]> git.ipfire.org Git - thirdparty/openssl.git/blob - engines/e_dasync.c
Correct top for EC/DSA nonces if BN_DEBUG is on
[thirdparty/openssl.git] / engines / e_dasync.c
1 /*
2 * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #if defined(_WIN32)
11 # include <windows.h>
12 #endif
13
14 #include <stdio.h>
15 #include <string.h>
16
17 #include <openssl/engine.h>
18 #include <openssl/sha.h>
19 #include <openssl/aes.h>
20 #include <openssl/rsa.h>
21 #include <openssl/evp.h>
22 #include <openssl/async.h>
23 #include <openssl/bn.h>
24 #include <openssl/crypto.h>
25 #include <openssl/ssl.h>
26 #include <openssl/modes.h>
27
28 #if defined(OPENSSL_SYS_UNIX) && defined(OPENSSL_THREADS)
29 # undef ASYNC_POSIX
30 # define ASYNC_POSIX
31 # include <unistd.h>
32 #elif defined(_WIN32)
33 # undef ASYNC_WIN
34 # define ASYNC_WIN
35 #endif
36
37 #include "e_dasync_err.c"
38
39 /* Engine Id and Name */
40 static const char *engine_dasync_id = "dasync";
41 static const char *engine_dasync_name = "Dummy Async engine support";
42
43
44 /* Engine Lifetime functions */
45 static int dasync_destroy(ENGINE *e);
46 static int dasync_init(ENGINE *e);
47 static int dasync_finish(ENGINE *e);
48 void engine_load_dasync_int(void);
49
50
51 /* Set up digests. Just SHA1 for now */
52 static int dasync_digests(ENGINE *e, const EVP_MD **digest,
53 const int **nids, int nid);
54
55 static void dummy_pause_job(void);
56
57 /* SHA1 */
58 static int dasync_sha1_init(EVP_MD_CTX *ctx);
59 static int dasync_sha1_update(EVP_MD_CTX *ctx, const void *data,
60 size_t count);
61 static int dasync_sha1_final(EVP_MD_CTX *ctx, unsigned char *md);
62
63 /*
64 * Holds the EVP_MD object for sha1 in this engine. Set up once only during
65 * engine bind and can then be reused many times.
66 */
67 static EVP_MD *_hidden_sha1_md = NULL;
68 static const EVP_MD *dasync_sha1(void)
69 {
70 return _hidden_sha1_md;
71 }
72 static void destroy_digests(void)
73 {
74 EVP_MD_meth_free(_hidden_sha1_md);
75 _hidden_sha1_md = NULL;
76 }
77
78 static int dasync_digest_nids(const int **nids)
79 {
80 static int digest_nids[2] = { 0, 0 };
81 static int pos = 0;
82 static int init = 0;
83
84 if (!init) {
85 const EVP_MD *md;
86 if ((md = dasync_sha1()) != NULL)
87 digest_nids[pos++] = EVP_MD_type(md);
88 digest_nids[pos] = 0;
89 init = 1;
90 }
91 *nids = digest_nids;
92 return pos;
93 }
94
95 /* RSA */
96
97 static int dasync_pub_enc(int flen, const unsigned char *from,
98 unsigned char *to, RSA *rsa, int padding);
99 static int dasync_pub_dec(int flen, const unsigned char *from,
100 unsigned char *to, RSA *rsa, int padding);
101 static int dasync_rsa_priv_enc(int flen, const unsigned char *from,
102 unsigned char *to, RSA *rsa, int padding);
103 static int dasync_rsa_priv_dec(int flen, const unsigned char *from,
104 unsigned char *to, RSA *rsa, int padding);
105 static int dasync_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa,
106 BN_CTX *ctx);
107
108 static int dasync_rsa_init(RSA *rsa);
109 static int dasync_rsa_finish(RSA *rsa);
110
111 static RSA_METHOD *dasync_rsa_method = NULL;
112
113 /* AES */
114
115 static int dasync_aes128_cbc_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
116 void *ptr);
117 static int dasync_aes128_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
118 const unsigned char *iv, int enc);
119 static int dasync_aes128_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
120 const unsigned char *in, size_t inl);
121 static int dasync_aes128_cbc_cleanup(EVP_CIPHER_CTX *ctx);
122
123 static int dasync_aes128_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type,
124 int arg, void *ptr);
125 static int dasync_aes128_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
126 const unsigned char *key,
127 const unsigned char *iv,
128 int enc);
129 static int dasync_aes128_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx,
130 unsigned char *out,
131 const unsigned char *in,
132 size_t inl);
133 static int dasync_aes128_cbc_hmac_sha1_cleanup(EVP_CIPHER_CTX *ctx);
134
135 struct dasync_pipeline_ctx {
136 void *inner_cipher_data;
137 unsigned int numpipes;
138 unsigned char **inbufs;
139 unsigned char **outbufs;
140 size_t *lens;
141 unsigned char tlsaad[SSL_MAX_PIPELINES][EVP_AEAD_TLS1_AAD_LEN];
142 unsigned int aadctr;
143 };
144
145 /*
146 * Holds the EVP_CIPHER object for aes_128_cbc in this engine. Set up once only
147 * during engine bind and can then be reused many times.
148 */
149 static EVP_CIPHER *_hidden_aes_128_cbc = NULL;
150 static const EVP_CIPHER *dasync_aes_128_cbc(void)
151 {
152 return _hidden_aes_128_cbc;
153 }
154
155 /*
156 * Holds the EVP_CIPHER object for aes_128_cbc_hmac_sha1 in this engine. Set up
157 * once only during engine bind and can then be reused many times.
158 *
159 * This 'stitched' cipher depends on the EVP_aes_128_cbc_hmac_sha1() cipher,
160 * which is implemented only if the AES-NI instruction set extension is available
161 * (see OPENSSL_IA32CAP(3)). If that's not the case, then this cipher will not
162 * be available either.
163 *
164 * Note: Since it is a legacy mac-then-encrypt cipher, modern TLS peers (which
165 * negotiate the encrypt-then-mac extension) won't negotiate it anyway.
166 */
167 static EVP_CIPHER *_hidden_aes_128_cbc_hmac_sha1 = NULL;
168 static const EVP_CIPHER *dasync_aes_128_cbc_hmac_sha1(void)
169 {
170 return _hidden_aes_128_cbc_hmac_sha1;
171 }
172
173 static void destroy_ciphers(void)
174 {
175 EVP_CIPHER_meth_free(_hidden_aes_128_cbc);
176 EVP_CIPHER_meth_free(_hidden_aes_128_cbc_hmac_sha1);
177 _hidden_aes_128_cbc = NULL;
178 _hidden_aes_128_cbc_hmac_sha1 = NULL;
179 }
180
181 static int dasync_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
182 const int **nids, int nid);
183
184 static int dasync_cipher_nids[] = {
185 NID_aes_128_cbc,
186 NID_aes_128_cbc_hmac_sha1,
187 0
188 };
189
190 static int bind_dasync(ENGINE *e)
191 {
192 /* Setup RSA_METHOD */
193 if ((dasync_rsa_method = RSA_meth_new("Dummy Async RSA method", 0)) == NULL
194 || RSA_meth_set_pub_enc(dasync_rsa_method, dasync_pub_enc) == 0
195 || RSA_meth_set_pub_dec(dasync_rsa_method, dasync_pub_dec) == 0
196 || RSA_meth_set_priv_enc(dasync_rsa_method, dasync_rsa_priv_enc) == 0
197 || RSA_meth_set_priv_dec(dasync_rsa_method, dasync_rsa_priv_dec) == 0
198 || RSA_meth_set_mod_exp(dasync_rsa_method, dasync_rsa_mod_exp) == 0
199 || RSA_meth_set_bn_mod_exp(dasync_rsa_method, BN_mod_exp_mont) == 0
200 || RSA_meth_set_init(dasync_rsa_method, dasync_rsa_init) == 0
201 || RSA_meth_set_finish(dasync_rsa_method, dasync_rsa_finish) == 0) {
202 DASYNCerr(DASYNC_F_BIND_DASYNC, DASYNC_R_INIT_FAILED);
203 return 0;
204 }
205
206 /* Ensure the dasync error handling is set up */
207 ERR_load_DASYNC_strings();
208
209 if (!ENGINE_set_id(e, engine_dasync_id)
210 || !ENGINE_set_name(e, engine_dasync_name)
211 || !ENGINE_set_RSA(e, dasync_rsa_method)
212 || !ENGINE_set_digests(e, dasync_digests)
213 || !ENGINE_set_ciphers(e, dasync_ciphers)
214 || !ENGINE_set_destroy_function(e, dasync_destroy)
215 || !ENGINE_set_init_function(e, dasync_init)
216 || !ENGINE_set_finish_function(e, dasync_finish)) {
217 DASYNCerr(DASYNC_F_BIND_DASYNC, DASYNC_R_INIT_FAILED);
218 return 0;
219 }
220
221 /*
222 * Set up the EVP_CIPHER and EVP_MD objects for the ciphers/digests
223 * supplied by this engine
224 */
225 _hidden_sha1_md = EVP_MD_meth_new(NID_sha1, NID_sha1WithRSAEncryption);
226 if (_hidden_sha1_md == NULL
227 || !EVP_MD_meth_set_result_size(_hidden_sha1_md, SHA_DIGEST_LENGTH)
228 || !EVP_MD_meth_set_input_blocksize(_hidden_sha1_md, SHA_CBLOCK)
229 || !EVP_MD_meth_set_app_datasize(_hidden_sha1_md,
230 sizeof(EVP_MD *) + sizeof(SHA_CTX))
231 || !EVP_MD_meth_set_flags(_hidden_sha1_md, EVP_MD_FLAG_DIGALGID_ABSENT)
232 || !EVP_MD_meth_set_init(_hidden_sha1_md, dasync_sha1_init)
233 || !EVP_MD_meth_set_update(_hidden_sha1_md, dasync_sha1_update)
234 || !EVP_MD_meth_set_final(_hidden_sha1_md, dasync_sha1_final)) {
235 EVP_MD_meth_free(_hidden_sha1_md);
236 _hidden_sha1_md = NULL;
237 }
238
239 _hidden_aes_128_cbc = EVP_CIPHER_meth_new(NID_aes_128_cbc,
240 16 /* block size */,
241 16 /* key len */);
242 if (_hidden_aes_128_cbc == NULL
243 || !EVP_CIPHER_meth_set_iv_length(_hidden_aes_128_cbc,16)
244 || !EVP_CIPHER_meth_set_flags(_hidden_aes_128_cbc,
245 EVP_CIPH_FLAG_DEFAULT_ASN1
246 | EVP_CIPH_CBC_MODE
247 | EVP_CIPH_FLAG_PIPELINE)
248 || !EVP_CIPHER_meth_set_init(_hidden_aes_128_cbc,
249 dasync_aes128_init_key)
250 || !EVP_CIPHER_meth_set_do_cipher(_hidden_aes_128_cbc,
251 dasync_aes128_cbc_cipher)
252 || !EVP_CIPHER_meth_set_cleanup(_hidden_aes_128_cbc,
253 dasync_aes128_cbc_cleanup)
254 || !EVP_CIPHER_meth_set_ctrl(_hidden_aes_128_cbc,
255 dasync_aes128_cbc_ctrl)
256 || !EVP_CIPHER_meth_set_impl_ctx_size(_hidden_aes_128_cbc,
257 sizeof(struct dasync_pipeline_ctx))) {
258 EVP_CIPHER_meth_free(_hidden_aes_128_cbc);
259 _hidden_aes_128_cbc = NULL;
260 }
261
262 _hidden_aes_128_cbc_hmac_sha1 = EVP_CIPHER_meth_new(
263 NID_aes_128_cbc_hmac_sha1,
264 16 /* block size */,
265 16 /* key len */);
266 if (_hidden_aes_128_cbc_hmac_sha1 == NULL
267 || !EVP_CIPHER_meth_set_iv_length(_hidden_aes_128_cbc_hmac_sha1,16)
268 || !EVP_CIPHER_meth_set_flags(_hidden_aes_128_cbc_hmac_sha1,
269 EVP_CIPH_CBC_MODE
270 | EVP_CIPH_FLAG_DEFAULT_ASN1
271 | EVP_CIPH_FLAG_AEAD_CIPHER
272 | EVP_CIPH_FLAG_PIPELINE)
273 || !EVP_CIPHER_meth_set_init(_hidden_aes_128_cbc_hmac_sha1,
274 dasync_aes128_cbc_hmac_sha1_init_key)
275 || !EVP_CIPHER_meth_set_do_cipher(_hidden_aes_128_cbc_hmac_sha1,
276 dasync_aes128_cbc_hmac_sha1_cipher)
277 || !EVP_CIPHER_meth_set_cleanup(_hidden_aes_128_cbc_hmac_sha1,
278 dasync_aes128_cbc_hmac_sha1_cleanup)
279 || !EVP_CIPHER_meth_set_ctrl(_hidden_aes_128_cbc_hmac_sha1,
280 dasync_aes128_cbc_hmac_sha1_ctrl)
281 || !EVP_CIPHER_meth_set_impl_ctx_size(_hidden_aes_128_cbc_hmac_sha1,
282 sizeof(struct dasync_pipeline_ctx))) {
283 EVP_CIPHER_meth_free(_hidden_aes_128_cbc_hmac_sha1);
284 _hidden_aes_128_cbc_hmac_sha1 = NULL;
285 }
286
287 return 1;
288 }
289
290 # ifndef OPENSSL_NO_DYNAMIC_ENGINE
291 static int bind_helper(ENGINE *e, const char *id)
292 {
293 if (id && (strcmp(id, engine_dasync_id) != 0))
294 return 0;
295 if (!bind_dasync(e))
296 return 0;
297 return 1;
298 }
299
300 IMPLEMENT_DYNAMIC_CHECK_FN()
301 IMPLEMENT_DYNAMIC_BIND_FN(bind_helper)
302 # endif
303
304 static ENGINE *engine_dasync(void)
305 {
306 ENGINE *ret = ENGINE_new();
307 if (!ret)
308 return NULL;
309 if (!bind_dasync(ret)) {
310 ENGINE_free(ret);
311 return NULL;
312 }
313 return ret;
314 }
315
316 void engine_load_dasync_int(void)
317 {
318 ENGINE *toadd = engine_dasync();
319 if (!toadd)
320 return;
321 ENGINE_add(toadd);
322 ENGINE_free(toadd);
323 ERR_clear_error();
324 }
325
326 static int dasync_init(ENGINE *e)
327 {
328 return 1;
329 }
330
331
332 static int dasync_finish(ENGINE *e)
333 {
334 return 1;
335 }
336
337
338 static int dasync_destroy(ENGINE *e)
339 {
340 destroy_digests();
341 destroy_ciphers();
342 RSA_meth_free(dasync_rsa_method);
343 ERR_unload_DASYNC_strings();
344 return 1;
345 }
346
347 static int dasync_digests(ENGINE *e, const EVP_MD **digest,
348 const int **nids, int nid)
349 {
350 int ok = 1;
351 if (!digest) {
352 /* We are returning a list of supported nids */
353 return dasync_digest_nids(nids);
354 }
355 /* We are being asked for a specific digest */
356 switch (nid) {
357 case NID_sha1:
358 *digest = dasync_sha1();
359 break;
360 default:
361 ok = 0;
362 *digest = NULL;
363 break;
364 }
365 return ok;
366 }
367
368 static int dasync_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
369 const int **nids, int nid)
370 {
371 int ok = 1;
372 if (cipher == NULL) {
373 /* We are returning a list of supported nids */
374 *nids = dasync_cipher_nids;
375 return (sizeof(dasync_cipher_nids) -
376 1) / sizeof(dasync_cipher_nids[0]);
377 }
378 /* We are being asked for a specific cipher */
379 switch (nid) {
380 case NID_aes_128_cbc:
381 *cipher = dasync_aes_128_cbc();
382 break;
383 case NID_aes_128_cbc_hmac_sha1:
384 *cipher = dasync_aes_128_cbc_hmac_sha1();
385 break;
386 default:
387 ok = 0;
388 *cipher = NULL;
389 break;
390 }
391 return ok;
392 }
393
394 static void wait_cleanup(ASYNC_WAIT_CTX *ctx, const void *key,
395 OSSL_ASYNC_FD readfd, void *pvwritefd)
396 {
397 OSSL_ASYNC_FD *pwritefd = (OSSL_ASYNC_FD *)pvwritefd;
398 #if defined(ASYNC_WIN)
399 CloseHandle(readfd);
400 CloseHandle(*pwritefd);
401 #elif defined(ASYNC_POSIX)
402 close(readfd);
403 close(*pwritefd);
404 #endif
405 OPENSSL_free(pwritefd);
406 }
407
408 #define DUMMY_CHAR 'X'
409
410 static void dummy_pause_job(void) {
411 ASYNC_JOB *job;
412 ASYNC_WAIT_CTX *waitctx;
413 ASYNC_callback_fn callback;
414 void * callback_arg;
415 OSSL_ASYNC_FD pipefds[2] = {0, 0};
416 OSSL_ASYNC_FD *writefd;
417 #if defined(ASYNC_WIN)
418 DWORD numwritten, numread;
419 char buf = DUMMY_CHAR;
420 #elif defined(ASYNC_POSIX)
421 char buf = DUMMY_CHAR;
422 #endif
423
424 if ((job = ASYNC_get_current_job()) == NULL)
425 return;
426
427 waitctx = ASYNC_get_wait_ctx(job);
428
429 if (ASYNC_WAIT_CTX_get_callback(waitctx, &callback, &callback_arg) && callback != NULL) {
430 /*
431 * In the Dummy async engine we are cheating. We call the callback that the job
432 * is complete before the call to ASYNC_pause_job(). A real
433 * async engine would only call the callback when the job was actually complete
434 */
435 (*callback)(callback_arg);
436 ASYNC_pause_job();
437 return;
438 }
439
440
441 if (ASYNC_WAIT_CTX_get_fd(waitctx, engine_dasync_id, &pipefds[0],
442 (void **)&writefd)) {
443 pipefds[1] = *writefd;
444 } else {
445 writefd = OPENSSL_malloc(sizeof(*writefd));
446 if (writefd == NULL)
447 return;
448 #if defined(ASYNC_WIN)
449 if (CreatePipe(&pipefds[0], &pipefds[1], NULL, 256) == 0) {
450 OPENSSL_free(writefd);
451 return;
452 }
453 #elif defined(ASYNC_POSIX)
454 if (pipe(pipefds) != 0) {
455 OPENSSL_free(writefd);
456 return;
457 }
458 #endif
459 *writefd = pipefds[1];
460
461 if (!ASYNC_WAIT_CTX_set_wait_fd(waitctx, engine_dasync_id, pipefds[0],
462 writefd, wait_cleanup)) {
463 wait_cleanup(waitctx, engine_dasync_id, pipefds[0], writefd);
464 return;
465 }
466 }
467 /*
468 * In the Dummy async engine we are cheating. We signal that the job
469 * is complete by waking it before the call to ASYNC_pause_job(). A real
470 * async engine would only wake when the job was actually complete
471 */
472 #if defined(ASYNC_WIN)
473 WriteFile(pipefds[1], &buf, 1, &numwritten, NULL);
474 #elif defined(ASYNC_POSIX)
475 if (write(pipefds[1], &buf, 1) < 0)
476 return;
477 #endif
478
479 /* Ignore errors - we carry on anyway */
480 ASYNC_pause_job();
481
482 /* Clear the wake signal */
483 #if defined(ASYNC_WIN)
484 ReadFile(pipefds[0], &buf, 1, &numread, NULL);
485 #elif defined(ASYNC_POSIX)
486 if (read(pipefds[0], &buf, 1) < 0)
487 return;
488 #endif
489 }
490
491 /*
492 * SHA1 implementation. At the moment we just defer to the standard
493 * implementation
494 */
495 #undef data
496 #define data(ctx) ((SHA_CTX *)EVP_MD_CTX_md_data(ctx))
497 static int dasync_sha1_init(EVP_MD_CTX *ctx)
498 {
499 dummy_pause_job();
500
501 return SHA1_Init(data(ctx));
502 }
503
504 static int dasync_sha1_update(EVP_MD_CTX *ctx, const void *data,
505 size_t count)
506 {
507 dummy_pause_job();
508
509 return SHA1_Update(data(ctx), data, (size_t)count);
510 }
511
512 static int dasync_sha1_final(EVP_MD_CTX *ctx, unsigned char *md)
513 {
514 dummy_pause_job();
515
516 return SHA1_Final(md, data(ctx));
517 }
518
519 /*
520 * RSA implementation
521 */
522
523 static int dasync_pub_enc(int flen, const unsigned char *from,
524 unsigned char *to, RSA *rsa, int padding) {
525 /* Ignore errors - we carry on anyway */
526 dummy_pause_job();
527 return RSA_meth_get_pub_enc(RSA_PKCS1_OpenSSL())
528 (flen, from, to, rsa, padding);
529 }
530
531 static int dasync_pub_dec(int flen, const unsigned char *from,
532 unsigned char *to, RSA *rsa, int padding) {
533 /* Ignore errors - we carry on anyway */
534 dummy_pause_job();
535 return RSA_meth_get_pub_dec(RSA_PKCS1_OpenSSL())
536 (flen, from, to, rsa, padding);
537 }
538
539 static int dasync_rsa_priv_enc(int flen, const unsigned char *from,
540 unsigned char *to, RSA *rsa, int padding)
541 {
542 /* Ignore errors - we carry on anyway */
543 dummy_pause_job();
544 return RSA_meth_get_priv_enc(RSA_PKCS1_OpenSSL())
545 (flen, from, to, rsa, padding);
546 }
547
548 static int dasync_rsa_priv_dec(int flen, const unsigned char *from,
549 unsigned char *to, RSA *rsa, int padding)
550 {
551 /* Ignore errors - we carry on anyway */
552 dummy_pause_job();
553 return RSA_meth_get_priv_dec(RSA_PKCS1_OpenSSL())
554 (flen, from, to, rsa, padding);
555 }
556
557 static int dasync_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx)
558 {
559 /* Ignore errors - we carry on anyway */
560 dummy_pause_job();
561 return RSA_meth_get_mod_exp(RSA_PKCS1_OpenSSL())(r0, I, rsa, ctx);
562 }
563
564 static int dasync_rsa_init(RSA *rsa)
565 {
566 return RSA_meth_get_init(RSA_PKCS1_OpenSSL())(rsa);
567 }
568 static int dasync_rsa_finish(RSA *rsa)
569 {
570 return RSA_meth_get_finish(RSA_PKCS1_OpenSSL())(rsa);
571 }
572
573 /* Cipher helper functions */
574
575 static int dasync_cipher_ctrl_helper(EVP_CIPHER_CTX *ctx, int type, int arg,
576 void *ptr, int aeadcapable)
577 {
578 int ret;
579 struct dasync_pipeline_ctx *pipe_ctx =
580 (struct dasync_pipeline_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);
581
582 if (pipe_ctx == NULL)
583 return 0;
584
585 switch (type) {
586 case EVP_CTRL_SET_PIPELINE_OUTPUT_BUFS:
587 pipe_ctx->numpipes = arg;
588 pipe_ctx->outbufs = (unsigned char **)ptr;
589 break;
590
591 case EVP_CTRL_SET_PIPELINE_INPUT_BUFS:
592 pipe_ctx->numpipes = arg;
593 pipe_ctx->inbufs = (unsigned char **)ptr;
594 break;
595
596 case EVP_CTRL_SET_PIPELINE_INPUT_LENS:
597 pipe_ctx->numpipes = arg;
598 pipe_ctx->lens = (size_t *)ptr;
599 break;
600
601 case EVP_CTRL_AEAD_SET_MAC_KEY:
602 if (!aeadcapable)
603 return -1;
604 EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx->inner_cipher_data);
605 ret = EVP_CIPHER_meth_get_ctrl(EVP_aes_128_cbc_hmac_sha1())
606 (ctx, type, arg, ptr);
607 EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx);
608 return ret;
609
610 case EVP_CTRL_AEAD_TLS1_AAD:
611 {
612 unsigned char *p = ptr;
613 unsigned int len;
614
615 if (!aeadcapable || arg != EVP_AEAD_TLS1_AAD_LEN)
616 return -1;
617
618 if (pipe_ctx->aadctr >= SSL_MAX_PIPELINES)
619 return -1;
620
621 memcpy(pipe_ctx->tlsaad[pipe_ctx->aadctr], ptr,
622 EVP_AEAD_TLS1_AAD_LEN);
623 pipe_ctx->aadctr++;
624
625 len = p[arg - 2] << 8 | p[arg - 1];
626
627 if (EVP_CIPHER_CTX_encrypting(ctx)) {
628 if ((p[arg - 4] << 8 | p[arg - 3]) >= TLS1_1_VERSION) {
629 if (len < AES_BLOCK_SIZE)
630 return 0;
631 len -= AES_BLOCK_SIZE;
632 }
633
634 return ((len + SHA_DIGEST_LENGTH + AES_BLOCK_SIZE)
635 & -AES_BLOCK_SIZE) - len;
636 } else {
637 return SHA_DIGEST_LENGTH;
638 }
639 }
640
641 default:
642 return 0;
643 }
644
645 return 1;
646 }
647
648 static int dasync_cipher_init_key_helper(EVP_CIPHER_CTX *ctx,
649 const unsigned char *key,
650 const unsigned char *iv, int enc,
651 const EVP_CIPHER *cipher)
652 {
653 int ret;
654 struct dasync_pipeline_ctx *pipe_ctx =
655 (struct dasync_pipeline_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);
656
657 if (pipe_ctx->inner_cipher_data == NULL
658 && EVP_CIPHER_impl_ctx_size(cipher) != 0) {
659 pipe_ctx->inner_cipher_data = OPENSSL_zalloc(
660 EVP_CIPHER_impl_ctx_size(cipher));
661 if (pipe_ctx->inner_cipher_data == NULL) {
662 DASYNCerr(DASYNC_F_DASYNC_CIPHER_INIT_KEY_HELPER,
663 ERR_R_MALLOC_FAILURE);
664 return 0;
665 }
666 }
667
668 pipe_ctx->numpipes = 0;
669 pipe_ctx->aadctr = 0;
670
671 EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx->inner_cipher_data);
672 ret = EVP_CIPHER_meth_get_init(cipher)(ctx, key, iv, enc);
673 EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx);
674
675 return ret;
676 }
677
678 static int dasync_cipher_helper(EVP_CIPHER_CTX *ctx, unsigned char *out,
679 const unsigned char *in, size_t inl,
680 const EVP_CIPHER *cipher)
681 {
682 int ret = 1;
683 unsigned int i, pipes;
684 struct dasync_pipeline_ctx *pipe_ctx =
685 (struct dasync_pipeline_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);
686
687 pipes = pipe_ctx->numpipes;
688 EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx->inner_cipher_data);
689 if (pipes == 0) {
690 if (pipe_ctx->aadctr != 0) {
691 if (pipe_ctx->aadctr != 1)
692 return -1;
693 EVP_CIPHER_meth_get_ctrl(cipher)
694 (ctx, EVP_CTRL_AEAD_TLS1_AAD,
695 EVP_AEAD_TLS1_AAD_LEN,
696 pipe_ctx->tlsaad[0]);
697 }
698 ret = EVP_CIPHER_meth_get_do_cipher(cipher)
699 (ctx, out, in, inl);
700 } else {
701 if (pipe_ctx->aadctr > 0 && pipe_ctx->aadctr != pipes)
702 return -1;
703 for (i = 0; i < pipes; i++) {
704 if (pipe_ctx->aadctr > 0) {
705 EVP_CIPHER_meth_get_ctrl(cipher)
706 (ctx, EVP_CTRL_AEAD_TLS1_AAD,
707 EVP_AEAD_TLS1_AAD_LEN,
708 pipe_ctx->tlsaad[i]);
709 }
710 ret = ret && EVP_CIPHER_meth_get_do_cipher(cipher)
711 (ctx, pipe_ctx->outbufs[i], pipe_ctx->inbufs[i],
712 pipe_ctx->lens[i]);
713 }
714 pipe_ctx->numpipes = 0;
715 }
716 pipe_ctx->aadctr = 0;
717 EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx);
718 return ret;
719 }
720
721 static int dasync_cipher_cleanup_helper(EVP_CIPHER_CTX *ctx,
722 const EVP_CIPHER *cipher)
723 {
724 struct dasync_pipeline_ctx *pipe_ctx =
725 (struct dasync_pipeline_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);
726
727 OPENSSL_clear_free(pipe_ctx->inner_cipher_data,
728 EVP_CIPHER_impl_ctx_size(cipher));
729
730 return 1;
731 }
732
733 /*
734 * AES128 CBC Implementation
735 */
736
737 static int dasync_aes128_cbc_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
738 void *ptr)
739 {
740 return dasync_cipher_ctrl_helper(ctx, type, arg, ptr, 0);
741 }
742
743 static int dasync_aes128_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
744 const unsigned char *iv, int enc)
745 {
746 return dasync_cipher_init_key_helper(ctx, key, iv, enc, EVP_aes_128_cbc());
747 }
748
749 static int dasync_aes128_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
750 const unsigned char *in, size_t inl)
751 {
752 return dasync_cipher_helper(ctx, out, in, inl, EVP_aes_128_cbc());
753 }
754
755 static int dasync_aes128_cbc_cleanup(EVP_CIPHER_CTX *ctx)
756 {
757 return dasync_cipher_cleanup_helper(ctx, EVP_aes_128_cbc());
758 }
759
760
761 /*
762 * AES128 CBC HMAC SHA1 Implementation
763 */
764
765 static int dasync_aes128_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type,
766 int arg, void *ptr)
767 {
768 return dasync_cipher_ctrl_helper(ctx, type, arg, ptr, 1);
769 }
770
771 static int dasync_aes128_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
772 const unsigned char *key,
773 const unsigned char *iv,
774 int enc)
775 {
776 /*
777 * We can safely assume that EVP_aes_128_cbc_hmac_sha1() != NULL,
778 * see comment before the definition of dasync_aes_128_cbc_hmac_sha1().
779 */
780 return dasync_cipher_init_key_helper(ctx, key, iv, enc,
781 EVP_aes_128_cbc_hmac_sha1());
782 }
783
784 static int dasync_aes128_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx,
785 unsigned char *out,
786 const unsigned char *in,
787 size_t inl)
788 {
789 return dasync_cipher_helper(ctx, out, in, inl, EVP_aes_128_cbc_hmac_sha1());
790 }
791
792 static int dasync_aes128_cbc_hmac_sha1_cleanup(EVP_CIPHER_CTX *ctx)
793 {
794 /*
795 * We can safely assume that EVP_aes_128_cbc_hmac_sha1() != NULL,
796 * see comment before the definition of dasync_aes_128_cbc_hmac_sha1().
797 */
798 return dasync_cipher_cleanup_helper(ctx, EVP_aes_128_cbc_hmac_sha1());
799 }