]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/rand/rand_unix.c
Make the RAND code available from inside the FIPS module
[thirdparty/openssl.git] / crypto / rand / rand_unix.c
1 /*
2 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #ifndef _GNU_SOURCE
11 # define _GNU_SOURCE
12 #endif
13 #include "e_os.h"
14 #include <stdio.h>
15 #include "internal/cryptlib.h"
16 #include <openssl/rand.h>
17 #include "rand_lcl.h"
18 #include "internal/rand_int.h"
19 #include <stdio.h>
20 #include "internal/dso.h"
21 #if defined(__linux)
22 # include <asm/unistd.h>
23 #endif
24 #if defined(__FreeBSD__) && !defined(OPENSSL_SYS_UEFI)
25 # include <sys/types.h>
26 # include <sys/sysctl.h>
27 # include <sys/param.h>
28 #endif
29 #if defined(__OpenBSD__) || defined(__NetBSD__)
30 # include <sys/param.h>
31 #endif
32
33 #if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
34 || defined(__DJGPP__)
35 # include <sys/types.h>
36 # include <sys/stat.h>
37 # include <fcntl.h>
38 # include <unistd.h>
39 # include <sys/time.h>
40
41 static uint64_t get_time_stamp(void);
42 static uint64_t get_timer_bits(void);
43
44 /* Macro to convert two thirty two bit values into a sixty four bit one */
45 # define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))
46
47 /*
48 * Check for the existence and support of POSIX timers. The standard
49 * says that the _POSIX_TIMERS macro will have a positive value if they
50 * are available.
51 *
52 * However, we want an additional constraint: that the timer support does
53 * not require an extra library dependency. Early versions of glibc
54 * require -lrt to be specified on the link line to access the timers,
55 * so this needs to be checked for.
56 *
57 * It is worse because some libraries define __GLIBC__ but don't
58 * support the version testing macro (e.g. uClibc). This means
59 * an extra check is needed.
60 *
61 * The final condition is:
62 * "have posix timers and either not glibc or glibc without -lrt"
63 *
64 * The nested #if sequences are required to avoid using a parameterised
65 * macro that might be undefined.
66 */
67 # undef OSSL_POSIX_TIMER_OKAY
68 # if defined(_POSIX_TIMERS) && _POSIX_TIMERS > 0
69 # if defined(__GLIBC__)
70 # if defined(__GLIBC_PREREQ)
71 # if __GLIBC_PREREQ(2, 17)
72 # define OSSL_POSIX_TIMER_OKAY
73 # endif
74 # endif
75 # else
76 # define OSSL_POSIX_TIMER_OKAY
77 # endif
78 # endif
79 #endif /* defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__) */
80
81 #if defined(OPENSSL_RAND_SEED_NONE)
82 /* none means none. this simplifies the following logic */
83 # undef OPENSSL_RAND_SEED_OS
84 # undef OPENSSL_RAND_SEED_GETRANDOM
85 # undef OPENSSL_RAND_SEED_LIBRANDOM
86 # undef OPENSSL_RAND_SEED_DEVRANDOM
87 # undef OPENSSL_RAND_SEED_RDTSC
88 # undef OPENSSL_RAND_SEED_RDCPU
89 # undef OPENSSL_RAND_SEED_EGD
90 #endif
91
92 #if defined(OPENSSL_SYS_UEFI) && !defined(OPENSSL_RAND_SEED_NONE)
93 # error "UEFI only supports seeding NONE"
94 #endif
95
96 #if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \
97 || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \
98 || defined(OPENSSL_SYS_UEFI))
99
100 # if defined(OPENSSL_SYS_VOS)
101
102 # ifndef OPENSSL_RAND_SEED_OS
103 # error "Unsupported seeding method configured; must be os"
104 # endif
105
106 # if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32)
107 # error "Unsupported HP-PA and IA32 at the same time."
108 # endif
109 # if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32)
110 # error "Must have one of HP-PA or IA32"
111 # endif
112
113 /*
114 * The following algorithm repeatedly samples the real-time clock (RTC) to
115 * generate a sequence of unpredictable data. The algorithm relies upon the
116 * uneven execution speed of the code (due to factors such as cache misses,
117 * interrupts, bus activity, and scheduling) and upon the rather large
118 * relative difference between the speed of the clock and the rate at which
119 * it can be read. If it is ported to an environment where execution speed
120 * is more constant or where the RTC ticks at a much slower rate, or the
121 * clock can be read with fewer instructions, it is likely that the results
122 * would be far more predictable. This should only be used for legacy
123 * platforms.
124 *
125 * As a precaution, we assume only 2 bits of entropy per byte.
126 */
127 size_t rand_pool_acquire_entropy(RAND_POOL *pool)
128 {
129 short int code;
130 int i, k;
131 size_t bytes_needed;
132 struct timespec ts;
133 unsigned char v;
134 # ifdef OPENSSL_SYS_VOS_HPPA
135 long duration;
136 extern void s$sleep(long *_duration, short int *_code);
137 # else
138 long long duration;
139 extern void s$sleep2(long long *_duration, short int *_code);
140 # endif
141
142 bytes_needed = rand_pool_bytes_needed(pool, 4 /*entropy_factor*/);
143
144 for (i = 0; i < bytes_needed; i++) {
145 /*
146 * burn some cpu; hope for interrupts, cache collisions, bus
147 * interference, etc.
148 */
149 for (k = 0; k < 99; k++)
150 ts.tv_nsec = random();
151
152 # ifdef OPENSSL_SYS_VOS_HPPA
153 /* sleep for 1/1024 of a second (976 us). */
154 duration = 1;
155 s$sleep(&duration, &code);
156 # else
157 /* sleep for 1/65536 of a second (15 us). */
158 duration = 1;
159 s$sleep2(&duration, &code);
160 # endif
161
162 /* Get wall clock time, take 8 bits. */
163 clock_gettime(CLOCK_REALTIME, &ts);
164 v = (unsigned char)(ts.tv_nsec & 0xFF);
165 rand_pool_add(pool, arg, &v, sizeof(v) , 2);
166 }
167 return rand_pool_entropy_available(pool);
168 }
169
170 void rand_pool_cleanup(void)
171 {
172 }
173
174 void rand_pool_keep_random_devices_open(int keep)
175 {
176 }
177
178 # else
179
180 # if defined(OPENSSL_RAND_SEED_EGD) && \
181 (defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD))
182 # error "Seeding uses EGD but EGD is turned off or no device given"
183 # endif
184
185 # if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM)
186 # error "Seeding uses urandom but DEVRANDOM is not configured"
187 # endif
188
189 # if defined(OPENSSL_RAND_SEED_OS)
190 # if !defined(DEVRANDOM)
191 # error "OS seeding requires DEVRANDOM to be configured"
192 # endif
193 # define OPENSSL_RAND_SEED_GETRANDOM
194 # define OPENSSL_RAND_SEED_DEVRANDOM
195 # endif
196
197 # if defined(OPENSSL_RAND_SEED_LIBRANDOM)
198 # error "librandom not (yet) supported"
199 # endif
200
201 # if (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
202 /*
203 * sysctl_random(): Use sysctl() to read a random number from the kernel
204 * Returns the number of bytes returned in buf on success, -1 on failure.
205 */
206 static ssize_t sysctl_random(char *buf, size_t buflen)
207 {
208 int mib[2];
209 size_t done = 0;
210 size_t len;
211
212 /*
213 * Note: sign conversion between size_t and ssize_t is safe even
214 * without a range check, see comment in syscall_random()
215 */
216
217 /*
218 * On FreeBSD old implementations returned longs, newer versions support
219 * variable sizes up to 256 byte. The code below would not work properly
220 * when the sysctl returns long and we want to request something not a
221 * multiple of longs, which should never be the case.
222 */
223 if (!ossl_assert(buflen % sizeof(long) == 0)) {
224 errno = EINVAL;
225 return -1;
226 }
227
228 /*
229 * On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only
230 * filled in an int, leaving the rest uninitialized. Since NetBSD 4.0
231 * it returns a variable number of bytes with the current version supporting
232 * up to 256 bytes.
233 * Just return an error on older NetBSD versions.
234 */
235 #if defined(__NetBSD__) && __NetBSD_Version__ < 400000000
236 errno = ENOSYS;
237 return -1;
238 #endif
239
240 mib[0] = CTL_KERN;
241 mib[1] = KERN_ARND;
242
243 do {
244 len = buflen;
245 if (sysctl(mib, 2, buf, &len, NULL, 0) == -1)
246 return done > 0 ? done : -1;
247 done += len;
248 buf += len;
249 buflen -= len;
250 } while (buflen > 0);
251
252 return done;
253 }
254 # endif
255
256 # if defined(OPENSSL_RAND_SEED_GETRANDOM)
257 /*
258 * syscall_random(): Try to get random data using a system call
259 * returns the number of bytes returned in buf, or < 0 on error.
260 */
261 static ssize_t syscall_random(void *buf, size_t buflen)
262 {
263 /*
264 * Note: 'buflen' equals the size of the buffer which is used by the
265 * get_entropy() callback of the RAND_DRBG. It is roughly bounded by
266 *
267 * 2 * RAND_POOL_FACTOR * (RAND_DRBG_STRENGTH / 8) = 2^14
268 *
269 * which is way below the OSSL_SSIZE_MAX limit. Therefore sign conversion
270 * between size_t and ssize_t is safe even without a range check.
271 */
272
273 /*
274 * Do runtime detection to find getentropy().
275 *
276 * Known OSs that should support this:
277 * - Darwin since 16 (OSX 10.12, IOS 10.0).
278 * - Solaris since 11.3
279 * - OpenBSD since 5.6
280 * - Linux since 3.17 with glibc 2.25
281 * - FreeBSD since 12.0 (1200061)
282 */
283 # if defined(__GNUC__) && __GNUC__>=2 && defined(__ELF__) && !defined(__hpux)
284 extern int getentropy(void *buffer, size_t length) __attribute__((weak));
285
286 if (getentropy != NULL)
287 return getentropy(buf, buflen) == 0 ? (ssize_t)buflen : -1;
288 # elif !defined(FIPS_MODE)
289 union {
290 void *p;
291 int (*f)(void *buffer, size_t length);
292 } p_getentropy;
293
294 /*
295 * We could cache the result of the lookup, but we normally don't
296 * call this function often.
297 */
298 ERR_set_mark();
299 p_getentropy.p = DSO_global_lookup("getentropy");
300 ERR_pop_to_mark();
301 if (p_getentropy.p != NULL)
302 return p_getentropy.f(buf, buflen) == 0 ? (ssize_t)buflen : -1;
303 # endif
304
305 /* Linux supports this since version 3.17 */
306 # if defined(__linux) && defined(__NR_getrandom)
307 return syscall(__NR_getrandom, buf, buflen, 0);
308 # elif (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
309 return sysctl_random(buf, buflen);
310 # else
311 errno = ENOSYS;
312 return -1;
313 # endif
314 }
315 # endif /* defined(OPENSSL_RAND_SEED_GETRANDOM) */
316
317 # if defined(OPENSSL_RAND_SEED_DEVRANDOM)
318 static const char *random_device_paths[] = { DEVRANDOM };
319 static struct random_device {
320 int fd;
321 dev_t dev;
322 ino_t ino;
323 mode_t mode;
324 dev_t rdev;
325 } random_devices[OSSL_NELEM(random_device_paths)];
326 static int keep_random_devices_open = 1;
327
328 /*
329 * Verify that the file descriptor associated with the random source is
330 * still valid. The rationale for doing this is the fact that it is not
331 * uncommon for daemons to close all open file handles when daemonizing.
332 * So the handle might have been closed or even reused for opening
333 * another file.
334 */
335 static int check_random_device(struct random_device * rd)
336 {
337 struct stat st;
338
339 return rd->fd != -1
340 && fstat(rd->fd, &st) != -1
341 && rd->dev == st.st_dev
342 && rd->ino == st.st_ino
343 && ((rd->mode ^ st.st_mode) & ~(S_IRWXU | S_IRWXG | S_IRWXO)) == 0
344 && rd->rdev == st.st_rdev;
345 }
346
347 /*
348 * Open a random device if required and return its file descriptor or -1 on error
349 */
350 static int get_random_device(size_t n)
351 {
352 struct stat st;
353 struct random_device * rd = &random_devices[n];
354
355 /* reuse existing file descriptor if it is (still) valid */
356 if (check_random_device(rd))
357 return rd->fd;
358
359 /* open the random device ... */
360 if ((rd->fd = open(random_device_paths[n], O_RDONLY)) == -1)
361 return rd->fd;
362
363 /* ... and cache its relevant stat(2) data */
364 if (fstat(rd->fd, &st) != -1) {
365 rd->dev = st.st_dev;
366 rd->ino = st.st_ino;
367 rd->mode = st.st_mode;
368 rd->rdev = st.st_rdev;
369 } else {
370 close(rd->fd);
371 rd->fd = -1;
372 }
373
374 return rd->fd;
375 }
376
377 /*
378 * Close a random device making sure it is a random device
379 */
380 static void close_random_device(size_t n)
381 {
382 struct random_device * rd = &random_devices[n];
383
384 if (check_random_device(rd))
385 close(rd->fd);
386 rd->fd = -1;
387 }
388
389 int rand_pool_init(void)
390 {
391 size_t i;
392
393 for (i = 0; i < OSSL_NELEM(random_devices); i++)
394 random_devices[i].fd = -1;
395
396 return 1;
397 }
398
399 void rand_pool_cleanup(void)
400 {
401 size_t i;
402
403 for (i = 0; i < OSSL_NELEM(random_devices); i++)
404 close_random_device(i);
405 }
406
407 void rand_pool_keep_random_devices_open(int keep)
408 {
409 if (!keep)
410 rand_pool_cleanup();
411
412 keep_random_devices_open = keep;
413 }
414
415 # else /* !defined(OPENSSL_RAND_SEED_DEVRANDOM) */
416
417 int rand_pool_init(void)
418 {
419 return 1;
420 }
421
422 void rand_pool_cleanup(void)
423 {
424 }
425
426 void rand_pool_keep_random_devices_open(int keep)
427 {
428 }
429
430 # endif /* defined(OPENSSL_RAND_SEED_DEVRANDOM) */
431
432 /*
433 * Try the various seeding methods in turn, exit when successful.
434 *
435 * TODO(DRBG): If more than one entropy source is available, is it
436 * preferable to stop as soon as enough entropy has been collected
437 * (as favored by @rsalz) or should one rather be defensive and add
438 * more entropy than requested and/or from different sources?
439 *
440 * Currently, the user can select multiple entropy sources in the
441 * configure step, yet in practice only the first available source
442 * will be used. A more flexible solution has been requested, but
443 * currently it is not clear how this can be achieved without
444 * overengineering the problem. There are many parameters which
445 * could be taken into account when selecting the order and amount
446 * of input from the different entropy sources (trust, quality,
447 * possibility of blocking).
448 */
449 size_t rand_pool_acquire_entropy(RAND_POOL *pool)
450 {
451 # if defined(OPENSSL_RAND_SEED_NONE)
452 return rand_pool_entropy_available(pool);
453 # else
454 size_t bytes_needed;
455 size_t entropy_available = 0;
456 unsigned char *buffer;
457
458 # if defined(OPENSSL_RAND_SEED_GETRANDOM)
459 {
460 ssize_t bytes;
461 /* Maximum allowed number of consecutive unsuccessful attempts */
462 int attempts = 3;
463
464 bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
465 while (bytes_needed != 0 && attempts-- > 0) {
466 buffer = rand_pool_add_begin(pool, bytes_needed);
467 bytes = syscall_random(buffer, bytes_needed);
468 if (bytes > 0) {
469 rand_pool_add_end(pool, bytes, 8 * bytes);
470 bytes_needed -= bytes;
471 attempts = 3; /* reset counter after successful attempt */
472 } else if (bytes < 0 && errno != EINTR) {
473 break;
474 }
475 }
476 }
477 entropy_available = rand_pool_entropy_available(pool);
478 if (entropy_available > 0)
479 return entropy_available;
480 # endif
481
482 # if defined(OPENSSL_RAND_SEED_LIBRANDOM)
483 {
484 /* Not yet implemented. */
485 }
486 # endif
487
488 # if defined(OPENSSL_RAND_SEED_DEVRANDOM)
489 bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
490 {
491 size_t i;
492
493 for (i = 0; bytes_needed > 0 && i < OSSL_NELEM(random_device_paths); i++) {
494 ssize_t bytes = 0;
495 /* Maximum allowed number of consecutive unsuccessful attempts */
496 int attempts = 3;
497 const int fd = get_random_device(i);
498
499 if (fd == -1)
500 continue;
501
502 while (bytes_needed != 0 && attempts-- > 0) {
503 buffer = rand_pool_add_begin(pool, bytes_needed);
504 bytes = read(fd, buffer, bytes_needed);
505
506 if (bytes > 0) {
507 rand_pool_add_end(pool, bytes, 8 * bytes);
508 bytes_needed -= bytes;
509 attempts = 3; /* reset counter after successful attempt */
510 } else if (bytes < 0 && errno != EINTR) {
511 break;
512 }
513 }
514 if (bytes < 0 || !keep_random_devices_open)
515 close_random_device(i);
516
517 bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
518 }
519 entropy_available = rand_pool_entropy_available(pool);
520 if (entropy_available > 0)
521 return entropy_available;
522 }
523 # endif
524
525 # if defined(OPENSSL_RAND_SEED_RDTSC)
526 entropy_available = rand_acquire_entropy_from_tsc(pool);
527 if (entropy_available > 0)
528 return entropy_available;
529 # endif
530
531 # if defined(OPENSSL_RAND_SEED_RDCPU)
532 entropy_available = rand_acquire_entropy_from_cpu(pool);
533 if (entropy_available > 0)
534 return entropy_available;
535 # endif
536
537 # if defined(OPENSSL_RAND_SEED_EGD)
538 bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
539 if (bytes_needed > 0) {
540 static const char *paths[] = { DEVRANDOM_EGD, NULL };
541 int i;
542
543 for (i = 0; paths[i] != NULL; i++) {
544 buffer = rand_pool_add_begin(pool, bytes_needed);
545 if (buffer != NULL) {
546 size_t bytes = 0;
547 int num = RAND_query_egd_bytes(paths[i],
548 buffer, (int)bytes_needed);
549 if (num == (int)bytes_needed)
550 bytes = bytes_needed;
551
552 rand_pool_add_end(pool, bytes, 8 * bytes);
553 entropy_available = rand_pool_entropy_available(pool);
554 }
555 if (entropy_available > 0)
556 return entropy_available;
557 }
558 }
559 # endif
560
561 return rand_pool_entropy_available(pool);
562 # endif
563 }
564 # endif
565 #endif
566
567 #if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
568 || defined(__DJGPP__)
569 int rand_pool_add_nonce_data(RAND_POOL *pool)
570 {
571 struct {
572 pid_t pid;
573 CRYPTO_THREAD_ID tid;
574 uint64_t time;
575 } data;
576
577 /* Erase the entire structure including any padding */
578 memset(&data, 0, sizeof(data));
579
580 /*
581 * Add process id, thread id, and a high resolution timestamp to
582 * ensure that the nonce is unique with high probability for
583 * different process instances.
584 */
585 data.pid = getpid();
586 data.tid = CRYPTO_THREAD_get_current_id();
587 data.time = get_time_stamp();
588
589 return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
590 }
591
592 int rand_pool_add_additional_data(RAND_POOL *pool)
593 {
594 struct {
595 CRYPTO_THREAD_ID tid;
596 uint64_t time;
597 } data;
598
599 /* Erase the entire structure including any padding */
600 memset(&data, 0, sizeof(data));
601
602 /*
603 * Add some noise from the thread id and a high resolution timer.
604 * The thread id adds a little randomness if the drbg is accessed
605 * concurrently (which is the case for the <master> drbg).
606 */
607 data.tid = CRYPTO_THREAD_get_current_id();
608 data.time = get_timer_bits();
609
610 return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
611 }
612
613
614 /*
615 * Get the current time with the highest possible resolution
616 *
617 * The time stamp is added to the nonce, so it is optimized for not repeating.
618 * The current time is ideal for this purpose, provided the computer's clock
619 * is synchronized.
620 */
621 static uint64_t get_time_stamp(void)
622 {
623 # if defined(OSSL_POSIX_TIMER_OKAY)
624 {
625 struct timespec ts;
626
627 if (clock_gettime(CLOCK_REALTIME, &ts) == 0)
628 return TWO32TO64(ts.tv_sec, ts.tv_nsec);
629 }
630 # endif
631 # if defined(__unix__) \
632 || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
633 {
634 struct timeval tv;
635
636 if (gettimeofday(&tv, NULL) == 0)
637 return TWO32TO64(tv.tv_sec, tv.tv_usec);
638 }
639 # endif
640 return time(NULL);
641 }
642
643 /*
644 * Get an arbitrary timer value of the highest possible resolution
645 *
646 * The timer value is added as random noise to the additional data,
647 * which is not considered a trusted entropy sourec, so any result
648 * is acceptable.
649 */
650 static uint64_t get_timer_bits(void)
651 {
652 uint64_t res = OPENSSL_rdtsc();
653
654 if (res != 0)
655 return res;
656
657 # if defined(__sun) || defined(__hpux)
658 return gethrtime();
659 # elif defined(_AIX)
660 {
661 timebasestruct_t t;
662
663 read_wall_time(&t, TIMEBASE_SZ);
664 return TWO32TO64(t.tb_high, t.tb_low);
665 }
666 # elif defined(OSSL_POSIX_TIMER_OKAY)
667 {
668 struct timespec ts;
669
670 # ifdef CLOCK_BOOTTIME
671 # define CLOCK_TYPE CLOCK_BOOTTIME
672 # elif defined(_POSIX_MONOTONIC_CLOCK)
673 # define CLOCK_TYPE CLOCK_MONOTONIC
674 # else
675 # define CLOCK_TYPE CLOCK_REALTIME
676 # endif
677
678 if (clock_gettime(CLOCK_TYPE, &ts) == 0)
679 return TWO32TO64(ts.tv_sec, ts.tv_nsec);
680 }
681 # endif
682 # if defined(__unix__) \
683 || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
684 {
685 struct timeval tv;
686
687 if (gettimeofday(&tv, NULL) == 0)
688 return TWO32TO64(tv.tv_sec, tv.tv_usec);
689 }
690 # endif
691 return time(NULL);
692 }
693 #endif /* defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__) */