]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/rsa/rsa_sp800_56b_check.c
Add BN_check_prime()
[thirdparty/openssl.git] / crypto / rsa / rsa_sp800_56b_check.c
1 /*
2 * Copyright 2018-2019 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved.
4 *
5 * Licensed under the OpenSSL license (the "License"). You may not use
6 * this file except in compliance with the License. You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 */
10
11 #include <openssl/err.h>
12 #include <openssl/bn.h>
13 #include "crypto/bn.h"
14 #include "rsa_local.h"
15
16 /*
17 * Part of the RSA keypair test.
18 * Check the Chinese Remainder Theorem components are valid.
19 *
20 * See SP800-5bBr1
21 * 6.4.1.2.3: rsakpv1-crt Step 7
22 * 6.4.1.3.3: rsakpv2-crt Step 7
23 */
24 int rsa_check_crt_components(const RSA *rsa, BN_CTX *ctx)
25 {
26 int ret = 0;
27 BIGNUM *r = NULL, *p1 = NULL, *q1 = NULL;
28
29 /* check if only some of the crt components are set */
30 if (rsa->dmp1 == NULL || rsa->dmq1 == NULL || rsa->iqmp == NULL) {
31 if (rsa->dmp1 != NULL || rsa->dmq1 != NULL || rsa->iqmp != NULL)
32 return 0;
33 return 1; /* return ok if all components are NULL */
34 }
35
36 BN_CTX_start(ctx);
37 r = BN_CTX_get(ctx);
38 p1 = BN_CTX_get(ctx);
39 q1 = BN_CTX_get(ctx);
40 ret = (q1 != NULL)
41 /* p1 = p -1 */
42 && (BN_copy(p1, rsa->p) != NULL)
43 && BN_sub_word(p1, 1)
44 /* q1 = q - 1 */
45 && (BN_copy(q1, rsa->q) != NULL)
46 && BN_sub_word(q1, 1)
47 /* (a) 1 < dP < (p – 1). */
48 && (BN_cmp(rsa->dmp1, BN_value_one()) > 0)
49 && (BN_cmp(rsa->dmp1, p1) < 0)
50 /* (b) 1 < dQ < (q - 1). */
51 && (BN_cmp(rsa->dmq1, BN_value_one()) > 0)
52 && (BN_cmp(rsa->dmq1, q1) < 0)
53 /* (c) 1 < qInv < p */
54 && (BN_cmp(rsa->iqmp, BN_value_one()) > 0)
55 && (BN_cmp(rsa->iqmp, rsa->p) < 0)
56 /* (d) 1 = (dP . e) mod (p - 1)*/
57 && BN_mod_mul(r, rsa->dmp1, rsa->e, p1, ctx)
58 && BN_is_one(r)
59 /* (e) 1 = (dQ . e) mod (q - 1) */
60 && BN_mod_mul(r, rsa->dmq1, rsa->e, q1, ctx)
61 && BN_is_one(r)
62 /* (f) 1 = (qInv . q) mod p */
63 && BN_mod_mul(r, rsa->iqmp, rsa->q, rsa->p, ctx)
64 && BN_is_one(r);
65 BN_clear(p1);
66 BN_clear(q1);
67 BN_CTX_end(ctx);
68 return ret;
69 }
70
71 /*
72 * Part of the RSA keypair test.
73 * Check that (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2) - 1
74 *
75 * See SP800-5bBr1 6.4.1.2.1 Part 5 (c) & (g) - used for both p and q.
76 *
77 * (√2)(2^(nbits/2 - 1) = (√2/2)(2^(nbits/2))
78 * √2/2 = 0.707106781186547524400 = 0.B504F333F9DE6484597D8
79 * 0.B504F334 gives an approximation to 11 decimal places.
80 * The range is then from
81 * 0xB504F334_0000.......................000 to
82 * 0xFFFFFFFF_FFFF.......................FFF
83 */
84 int rsa_check_prime_factor_range(const BIGNUM *p, int nbits, BN_CTX *ctx)
85 {
86 int ret = 0;
87 BIGNUM *tmp, *low;
88
89 nbits >>= 1;
90
91 /* Upper bound check */
92 if (BN_num_bits(p) != nbits)
93 return 0;
94
95 BN_CTX_start(ctx);
96 tmp = BN_CTX_get(ctx);
97 low = BN_CTX_get(ctx);
98
99 /* set low = (√2)(2^(nbits/2 - 1) */
100 if (low == NULL || !BN_set_word(tmp, 0xB504F334))
101 goto err;
102
103 if (nbits >= 32) {
104 if (!BN_lshift(low, tmp, nbits - 32))
105 goto err;
106 } else if (!BN_rshift(low, tmp, 32 - nbits)) {
107 goto err;
108 }
109 if (BN_cmp(p, low) < 0)
110 goto err;
111 ret = 1;
112 err:
113 BN_CTX_end(ctx);
114 return ret;
115 }
116
117 /*
118 * Part of the RSA keypair test.
119 * Check the prime factor (for either p or q)
120 * i.e: p is prime AND GCD(p - 1, e) = 1
121 *
122 * See SP800-56Br1 6.4.1.2.3 Step 5 (a to d) & (e to h).
123 */
124 int rsa_check_prime_factor(BIGNUM *p, BIGNUM *e, int nbits, BN_CTX *ctx)
125 {
126 int ret = 0;
127 BIGNUM *p1 = NULL, *gcd = NULL;
128
129 /* (Steps 5 a-b) prime test */
130 if (BN_check_prime(p, ctx, NULL) != 1
131 /* (Step 5c) (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2 - 1) */
132 || rsa_check_prime_factor_range(p, nbits, ctx) != 1)
133 return 0;
134
135 BN_CTX_start(ctx);
136 p1 = BN_CTX_get(ctx);
137 gcd = BN_CTX_get(ctx);
138 ret = (gcd != NULL)
139 /* (Step 5d) GCD(p-1, e) = 1 */
140 && (BN_copy(p1, p) != NULL)
141 && BN_sub_word(p1, 1)
142 && BN_gcd(gcd, p1, e, ctx)
143 && BN_is_one(gcd);
144
145 BN_clear(p1);
146 BN_CTX_end(ctx);
147 return ret;
148 }
149
150 /*
151 * See SP800-56Br1 6.4.1.2.3 Part 6(a-b) Check the private exponent d
152 * satisfies:
153 * (Step 6a) 2^(nBit/2) < d < LCM(p–1, q–1).
154 * (Step 6b) 1 = (d*e) mod LCM(p–1, q–1)
155 */
156 int rsa_check_private_exponent(const RSA *rsa, int nbits, BN_CTX *ctx)
157 {
158 int ret;
159 BIGNUM *r, *p1, *q1, *lcm, *p1q1, *gcd;
160
161 /* (Step 6a) 2^(nbits/2) < d */
162 if (BN_num_bits(rsa->d) <= (nbits >> 1))
163 return 0;
164
165 BN_CTX_start(ctx);
166 r = BN_CTX_get(ctx);
167 p1 = BN_CTX_get(ctx);
168 q1 = BN_CTX_get(ctx);
169 lcm = BN_CTX_get(ctx);
170 p1q1 = BN_CTX_get(ctx);
171 gcd = BN_CTX_get(ctx);
172 ret = (gcd != NULL
173 /* LCM(p - 1, q - 1) */
174 && (rsa_get_lcm(ctx, rsa->p, rsa->q, lcm, gcd, p1, q1, p1q1) == 1)
175 /* (Step 6a) d < LCM(p - 1, q - 1) */
176 && (BN_cmp(rsa->d, lcm) < 0)
177 /* (Step 6b) 1 = (e . d) mod LCM(p - 1, q - 1) */
178 && BN_mod_mul(r, rsa->e, rsa->d, lcm, ctx)
179 && BN_is_one(r));
180
181 BN_clear(p1);
182 BN_clear(q1);
183 BN_clear(lcm);
184 BN_clear(gcd);
185 BN_CTX_end(ctx);
186 return ret;
187 }
188
189 /* Check exponent is odd, and has a bitlen ranging from [17..256] */
190 int rsa_check_public_exponent(const BIGNUM *e)
191 {
192 int bitlen = BN_num_bits(e);
193
194 return (BN_is_odd(e) && bitlen > 16 && bitlen < 257);
195 }
196
197 /*
198 * SP800-56Br1 6.4.1.2.1 (Step 5i): |p - q| > 2^(nbits/2 - 100)
199 * i.e- numbits(p-q-1) > (nbits/2 -100)
200 */
201 int rsa_check_pminusq_diff(BIGNUM *diff, const BIGNUM *p, const BIGNUM *q,
202 int nbits)
203 {
204 int bitlen = (nbits >> 1) - 100;
205
206 if (!BN_sub(diff, p, q))
207 return -1;
208 BN_set_negative(diff, 0);
209
210 if (BN_is_zero(diff))
211 return 0;
212
213 if (!BN_sub_word(diff, 1))
214 return -1;
215 return (BN_num_bits(diff) > bitlen);
216 }
217
218 /* return LCM(p-1, q-1) */
219 int rsa_get_lcm(BN_CTX *ctx, const BIGNUM *p, const BIGNUM *q,
220 BIGNUM *lcm, BIGNUM *gcd, BIGNUM *p1, BIGNUM *q1,
221 BIGNUM *p1q1)
222 {
223 return BN_sub(p1, p, BN_value_one()) /* p-1 */
224 && BN_sub(q1, q, BN_value_one()) /* q-1 */
225 && BN_mul(p1q1, p1, q1, ctx) /* (p-1)(q-1) */
226 && BN_gcd(gcd, p1, q1, ctx)
227 && BN_div(lcm, NULL, p1q1, gcd, ctx); /* LCM((p-1, q-1)) */
228 }
229
230 /*
231 * SP800-56Br1 6.4.2.2 Partial Public Key Validation for RSA refers to
232 * SP800-89 5.3.3 (Explicit) Partial Public Key Validation for RSA
233 * caveat is that the modulus must be as specified in SP800-56Br1
234 */
235 int rsa_sp800_56b_check_public(const RSA *rsa)
236 {
237 int ret = 0, nbits, status;
238 BN_CTX *ctx = NULL;
239 BIGNUM *gcd = NULL;
240
241 if (rsa->n == NULL || rsa->e == NULL)
242 return 0;
243
244 /*
245 * (Step a): modulus must be 2048 or 3072 (caveat from SP800-56Br1)
246 * NOTE: changed to allow keys >= 2048
247 */
248 nbits = BN_num_bits(rsa->n);
249 if (!rsa_sp800_56b_validate_strength(nbits, -1)) {
250 RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_KEY_LENGTH);
251 return 0;
252 }
253 if (!BN_is_odd(rsa->n)) {
254 RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS);
255 return 0;
256 }
257
258 /* (Steps b-c): 2^16 < e < 2^256, n and e must be odd */
259 if (!rsa_check_public_exponent(rsa->e)) {
260 RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC,
261 RSA_R_PUB_EXPONENT_OUT_OF_RANGE);
262 return 0;
263 }
264
265 ctx = BN_CTX_new();
266 gcd = BN_new();
267 if (ctx == NULL || gcd == NULL)
268 goto err;
269
270 /* (Steps d-f):
271 * The modulus is composite, but not a power of a prime.
272 * The modulus has no factors smaller than 752.
273 */
274 if (!BN_gcd(gcd, rsa->n, bn_get0_small_factors(), ctx) || !BN_is_one(gcd)) {
275 RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS);
276 goto err;
277 }
278
279 ret = bn_miller_rabin_is_prime(rsa->n, 0, ctx, NULL, 1, &status);
280 if (ret != 1 || status != BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME) {
281 RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS);
282 ret = 0;
283 goto err;
284 }
285
286 ret = 1;
287 err:
288 BN_free(gcd);
289 BN_CTX_free(ctx);
290 return ret;
291 }
292
293 /*
294 * Perform validation of the RSA private key to check that 0 < D < N.
295 */
296 int rsa_sp800_56b_check_private(const RSA *rsa)
297 {
298 if (rsa->d == NULL || rsa->n == NULL)
299 return 0;
300 return BN_cmp(rsa->d, BN_value_one()) >= 0 && BN_cmp(rsa->d, rsa->n) < 0;
301 }
302
303 /*
304 * RSA key pair validation.
305 *
306 * SP800-56Br1.
307 * 6.4.1.2 "RSAKPV1 Family: RSA Key - Pair Validation with a Fixed Exponent"
308 * 6.4.1.3 "RSAKPV2 Family: RSA Key - Pair Validation with a Random Exponent"
309 *
310 * It uses:
311 * 6.4.1.2.3 "rsakpv1 - crt"
312 * 6.4.1.3.3 "rsakpv2 - crt"
313 */
314 int rsa_sp800_56b_check_keypair(const RSA *rsa, const BIGNUM *efixed,
315 int strength, int nbits)
316 {
317 int ret = 0;
318 BN_CTX *ctx = NULL;
319 BIGNUM *r = NULL;
320
321 if (rsa->p == NULL
322 || rsa->q == NULL
323 || rsa->e == NULL
324 || rsa->d == NULL
325 || rsa->n == NULL) {
326 RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST);
327 return 0;
328 }
329 /* (Step 1): Check Ranges */
330 if (!rsa_sp800_56b_validate_strength(nbits, strength))
331 return 0;
332
333 /* If the exponent is known */
334 if (efixed != NULL) {
335 /* (2): Check fixed exponent matches public exponent. */
336 if (BN_cmp(efixed, rsa->e) != 0) {
337 RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST);
338 return 0;
339 }
340 }
341 /* (Step 1.c): e is odd integer 65537 <= e < 2^256 */
342 if (!rsa_check_public_exponent(rsa->e)) {
343 /* exponent out of range */
344 RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR,
345 RSA_R_PUB_EXPONENT_OUT_OF_RANGE);
346 return 0;
347 }
348 /* (Step 3.b): check the modulus */
349 if (nbits != BN_num_bits(rsa->n)) {
350 RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_KEYPAIR);
351 return 0;
352 }
353
354 ctx = BN_CTX_new();
355 if (ctx == NULL)
356 return 0;
357
358 BN_CTX_start(ctx);
359 r = BN_CTX_get(ctx);
360 if (r == NULL || !BN_mul(r, rsa->p, rsa->q, ctx))
361 goto err;
362 /* (Step 4.c): Check n = pq */
363 if (BN_cmp(rsa->n, r) != 0) {
364 RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST);
365 goto err;
366 }
367
368 /* (Step 5): check prime factors p & q */
369 ret = rsa_check_prime_factor(rsa->p, rsa->e, nbits, ctx)
370 && rsa_check_prime_factor(rsa->q, rsa->e, nbits, ctx)
371 && (rsa_check_pminusq_diff(r, rsa->p, rsa->q, nbits) > 0)
372 /* (Step 6): Check the private exponent d */
373 && rsa_check_private_exponent(rsa, nbits, ctx)
374 /* 6.4.1.2.3 (Step 7): Check the CRT components */
375 && rsa_check_crt_components(rsa, ctx);
376 if (ret != 1)
377 RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_KEYPAIR);
378
379 err:
380 BN_clear(r);
381 BN_CTX_end(ctx);
382 BN_CTX_free(ctx);
383 return ret;
384 }