]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/rc4/asm/rc4-x86_64.pl
x86_64 assembly pack: make Windows build more robust.
[thirdparty/openssl.git] / crypto / rc4 / asm / rc4-x86_64.pl
1 #!/usr/bin/env perl
2 #
3 # ====================================================================
4 # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ====================================================================
9 #
10 # July 2004
11 #
12 # 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
13 # "hand-coded assembler"] doesn't stand for the whole improvement
14 # coefficient. It turned out that eliminating RC4_CHAR from config
15 # line results in ~40% improvement (yes, even for C implementation).
16 # Presumably it has everything to do with AMD cache architecture and
17 # RAW or whatever penalties. Once again! The module *requires* config
18 # line *without* RC4_CHAR! As for coding "secret," I bet on partial
19 # register arithmetics. For example instead of 'inc %r8; and $255,%r8'
20 # I simply 'inc %r8b'. Even though optimization manual discourages
21 # to operate on partial registers, it turned out to be the best bet.
22 # At least for AMD... How IA32E would perform remains to be seen...
23
24 # November 2004
25 #
26 # As was shown by Marc Bevand reordering of couple of load operations
27 # results in even higher performance gain of 3.3x:-) At least on
28 # Opteron... For reference, 1x in this case is RC4_CHAR C-code
29 # compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
30 # Latter means that if you want to *estimate* what to expect from
31 # *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
32
33 # November 2004
34 #
35 # Intel P4 EM64T core was found to run the AMD64 code really slow...
36 # The only way to achieve comparable performance on P4 was to keep
37 # RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
38 # compose blended code, which would perform even within 30% marginal
39 # on either AMD and Intel platforms, I implement both cases. See
40 # rc4_skey.c for further details...
41
42 # April 2005
43 #
44 # P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
45 # those with add/sub results in 50% performance improvement of folded
46 # loop...
47
48 # May 2005
49 #
50 # As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
51 # performance by >30% [unlike P4 32-bit case that is]. But this is
52 # provided that loads are reordered even more aggressively! Both code
53 # pathes, AMD64 and EM64T, reorder loads in essentially same manner
54 # as my IA-64 implementation. On Opteron this resulted in modest 5%
55 # improvement [I had to test it], while final Intel P4 performance
56 # achieves respectful 432MBps on 2.8GHz processor now. For reference.
57 # If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
58 # RC4_INT code-path. While if executed on Opteron, it's only 25%
59 # slower than the RC4_INT one [meaning that if CPU ยต-arch detection
60 # is not implemented, then this final RC4_CHAR code-path should be
61 # preferred, as it provides better *all-round* performance].
62
63 # March 2007
64 #
65 # Intel Core2 was observed to perform poorly on both code paths:-( It
66 # apparently suffers from some kind of partial register stall, which
67 # occurs in 64-bit mode only [as virtually identical 32-bit loop was
68 # observed to outperform 64-bit one by almost 50%]. Adding two movzb to
69 # cloop1 boosts its performance by 80%! This loop appears to be optimal
70 # fit for Core2 and therefore the code was modified to skip cloop8 on
71 # this CPU.
72
73 # May 2010
74 #
75 # Intel Westmere was observed to perform suboptimally. Adding yet
76 # another movzb to cloop1 improved performance by almost 50%! Core2
77 # performance is improved too, but nominally...
78
79 # May 2011
80 #
81 # The only code path that was not modified is P4-specific one. Non-P4
82 # Intel code path optimization is heavily based on submission by Maxim
83 # Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used
84 # some of the ideas even in attempt to optmize the original RC4_INT
85 # code path... Current performance in cycles per processed byte (less
86 # is better) and improvement coefficients relative to previous
87 # version of this module are:
88 #
89 # Opteron 5.3/+0%(*)
90 # P4 6.5
91 # Core2 6.2/+15%(**)
92 # Westmere 4.2/+60%
93 # Sandy Bridge 4.2/+120%
94 # Atom 9.3/+80%
95 # VIA Nano 6.4/+4%
96 # Ivy Bridge 4.1/+30%
97 # Bulldozer 4.5/+30%(*)
98 #
99 # (*) But corresponding loop has less instructions, which should have
100 # positive effect on upcoming Bulldozer, which has one less ALU.
101 # For reference, Intel code runs at 6.8 cpb rate on Opteron.
102 # (**) Note that Core2 result is ~15% lower than corresponding result
103 # for 32-bit code, meaning that it's possible to improve it,
104 # but more than likely at the cost of the others (see rc4-586.pl
105 # to get the idea)...
106
107 $flavour = shift;
108 $output = shift;
109 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
110
111 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
112
113 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
114 ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
115 ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
116 die "can't locate x86_64-xlate.pl";
117
118 open OUT,"| \"$^X\" $xlate $flavour $output";
119 *STDOUT=*OUT;
120
121 $dat="%rdi"; # arg1
122 $len="%rsi"; # arg2
123 $inp="%rdx"; # arg3
124 $out="%rcx"; # arg4
125
126 {
127 $code=<<___;
128 .text
129 .extern OPENSSL_ia32cap_P
130
131 .globl RC4
132 .type RC4,\@function,4
133 .align 16
134 RC4: or $len,$len
135 jne .Lentry
136 ret
137 .Lentry:
138 push %rbx
139 push %r12
140 push %r13
141 .Lprologue:
142 mov $len,%r11
143 mov $inp,%r12
144 mov $out,%r13
145 ___
146 my $len="%r11"; # reassign input arguments
147 my $inp="%r12";
148 my $out="%r13";
149
150 my @XX=("%r10","%rsi");
151 my @TX=("%rax","%rbx");
152 my $YY="%rcx";
153 my $TY="%rdx";
154
155 $code.=<<___;
156 xor $XX[0],$XX[0]
157 xor $YY,$YY
158
159 lea 8($dat),$dat
160 mov -8($dat),$XX[0]#b
161 mov -4($dat),$YY#b
162 cmpl \$-1,256($dat)
163 je .LRC4_CHAR
164 mov OPENSSL_ia32cap_P(%rip),%r8d
165 xor $TX[1],$TX[1]
166 inc $XX[0]#b
167 sub $XX[0],$TX[1]
168 sub $inp,$out
169 movl ($dat,$XX[0],4),$TX[0]#d
170 test \$-16,$len
171 jz .Lloop1
172 bt \$30,%r8d # Intel CPU?
173 jc .Lintel
174 and \$7,$TX[1]
175 lea 1($XX[0]),$XX[1]
176 jz .Loop8
177 sub $TX[1],$len
178 .Loop8_warmup:
179 add $TX[0]#b,$YY#b
180 movl ($dat,$YY,4),$TY#d
181 movl $TX[0]#d,($dat,$YY,4)
182 movl $TY#d,($dat,$XX[0],4)
183 add $TY#b,$TX[0]#b
184 inc $XX[0]#b
185 movl ($dat,$TX[0],4),$TY#d
186 movl ($dat,$XX[0],4),$TX[0]#d
187 xorb ($inp),$TY#b
188 movb $TY#b,($out,$inp)
189 lea 1($inp),$inp
190 dec $TX[1]
191 jnz .Loop8_warmup
192
193 lea 1($XX[0]),$XX[1]
194 jmp .Loop8
195 .align 16
196 .Loop8:
197 ___
198 for ($i=0;$i<8;$i++) {
199 $code.=<<___ if ($i==7);
200 add \$8,$XX[1]#b
201 ___
202 $code.=<<___;
203 add $TX[0]#b,$YY#b
204 movl ($dat,$YY,4),$TY#d
205 movl $TX[0]#d,($dat,$YY,4)
206 movl `4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d
207 ror \$8,%r8 # ror is redundant when $i=0
208 movl $TY#d,4*$i($dat,$XX[0],4)
209 add $TX[0]#b,$TY#b
210 movb ($dat,$TY,4),%r8b
211 ___
212 push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers
213 }
214 $code.=<<___;
215 add \$8,$XX[0]#b
216 ror \$8,%r8
217 sub \$8,$len
218
219 xor ($inp),%r8
220 mov %r8,($out,$inp)
221 lea 8($inp),$inp
222
223 test \$-8,$len
224 jnz .Loop8
225 cmp \$0,$len
226 jne .Lloop1
227 jmp .Lexit
228
229 .align 16
230 .Lintel:
231 test \$-32,$len
232 jz .Lloop1
233 and \$15,$TX[1]
234 jz .Loop16_is_hot
235 sub $TX[1],$len
236 .Loop16_warmup:
237 add $TX[0]#b,$YY#b
238 movl ($dat,$YY,4),$TY#d
239 movl $TX[0]#d,($dat,$YY,4)
240 movl $TY#d,($dat,$XX[0],4)
241 add $TY#b,$TX[0]#b
242 inc $XX[0]#b
243 movl ($dat,$TX[0],4),$TY#d
244 movl ($dat,$XX[0],4),$TX[0]#d
245 xorb ($inp),$TY#b
246 movb $TY#b,($out,$inp)
247 lea 1($inp),$inp
248 dec $TX[1]
249 jnz .Loop16_warmup
250
251 mov $YY,$TX[1]
252 xor $YY,$YY
253 mov $TX[1]#b,$YY#b
254
255 .Loop16_is_hot:
256 lea ($dat,$XX[0],4),$XX[1]
257 ___
258 sub RC4_loop {
259 my $i=shift;
260 my $j=$i<0?0:$i;
261 my $xmm="%xmm".($j&1);
262
263 $code.=" add \$16,$XX[0]#b\n" if ($i==15);
264 $code.=" movdqu ($inp),%xmm2\n" if ($i==15);
265 $code.=" add $TX[0]#b,$YY#b\n" if ($i<=0);
266 $code.=" movl ($dat,$YY,4),$TY#d\n";
267 $code.=" pxor %xmm0,%xmm2\n" if ($i==0);
268 $code.=" psllq \$8,%xmm1\n" if ($i==0);
269 $code.=" pxor $xmm,$xmm\n" if ($i<=1);
270 $code.=" movl $TX[0]#d,($dat,$YY,4)\n";
271 $code.=" add $TY#b,$TX[0]#b\n";
272 $code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15);
273 $code.=" movz $TX[0]#b,$TX[0]#d\n";
274 $code.=" movl $TY#d,4*$j($XX[1])\n";
275 $code.=" pxor %xmm1,%xmm2\n" if ($i==0);
276 $code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15);
277 $code.=" add $TX[1]#b,$YY#b\n" if ($i<15);
278 $code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n";
279 $code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0);
280 $code.=" lea 16($inp),$inp\n" if ($i==0);
281 $code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15);
282 }
283 RC4_loop(-1);
284 $code.=<<___;
285 jmp .Loop16_enter
286 .align 16
287 .Loop16:
288 ___
289
290 for ($i=0;$i<16;$i++) {
291 $code.=".Loop16_enter:\n" if ($i==1);
292 RC4_loop($i);
293 push(@TX,shift(@TX)); # "rotate" registers
294 }
295 $code.=<<___;
296 mov $YY,$TX[1]
297 xor $YY,$YY # keyword to partial register
298 sub \$16,$len
299 mov $TX[1]#b,$YY#b
300 test \$-16,$len
301 jnz .Loop16
302
303 psllq \$8,%xmm1
304 pxor %xmm0,%xmm2
305 pxor %xmm1,%xmm2
306 movdqu %xmm2,($out,$inp)
307 lea 16($inp),$inp
308
309 cmp \$0,$len
310 jne .Lloop1
311 jmp .Lexit
312
313 .align 16
314 .Lloop1:
315 add $TX[0]#b,$YY#b
316 movl ($dat,$YY,4),$TY#d
317 movl $TX[0]#d,($dat,$YY,4)
318 movl $TY#d,($dat,$XX[0],4)
319 add $TY#b,$TX[0]#b
320 inc $XX[0]#b
321 movl ($dat,$TX[0],4),$TY#d
322 movl ($dat,$XX[0],4),$TX[0]#d
323 xorb ($inp),$TY#b
324 movb $TY#b,($out,$inp)
325 lea 1($inp),$inp
326 dec $len
327 jnz .Lloop1
328 jmp .Lexit
329
330 .align 16
331 .LRC4_CHAR:
332 add \$1,$XX[0]#b
333 movzb ($dat,$XX[0]),$TX[0]#d
334 test \$-8,$len
335 jz .Lcloop1
336 jmp .Lcloop8
337 .align 16
338 .Lcloop8:
339 mov ($inp),%r8d
340 mov 4($inp),%r9d
341 ___
342 # unroll 2x4-wise, because 64-bit rotates kill Intel P4...
343 for ($i=0;$i<4;$i++) {
344 $code.=<<___;
345 add $TX[0]#b,$YY#b
346 lea 1($XX[0]),$XX[1]
347 movzb ($dat,$YY),$TY#d
348 movzb $XX[1]#b,$XX[1]#d
349 movzb ($dat,$XX[1]),$TX[1]#d
350 movb $TX[0]#b,($dat,$YY)
351 cmp $XX[1],$YY
352 movb $TY#b,($dat,$XX[0])
353 jne .Lcmov$i # Intel cmov is sloooow...
354 mov $TX[0],$TX[1]
355 .Lcmov$i:
356 add $TX[0]#b,$TY#b
357 xor ($dat,$TY),%r8b
358 ror \$8,%r8d
359 ___
360 push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
361 }
362 for ($i=4;$i<8;$i++) {
363 $code.=<<___;
364 add $TX[0]#b,$YY#b
365 lea 1($XX[0]),$XX[1]
366 movzb ($dat,$YY),$TY#d
367 movzb $XX[1]#b,$XX[1]#d
368 movzb ($dat,$XX[1]),$TX[1]#d
369 movb $TX[0]#b,($dat,$YY)
370 cmp $XX[1],$YY
371 movb $TY#b,($dat,$XX[0])
372 jne .Lcmov$i # Intel cmov is sloooow...
373 mov $TX[0],$TX[1]
374 .Lcmov$i:
375 add $TX[0]#b,$TY#b
376 xor ($dat,$TY),%r9b
377 ror \$8,%r9d
378 ___
379 push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
380 }
381 $code.=<<___;
382 lea -8($len),$len
383 mov %r8d,($out)
384 lea 8($inp),$inp
385 mov %r9d,4($out)
386 lea 8($out),$out
387
388 test \$-8,$len
389 jnz .Lcloop8
390 cmp \$0,$len
391 jne .Lcloop1
392 jmp .Lexit
393 ___
394 $code.=<<___;
395 .align 16
396 .Lcloop1:
397 add $TX[0]#b,$YY#b
398 movzb $YY#b,$YY#d
399 movzb ($dat,$YY),$TY#d
400 movb $TX[0]#b,($dat,$YY)
401 movb $TY#b,($dat,$XX[0])
402 add $TX[0]#b,$TY#b
403 add \$1,$XX[0]#b
404 movzb $TY#b,$TY#d
405 movzb $XX[0]#b,$XX[0]#d
406 movzb ($dat,$TY),$TY#d
407 movzb ($dat,$XX[0]),$TX[0]#d
408 xorb ($inp),$TY#b
409 lea 1($inp),$inp
410 movb $TY#b,($out)
411 lea 1($out),$out
412 sub \$1,$len
413 jnz .Lcloop1
414 jmp .Lexit
415
416 .align 16
417 .Lexit:
418 sub \$1,$XX[0]#b
419 movl $XX[0]#d,-8($dat)
420 movl $YY#d,-4($dat)
421
422 mov (%rsp),%r13
423 mov 8(%rsp),%r12
424 mov 16(%rsp),%rbx
425 add \$24,%rsp
426 .Lepilogue:
427 ret
428 .size RC4,.-RC4
429 ___
430 }
431
432 $idx="%r8";
433 $ido="%r9";
434
435 $code.=<<___;
436 .globl RC4_set_key
437 .type RC4_set_key,\@function,3
438 .align 16
439 RC4_set_key:
440 lea 8($dat),$dat
441 lea ($inp,$len),$inp
442 neg $len
443 mov $len,%rcx
444 xor %eax,%eax
445 xor $ido,$ido
446 xor %r10,%r10
447 xor %r11,%r11
448
449 mov OPENSSL_ia32cap_P(%rip),$idx#d
450 bt \$20,$idx#d # RC4_CHAR?
451 jc .Lc1stloop
452 jmp .Lw1stloop
453
454 .align 16
455 .Lw1stloop:
456 mov %eax,($dat,%rax,4)
457 add \$1,%al
458 jnc .Lw1stloop
459
460 xor $ido,$ido
461 xor $idx,$idx
462 .align 16
463 .Lw2ndloop:
464 mov ($dat,$ido,4),%r10d
465 add ($inp,$len,1),$idx#b
466 add %r10b,$idx#b
467 add \$1,$len
468 mov ($dat,$idx,4),%r11d
469 cmovz %rcx,$len
470 mov %r10d,($dat,$idx,4)
471 mov %r11d,($dat,$ido,4)
472 add \$1,$ido#b
473 jnc .Lw2ndloop
474 jmp .Lexit_key
475
476 .align 16
477 .Lc1stloop:
478 mov %al,($dat,%rax)
479 add \$1,%al
480 jnc .Lc1stloop
481
482 xor $ido,$ido
483 xor $idx,$idx
484 .align 16
485 .Lc2ndloop:
486 mov ($dat,$ido),%r10b
487 add ($inp,$len),$idx#b
488 add %r10b,$idx#b
489 add \$1,$len
490 mov ($dat,$idx),%r11b
491 jnz .Lcnowrap
492 mov %rcx,$len
493 .Lcnowrap:
494 mov %r10b,($dat,$idx)
495 mov %r11b,($dat,$ido)
496 add \$1,$ido#b
497 jnc .Lc2ndloop
498 movl \$-1,256($dat)
499
500 .align 16
501 .Lexit_key:
502 xor %eax,%eax
503 mov %eax,-8($dat)
504 mov %eax,-4($dat)
505 ret
506 .size RC4_set_key,.-RC4_set_key
507
508 .globl RC4_options
509 .type RC4_options,\@abi-omnipotent
510 .align 16
511 RC4_options:
512 lea .Lopts(%rip),%rax
513 mov OPENSSL_ia32cap_P(%rip),%edx
514 bt \$20,%edx
515 jc .L8xchar
516 bt \$30,%edx
517 jnc .Ldone
518 add \$25,%rax
519 ret
520 .L8xchar:
521 add \$12,%rax
522 .Ldone:
523 ret
524 .align 64
525 .Lopts:
526 .asciz "rc4(8x,int)"
527 .asciz "rc4(8x,char)"
528 .asciz "rc4(16x,int)"
529 .asciz "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
530 .align 64
531 .size RC4_options,.-RC4_options
532 ___
533
534 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
535 # CONTEXT *context,DISPATCHER_CONTEXT *disp)
536 if ($win64) {
537 $rec="%rcx";
538 $frame="%rdx";
539 $context="%r8";
540 $disp="%r9";
541
542 $code.=<<___;
543 .extern __imp_RtlVirtualUnwind
544 .type stream_se_handler,\@abi-omnipotent
545 .align 16
546 stream_se_handler:
547 push %rsi
548 push %rdi
549 push %rbx
550 push %rbp
551 push %r12
552 push %r13
553 push %r14
554 push %r15
555 pushfq
556 sub \$64,%rsp
557
558 mov 120($context),%rax # pull context->Rax
559 mov 248($context),%rbx # pull context->Rip
560
561 lea .Lprologue(%rip),%r10
562 cmp %r10,%rbx # context->Rip<prologue label
563 jb .Lin_prologue
564
565 mov 152($context),%rax # pull context->Rsp
566
567 lea .Lepilogue(%rip),%r10
568 cmp %r10,%rbx # context->Rip>=epilogue label
569 jae .Lin_prologue
570
571 lea 24(%rax),%rax
572
573 mov -8(%rax),%rbx
574 mov -16(%rax),%r12
575 mov -24(%rax),%r13
576 mov %rbx,144($context) # restore context->Rbx
577 mov %r12,216($context) # restore context->R12
578 mov %r13,224($context) # restore context->R13
579
580 .Lin_prologue:
581 mov 8(%rax),%rdi
582 mov 16(%rax),%rsi
583 mov %rax,152($context) # restore context->Rsp
584 mov %rsi,168($context) # restore context->Rsi
585 mov %rdi,176($context) # restore context->Rdi
586
587 jmp .Lcommon_seh_exit
588 .size stream_se_handler,.-stream_se_handler
589
590 .type key_se_handler,\@abi-omnipotent
591 .align 16
592 key_se_handler:
593 push %rsi
594 push %rdi
595 push %rbx
596 push %rbp
597 push %r12
598 push %r13
599 push %r14
600 push %r15
601 pushfq
602 sub \$64,%rsp
603
604 mov 152($context),%rax # pull context->Rsp
605 mov 8(%rax),%rdi
606 mov 16(%rax),%rsi
607 mov %rsi,168($context) # restore context->Rsi
608 mov %rdi,176($context) # restore context->Rdi
609
610 .Lcommon_seh_exit:
611
612 mov 40($disp),%rdi # disp->ContextRecord
613 mov $context,%rsi # context
614 mov \$154,%ecx # sizeof(CONTEXT)
615 .long 0xa548f3fc # cld; rep movsq
616
617 mov $disp,%rsi
618 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
619 mov 8(%rsi),%rdx # arg2, disp->ImageBase
620 mov 0(%rsi),%r8 # arg3, disp->ControlPc
621 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
622 mov 40(%rsi),%r10 # disp->ContextRecord
623 lea 56(%rsi),%r11 # &disp->HandlerData
624 lea 24(%rsi),%r12 # &disp->EstablisherFrame
625 mov %r10,32(%rsp) # arg5
626 mov %r11,40(%rsp) # arg6
627 mov %r12,48(%rsp) # arg7
628 mov %rcx,56(%rsp) # arg8, (NULL)
629 call *__imp_RtlVirtualUnwind(%rip)
630
631 mov \$1,%eax # ExceptionContinueSearch
632 add \$64,%rsp
633 popfq
634 pop %r15
635 pop %r14
636 pop %r13
637 pop %r12
638 pop %rbp
639 pop %rbx
640 pop %rdi
641 pop %rsi
642 ret
643 .size key_se_handler,.-key_se_handler
644
645 .section .pdata
646 .align 4
647 .rva .LSEH_begin_RC4
648 .rva .LSEH_end_RC4
649 .rva .LSEH_info_RC4
650
651 .rva .LSEH_begin_RC4_set_key
652 .rva .LSEH_end_RC4_set_key
653 .rva .LSEH_info_RC4_set_key
654
655 .section .xdata
656 .align 8
657 .LSEH_info_RC4:
658 .byte 9,0,0,0
659 .rva stream_se_handler
660 .LSEH_info_RC4_set_key:
661 .byte 9,0,0,0
662 .rva key_se_handler
663 ___
664 }
665
666 sub reg_part {
667 my ($reg,$conv)=@_;
668 if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
669 elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
670 elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
671 elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
672 return $reg;
673 }
674
675 $code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
676 $code =~ s/\`([^\`]*)\`/eval $1/gem;
677
678 print $code;
679
680 close STDOUT;