]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/s3_cbc.c
Raise an error on syscall failure in tls_retry_write_records
[thirdparty/openssl.git] / ssl / s3_cbc.c
1 /*
2 * Copyright 2012-2020 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /*
11 * MD5 and SHA-1 low level APIs are deprecated for public use, but still ok for
12 * internal use.
13 */
14 #include "internal/deprecated.h"
15
16 #include "internal/constant_time.h"
17 #include "ssl_local.h"
18 #include "internal/cryptlib.h"
19
20 #include <openssl/md5.h>
21 #include <openssl/sha.h>
22
23 /*
24 * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's
25 * length field. (SHA-384/512 have 128-bit length.)
26 */
27 #define MAX_HASH_BIT_COUNT_BYTES 16
28
29 /*
30 * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
31 * Currently SHA-384/512 has a 128-byte block size and that's the largest
32 * supported by TLS.)
33 */
34 #define MAX_HASH_BLOCK_SIZE 128
35
36 /*
37 * u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
38 * little-endian order. The value of p is advanced by four.
39 */
40 #define u32toLE(n, p) \
41 (*((p)++)=(unsigned char)(n), \
42 *((p)++)=(unsigned char)(n>>8), \
43 *((p)++)=(unsigned char)(n>>16), \
44 *((p)++)=(unsigned char)(n>>24))
45
46 /*
47 * These functions serialize the state of a hash and thus perform the
48 * standard "final" operation without adding the padding and length that such
49 * a function typically does.
50 */
51 static void tls1_md5_final_raw(void *ctx, unsigned char *md_out)
52 {
53 MD5_CTX *md5 = ctx;
54 u32toLE(md5->A, md_out);
55 u32toLE(md5->B, md_out);
56 u32toLE(md5->C, md_out);
57 u32toLE(md5->D, md_out);
58 }
59
60 static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out)
61 {
62 SHA_CTX *sha1 = ctx;
63 l2n(sha1->h0, md_out);
64 l2n(sha1->h1, md_out);
65 l2n(sha1->h2, md_out);
66 l2n(sha1->h3, md_out);
67 l2n(sha1->h4, md_out);
68 }
69
70 static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out)
71 {
72 SHA256_CTX *sha256 = ctx;
73 unsigned i;
74
75 for (i = 0; i < 8; i++) {
76 l2n(sha256->h[i], md_out);
77 }
78 }
79
80 static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out)
81 {
82 SHA512_CTX *sha512 = ctx;
83 unsigned i;
84
85 for (i = 0; i < 8; i++) {
86 l2n8(sha512->h[i], md_out);
87 }
88 }
89
90 #undef LARGEST_DIGEST_CTX
91 #define LARGEST_DIGEST_CTX SHA512_CTX
92
93 /*
94 * ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
95 * which ssl3_cbc_digest_record supports.
96 */
97 char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
98 {
99 switch (EVP_MD_CTX_type(ctx)) {
100 case NID_md5:
101 case NID_sha1:
102 case NID_sha224:
103 case NID_sha256:
104 case NID_sha384:
105 case NID_sha512:
106 return 1;
107 default:
108 return 0;
109 }
110 }
111
112 /*-
113 * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
114 * record.
115 *
116 * ctx: the EVP_MD_CTX from which we take the hash function.
117 * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
118 * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
119 * md_out_size: if non-NULL, the number of output bytes is written here.
120 * header: the 13-byte, TLS record header.
121 * data: the record data itself, less any preceding explicit IV.
122 * data_plus_mac_size: the secret, reported length of the data and MAC
123 * once the padding has been removed.
124 * data_plus_mac_plus_padding_size: the public length of the whole
125 * record, including padding.
126 * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
127 *
128 * On entry: by virtue of having been through one of the remove_padding
129 * functions, above, we know that data_plus_mac_size is large enough to contain
130 * a padding byte and MAC. (If the padding was invalid, it might contain the
131 * padding too. )
132 * Returns 1 on success or 0 on error
133 */
134 int ssl3_cbc_digest_record(SSL *s,
135 const EVP_MD_CTX *ctx,
136 unsigned char *md_out,
137 size_t *md_out_size,
138 const unsigned char header[13],
139 const unsigned char *data,
140 size_t data_plus_mac_size,
141 size_t data_plus_mac_plus_padding_size,
142 const unsigned char *mac_secret,
143 size_t mac_secret_length, char is_sslv3)
144 {
145 union {
146 OSSL_UNION_ALIGN;
147 unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
148 } md_state;
149 void (*md_final_raw) (void *ctx, unsigned char *md_out);
150 void (*md_transform) (void *ctx, const unsigned char *block);
151 size_t md_size, md_block_size = 64;
152 size_t sslv3_pad_length = 40, header_length, variance_blocks,
153 len, max_mac_bytes, num_blocks,
154 num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
155 size_t bits; /* at most 18 bits */
156 unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
157 /* hmac_pad is the masked HMAC key. */
158 unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
159 unsigned char first_block[MAX_HASH_BLOCK_SIZE];
160 unsigned char mac_out[EVP_MAX_MD_SIZE];
161 size_t i, j;
162 unsigned md_out_size_u;
163 EVP_MD_CTX *md_ctx = NULL;
164 /*
165 * mdLengthSize is the number of bytes in the length field that
166 * terminates * the hash.
167 */
168 size_t md_length_size = 8;
169 char length_is_big_endian = 1;
170 int ret = 0;
171 const EVP_MD *md = NULL;
172
173 /*
174 * This is a, hopefully redundant, check that allows us to forget about
175 * many possible overflows later in this function.
176 */
177 if (!ossl_assert(data_plus_mac_plus_padding_size < 1024 * 1024))
178 return 0;
179
180 switch (EVP_MD_CTX_type(ctx)) {
181 case NID_md5:
182 if (MD5_Init((MD5_CTX *)md_state.c) <= 0)
183 return 0;
184 md_final_raw = tls1_md5_final_raw;
185 md_transform =
186 (void (*)(void *ctx, const unsigned char *block))MD5_Transform;
187 md_size = 16;
188 sslv3_pad_length = 48;
189 length_is_big_endian = 0;
190 break;
191 case NID_sha1:
192 if (SHA1_Init((SHA_CTX *)md_state.c) <= 0)
193 return 0;
194 md_final_raw = tls1_sha1_final_raw;
195 md_transform =
196 (void (*)(void *ctx, const unsigned char *block))SHA1_Transform;
197 md_size = 20;
198 break;
199 case NID_sha224:
200 if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0)
201 return 0;
202 md_final_raw = tls1_sha256_final_raw;
203 md_transform =
204 (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
205 md_size = 224 / 8;
206 break;
207 case NID_sha256:
208 if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0)
209 return 0;
210 md_final_raw = tls1_sha256_final_raw;
211 md_transform =
212 (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
213 md_size = 32;
214 break;
215 case NID_sha384:
216 if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0)
217 return 0;
218 md_final_raw = tls1_sha512_final_raw;
219 md_transform =
220 (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
221 md_size = 384 / 8;
222 md_block_size = 128;
223 md_length_size = 16;
224 break;
225 case NID_sha512:
226 if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0)
227 return 0;
228 md_final_raw = tls1_sha512_final_raw;
229 md_transform =
230 (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
231 md_size = 64;
232 md_block_size = 128;
233 md_length_size = 16;
234 break;
235 default:
236 /*
237 * ssl3_cbc_record_digest_supported should have been called first to
238 * check that the hash function is supported.
239 */
240 if (md_out_size != NULL)
241 *md_out_size = 0;
242 return ossl_assert(0);
243 }
244
245 if (!ossl_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES)
246 || !ossl_assert(md_block_size <= MAX_HASH_BLOCK_SIZE)
247 || !ossl_assert(md_size <= EVP_MAX_MD_SIZE))
248 return 0;
249
250 header_length = 13;
251 if (is_sslv3) {
252 header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence
253 * number */ +
254 1 /* record type */ +
255 2 /* record length */ ;
256 }
257
258 /*
259 * variance_blocks is the number of blocks of the hash that we have to
260 * calculate in constant time because they could be altered by the
261 * padding value. In SSLv3, the padding must be minimal so the end of
262 * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively
263 * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes
264 * of hash termination (0x80 + 64-bit length) don't fit in the final
265 * block, we say that the final two blocks can vary based on the padding.
266 * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
267 * required to be minimal. Therefore we say that the final |variance_blocks|
268 * blocks can
269 * vary based on the padding. Later in the function, if the message is
270 * short and there obviously cannot be this many blocks then
271 * variance_blocks can be reduced.
272 */
273 variance_blocks = is_sslv3 ? 2 : ( ((255 + 1 + md_size + md_block_size - 1) / md_block_size) + 1);
274 /*
275 * From now on we're dealing with the MAC, which conceptually has 13
276 * bytes of `header' before the start of the data (TLS) or 71/75 bytes
277 * (SSLv3)
278 */
279 len = data_plus_mac_plus_padding_size + header_length;
280 /*
281 * max_mac_bytes contains the maximum bytes of bytes in the MAC,
282 * including * |header|, assuming that there's no padding.
283 */
284 max_mac_bytes = len - md_size - 1;
285 /* num_blocks is the maximum number of hash blocks. */
286 num_blocks =
287 (max_mac_bytes + 1 + md_length_size + md_block_size -
288 1) / md_block_size;
289 /*
290 * In order to calculate the MAC in constant time we have to handle the
291 * final blocks specially because the padding value could cause the end
292 * to appear somewhere in the final |variance_blocks| blocks and we can't
293 * leak where. However, |num_starting_blocks| worth of data can be hashed
294 * right away because no padding value can affect whether they are
295 * plaintext.
296 */
297 num_starting_blocks = 0;
298 /*
299 * k is the starting byte offset into the conceptual header||data where
300 * we start processing.
301 */
302 k = 0;
303 /*
304 * mac_end_offset is the index just past the end of the data to be MACed.
305 */
306 mac_end_offset = data_plus_mac_size + header_length - md_size;
307 /*
308 * c is the index of the 0x80 byte in the final hash block that contains
309 * application data.
310 */
311 c = mac_end_offset % md_block_size;
312 /*
313 * index_a is the hash block number that contains the 0x80 terminating
314 * value.
315 */
316 index_a = mac_end_offset / md_block_size;
317 /*
318 * index_b is the hash block number that contains the 64-bit hash length,
319 * in bits.
320 */
321 index_b = (mac_end_offset + md_length_size) / md_block_size;
322 /*
323 * bits is the hash-length in bits. It includes the additional hash block
324 * for the masked HMAC key, or whole of |header| in the case of SSLv3.
325 */
326
327 /*
328 * For SSLv3, if we're going to have any starting blocks then we need at
329 * least two because the header is larger than a single block.
330 */
331 if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
332 num_starting_blocks = num_blocks - variance_blocks;
333 k = md_block_size * num_starting_blocks;
334 }
335
336 bits = 8 * mac_end_offset;
337 if (!is_sslv3) {
338 /*
339 * Compute the initial HMAC block. For SSLv3, the padding and secret
340 * bytes are included in |header| because they take more than a
341 * single block.
342 */
343 bits += 8 * md_block_size;
344 memset(hmac_pad, 0, md_block_size);
345 if (!ossl_assert(mac_secret_length <= sizeof(hmac_pad)))
346 return 0;
347 memcpy(hmac_pad, mac_secret, mac_secret_length);
348 for (i = 0; i < md_block_size; i++)
349 hmac_pad[i] ^= 0x36;
350
351 md_transform(md_state.c, hmac_pad);
352 }
353
354 if (length_is_big_endian) {
355 memset(length_bytes, 0, md_length_size - 4);
356 length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
357 length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
358 length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
359 length_bytes[md_length_size - 1] = (unsigned char)bits;
360 } else {
361 memset(length_bytes, 0, md_length_size);
362 length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
363 length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
364 length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
365 length_bytes[md_length_size - 8] = (unsigned char)bits;
366 }
367
368 if (k > 0) {
369 if (is_sslv3) {
370 size_t overhang;
371
372 /*
373 * The SSLv3 header is larger than a single block. overhang is
374 * the number of bytes beyond a single block that the header
375 * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no
376 * ciphersuites in SSLv3 that are not SHA1 or MD5 based and
377 * therefore we can be confident that the header_length will be
378 * greater than |md_block_size|. However we add a sanity check just
379 * in case
380 */
381 if (header_length <= md_block_size) {
382 /* Should never happen */
383 return 0;
384 }
385 overhang = header_length - md_block_size;
386 md_transform(md_state.c, header);
387 memcpy(first_block, header + md_block_size, overhang);
388 memcpy(first_block + overhang, data, md_block_size - overhang);
389 md_transform(md_state.c, first_block);
390 for (i = 1; i < k / md_block_size - 1; i++)
391 md_transform(md_state.c, data + md_block_size * i - overhang);
392 } else {
393 /* k is a multiple of md_block_size. */
394 memcpy(first_block, header, 13);
395 memcpy(first_block + 13, data, md_block_size - 13);
396 md_transform(md_state.c, first_block);
397 for (i = 1; i < k / md_block_size; i++)
398 md_transform(md_state.c, data + md_block_size * i - 13);
399 }
400 }
401
402 memset(mac_out, 0, sizeof(mac_out));
403
404 /*
405 * We now process the final hash blocks. For each block, we construct it
406 * in constant time. If the |i==index_a| then we'll include the 0x80
407 * bytes and zero pad etc. For each block we selectively copy it, in
408 * constant time, to |mac_out|.
409 */
410 for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks;
411 i++) {
412 unsigned char block[MAX_HASH_BLOCK_SIZE];
413 unsigned char is_block_a = constant_time_eq_8_s(i, index_a);
414 unsigned char is_block_b = constant_time_eq_8_s(i, index_b);
415 for (j = 0; j < md_block_size; j++) {
416 unsigned char b = 0, is_past_c, is_past_cp1;
417 if (k < header_length)
418 b = header[k];
419 else if (k < data_plus_mac_plus_padding_size + header_length)
420 b = data[k - header_length];
421 k++;
422
423 is_past_c = is_block_a & constant_time_ge_8_s(j, c);
424 is_past_cp1 = is_block_a & constant_time_ge_8_s(j, c + 1);
425 /*
426 * If this is the block containing the end of the application
427 * data, and we are at the offset for the 0x80 value, then
428 * overwrite b with 0x80.
429 */
430 b = constant_time_select_8(is_past_c, 0x80, b);
431 /*
432 * If this block contains the end of the application data
433 * and we're past the 0x80 value then just write zero.
434 */
435 b = b & ~is_past_cp1;
436 /*
437 * If this is index_b (the final block), but not index_a (the end
438 * of the data), then the 64-bit length didn't fit into index_a
439 * and we're having to add an extra block of zeros.
440 */
441 b &= ~is_block_b | is_block_a;
442
443 /*
444 * The final bytes of one of the blocks contains the length.
445 */
446 if (j >= md_block_size - md_length_size) {
447 /* If this is index_b, write a length byte. */
448 b = constant_time_select_8(is_block_b,
449 length_bytes[j -
450 (md_block_size -
451 md_length_size)], b);
452 }
453 block[j] = b;
454 }
455
456 md_transform(md_state.c, block);
457 md_final_raw(md_state.c, block);
458 /* If this is index_b, copy the hash value to |mac_out|. */
459 for (j = 0; j < md_size; j++)
460 mac_out[j] |= block[j] & is_block_b;
461 }
462
463 md_ctx = EVP_MD_CTX_new();
464 if (md_ctx == NULL)
465 goto err;
466 md = ssl_evp_md_fetch(s->ctx->libctx, EVP_MD_type(EVP_MD_CTX_md(ctx)),
467 s->ctx->propq);
468 if (md == NULL)
469 goto err;
470 if (EVP_DigestInit_ex(md_ctx, md, NULL /* engine */ ) <= 0)
471 goto err;
472 if (is_sslv3) {
473 /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
474 memset(hmac_pad, 0x5c, sslv3_pad_length);
475
476 if (EVP_DigestUpdate(md_ctx, mac_secret, mac_secret_length) <= 0
477 || EVP_DigestUpdate(md_ctx, hmac_pad, sslv3_pad_length) <= 0
478 || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
479 goto err;
480 } else {
481 /* Complete the HMAC in the standard manner. */
482 for (i = 0; i < md_block_size; i++)
483 hmac_pad[i] ^= 0x6a;
484
485 if (EVP_DigestUpdate(md_ctx, hmac_pad, md_block_size) <= 0
486 || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
487 goto err;
488 }
489 /* TODO(size_t): Convert me */
490 ret = EVP_DigestFinal(md_ctx, md_out, &md_out_size_u);
491 if (ret && md_out_size)
492 *md_out_size = md_out_size_u;
493
494 ret = 1;
495 err:
496 EVP_MD_CTX_free(md_ctx);
497 ssl_evp_md_free(md);
498 return ret;
499 }