]> git.ipfire.org Git - thirdparty/openssl.git/blob - providers/common/kdfs/tls1_prf.c
Reorganize private crypto header files
[thirdparty/openssl.git] / providers / common / kdfs / tls1_prf.c
1 /*
2 * Copyright 2016-2019 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /*
11 * Refer to "The TLS Protocol Version 1.0" Section 5
12 * (https://tools.ietf.org/html/rfc2246#section-5) and
13 * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5
14 * (https://tools.ietf.org/html/rfc5246#section-5).
15 *
16 * For TLS v1.0 and TLS v1.1 the TLS PRF algorithm is given by:
17 *
18 * PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR
19 * P_SHA-1(S2, label + seed)
20 *
21 * where P_MD5 and P_SHA-1 are defined by P_<hash>, below, and S1 and S2 are
22 * two halves of the secret (with the possibility of one shared byte, in the
23 * case where the length of the original secret is odd). S1 is taken from the
24 * first half of the secret, S2 from the second half.
25 *
26 * For TLS v1.2 the TLS PRF algorithm is given by:
27 *
28 * PRF(secret, label, seed) = P_<hash>(secret, label + seed)
29 *
30 * where hash is SHA-256 for all cipher suites defined in RFC 5246 as well as
31 * those published prior to TLS v1.2 while the TLS v1.2 protocol is in effect,
32 * unless defined otherwise by the cipher suite.
33 *
34 * P_<hash> is an expansion function that uses a single hash function to expand
35 * a secret and seed into an arbitrary quantity of output:
36 *
37 * P_<hash>(secret, seed) = HMAC_<hash>(secret, A(1) + seed) +
38 * HMAC_<hash>(secret, A(2) + seed) +
39 * HMAC_<hash>(secret, A(3) + seed) + ...
40 *
41 * where + indicates concatenation. P_<hash> can be iterated as many times as
42 * is necessary to produce the required quantity of data.
43 *
44 * A(i) is defined as:
45 * A(0) = seed
46 * A(i) = HMAC_<hash>(secret, A(i-1))
47 */
48 #include <stdio.h>
49 #include <stdarg.h>
50 #include <string.h>
51 #include <openssl/evp.h>
52 #include <openssl/kdf.h>
53 #include <openssl/core_names.h>
54 #include <openssl/params.h>
55 #include "internal/cryptlib.h"
56 #include "internal/numbers.h"
57 #include "crypto/evp.h"
58 #include "internal/provider_ctx.h"
59 #include "internal/providercommonerr.h"
60 #include "internal/provider_algs.h"
61 #include "internal/provider_util.h"
62 #include "e_os.h"
63
64 static OSSL_OP_kdf_newctx_fn kdf_tls1_prf_new;
65 static OSSL_OP_kdf_freectx_fn kdf_tls1_prf_free;
66 static OSSL_OP_kdf_reset_fn kdf_tls1_prf_reset;
67 static OSSL_OP_kdf_derive_fn kdf_tls1_prf_derive;
68 static OSSL_OP_kdf_settable_ctx_params_fn kdf_tls1_prf_settable_ctx_params;
69 static OSSL_OP_kdf_set_ctx_params_fn kdf_tls1_prf_set_ctx_params;
70
71 static int tls1_prf_alg(EVP_MAC_CTX *mdctx, EVP_MAC_CTX *sha1ctx,
72 const unsigned char *sec, size_t slen,
73 const unsigned char *seed, size_t seed_len,
74 unsigned char *out, size_t olen);
75
76 #define TLS1_PRF_MAXBUF 1024
77
78 /* TLS KDF kdf context structure */
79 typedef struct {
80 void *provctx;
81
82 /* MAC context for the main digest */
83 EVP_MAC_CTX *P_hash;
84 /* MAC context for SHA1 for the MD5/SHA-1 combined PRF */
85 EVP_MAC_CTX *P_sha1;
86
87 /* Secret value to use for PRF */
88 unsigned char *sec;
89 size_t seclen;
90 /* Buffer of concatenated seed data */
91 unsigned char seed[TLS1_PRF_MAXBUF];
92 size_t seedlen;
93 } TLS1_PRF;
94
95 static void *kdf_tls1_prf_new(void *provctx)
96 {
97 TLS1_PRF *ctx;
98
99 if ((ctx = OPENSSL_zalloc(sizeof(*ctx))) == NULL)
100 ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
101 ctx->provctx = provctx;
102 return ctx;
103 }
104
105 static void kdf_tls1_prf_free(void *vctx)
106 {
107 TLS1_PRF *ctx = (TLS1_PRF *)vctx;
108
109 kdf_tls1_prf_reset(ctx);
110 OPENSSL_free(ctx);
111 }
112
113 static void kdf_tls1_prf_reset(void *vctx)
114 {
115 TLS1_PRF *ctx = (TLS1_PRF *)vctx;
116
117 EVP_MAC_CTX_free(ctx->P_hash);
118 EVP_MAC_CTX_free(ctx->P_sha1);
119 OPENSSL_clear_free(ctx->sec, ctx->seclen);
120 OPENSSL_cleanse(ctx->seed, ctx->seedlen);
121 memset(ctx, 0, sizeof(*ctx));
122 }
123
124 static int kdf_tls1_prf_derive(void *vctx, unsigned char *key,
125 size_t keylen)
126 {
127 TLS1_PRF *ctx = (TLS1_PRF *)vctx;
128
129 if (ctx->P_hash == NULL) {
130 ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_MESSAGE_DIGEST);
131 return 0;
132 }
133 if (ctx->sec == NULL) {
134 ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SECRET);
135 return 0;
136 }
137 if (ctx->seedlen == 0) {
138 ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SEED);
139 return 0;
140 }
141
142 return tls1_prf_alg(ctx->P_hash, ctx->P_sha1,
143 ctx->sec, ctx->seclen,
144 ctx->seed, ctx->seedlen,
145 key, keylen);
146 }
147
148 static int kdf_tls1_prf_set_ctx_params(void *vctx, const OSSL_PARAM params[])
149 {
150 const OSSL_PARAM *p;
151 TLS1_PRF *ctx = vctx;
152 OPENSSL_CTX *libctx = PROV_LIBRARY_CONTEXT_OF(ctx->provctx);
153
154 if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_DIGEST)) != NULL) {
155 if (strcasecmp(p->data, SN_md5_sha1) == 0) {
156 if (!ossl_prov_macctx_load_from_params(&ctx->P_hash, params,
157 OSSL_MAC_NAME_HMAC,
158 NULL, SN_md5, libctx)
159 || !ossl_prov_macctx_load_from_params(&ctx->P_sha1, params,
160 OSSL_MAC_NAME_HMAC,
161 NULL, SN_sha1, libctx))
162 return 0;
163 } else {
164 EVP_MAC_CTX_free(ctx->P_sha1);
165 if (!ossl_prov_macctx_load_from_params(&ctx->P_hash, params,
166 OSSL_MAC_NAME_HMAC,
167 NULL, NULL, libctx))
168 return 0;
169 }
170 }
171
172 if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SECRET)) != NULL) {
173 OPENSSL_clear_free(ctx->sec, ctx->seclen);
174 ctx->sec = NULL;
175 if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->sec, 0, &ctx->seclen))
176 return 0;
177 }
178 /* The seed fields concatenate, so process them all */
179 if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SEED)) != NULL) {
180 OPENSSL_cleanse(ctx->seed, ctx->seedlen);
181 ctx->seedlen = 0;
182
183 for (; p != NULL; p = OSSL_PARAM_locate_const(p + 1,
184 OSSL_KDF_PARAM_SEED)) {
185 const void *q = ctx->seed + ctx->seedlen;
186 size_t sz = 0;
187
188 if (p->data_size != 0
189 && p->data != NULL
190 && !OSSL_PARAM_get_octet_string(p, (void **)&q,
191 TLS1_PRF_MAXBUF - ctx->seedlen,
192 &sz))
193 return 0;
194 ctx->seedlen += sz;
195 }
196 }
197 return 1;
198 }
199
200 static const OSSL_PARAM *kdf_tls1_prf_settable_ctx_params(void)
201 {
202 static const OSSL_PARAM known_settable_ctx_params[] = {
203 OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0),
204 OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_DIGEST, NULL, 0),
205 OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SECRET, NULL, 0),
206 OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SEED, NULL, 0),
207 OSSL_PARAM_END
208 };
209 return known_settable_ctx_params;
210 }
211
212 static int kdf_tls1_prf_get_ctx_params(void *vctx, OSSL_PARAM params[])
213 {
214 OSSL_PARAM *p;
215
216 if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL)
217 return OSSL_PARAM_set_size_t(p, SIZE_MAX);
218 return -2;
219 }
220
221 static const OSSL_PARAM *kdf_tls1_prf_gettable_ctx_params(void)
222 {
223 static const OSSL_PARAM known_gettable_ctx_params[] = {
224 OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL),
225 OSSL_PARAM_END
226 };
227 return known_gettable_ctx_params;
228 }
229
230 const OSSL_DISPATCH kdf_tls1_prf_functions[] = {
231 { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_tls1_prf_new },
232 { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_tls1_prf_free },
233 { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_tls1_prf_reset },
234 { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_tls1_prf_derive },
235 { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
236 (void(*)(void))kdf_tls1_prf_settable_ctx_params },
237 { OSSL_FUNC_KDF_SET_CTX_PARAMS,
238 (void(*)(void))kdf_tls1_prf_set_ctx_params },
239 { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
240 (void(*)(void))kdf_tls1_prf_gettable_ctx_params },
241 { OSSL_FUNC_KDF_GET_CTX_PARAMS,
242 (void(*)(void))kdf_tls1_prf_get_ctx_params },
243 { 0, NULL }
244 };
245
246 /*
247 * Refer to "The TLS Protocol Version 1.0" Section 5
248 * (https://tools.ietf.org/html/rfc2246#section-5) and
249 * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5
250 * (https://tools.ietf.org/html/rfc5246#section-5).
251 *
252 * P_<hash> is an expansion function that uses a single hash function to expand
253 * a secret and seed into an arbitrary quantity of output:
254 *
255 * P_<hash>(secret, seed) = HMAC_<hash>(secret, A(1) + seed) +
256 * HMAC_<hash>(secret, A(2) + seed) +
257 * HMAC_<hash>(secret, A(3) + seed) + ...
258 *
259 * where + indicates concatenation. P_<hash> can be iterated as many times as
260 * is necessary to produce the required quantity of data.
261 *
262 * A(i) is defined as:
263 * A(0) = seed
264 * A(i) = HMAC_<hash>(secret, A(i-1))
265 */
266 static int tls1_prf_P_hash(EVP_MAC_CTX *ctx_init,
267 const unsigned char *sec, size_t sec_len,
268 const unsigned char *seed, size_t seed_len,
269 unsigned char *out, size_t olen)
270 {
271 size_t chunk;
272 EVP_MAC_CTX *ctx = NULL, *ctx_Ai = NULL;
273 unsigned char Ai[EVP_MAX_MD_SIZE];
274 size_t Ai_len;
275 int ret = 0;
276 OSSL_PARAM params[2], *p = params;
277
278 *p++ = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
279 (void *)sec, sec_len);
280 *p = OSSL_PARAM_construct_end();
281 if (!EVP_MAC_CTX_set_params(ctx_init, params))
282 goto err;
283 if (!EVP_MAC_init(ctx_init))
284 goto err;
285 chunk = EVP_MAC_size(ctx_init);
286 if (chunk == 0)
287 goto err;
288 /* A(0) = seed */
289 ctx_Ai = EVP_MAC_CTX_dup(ctx_init);
290 if (ctx_Ai == NULL)
291 goto err;
292 if (seed != NULL && !EVP_MAC_update(ctx_Ai, seed, seed_len))
293 goto err;
294
295 for (;;) {
296 /* calc: A(i) = HMAC_<hash>(secret, A(i-1)) */
297 if (!EVP_MAC_final(ctx_Ai, Ai, &Ai_len, sizeof(Ai)))
298 goto err;
299 EVP_MAC_CTX_free(ctx_Ai);
300 ctx_Ai = NULL;
301
302 /* calc next chunk: HMAC_<hash>(secret, A(i) + seed) */
303 ctx = EVP_MAC_CTX_dup(ctx_init);
304 if (ctx == NULL)
305 goto err;
306 if (!EVP_MAC_update(ctx, Ai, Ai_len))
307 goto err;
308 /* save state for calculating next A(i) value */
309 if (olen > chunk) {
310 ctx_Ai = EVP_MAC_CTX_dup(ctx);
311 if (ctx_Ai == NULL)
312 goto err;
313 }
314 if (seed != NULL && !EVP_MAC_update(ctx, seed, seed_len))
315 goto err;
316 if (olen <= chunk) {
317 /* last chunk - use Ai as temp bounce buffer */
318 if (!EVP_MAC_final(ctx, Ai, &Ai_len, sizeof(Ai)))
319 goto err;
320 memcpy(out, Ai, olen);
321 break;
322 }
323 if (!EVP_MAC_final(ctx, out, NULL, olen))
324 goto err;
325 EVP_MAC_CTX_free(ctx);
326 ctx = NULL;
327 out += chunk;
328 olen -= chunk;
329 }
330 ret = 1;
331 err:
332 EVP_MAC_CTX_free(ctx);
333 EVP_MAC_CTX_free(ctx_Ai);
334 OPENSSL_cleanse(Ai, sizeof(Ai));
335 return ret;
336 }
337
338 /*
339 * Refer to "The TLS Protocol Version 1.0" Section 5
340 * (https://tools.ietf.org/html/rfc2246#section-5) and
341 * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5
342 * (https://tools.ietf.org/html/rfc5246#section-5).
343 *
344 * For TLS v1.0 and TLS v1.1:
345 *
346 * PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR
347 * P_SHA-1(S2, label + seed)
348 *
349 * S1 is taken from the first half of the secret, S2 from the second half.
350 *
351 * L_S = length in bytes of secret;
352 * L_S1 = L_S2 = ceil(L_S / 2);
353 *
354 * For TLS v1.2:
355 *
356 * PRF(secret, label, seed) = P_<hash>(secret, label + seed)
357 */
358 static int tls1_prf_alg(EVP_MAC_CTX *mdctx, EVP_MAC_CTX *sha1ctx,
359 const unsigned char *sec, size_t slen,
360 const unsigned char *seed, size_t seed_len,
361 unsigned char *out, size_t olen)
362 {
363 if (sha1ctx != NULL) {
364 /* TLS v1.0 and TLS v1.1 */
365 size_t i;
366 unsigned char *tmp;
367 /* calc: L_S1 = L_S2 = ceil(L_S / 2) */
368 size_t L_S1 = (slen + 1) / 2;
369 size_t L_S2 = L_S1;
370
371 if (!tls1_prf_P_hash(mdctx, sec, L_S1,
372 seed, seed_len, out, olen))
373 return 0;
374
375 if ((tmp = OPENSSL_malloc(olen)) == NULL) {
376 ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
377 return 0;
378 }
379
380 if (!tls1_prf_P_hash(sha1ctx, sec + slen - L_S2, L_S2,
381 seed, seed_len, tmp, olen)) {
382 OPENSSL_clear_free(tmp, olen);
383 return 0;
384 }
385 for (i = 0; i < olen; i++)
386 out[i] ^= tmp[i];
387 OPENSSL_clear_free(tmp, olen);
388 return 1;
389 }
390
391 /* TLS v1.2 */
392 if (!tls1_prf_P_hash(mdctx, sec, slen, seed, seed_len, out, olen))
393 return 0;
394
395 return 1;
396 }