]> git.ipfire.org Git - thirdparty/openssl.git/blob - doc/man7/provider-base.pod
first cut at sigalg loading
[thirdparty/openssl.git] / doc / man7 / provider-base.pod
1 =pod
2
3 =head1 NAME
4
5 provider-base
6 - The basic OpenSSL library E<lt>-E<gt> provider functions
7
8 =head1 SYNOPSIS
9
10 #include <openssl/core_dispatch.h>
11
12 /*
13 * None of these are actual functions, but are displayed like this for
14 * the function signatures for functions that are offered as function
15 * pointers in OSSL_DISPATCH arrays.
16 */
17
18 /* Functions offered by libcrypto to the providers */
19 const OSSL_ITEM *core_gettable_params(const OSSL_CORE_HANDLE *handle);
20 int core_get_params(const OSSL_CORE_HANDLE *handle, OSSL_PARAM params[]);
21
22 typedef void (*OSSL_thread_stop_handler_fn)(void *arg);
23 int core_thread_start(const OSSL_CORE_HANDLE *handle,
24 OSSL_thread_stop_handler_fn handfn,
25 void *arg);
26
27 OPENSSL_CORE_CTX *core_get_libctx(const OSSL_CORE_HANDLE *handle);
28 void core_new_error(const OSSL_CORE_HANDLE *handle);
29 void core_set_error_debug(const OSSL_CORE_HANDLE *handle,
30 const char *file, int line, const char *func);
31 void core_vset_error(const OSSL_CORE_HANDLE *handle,
32 uint32_t reason, const char *fmt, va_list args);
33
34 int core_obj_add_sigid(const OSSL_CORE_HANDLE *prov, const char *sign_name,
35 const char *digest_name, const char *pkey_name);
36 int core_obj_create(const OSSL_CORE_HANDLE *handle, const char *oid,
37 const char *sn, const char *ln);
38
39 /*
40 * Some OpenSSL functionality is directly offered to providers via
41 * dispatch
42 */
43 void *CRYPTO_malloc(size_t num, const char *file, int line);
44 void *CRYPTO_zalloc(size_t num, const char *file, int line);
45 void CRYPTO_free(void *ptr, const char *file, int line);
46 void CRYPTO_clear_free(void *ptr, size_t num,
47 const char *file, int line);
48 void *CRYPTO_realloc(void *addr, size_t num,
49 const char *file, int line);
50 void *CRYPTO_clear_realloc(void *addr, size_t old_num, size_t num,
51 const char *file, int line);
52 void *CRYPTO_secure_malloc(size_t num, const char *file, int line);
53 void *CRYPTO_secure_zalloc(size_t num, const char *file, int line);
54 void CRYPTO_secure_free(void *ptr, const char *file, int line);
55 void CRYPTO_secure_clear_free(void *ptr, size_t num,
56 const char *file, int line);
57 int CRYPTO_secure_allocated(const void *ptr);
58 void OPENSSL_cleanse(void *ptr, size_t len);
59
60 unsigned char *OPENSSL_hexstr2buf(const char *str, long *buflen);
61
62 OSSL_CORE_BIO *BIO_new_file(const char *filename, const char *mode);
63 OSSL_CORE_BIO *BIO_new_membuf(const void *buf, int len);
64 int BIO_read_ex(OSSL_CORE_BIO *bio, void *data, size_t data_len,
65 size_t *bytes_read);
66 int BIO_write_ex(OSSL_CORE_BIO *bio, const void *data, size_t data_len,
67 size_t *written);
68 int BIO_up_ref(OSSL_CORE_BIO *bio);
69 int BIO_free(OSSL_CORE_BIO *bio);
70 int BIO_vprintf(OSSL_CORE_BIO *bio, const char *format, va_list args);
71 int BIO_vsnprintf(char *buf, size_t n, const char *fmt, va_list args);
72
73 void OSSL_SELF_TEST_set_callback(OSSL_LIB_CTX *libctx, OSSL_CALLBACK *cb,
74 void *cbarg);
75
76 size_t get_entropy(const OSSL_CORE_HANDLE *handle,
77 unsigned char **pout, int entropy,
78 size_t min_len, size_t max_len);
79 void cleanup_entropy(const OSSL_CORE_HANDLE *handle,
80 unsigned char *buf, size_t len);
81 size_t get_nonce(const OSSL_CORE_HANDLE *handle,
82 unsigned char **pout, size_t min_len, size_t max_len,
83 const void *salt, size_t salt_len);
84 void cleanup_nonce(const OSSL_CORE_HANDLE *handle,
85 unsigned char *buf, size_t len);
86
87 /* Functions for querying the providers in the application library context */
88 int provider_register_child_cb(const OSSL_CORE_HANDLE *handle,
89 int (*create_cb)(const OSSL_CORE_HANDLE *provider,
90 void *cbdata),
91 int (*remove_cb)(const OSSL_CORE_HANDLE *provider,
92 void *cbdata),
93 int (*global_props_cb)(const char *props, void *cbdata),
94 void *cbdata);
95 void provider_deregister_child_cb(const OSSL_CORE_HANDLE *handle);
96 const char *provider_name(const OSSL_CORE_HANDLE *prov);
97 void *provider_get0_provider_ctx(const OSSL_CORE_HANDLE *prov);
98 const OSSL_DISPATCH *provider_get0_dispatch(const OSSL_CORE_HANDLE *prov);
99 int provider_up_ref(const OSSL_CORE_HANDLE *prov, int activate);
100 int provider_free(const OSSL_CORE_HANDLE *prov, int deactivate);
101
102 /* Functions offered by the provider to libcrypto */
103 void provider_teardown(void *provctx);
104 const OSSL_ITEM *provider_gettable_params(void *provctx);
105 int provider_get_params(void *provctx, OSSL_PARAM params[]);
106 const OSSL_ALGORITHM *provider_query_operation(void *provctx,
107 int operation_id,
108 const int *no_store);
109 void provider_unquery_operation(void *provctx, int operation_id,
110 const OSSL_ALGORITHM *algs);
111 const OSSL_ITEM *provider_get_reason_strings(void *provctx);
112 int provider_get_capabilities(void *provctx, const char *capability,
113 OSSL_CALLBACK *cb, void *arg);
114 int provider_self_test(void *provctx);
115
116 =head1 DESCRIPTION
117
118 All "functions" mentioned here are passed as function pointers between
119 F<libcrypto> and the provider in L<OSSL_DISPATCH(3)> arrays, in the call
120 of the provider initialization function. See L<provider(7)/Provider>
121 for a description of the initialization function. They are known as "upcalls".
122
123 All these "functions" have a corresponding function type definition
124 named B<OSSL_FUNC_{name}_fn>, and a helper function to retrieve the
125 function pointer from a L<OSSL_DISPATCH(3)> element named
126 B<OSSL_FUNC_{name}>.
127 For example, the "function" core_gettable_params() has these:
128
129 typedef OSSL_PARAM *
130 (OSSL_FUNC_core_gettable_params_fn)(const OSSL_CORE_HANDLE *handle);
131 static ossl_inline OSSL_NAME_core_gettable_params_fn
132 OSSL_FUNC_core_gettable_params(const OSSL_DISPATCH *opf);
133
134 L<OSSL_DISPATCH(3)> arrays are indexed by numbers that are provided as
135 macros in L<openssl-core_dispatch.h(7)>, as follows:
136
137 For I<in> (the L<OSSL_DISPATCH(3)> array passed from F<libcrypto> to the
138 provider):
139
140 core_gettable_params OSSL_FUNC_CORE_GETTABLE_PARAMS
141 core_get_params OSSL_FUNC_CORE_GET_PARAMS
142 core_thread_start OSSL_FUNC_CORE_THREAD_START
143 core_get_libctx OSSL_FUNC_CORE_GET_LIBCTX
144 core_new_error OSSL_FUNC_CORE_NEW_ERROR
145 core_set_error_debug OSSL_FUNC_CORE_SET_ERROR_DEBUG
146 core_vset_error OSSL_FUNC_CORE_VSET_ERROR
147 core_obj_add_sigid OSSL_FUNC_CORE_OBJ_ADD_SIGID
148 core_obj_create OSSL_FUNC_CORE_OBJ_CREATE
149 CRYPTO_malloc OSSL_FUNC_CRYPTO_MALLOC
150 CRYPTO_zalloc OSSL_FUNC_CRYPTO_ZALLOC
151 CRYPTO_free OSSL_FUNC_CRYPTO_FREE
152 CRYPTO_clear_free OSSL_FUNC_CRYPTO_CLEAR_FREE
153 CRYPTO_realloc OSSL_FUNC_CRYPTO_REALLOC
154 CRYPTO_clear_realloc OSSL_FUNC_CRYPTO_CLEAR_REALLOC
155 CRYPTO_secure_malloc OSSL_FUNC_CRYPTO_SECURE_MALLOC
156 CRYPTO_secure_zalloc OSSL_FUNC_CRYPTO_SECURE_ZALLOC
157 CRYPTO_secure_free OSSL_FUNC_CRYPTO_SECURE_FREE
158 CRYPTO_secure_clear_free OSSL_FUNC_CRYPTO_SECURE_CLEAR_FREE
159 CRYPTO_secure_allocated OSSL_FUNC_CRYPTO_SECURE_ALLOCATED
160 BIO_new_file OSSL_FUNC_BIO_NEW_FILE
161 BIO_new_mem_buf OSSL_FUNC_BIO_NEW_MEMBUF
162 BIO_read_ex OSSL_FUNC_BIO_READ_EX
163 BIO_write_ex OSSL_FUNC_BIO_WRITE_EX
164 BIO_up_ref OSSL_FUNC_BIO_UP_REF
165 BIO_free OSSL_FUNC_BIO_FREE
166 BIO_vprintf OSSL_FUNC_BIO_VPRINTF
167 BIO_vsnprintf OSSL_FUNC_BIO_VSNPRINTF
168 BIO_puts OSSL_FUNC_BIO_PUTS
169 BIO_gets OSSL_FUNC_BIO_GETS
170 BIO_ctrl OSSL_FUNC_BIO_CTRL
171 OPENSSL_cleanse OSSL_FUNC_OPENSSL_CLEANSE
172 OSSL_SELF_TEST_set_callback OSSL_FUNC_SELF_TEST_CB
173 ossl_rand_get_entropy OSSL_FUNC_GET_ENTROPY
174 ossl_rand_cleanup_entropy OSSL_FUNC_CLEANUP_ENTROPY
175 ossl_rand_get_nonce OSSL_FUNC_GET_NONCE
176 ossl_rand_cleanup_nonce OSSL_FUNC_CLEANUP_NONCE
177 provider_register_child_cb OSSL_FUNC_PROVIDER_REGISTER_CHILD_CB
178 provider_deregister_child_cb OSSL_FUNC_PROVIDER_DEREGISTER_CHILD_CB
179 provider_name OSSL_FUNC_PROVIDER_NAME
180 provider_get0_provider_ctx OSSL_FUNC_PROVIDER_GET0_PROVIDER_CTX
181 provider_get0_dispatch OSSL_FUNC_PROVIDER_GET0_DISPATCH
182 provider_up_ref OSSL_FUNC_PROVIDER_UP_REF
183 provider_free OSSL_FUNC_PROVIDER_FREE
184
185 For I<*out> (the L<OSSL_DISPATCH(3)> array passed from the provider to
186 F<libcrypto>):
187
188 provider_teardown OSSL_FUNC_PROVIDER_TEARDOWN
189 provider_gettable_params OSSL_FUNC_PROVIDER_GETTABLE_PARAMS
190 provider_get_params OSSL_FUNC_PROVIDER_GET_PARAMS
191 provider_query_operation OSSL_FUNC_PROVIDER_QUERY_OPERATION
192 provider_unquery_operation OSSL_FUNC_PROVIDER_UNQUERY_OPERATION
193 provider_get_reason_strings OSSL_FUNC_PROVIDER_GET_REASON_STRINGS
194 provider_get_capabilities OSSL_FUNC_PROVIDER_GET_CAPABILITIES
195 provider_self_test OSSL_FUNC_PROVIDER_SELF_TEST
196
197 =head2 Core functions
198
199 core_gettable_params() returns a constant array of descriptor
200 L<OSSL_PARAM(3)>, for parameters that core_get_params() can handle.
201
202 core_get_params() retrieves parameters from the core for the given I<handle>.
203 See L</Core parameters> below for a description of currently known
204 parameters.
205
206 The core_thread_start() function informs the core that the provider has stated
207 an interest in the current thread. The core will inform the provider when the
208 thread eventually stops. It must be passed the I<handle> for this provider, as
209 well as a callback I<handfn> which will be called when the thread stops. The
210 callback will subsequently be called, with the supplied argument I<arg>, from
211 the thread that is stopping and gets passed the provider context as an
212 argument. This may be useful to perform thread specific clean up such as
213 freeing thread local variables.
214
215 core_get_libctx() retrieves the core context in which the library
216 object for the current provider is stored, accessible through the I<handle>.
217 This function is useful only for built-in providers such as the default
218 provider. Never cast this to OSSL_LIB_CTX in a provider that is not
219 built-in as the OSSL_LIB_CTX of the library loading the provider might be
220 a completely different structure than the OSSL_LIB_CTX of the library the
221 provider is linked to. Use L<OSSL_LIB_CTX_new_child(3)> instead to obtain
222 a proper library context that is linked to the application library context.
223
224 core_new_error(), core_set_error_debug() and core_vset_error() are
225 building blocks for reporting an error back to the core, with
226 reference to the I<handle>.
227
228 =over 4
229
230 =item core_new_error()
231
232 allocates a new thread specific error record.
233
234 This corresponds to the OpenSSL function L<ERR_new(3)>.
235
236 =item core_set_error_debug()
237
238 sets debugging information in the current thread specific error
239 record.
240 The debugging information includes the name of the file I<file>, the
241 line I<line> and the function name I<func> where the error occurred.
242
243 This corresponds to the OpenSSL function L<ERR_set_debug(3)>.
244
245 =item core_vset_error()
246
247 sets the I<reason> for the error, along with any addition data.
248 The I<reason> is a number defined by the provider and used to index
249 the reason strings table that's returned by
250 provider_get_reason_strings().
251 The additional data is given as a format string I<fmt> and a set of
252 arguments I<args>, which are treated in the same manner as with
253 BIO_vsnprintf().
254 I<file> and I<line> may also be passed to indicate exactly where the
255 error occurred or was reported.
256
257 This corresponds to the OpenSSL function L<ERR_vset_error(3)>.
258
259 =back
260
261 The core_obj_create() function registers a new OID and associated short name
262 I<sn> and long name I<ln> for the given I<handle>. It is similar to the OpenSSL
263 function L<OBJ_create(3)> except that it returns 1 on success or 0 on failure.
264 It will treat as success the case where the OID already exists (even if the
265 short name I<sn> or long name I<ln> provided as arguments differ from those
266 associated with the existing OID, in which case the new names are not
267 associated).
268
269 The core_obj_add_sigid() function registers a new composite signature algorithm
270 (I<sign_name>) consisting of an underlying signature algorithm (I<pkey_name>)
271 and digest algorithm (I<digest_name>) for the given I<handle>. It assumes that
272 the OIDs for the composite signature algorithm as well as for the underlying
273 signature and digest algorithms are either already known to OpenSSL or have been
274 registered via a call to core_obj_create(). It corresponds to the OpenSSL
275 function L<OBJ_add_sigid(3)>, except that the objects are identified by name
276 rather than a numeric NID. Any name (OID, short name or long name) can be used
277 to identify the object. It will treat as success the case where the composite
278 signature algorithm already exists (even if registered against a different
279 underlying signature or digest algorithm). For I<digest_name>, NULL or an
280 empty string is permissible for signature algorithms that do not need a digest
281 to operate correctly. The function returns 1 on success or 0 on failure.
282
283 CRYPTO_malloc(), CRYPTO_zalloc(), CRYPTO_free(), CRYPTO_clear_free(),
284 CRYPTO_realloc(), CRYPTO_clear_realloc(), CRYPTO_secure_malloc(),
285 CRYPTO_secure_zalloc(), CRYPTO_secure_free(),
286 CRYPTO_secure_clear_free(), CRYPTO_secure_allocated(),
287 BIO_new_file(), BIO_new_mem_buf(), BIO_read_ex(), BIO_write_ex(), BIO_up_ref(),
288 BIO_free(), BIO_vprintf(), BIO_vsnprintf(), BIO_gets(), BIO_puts(),
289 BIO_ctrl(), OPENSSL_cleanse() and
290 OPENSSL_hexstr2buf() correspond exactly to the public functions with
291 the same name. As a matter of fact, the pointers in the L<OSSL_DISPATCH(3)>
292 array are typically direct pointers to those public functions. Note that the BIO
293 functions take an B<OSSL_CORE_BIO> type rather than the standard B<BIO>
294 type. This is to ensure that a provider does not mix BIOs from the core
295 with BIOs used on the provider side (the two are not compatible).
296 OSSL_SELF_TEST_set_callback() is used to set an optional callback that can be
297 passed into a provider. This may be ignored by a provider.
298
299 get_entropy() retrieves seeding material from the operating system.
300 The seeding material will have at least I<entropy> bytes of randomness and the
301 output will have at least I<min_len> and at most I<max_len> bytes.
302 The buffer address is stored in I<*pout> and the buffer length is
303 returned to the caller. On error, zero is returned.
304
305 cleanup_entropy() is used to clean up and free the buffer returned by
306 get_entropy(). The entropy pointer returned by get_entropy() is passed in
307 B<buf> and its length in B<len>.
308
309 get_nonce() retrieves a nonce using the passed I<salt> parameter
310 of length I<salt_len> and operating system specific information.
311 The I<salt> should contain uniquely identifying information and this is
312 included, in an unspecified manner, as part of the output.
313 The output is stored in a buffer which contrains at least I<min_len> and at
314 most I<max_len> bytes. The buffer address is stored in I<*pout> and the
315 buffer length returned to the caller. On error, zero is returned.
316
317 cleanup_nonce() is used to clean up and free the buffer returned by
318 get_nonce(). The nonce pointer returned by get_nonce() is passed in
319 B<buf> and its length in B<len>.
320
321 provider_register_child_cb() registers callbacks for being informed about the
322 loading and unloading of providers in the application's library context.
323 I<handle> is this provider's handle and I<cbdata> is this provider's data
324 that will be passed back to the callbacks. It returns 1 on success or 0
325 otherwise. These callbacks may be called while holding locks in libcrypto. In
326 order to avoid deadlocks the callback implementation must not be long running
327 and must not call other OpenSSL API functions or upcalls.
328
329 I<create_cb> is a callback that will be called when a new provider is loaded
330 into the application's library context. It is also called for any providers that
331 are already loaded at the point that this callback is registered. The callback
332 is passed the handle being used for the new provider being loadded and this
333 provider's data in I<cbdata>. It should return 1 on success or 0 on failure.
334
335 I<remove_cb> is a callback that will be called when a new provider is unloaded
336 from the application's library context. It is passed the handle being used for
337 the provider being unloaded and this provider's data in I<cbdata>. It should
338 return 1 on success or 0 on failure.
339
340 I<global_props_cb> is a callback that will be called when the global properties
341 from the parent library context are changed. It should return 1 on success
342 or 0 on failure.
343
344 provider_deregister_child_cb() unregisters callbacks previously registered via
345 provider_register_child_cb(). If provider_register_child_cb() has been called
346 then provider_deregister_child_cb() should be called at or before the point that
347 this provider's teardown function is called.
348
349 provider_name() returns a string giving the name of the provider identified by
350 I<handle>.
351
352 provider_get0_provider_ctx() returns the provider context that is associated
353 with the provider identified by I<prov>.
354
355 provider_get0_dispatch() gets the dispatch table registered by the provider
356 identified by I<prov> when it initialised.
357
358 provider_up_ref() increments the reference count on the provider I<prov>. If
359 I<activate> is nonzero then the provider is also loaded if it is not already
360 loaded. It returns 1 on success or 0 on failure.
361
362 provider_free() decrements the reference count on the provider I<prov>. If
363 I<deactivate> is nonzero then the provider is also unloaded if it is not
364 already loaded. It returns 1 on success or 0 on failure.
365
366 =head2 Provider functions
367
368 provider_teardown() is called when a provider is shut down and removed
369 from the core's provider store.
370 It must free the passed I<provctx>.
371
372 provider_gettable_params() should return a constant array of
373 descriptor L<OSSL_PARAM(3)>, for parameters that provider_get_params()
374 can handle.
375
376 provider_get_params() should process the L<OSSL_PARAM(3)> array
377 I<params>, setting the values of the parameters it understands.
378
379 provider_query_operation() should return a constant L<OSSL_ALGORITHM(3)>
380 that corresponds to the given I<operation_id>.
381 It should indicate if the core may store a reference to this array by
382 setting I<*no_store> to 0 (core may store a reference) or 1 (core may
383 not store a reference).
384
385 provider_unquery_operation() informs the provider that the result of a
386 provider_query_operation() is no longer directly required and that the function
387 pointers have been copied. The I<operation_id> should match that passed to
388 provider_query_operation() and I<algs> should be its return value.
389
390 provider_get_reason_strings() should return a constant L<OSSL_ITEM(3)>
391 array that provides reason strings for reason codes the provider may
392 use when reporting errors using core_put_error().
393
394 The provider_get_capabilities() function should call the callback I<cb> passing
395 it a set of L<OSSL_PARAM(3)>s and the caller supplied argument I<arg>. The
396 L<OSSL_PARAM(3)>s should provide details about the capability with the name given
397 in the I<capability> argument relevant for the provider context I<provctx>. If a
398 provider supports multiple capabilities with the given name then it may call the
399 callback multiple times (one for each capability). Capabilities can be useful for
400 describing the services that a provider can offer. For further details see the
401 L</CAPABILITIES> section below. It should return 1 on success or 0 on error.
402
403 The provider_self_test() function should perform known answer tests on a subset
404 of the algorithms that it uses, and may also verify the integrity of the
405 provider module. It should return 1 on success or 0 on error. It will return 1
406 if this function is not used.
407
408 None of these functions are mandatory, but a provider is fairly
409 useless without at least provider_query_operation(), and
410 provider_gettable_params() is fairly useless if not accompanied by
411 provider_get_params().
412
413 =head2 Provider parameters
414
415 provider_get_params() can return the following provider parameters to the core:
416
417 =over 4
418
419 =item "name" (B<OSSL_PROV_PARAM_NAME>) <UTF8 ptr>
420
421 This points to a string that should give a unique name for the provider.
422
423 =item "version" (B<OSSL_PROV_PARAM_VERSION>) <UTF8 ptr>
424
425 This points to a string that is a version number associated with this provider.
426 OpenSSL in-built providers use OPENSSL_VERSION_STR, but this may be different
427 for any third party provider. This string is for informational purposes only.
428
429 =item "buildinfo" (B<OSSL_PROV_PARAM_BUILDINFO>) <UTF8 ptr>
430
431 This points to a string that is a build information associated with this provider.
432 OpenSSL in-built providers use OPENSSL_FULL_VERSION_STR, but this may be
433 different for any third party provider.
434
435 =item "status" (B<OSSL_PROV_PARAM_STATUS>) <unsigned integer>
436
437 This returns 0 if the provider has entered an error state, otherwise it returns
438 1.
439
440 =back
441
442 provider_gettable_params() should return the above parameters.
443
444
445 =head2 Core parameters
446
447 core_get_params() can retrieve the following core parameters for each provider:
448
449 =over 4
450
451 =item "openssl-version" (B<OSSL_PROV_PARAM_CORE_VERSION>) <UTF8 string ptr>
452
453 This points to the OpenSSL libraries' full version string, i.e. the string
454 expanded from the macro B<OPENSSL_VERSION_STR>.
455
456 =item "provider-name" (B<OSSL_PROV_PARAM_CORE_PROV_NAME>) <UTF8 string ptr>
457
458 This points to the OpenSSL libraries' idea of what the calling provider is named.
459
460 =item "module-filename" (B<OSSL_PROV_PARAM_CORE_MODULE_FILENAME>) <UTF8 string ptr>
461
462 This points to a string containing the full filename of the providers
463 module file.
464
465 =back
466
467 Additionally, provider specific configuration parameters from the
468 config file are available, in dotted name form.
469 The dotted name form is a concatenation of section names and final
470 config command name separated by periods.
471
472 For example, let's say we have the following config example:
473
474 config_diagnostics = 1
475 openssl_conf = openssl_init
476
477 [openssl_init]
478 providers = providers_sect
479
480 [providers_sect]
481 foo = foo_sect
482
483 [foo_sect]
484 activate = 1
485 data1 = 2
486 data2 = str
487 more = foo_more
488
489 [foo_more]
490 data3 = foo,bar
491
492 The provider will have these additional parameters available:
493
494 =over 4
495
496 =item "activate"
497
498 pointing at the string "1"
499
500 =item "data1"
501
502 pointing at the string "2"
503
504 =item "data2"
505
506 pointing at the string "str"
507
508 =item "more.data3"
509
510 pointing at the string "foo,bar"
511
512 =back
513
514 For more information on handling parameters, see L<OSSL_PARAM(3)> as
515 L<OSSL_PARAM_int(3)>.
516
517 =head1 CAPABILITIES
518
519 Capabilities describe some of the services that a provider can offer.
520 Applications can query the capabilities to discover those services.
521
522 =head3 "TLS-GROUP" Capability
523
524 The "TLS-GROUP" capability can be queried by libssl to discover the list of
525 TLS groups that a provider can support. Each group supported can be used for
526 I<key exchange> (KEX) or I<key encapsulation method> (KEM) during a TLS
527 handshake.
528 TLS clients can advertise the list of TLS groups they support in the
529 supported_groups extension, and TLS servers can select a group from the offered
530 list that they also support. In this way a provider can add to the list of
531 groups that libssl already supports with additional ones.
532
533 Each TLS group that a provider supports should be described via the callback
534 passed in through the provider_get_capabilities function. Each group should have
535 the following details supplied (all are mandatory, except
536 B<OSSL_CAPABILITY_TLS_GROUP_IS_KEM>):
537
538 =over 4
539
540 =item "tls-group-name" (B<OSSL_CAPABILITY_TLS_GROUP_NAME>) <UTF8 string>
541
542 The name of the group as given in the IANA TLS Supported Groups registry
543 L<https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8>.
544
545 =item "tls-group-name-internal" (B<OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL>) <UTF8 string>
546
547 The name of the group as known by the provider. This could be the same as the
548 "tls-group-name", but does not have to be.
549
550 =item "tls-group-id" (B<OSSL_CAPABILITY_TLS_GROUP_ID>) <unsigned integer>
551
552 The TLS group id value as given in the IANA TLS Supported Groups registry.
553
554 =item "tls-group-alg" (B<OSSL_CAPABILITY_TLS_GROUP_ALG>) <UTF8 string>
555
556 The name of a Key Management algorithm that the provider offers and that should
557 be used with this group. Keys created should be able to support I<key exchange>
558 or I<key encapsulation method> (KEM), as implied by the optional
559 B<OSSL_CAPABILITY_TLS_GROUP_IS_KEM> flag.
560 The algorithm must support key and parameter generation as well as the
561 key/parameter generation parameter, B<OSSL_PKEY_PARAM_GROUP_NAME>. The group
562 name given via "tls-group-name-internal" above will be passed via
563 B<OSSL_PKEY_PARAM_GROUP_NAME> when libssl wishes to generate keys/parameters.
564
565 =item "tls-group-sec-bits" (B<OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS>) <unsigned integer>
566
567 The number of bits of security offered by keys in this group. The number of bits
568 should be comparable with the ones given in table 2 and 3 of the NIST SP800-57
569 document.
570
571 =item "tls-group-is-kem" (B<OSSL_CAPABILITY_TLS_GROUP_IS_KEM>) <unsigned integer>
572
573 Boolean flag to describe if the group should be used in I<key exchange> (KEX)
574 mode (0, default) or in I<key encapsulation method> (KEM) mode (1).
575
576 This parameter is optional: if not specified, KEX mode is assumed as the default
577 mode for the group.
578
579 In KEX mode, in a typical Diffie-Hellman fashion, both sides execute I<keygen>
580 then I<derive> against the peer public key. To operate in KEX mode, the group
581 implementation must support the provider functions as described in
582 L<provider-keyexch(7)>.
583
584 In KEM mode, the client executes I<keygen> and sends its public key, the server
585 executes I<encapsulate> using the client's public key and sends back the
586 resulting I<ciphertext>, finally the client executes I<decapsulate> to retrieve
587 the same I<shared secret> generated by the server's I<encapsulate>. To operate
588 in KEM mode, the group implementation must support the provider functions as
589 described in L<provider-kem(7)>.
590
591 Both in KEX and KEM mode, the resulting I<shared secret> is then used according
592 to the protocol specification.
593
594 =item "tls-min-tls" (B<OSSL_CAPABILITY_TLS_GROUP_MIN_TLS>) <integer>
595
596 =item "tls-max-tls" (B<OSSL_CAPABILITY_TLS_GROUP_MAX_TLS>) <integer>
597
598 =item "tls-min-dtls" (B<OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS>) <integer>
599
600 =item "tls-max-dtls" (B<OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS>) <integer>
601
602 These parameters can be used to describe the minimum and maximum TLS and DTLS
603 versions supported by the group. The values equate to the on-the-wire encoding
604 of the various TLS versions. For example TLSv1.3 is 0x0304 (772 decimal), and
605 TLSv1.2 is 0x0303 (771 decimal). A 0 indicates that there is no defined minimum
606 or maximum. A -1 indicates that the group should not be used in that protocol.
607
608 =back
609
610 =head3 "TLS-SIGALG" Capability
611
612 The "TLS-SIGALG" capability can be queried by libssl to discover the list of
613 TLS signature algorithms that a provider can support. Each signature supported
614 can be used for client- or server-authentication in addition to the built-in
615 signature algorithms.
616 TLS1.3 clients can advertise the list of TLS signature algorithms they support
617 in the signature_algorithms extension, and TLS servers can select an algorithm
618 from the offered list that they also support. In this way a provider can add
619 to the list of signature algorithms that libssl already supports with
620 additional ones.
621
622 Each TLS signature algorithm that a provider supports should be described via
623 the callback passed in through the provider_get_capabilities function. Each
624 algorithm can have the following details supplied:
625
626 =over 4
627
628 =item "iana-name" (B<OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME>) <UTF8 string>
629
630 The name of the signature algorithm as given in the IANA TLS Signature Scheme
631 registry as "Description":
632 L<https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-signaturescheme>.
633 This value must be supplied.
634
635 =item "iana-code-point" (B<OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT>) <unsigned integer>
636
637 The TLS algorithm ID value as given in the IANA TLS SignatureScheme registry.
638 This value must be supplied.
639
640 =item "sigalg-name" (B<OSSL_CAPABILITY_TLS_SIGALG_NAME>) <UTF8 string>
641
642 A name for the full (possibly composite hash-and-signature) signature
643 algorithm.
644 The provider may, but is not obligated to, provide a signature implementation
645 with this name; if it doesn't, this is assumed to be a composite of a pure
646 signature algorithm and a hash algorithm, which must be given with the
647 parameters "sig-name" and "hash-name".
648 This value must be supplied.
649
650 =item "sigalg-oid" (B<OSSL_CAPABILITY_TLS_SIGALG_OID>) <UTF8 string>
651
652 The OID of the "sigalg-name" algorithm in canonical numeric text form. If
653 this parameter is given, OBJ_create() will be used to create an OBJ and
654 a NID for this OID, using the "sigalg-name" parameter for its (short) name.
655 Otherwise, it's assumed to already exist in the object database, possibly
656 done by the provider with the core_obj_create() upcall.
657 This value is optional.
658
659 =item "sig-name" (B<OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME>) <UTF8 string>
660
661 The name of the pure signature algorithm that is part of a composite
662 "sigalg-name". If "sigalg-name" is implemented by the provider, this
663 parameter is redundant and must not be given.
664 This value is optional.
665
666 =item "sig-oid" (B<OSSL_CAPABILITY_TLS_SIGALG_SIG_OID>) <UTF8 string>
667
668 The OID of the "sig-name" algorithm in canonical numeric text form. If
669 this parameter is given, OBJ_create() will be used to create an OBJ and
670 a NID for this OID, using the "sig-name" parameter for its (short) name.
671 Otherwise, it is assumed to already exist in the object database. This
672 can be done by the provider using the core_obj_create() upcall.
673 This value is optional.
674
675 =item "hash-name" (B<OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME>) <UTF8 string>
676
677 The name of the hash algorithm that is part of a composite "sigalg-name".
678 If "sigalg-name" is implemented by the provider, this parameter is redundant
679 and must not be given.
680 This value is optional.
681
682 =item "hash-oid" (B<OSSL_CAPABILITY_TLS_SIGALG_HASH_OID>) <UTF8 string>
683
684 The OID of the "hash-name" algorithm in canonical numeric text form. If
685 this parameter is given, OBJ_create() will be used to create an OBJ and
686 a NID for this OID, using the "hash-name" parameter for its (short) name.
687 Otherwise, it's assumed to already exist in the object database, possibly
688 done by the provider with the core_obj_create() upcall.
689 This value is optional.
690
691 =item "key-type" (B<OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE>) <UTF8 string>
692
693 The key type of the public key of applicable certificates. If this parameter
694 isn't present, it's assumed to be the same as "sig-name" if that's present,
695 otherwise "sigalg-name".
696 This value is optional.
697
698 =item "key-type-oid" (B<OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID>) <UTF8 string>
699
700 The OID of the "key-type" in canonical numeric text form. If
701 this parameter is given, OBJ_create() will be used to create an OBJ and
702 a NID for this OID, using the "key-type" parameter for its (short) name.
703 Otherwise, it's assumed to already exist in the object database, possibly
704 done by the provider with the core_obj_create() upcall.
705 This value is optional.
706
707 =item "sec-bits" (B<OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS>) <unsigned integer>
708
709 The number of bits of security offered by keys of this algorithm. The number
710 of bits should be comparable with the ones given in table 2 and 3 of the NIST
711 SP800-57 document. This number is used to determine the security strength of
712 the algorithm if no digest algorithm has been registered that otherwise
713 defines the security strength. If the signature algorithm implements its own
714 digest internally, this value needs to be set to properly reflect the overall
715 security strength.
716 This value must be supplied.
717
718 =item "tls-min-tls" (B<OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS>) <integer>
719
720 =item "tls-max-tls" (B<OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS>) <integer>
721
722 These parameters can be used to describe the minimum and maximum TLS
723 versions supported by the signature algorithm. The values equate to the
724 on-the-wire encoding of the various TLS versions. For example TLSv1.3 is
725 0x0304 (772 decimal), and TLSv1.2 is 0x0303 (771 decimal). A 0 indicates that
726 there is no defined minimum or maximum. A -1 indicates that the signature
727 algorithm should not be used in that protocol.
728 Presently values representing anything other than TLS1.3 mean that the
729 complete algorithm is ignored.
730
731 =back
732
733 =head1 NOTES
734
735 The core_obj_create() and core_obj_add_sigid() functions were not thread safe
736 in OpenSSL 3.0.
737
738 =head1 EXAMPLES
739
740 This is an example of a simple provider made available as a
741 dynamically loadable module.
742 It implements the fictitious algorithm C<FOO> for the fictitious
743 operation C<BAR>.
744
745 #include <malloc.h>
746 #include <openssl/core.h>
747 #include <openssl/core_dispatch.h>
748
749 /* Errors used in this provider */
750 #define E_MALLOC 1
751
752 static const OSSL_ITEM reasons[] = {
753 { E_MALLOC, "memory allocation failure" }.
754 { 0, NULL } /* Termination */
755 };
756
757 /*
758 * To ensure we get the function signature right, forward declare
759 * them using function types provided by openssl/core_dispatch.h
760 */
761 OSSL_FUNC_bar_newctx_fn foo_newctx;
762 OSSL_FUNC_bar_freectx_fn foo_freectx;
763 OSSL_FUNC_bar_init_fn foo_init;
764 OSSL_FUNC_bar_update_fn foo_update;
765 OSSL_FUNC_bar_final_fn foo_final;
766
767 OSSL_FUNC_provider_query_operation_fn p_query;
768 OSSL_FUNC_provider_get_reason_strings_fn p_reasons;
769 OSSL_FUNC_provider_teardown_fn p_teardown;
770
771 OSSL_provider_init_fn OSSL_provider_init;
772
773 OSSL_FUNC_core_put_error *c_put_error = NULL;
774
775 /* Provider context */
776 struct prov_ctx_st {
777 OSSL_CORE_HANDLE *handle;
778 }
779
780 /* operation context for the algorithm FOO */
781 struct foo_ctx_st {
782 struct prov_ctx_st *provctx;
783 int b;
784 };
785
786 static void *foo_newctx(void *provctx)
787 {
788 struct foo_ctx_st *fooctx = malloc(sizeof(*fooctx));
789
790 if (fooctx != NULL)
791 fooctx->provctx = provctx;
792 else
793 c_put_error(provctx->handle, E_MALLOC, __FILE__, __LINE__);
794 return fooctx;
795 }
796
797 static void foo_freectx(void *fooctx)
798 {
799 free(fooctx);
800 }
801
802 static int foo_init(void *vfooctx)
803 {
804 struct foo_ctx_st *fooctx = vfooctx;
805
806 fooctx->b = 0x33;
807 }
808
809 static int foo_update(void *vfooctx, unsigned char *in, size_t inl)
810 {
811 struct foo_ctx_st *fooctx = vfooctx;
812
813 /* did you expect something serious? */
814 if (inl == 0)
815 return 1;
816 for (; inl-- > 0; in++)
817 *in ^= fooctx->b;
818 return 1;
819 }
820
821 static int foo_final(void *vfooctx)
822 {
823 struct foo_ctx_st *fooctx = vfooctx;
824
825 fooctx->b = 0x66;
826 }
827
828 static const OSSL_DISPATCH foo_fns[] = {
829 { OSSL_FUNC_BAR_NEWCTX, (void (*)(void))foo_newctx },
830 { OSSL_FUNC_BAR_FREECTX, (void (*)(void))foo_freectx },
831 { OSSL_FUNC_BAR_INIT, (void (*)(void))foo_init },
832 { OSSL_FUNC_BAR_UPDATE, (void (*)(void))foo_update },
833 { OSSL_FUNC_BAR_FINAL, (void (*)(void))foo_final },
834 { 0, NULL }
835 };
836
837 static const OSSL_ALGORITHM bars[] = {
838 { "FOO", "provider=chumbawamba", foo_fns },
839 { NULL, NULL, NULL }
840 };
841
842 static const OSSL_ALGORITHM *p_query(void *provctx, int operation_id,
843 int *no_store)
844 {
845 switch (operation_id) {
846 case OSSL_OP_BAR:
847 return bars;
848 }
849 return NULL;
850 }
851
852 static const OSSL_ITEM *p_reasons(void *provctx)
853 {
854 return reasons;
855 }
856
857 static void p_teardown(void *provctx)
858 {
859 free(provctx);
860 }
861
862 static const OSSL_DISPATCH prov_fns[] = {
863 { OSSL_FUNC_PROVIDER_TEARDOWN, (void (*)(void))p_teardown },
864 { OSSL_FUNC_PROVIDER_QUERY_OPERATION, (void (*)(void))p_query },
865 { OSSL_FUNC_PROVIDER_GET_REASON_STRINGS, (void (*)(void))p_reasons },
866 { 0, NULL }
867 };
868
869 int OSSL_provider_init(const OSSL_CORE_HANDLE *handle,
870 const OSSL_DISPATCH *in,
871 const OSSL_DISPATCH **out,
872 void **provctx)
873 {
874 struct prov_ctx_st *pctx = NULL;
875
876 for (; in->function_id != 0; in++)
877 switch (in->function_id) {
878 case OSSL_FUNC_CORE_PUT_ERROR:
879 c_put_error = OSSL_FUNC_core_put_error(in);
880 break;
881 }
882
883 *out = prov_fns;
884
885 if ((pctx = malloc(sizeof(*pctx))) == NULL) {
886 /*
887 * ALEA IACTA EST, if the core retrieves the reason table
888 * regardless, that string will be displayed, otherwise not.
889 */
890 c_put_error(handle, E_MALLOC, __FILE__, __LINE__);
891 return 0;
892 }
893 pctx->handle = handle;
894 return 1;
895 }
896
897 This relies on a few things existing in F<openssl/core_dispatch.h>:
898
899 #define OSSL_OP_BAR 4711
900
901 #define OSSL_FUNC_BAR_NEWCTX 1
902 typedef void *(OSSL_FUNC_bar_newctx_fn)(void *provctx);
903 static ossl_inline OSSL_FUNC_bar_newctx(const OSSL_DISPATCH *opf)
904 { return (OSSL_FUNC_bar_newctx_fn *)opf->function; }
905
906 #define OSSL_FUNC_BAR_FREECTX 2
907 typedef void (OSSL_FUNC_bar_freectx_fn)(void *ctx);
908 static ossl_inline OSSL_FUNC_bar_newctx(const OSSL_DISPATCH *opf)
909 { return (OSSL_FUNC_bar_freectx_fn *)opf->function; }
910
911 #define OSSL_FUNC_BAR_INIT 3
912 typedef void *(OSSL_FUNC_bar_init_fn)(void *ctx);
913 static ossl_inline OSSL_FUNC_bar_init(const OSSL_DISPATCH *opf)
914 { return (OSSL_FUNC_bar_init_fn *)opf->function; }
915
916 #define OSSL_FUNC_BAR_UPDATE 4
917 typedef void *(OSSL_FUNC_bar_update_fn)(void *ctx,
918 unsigned char *in, size_t inl);
919 static ossl_inline OSSL_FUNC_bar_update(const OSSL_DISPATCH *opf)
920 { return (OSSL_FUNC_bar_update_fn *)opf->function; }
921
922 #define OSSL_FUNC_BAR_FINAL 5
923 typedef void *(OSSL_FUNC_bar_final_fn)(void *ctx);
924 static ossl_inline OSSL_FUNC_bar_final(const OSSL_DISPATCH *opf)
925 { return (OSSL_FUNC_bar_final_fn *)opf->function; }
926
927 =head1 SEE ALSO
928
929 L<provider(7)>
930
931 =head1 HISTORY
932
933 The concept of providers and everything surrounding them was
934 introduced in OpenSSL 3.0.
935
936 =head1 COPYRIGHT
937
938 Copyright 2019-2021 The OpenSSL Project Authors. All Rights Reserved.
939
940 Licensed under the Apache License 2.0 (the "License"). You may not use
941 this file except in compliance with the License. You can obtain a copy
942 in the file LICENSE in the source distribution or at
943 L<https://www.openssl.org/source/license.html>.
944
945 =cut