 */
262 #if defined(__NetBSD__) && __NetBSD_Version__ < 400000000
263 errno = ENOSYS;
264 return -1;
265 #endif
266
267 mib[0] = CTL_KERN;
268 mib[1] = KERN_ARND;
269
270 do {
271 len = buflen;
272 if (sysctl(mib, 2, buf, &len, NULL, 0) == -1)
273 return done > 0 ? done : -1;
274 done += len;
275 buf += len;
276 buflen -= len;
277 } while (buflen > 0);
278
279 return done;
280 }
281 # endif
282
283 # if defined(OPENSSL_RAND_SEED_GETRANDOM)
284
285 # if defined(__linux) && !defined(__NR_getrandom)
286 # if defined(__arm__)
287 # define __NR_getrandom (__NR_SYSCALL_BASE+384)
288 # elif defined(__i386__)
289 # define __NR_getrandom 355
290 # elif defined(__x86_64__)
291 # if defined(__ILP32__)
292 # define __NR_getrandom (__X32_SYSCALL_BIT + 318)
293 # else
294 # define __NR_getrandom 318
295 # endif
296 # elif defined(__xtensa__)
297 # define __NR_getrandom 338
298 # elif defined(__s390__) || defined(__s390x__)
299 # define __NR_getrandom 349
300 # elif defined(__bfin__)
301 # define __NR_getrandom 389
302 # elif defined(__powerpc__)
303 # define __NR_getrandom 359
304 # elif defined(__mips__) || defined(__mips64)
305 # if _MIPS_SIM == _MIPS_SIM_ABI32
306 # define __NR_getrandom (__NR_Linux + 353)
307 # elif _MIPS_SIM == _MIPS_SIM_ABI64
308 # define __NR_getrandom (__NR_Linux + 313)
309 # elif _MIPS_SIM == _MIPS_SIM_NABI32
310 # define __NR_getrandom (__NR_Linux + 317)
311 # endif
312 # elif defined(__hppa__)
313 # define __NR_getrandom (__NR_Linux + 339)
314 # elif defined(__sparc__)
315 # define __NR_getrandom 347
316 # elif defined(__ia64__)
317 # define __NR_getrandom 1339
318 # elif defined(__alpha__)
319 # define __NR_getrandom 511
320 # elif defined(__sh__)
321 # if defined(__SH5__)
322 # define __NR_getrandom 373
323 # else
324 # define __NR_getrandom 384
325 # endif
326 # elif defined(__avr32__)
327 # define __NR_getrandom 317
328 # elif defined(__microblaze__)
329 # define __NR_getrandom 385
330 # elif defined(__m68k__)
331 # define __NR_getrandom 352
332 # elif defined(__cris__)
333 # define __NR_getrandom 356
334 # elif defined(__aarch64__)
335 # define __NR_getrandom 278
336 # else /* generic */
337 # define __NR_getrandom 278
338 # endif
339 # endif
340
341 /*
342 * syscall_random(): Try to get random data using a system call
343 * returns the number of bytes returned in buf, or < 0 on error.
344 */
345 static ssize_t syscall_random(void *buf, size_t buflen)
346 {
347 /*
348 * Note: 'buflen' equals the size of the buffer which is used by the
349 * get_entropy() callback of the RAND_DRBG. It is roughly bounded by
350 *
351 * 2 * RAND_POOL_FACTOR * (RAND_DRBG_STRENGTH / 8) = 2^14
352 *
353 * which is way below the OSSL_SSIZE_MAX limit. Therefore sign conversion
354 * between size_t and ssize_t is safe even without a range check.
355 */
356
357 /*
358 * Do runtime detection to find getentropy().
359 *
360 * Known OSs that should support this:
361 * - Darwin since 16 (OSX 10.12, IOS 10.0).
362 * - Solaris since 11.3
363 * - OpenBSD since 5.6
364 * - Linux since 3.17 with glibc 2.25
365 * - FreeBSD since 12.0 (1200061)
366 */
367 # if defined(__GNUC__) && __GNUC__>=2 && defined(__ELF__) && !defined(__hpux)
368 extern int getentropy(void *buffer, size_t length) __attribute__((weak));
369
370 if (getentropy != NULL)
371 return getentropy(buf, buflen) == 0 ? (ssize_t)buflen : -1;
372 # else
373 union {
374 void *p;
375 int (*f)(void *buffer, size_t length);
376 } p_getentropy;
377
378 /*
379 * We could cache the result of the lookup, but we normally don't
380 * call this function often.
381 */
382 ERR_set_mark();
383 p_getentropy.p = DSO_global_lookup("getentropy");
384 ERR_pop_to_mark();
385 if (p_getentropy.p != NULL)
386 return p_getentropy.f(buf, buflen) == 0 ? (ssize_t)buflen : -1;
387 # endif
388
389 /* Linux supports this since version 3.17 */
390 # if defined(__linux) && defined(__NR_getrandom)
391 return syscall(__NR_getrandom, buf, buflen, 0);
392 # elif (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
393 return sysctl_random(buf, buflen);
394 # else
395 errno = ENOSYS;
396 return -1;
397 # endif
398 }
399 # endif /* defined(OPENSSL_RAND_SEED_GETRANDOM) */
400
401 # if defined(OPENSSL_RAND_SEED_DEVRANDOM)
402 static const char *random_device_paths[] = { DEVRANDOM };
403 static struct random_device {
404 int fd;
405 dev_t dev;
406 ino_t ino;
407 mode_t mode;
408 dev_t rdev;
409 } random_devices[OSSL_NELEM(random_device_paths)];
410 static int keep_random_devices_open = 1;
411
412 # if defined(__linux) && defined(DEVRANDOM_WAIT)
413 static void *shm_addr;
414
415 static void cleanup_shm(void)
416 {
417 shmdt(shm_addr);
418 }
419
420 /*
421 * Ensure that the system randomness source has been adequately seeded.
422 * This is done by having the first start of libcrypto, wait until the device
423 * /dev/random becomes able to supply a byte of entropy. Subsequent starts
424 * of the library and later reseedings do not need to do this.
425 */
426 static int wait_random_seeded(void)
427 {
428 static int seeded = OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID < 0;
429 static const int kernel_version[] = { DEVRANDOM_SAFE_KERNEL };
430 int kernel[2];
431 int shm_id, fd, r;
432 char c, *p;
433 struct utsname un;
434 fd_set fds;
435
436 if (!seeded) {
437 /* See if anything has created the global seeded indication */
438 if ((shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1, 0)) == -1) {
439 /*
440 * Check the kernel's version and fail if it is too recent.
441 *
442 * Linux kernels from 4.8 onwards do not guarantee that
443 * /dev/urandom is properly seeded when /dev/random becomes
444 * readable. However, such kernels support the getentropy(2)
445 * system call and this should always succeed which renders
446 * this alternative but essentially identical source moot.
447 */
448 if (uname(&un) == 0) {
449 kernel[0] = atoi(un.release);
450 p = strchr(un.release, '.');
451 kernel[1] = p == NULL ? 0 : atoi(p + 1);
452 if (kernel[0] > kernel_version[0]
453 || (kernel[0] == kernel_version[0]
454 && kernel[1] >= kernel_version[1])) {
455 return 0;
456 }
457 }
458 /* Open /dev/random and wait for it to be readable */
459 if ((fd = open(DEVRANDOM_WAIT, O_RDONLY)) != -1) {
460 if (DEVRANDM_WAIT_USE_SELECT && fd < FD_SETSIZE) {
461 FD_ZERO(&fds);
462 FD_SET(fd, &fds);
463 while ((r = select(fd + 1, &fds, NULL, NULL, NULL)) < 0
464 && errno == EINTR);
465 } else {
466 while ((r = read(fd, &c, 1)) < 0 && errno == EINTR);
467 }
468 close(fd);
469 if (r == 1) {
470 seeded = 1;
471 /* Create the shared memory indicator */
472 shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1,
473 IPC_CREAT | S_IRUSR | S_IRGRP | S_IROTH);
474 }
475 }
476 }
477 if (shm_id != -1) {
478 seeded = 1;
479 /*
480 * Map the shared memory to prevent its premature destruction.
481 * If this call fails, it isn't a big problem.
482 */
483 shm_addr = shmat(shm_id, NULL, SHM_RDONLY);
484 if (shm_addr != (void *)-1)
485 OPENSSL_atexit(&cleanup_shm);
486 }
487 }
488 return seeded;
489 }
490 # else /* defined __linux */
491 static int wait_random_seeded(void)
492 {
493 return 1;
494 }
495 # endif
496
497 /*
498 * Verify that the file descriptor associated with the random source is
499 * still valid. The rationale for doing this is the fact that it is not
500 * uncommon for daemons to close all open file handles when daemonizing.
501 * So the handle might have been closed or even reused for opening
502 * another file.
503 */
504 static int check_random_device(struct random_device * rd)
505 {
506 struct stat st;
507
508 return rd->fd != -1
509 && fstat(rd->fd, &st) != -1
510 && rd->dev == st.st_dev
511 && rd->ino == st.st_ino
512 && ((rd->mode ^ st.st_mode) & ~(S_IRWXU | S_IRWXG | S_IRWXO)) == 0
513 && rd->rdev == st.st_rdev;
514 }
515
516 /*
517 * Open a random device if required and return its file descriptor or -1 on error
518 */
519 static int get_random_device(size_t n)
520 {
521 struct stat st;
522 struct random_device * rd = &random_devices[n];
523
524 /* reuse existing file descriptor if it is (still) valid */
525 if (check_random_device(rd))
526 return rd->fd;
527
528 /* open the random device ... */
529 if ((rd->fd = open(random_device_paths[n], O_RDONLY)) == -1)
530 return rd->fd;
531
532 /* ... and cache its relevant stat(2) data */
533 if (fstat(rd->fd, &st) != -1) {
534 rd->dev = st.st_dev;
535 rd->ino = st.st_ino;
536 rd->mode = st.st_mode;
537 rd->rdev = st.st_rdev;
538 } else {
539 close(rd->fd);
540 rd->fd = -1;
541 }
542
543 return rd->fd;
544 }
545
546 /*
547 * Close a random device making sure it is a random device
548 */
549 static void close_random_device(size_t n)
550 {
551 struct random_device * rd = &random_devices[n];
552
553 if (check_random_device(rd))
554 close(rd->fd);
555 rd->fd = -1;
556 }
557
558 int rand_pool_init(void)
559 {
560 size_t i;
561
562 for (i = 0; i < OSSL_NELEM(random_devices); i++)
563 random_devices[i].fd = -1;
564
565 return 1;
566 }
567
568 void rand_pool_cleanup(void)
569 {
570 size_t i;
571
572 for (i = 0; i < OSSL_NELEM(random_devices); i++)
573 close_random_device(i);
574 }
575
576 void rand_pool_keep_random_devices_open(int keep)
577 {
578 if (!keep)
579 rand_pool_cleanup();
580
581 keep_random_devices_open = keep;
582 }
583
584 # else /* !defined(OPENSSL_RAND_SEED_DEVRANDOM) */
585
586 int rand_pool_init(void)
587 {
588 return 1;
589 }
590
591 void rand_pool_cleanup(void)
592 {
593 }
594
595 void rand_pool_keep_random_devices_open(int keep)
596 {
597 }
598
599 # endif /* defined(OPENSSL_RAND_SEED_DEVRANDOM) */
600
601 /*
602 * Try the various seeding methods in turn, exit when successful.
603 *
604 * TODO(DRBG): If more than one entropy source is available, is it
605 * preferable to stop as soon as enough entropy has been collected
606 * (as favored by @rsalz) or should one rather be defensive and add
607 * more entropy than requested and/or from different sources?
608 *
609 * Currently, the user can select multiple entropy sources in the
610 * configure step, yet in practice only the first available source
611 * will be used. A more flexible solution has been requested, but
612 * currently it is not clear how this can be achieved without
613 * overengineering the problem. There are many parameters which
614 * could be taken into account when selecting the order and amount
615 * of input from the different entropy sources (trust, quality,
616 * possibility of blocking).
617 */
618 size_t rand_pool_acquire_entropy(RAND_POOL *pool)
619 {
620 # if defined(OPENSSL_RAND_SEED_NONE)
621 return rand_pool_entropy_available(pool);
622 # else
623 size_t entropy_available;
624
625 # if defined(OPENSSL_RAND_SEED_GETRANDOM)
626 {
627 size_t bytes_needed;
628 unsigned char *buffer;
629 ssize_t bytes;
630 /* Maximum allowed number of consecutive unsuccessful attempts */
631 int attempts = 3;
632
633 bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
634 while (bytes_needed != 0 && attempts-- > 0) {
635 buffer = rand_pool_add_begin(pool, bytes_needed);
636 bytes = syscall_random(buffer, bytes_needed);
637 if (bytes > 0) {
638 rand_pool_add_end(pool, bytes, 8 * bytes);
639 bytes_needed -= bytes;
640 attempts = 3; /* reset counter after successful attempt */
641 } else if (bytes < 0 && errno != EINTR) {
642 break;
643 }
644 }
645 }
646 entropy_available = rand_pool_entropy_available(pool);
647 if (entropy_available > 0)
648 return entropy_available;
649 # endif
650
651 # if defined(OPENSSL_RAND_SEED_LIBRANDOM)
652 {
653 /* Not yet implemented. */
654 }
655 # endif
656
657 # if defined(OPENSSL_RAND_SEED_DEVRANDOM)
658 if (wait_random_seeded()) {
659 size_t bytes_needed;
660 unsigned char *buffer;
661 size_t i;
662
663 bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
664 for (i = 0; bytes_needed > 0 && i < OSSL_NELEM(random_device_paths);
665 i++) {
666 ssize_t bytes = 0;
667 /* Maximum number of consecutive unsuccessful attempts */
668 int attempts = 3;
669 const int fd = get_random_device(i);
670
671 if (fd == -1)
672 continue;
673
674 while (bytes_needed != 0 && attempts-- > 0) {
675 buffer = rand_pool_add_begin(pool, bytes_needed);
676 bytes = read(fd, buffer, bytes_needed);
677
678 if (bytes > 0) {
679 rand_pool_add_end(pool, bytes, 8 * bytes);
680 bytes_needed -= bytes;
681 attempts = 3; /* reset counter on successful attempt */
682 } else if (bytes < 0 && errno != EINTR) {
683 break;
684 }
685 }
686 if (bytes < 0 || !keep_random_devices_open)
687 close_random_device(i);
688
689 bytes_needed = rand_pool_bytes_needed(pool, 1);
690 }
691 entropy_available = rand_pool_entropy_available(pool);
692 if (entropy_available > 0)
693 return entropy_available;
694 }
695 # endif
696
697 # if defined(OPENSSL_RAND_SEED_RDTSC)
698 entropy_available = rand_acquire_entropy_from_tsc(pool);
699 if (entropy_available > 0)
700 return entropy_available;
701 # endif
702
703 # if defined(OPENSSL_RAND_SEED_RDCPU)
704 entropy_available = rand_acquire_entropy_from_cpu(pool);
705 if (entropy_available > 0)
706 return entropy_available;
707 # endif
708
709 # if defined(OPENSSL_RAND_SEED_EGD)
710 {
711 static const char *paths[] = { DEVRANDOM_EGD, NULL };
712 size_t bytes_needed;
713 unsigned char *buffer;
714 int i;
715
716 bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
717 for (i = 0; bytes_needed > 0 && paths[i] != NULL; i++) {
718 size_t bytes = 0;
719 int num;
720
721 buffer = rand_pool_add_begin(pool, bytes_needed);
722 num = RAND_query_egd_bytes(paths[i],
723 buffer, (int)bytes_needed);
724 if (num == (int)bytes_needed)
725 bytes = bytes_needed;
726
727 rand_pool_add_end(pool, bytes, 8 * bytes);
728 bytes_needed = rand_pool_bytes_needed(pool, 1);
729 }
730 entropy_available = rand_pool_entropy_available(pool);
731 if (entropy_available > 0)
732 return entropy_available;
733 }
734 # endif
735
736 return rand_pool_entropy_available(pool);
737 # endif
738 }
739 # endif
740 #endif
741
742 #if defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__)
743 int rand_pool_add_nonce_data(RAND_POOL *pool)
744 {
745 struct {
746 pid_t pid;
747 CRYPTO_THREAD_ID tid;
748 uint64_t time;
749 } data = { 0 };
750
751 /*
752 * Add process id, thread id, and a high resolution timestamp to
753 * ensure that the nonce is unique with high probability for
754 * different process instances.
755 */
756 data.pid = getpid();
757 data.tid = CRYPTO_THREAD_get_current_id();
758 data.time = get_time_stamp();
759
760 return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
761 }
762
763 int rand_pool_add_additional_data(RAND_POOL *pool)
764 {
765 struct {
766 int fork_id;
767 CRYPTO_THREAD_ID tid;
768 uint64_t time;
769 } data = { 0 };
770
771 /*
772 * Add some noise from the thread id and a high resolution timer.
773 * The fork_id adds some extra fork-safety.
774 * The thread id adds a little randomness if the drbg is accessed
775 * concurrently (which is the case for the <master> drbg).
776 */
777 data.fork_id = openssl_get_fork_id();
778 data.tid = CRYPTO_THREAD_get_current_id();
779 data.time = get_timer_bits();
780
781 return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
782 }
783
784
785 /*
786 * Get the current time with the highest possible resolution
787 *
788 * The time stamp is added to the nonce, so it is optimized for not repeating.
789 * The current time is ideal for this purpose, provided the computer's clock
790 * is synchronized.
791 */
792 static uint64_t get_time_stamp(void)
793 {
794 # if defined(OSSL_POSIX_TIMER_OKAY)
795 {
796 struct timespec ts;
797
798 if (clock_gettime(CLOCK_REALTIME, &ts) == 0)
799 return TWO32TO64(ts.tv_sec, ts.tv_nsec);
800 }
801 # endif
802 # if defined(__unix__) \
803 || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
804 {
805 struct timeval tv;
806
807 if (gettimeofday(&tv, NULL) == 0)
808 return TWO32TO64(tv.tv_sec, tv.tv_usec);
809 }
810 # endif
811 return time(NULL);
812 }
813
814 /*
815 * Get an arbitrary timer value of the highest possible resolution
816 *
817 * The timer value is added as random noise to the additional data,
818 * which is not considered a trusted entropy sourec, so any result
819 * is acceptable.
820 */
821 static uint64_t get_timer_bits(void)
822 {
823 uint64_t res = OPENSSL_rdtsc();
824
825 if (res != 0)
826 return res;
827
828 # if defined(__sun) || defined(__hpux)
829 return gethrtime();
830 # elif defined(_AIX)
831 {
832 timebasestruct_t t;
833
834 read_wall_time(&t, TIMEBASE_SZ);
835 return TWO32TO64(t.tb_high, t.tb_low);
836 }
837 # elif defined(OSSL_POSIX_TIMER_OKAY)
838 {
839 struct timespec ts;
840
841 # ifdef CLOCK_BOOTTIME
842 # define CLOCK_TYPE CLOCK_BOOTTIME
843 # elif defined(_POSIX_MONOTONIC_CLOCK)
844 # define CLOCK_TYPE CLOCK_MONOTONIC
845 # else
846 # define CLOCK_TYPE CLOCK_REALTIME
847 # endif
848
849 if (clock_gettime(CLOCK_TYPE, &ts) == 0)
850 return TWO32TO64(ts.tv_sec, ts.tv_nsec);
851 }
852 # endif
853 # if defined(__unix__) \
854 || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
855 {
856 struct timeval tv;
857
858 if (gettimeofday(&tv, NULL) == 0)
859 return TWO32TO64(tv.tv_sec, tv.tv_usec);
860 }
861 # endif
862 return time(NULL);
863 }
864 #endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
865 || defined(__DJGPP__) */