]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/priority_queue.c
Add OPENSSL_riscvcap man page
[thirdparty/openssl.git] / ssl / priority_queue.c
1 /*
2 * Copyright 2022-2023 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <openssl/crypto.h>
11 #include <openssl/err.h>
12 #include <assert.h>
13 #include "internal/priority_queue.h"
14 #include "internal/safe_math.h"
15 #include "internal/numbers.h"
16
17 OSSL_SAFE_MATH_UNSIGNED(size_t, size_t)
18
19 /*
20 * Fundamental operations:
21 * Binary Heap Fibonacci Heap
22 * Get smallest O(1) O(1)
23 * Delete any O(log n) O(log n) average but worst O(n)
24 * Insert O(log n) O(1)
25 *
26 * Not supported:
27 * Merge two structures O(log n) O(1)
28 * Decrease key O(log n) O(1)
29 * Increase key O(log n) ?
30 *
31 * The Fibonacci heap is quite a bit more complicated to implement and has
32 * larger overhead in practice. We favour the binary heap here. A multi-way
33 * (ternary or quaternary) heap might elicit a performance advantage via better
34 * cache access patterns.
35 */
36
37 struct pq_heap_st {
38 void *data; /* User supplied data pointer */
39 size_t index; /* Constant index in elements[] */
40 };
41
42 struct pq_elem_st {
43 size_t posn; /* Current index in heap[] or link in free list */
44 #ifndef NDEBUG
45 int used; /* Debug flag indicating that this is in use */
46 #endif
47 };
48
49 struct ossl_pqueue_st
50 {
51 struct pq_heap_st *heap;
52 struct pq_elem_st *elements;
53 int (*compare)(const void *, const void *);
54 size_t htop; /* Highest used heap element */
55 size_t hmax; /* Allocated heap & element space */
56 size_t freelist; /* Index into elements[], start of free element list */
57 };
58
59 /*
60 * The initial and maximum number of elements in the heap.
61 */
62 static const size_t min_nodes = 8;
63 static const size_t max_nodes =
64 SIZE_MAX / (sizeof(struct pq_heap_st) > sizeof(struct pq_elem_st)
65 ? sizeof(struct pq_heap_st) : sizeof(struct pq_elem_st));
66
67 #ifndef NDEBUG
68 /* Some basic sanity checking of the data structure */
69 # define ASSERT_USED(pq, idx) \
70 assert(pq->elements[pq->heap[idx].index].used); \
71 assert(pq->elements[pq->heap[idx].index].posn == idx)
72 # define ASSERT_ELEM_USED(pq, elem) \
73 assert(pq->elements[elem].used)
74 #else
75 # define ASSERT_USED(pq, idx)
76 # define ASSERT_ELEM_USED(pq, elem)
77 #endif
78
79 /*
80 * Calculate the array growth based on the target size.
81 *
82 * The growth factor is a rational number and is defined by a numerator
83 * and a denominator. According to Andrew Koenig in his paper "Why Are
84 * Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less
85 * than the golden ratio (1.618...).
86 *
87 * We use an expansion factor of 8 / 5 = 1.6
88 */
89 static ossl_inline size_t compute_pqueue_growth(size_t target, size_t current)
90 {
91 int err = 0;
92
93 while (current < target) {
94 if (current >= max_nodes)
95 return 0;
96
97 current = safe_muldiv_size_t(current, 8, 5, &err);
98 if (err)
99 return 0;
100 if (current >= max_nodes)
101 current = max_nodes;
102 }
103 return current;
104 }
105
106 static ossl_inline void pqueue_swap_elem(OSSL_PQUEUE *pq, size_t i, size_t j)
107 {
108 struct pq_heap_st *h = pq->heap, t_h;
109 struct pq_elem_st *e = pq->elements;
110
111 ASSERT_USED(pq, i);
112 ASSERT_USED(pq, j);
113
114 t_h = h[i];
115 h[i] = h[j];
116 h[j] = t_h;
117
118 e[h[i].index].posn = i;
119 e[h[j].index].posn = j;
120 }
121
122 static ossl_inline void pqueue_move_elem(OSSL_PQUEUE *pq, size_t from, size_t to)
123 {
124 struct pq_heap_st *h = pq->heap;
125 struct pq_elem_st *e = pq->elements;
126
127 ASSERT_USED(pq, from);
128
129 h[to] = h[from];
130 e[h[to].index].posn = to;
131 }
132
133 /*
134 * Force the specified element to the front of the heap. This breaks
135 * the heap partial ordering pre-condition.
136 */
137 static ossl_inline void pqueue_force_bottom(OSSL_PQUEUE *pq, size_t n)
138 {
139 ASSERT_USED(pq, n);
140 while (n > 0) {
141 const size_t p = (n - 1) / 2;
142
143 ASSERT_USED(pq, p);
144 pqueue_swap_elem(pq, n, p);
145 n = p;
146 }
147 }
148
149 /*
150 * Move an element down to its correct position to restore the partial
151 * order pre-condition.
152 */
153 static ossl_inline void pqueue_move_down(OSSL_PQUEUE *pq, size_t n)
154 {
155 struct pq_heap_st *h = pq->heap;
156
157 ASSERT_USED(pq, n);
158 while (n > 0) {
159 const size_t p = (n - 1) / 2;
160
161 ASSERT_USED(pq, p);
162 if (pq->compare(h[n].data, h[p].data) >= 0)
163 break;
164 pqueue_swap_elem(pq, n, p);
165 n = p;
166 }
167 }
168
169 /*
170 * Move an element up to its correct position to restore the partial
171 * order pre-condition.
172 */
173 static ossl_inline void pqueue_move_up(OSSL_PQUEUE *pq, size_t n)
174 {
175 struct pq_heap_st *h = pq->heap;
176 size_t p = n * 2 + 1;
177
178 ASSERT_USED(pq, n);
179 if (pq->htop > p + 1) {
180 ASSERT_USED(pq, p);
181 ASSERT_USED(pq, p + 1);
182 if (pq->compare(h[p].data, h[p + 1].data) > 0)
183 p++;
184 }
185 while (pq->htop > p && pq->compare(h[p].data, h[n].data) < 0) {
186 ASSERT_USED(pq, p);
187 pqueue_swap_elem(pq, n, p);
188 n = p;
189 p = n * 2 + 1;
190 if (pq->htop > p + 1) {
191 ASSERT_USED(pq, p + 1);
192 if (pq->compare(h[p].data, h[p + 1].data) > 0)
193 p++;
194 }
195 }
196 }
197
198 int ossl_pqueue_push(OSSL_PQUEUE *pq, void *data, size_t *elem)
199 {
200 size_t n, m;
201
202 if (!ossl_pqueue_reserve(pq, 1))
203 return 0;
204
205 n = pq->htop++;
206 m = pq->freelist;
207 pq->freelist = pq->elements[m].posn;
208
209 pq->heap[n].data = data;
210 pq->heap[n].index = m;
211
212 pq->elements[m].posn = n;
213 #ifndef NDEBUG
214 pq->elements[m].used = 1;
215 #endif
216 pqueue_move_down(pq, n);
217 if (elem != NULL)
218 *elem = m;
219 return 1;
220 }
221
222 void *ossl_pqueue_peek(const OSSL_PQUEUE *pq)
223 {
224 if (pq->htop > 0) {
225 ASSERT_USED(pq, 0);
226 return pq->heap->data;
227 }
228 return NULL;
229 }
230
231 void *ossl_pqueue_pop(OSSL_PQUEUE *pq)
232 {
233 void *res;
234 size_t elem;
235
236 if (pq == NULL || pq->htop == 0)
237 return NULL;
238
239 ASSERT_USED(pq, 0);
240 res = pq->heap->data;
241 elem = pq->heap->index;
242
243 if (--pq->htop != 0) {
244 pqueue_move_elem(pq, pq->htop, 0);
245 pqueue_move_up(pq, 0);
246 }
247
248 pq->elements[elem].posn = pq->freelist;
249 pq->freelist = elem;
250 #ifndef NDEBUG
251 pq->elements[elem].used = 0;
252 #endif
253 return res;
254 }
255
256 void *ossl_pqueue_remove(OSSL_PQUEUE *pq, size_t elem)
257 {
258 size_t n;
259
260 if (pq == NULL || elem >= pq->hmax || pq->htop == 0)
261 return 0;
262
263 ASSERT_ELEM_USED(pq, elem);
264 n = pq->elements[elem].posn;
265
266 ASSERT_USED(pq, n);
267
268 if (n == pq->htop - 1) {
269 pq->elements[elem].posn = pq->freelist;
270 pq->freelist = elem;
271 #ifndef NDEBUG
272 pq->elements[elem].used = 0;
273 #endif
274 return pq->heap[--pq->htop].data;
275 }
276 if (n > 0)
277 pqueue_force_bottom(pq, n);
278 return ossl_pqueue_pop(pq);
279 }
280
281 static void pqueue_add_freelist(OSSL_PQUEUE *pq, size_t from)
282 {
283 struct pq_elem_st *e = pq->elements;
284 size_t i;
285
286 #ifndef NDEBUG
287 for (i = from; i < pq->hmax; i++)
288 e[i].used = 0;
289 #endif
290 e[from].posn = pq->freelist;
291 for (i = from + 1; i < pq->hmax; i++)
292 e[i].posn = i - 1;
293 pq->freelist = pq->hmax - 1;
294 }
295
296 int ossl_pqueue_reserve(OSSL_PQUEUE *pq, size_t n)
297 {
298 size_t new_max, cur_max;
299 struct pq_heap_st *h;
300 struct pq_elem_st *e;
301
302 if (pq == NULL)
303 return 0;
304 cur_max = pq->hmax;
305 if (pq->htop + n < cur_max)
306 return 1;
307
308 new_max = compute_pqueue_growth(n + cur_max, cur_max);
309 if (new_max == 0) {
310 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
311 return 0;
312 }
313
314 h = OPENSSL_realloc(pq->heap, new_max * sizeof(*pq->heap));
315 if (h == NULL)
316 return 0;
317 pq->heap = h;
318
319 e = OPENSSL_realloc(pq->elements, new_max * sizeof(*pq->elements));
320 if (e == NULL)
321 return 0;
322 pq->elements = e;
323
324 pq->hmax = new_max;
325 pqueue_add_freelist(pq, cur_max);
326 return 1;
327 }
328
329 OSSL_PQUEUE *ossl_pqueue_new(int (*compare)(const void *, const void *))
330 {
331 OSSL_PQUEUE *pq;
332
333 if (compare == NULL)
334 return NULL;
335
336 pq = OPENSSL_malloc(sizeof(*pq));
337 if (pq == NULL)
338 return NULL;
339 pq->compare = compare;
340 pq->hmax = min_nodes;
341 pq->htop = 0;
342 pq->freelist = 0;
343 pq->heap = OPENSSL_malloc(sizeof(*pq->heap) * min_nodes);
344 pq->elements = OPENSSL_malloc(sizeof(*pq->elements) * min_nodes);
345 if (pq->heap == NULL || pq->elements == NULL) {
346 ossl_pqueue_free(pq);
347 return NULL;
348 }
349 pqueue_add_freelist(pq, 0);
350 return pq;
351 }
352
353 void ossl_pqueue_free(OSSL_PQUEUE *pq)
354 {
355 if (pq != NULL) {
356 OPENSSL_free(pq->heap);
357 OPENSSL_free(pq->elements);
358 OPENSSL_free(pq);
359 }
360 }
361
362 void ossl_pqueue_pop_free(OSSL_PQUEUE *pq, void (*freefunc)(void *))
363 {
364 size_t i;
365
366 if (pq != NULL) {
367 for (i = 0; i < pq->htop; i++)
368 (*freefunc)(pq->heap[i].data);
369 ossl_pqueue_free(pq);
370 }
371 }
372
373 size_t ossl_pqueue_num(const OSSL_PQUEUE *pq)
374 {
375 return pq != NULL ? pq->htop : 0;
376 }