]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_ciph.c
Raise an error on syscall failure in tls_retry_write_records
[thirdparty/openssl.git] / ssl / ssl_ciph.c
1 /*
2 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the Apache License 2.0 (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include <ctype.h>
14 #include <openssl/objects.h>
15 #include <openssl/comp.h>
16 #include <openssl/engine.h>
17 #include <openssl/crypto.h>
18 #include <openssl/conf.h>
19 #include <openssl/trace.h>
20 #include "internal/nelem.h"
21 #include "ssl_local.h"
22 #include "internal/thread_once.h"
23 #include "internal/cryptlib.h"
24
25 DEFINE_STACK_OF(SSL_COMP)
26 DEFINE_STACK_OF_CONST(SSL_CIPHER)
27
28 /* NB: make sure indices in these tables match values above */
29
30 typedef struct {
31 uint32_t mask;
32 int nid;
33 } ssl_cipher_table;
34
35 /* Table of NIDs for each cipher */
36 static const ssl_cipher_table ssl_cipher_table_cipher[SSL_ENC_NUM_IDX] = {
37 {SSL_DES, NID_des_cbc}, /* SSL_ENC_DES_IDX 0 */
38 {SSL_3DES, NID_des_ede3_cbc}, /* SSL_ENC_3DES_IDX 1 */
39 {SSL_RC4, NID_rc4}, /* SSL_ENC_RC4_IDX 2 */
40 {SSL_RC2, NID_rc2_cbc}, /* SSL_ENC_RC2_IDX 3 */
41 {SSL_IDEA, NID_idea_cbc}, /* SSL_ENC_IDEA_IDX 4 */
42 {SSL_eNULL, NID_undef}, /* SSL_ENC_NULL_IDX 5 */
43 {SSL_AES128, NID_aes_128_cbc}, /* SSL_ENC_AES128_IDX 6 */
44 {SSL_AES256, NID_aes_256_cbc}, /* SSL_ENC_AES256_IDX 7 */
45 {SSL_CAMELLIA128, NID_camellia_128_cbc}, /* SSL_ENC_CAMELLIA128_IDX 8 */
46 {SSL_CAMELLIA256, NID_camellia_256_cbc}, /* SSL_ENC_CAMELLIA256_IDX 9 */
47 {SSL_eGOST2814789CNT, NID_gost89_cnt}, /* SSL_ENC_GOST89_IDX 10 */
48 {SSL_SEED, NID_seed_cbc}, /* SSL_ENC_SEED_IDX 11 */
49 {SSL_AES128GCM, NID_aes_128_gcm}, /* SSL_ENC_AES128GCM_IDX 12 */
50 {SSL_AES256GCM, NID_aes_256_gcm}, /* SSL_ENC_AES256GCM_IDX 13 */
51 {SSL_AES128CCM, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM_IDX 14 */
52 {SSL_AES256CCM, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM_IDX 15 */
53 {SSL_AES128CCM8, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM8_IDX 16 */
54 {SSL_AES256CCM8, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM8_IDX 17 */
55 {SSL_eGOST2814789CNT12, NID_gost89_cnt_12}, /* SSL_ENC_GOST8912_IDX 18 */
56 {SSL_CHACHA20POLY1305, NID_chacha20_poly1305}, /* SSL_ENC_CHACHA_IDX 19 */
57 {SSL_ARIA128GCM, NID_aria_128_gcm}, /* SSL_ENC_ARIA128GCM_IDX 20 */
58 {SSL_ARIA256GCM, NID_aria_256_gcm}, /* SSL_ENC_ARIA256GCM_IDX 21 */
59 {SSL_MAGMA, NID_magma_ctr_acpkm}, /* SSL_ENC_MAGMA_IDX */
60 {SSL_KUZNYECHIK, NID_kuznyechik_ctr_acpkm}, /* SSL_ENC_KUZNYECHIK_IDX */
61 };
62
63 #define SSL_COMP_NULL_IDX 0
64 #define SSL_COMP_ZLIB_IDX 1
65 #define SSL_COMP_NUM_IDX 2
66
67 static STACK_OF(SSL_COMP) *ssl_comp_methods = NULL;
68
69 #ifndef OPENSSL_NO_COMP
70 static CRYPTO_ONCE ssl_load_builtin_comp_once = CRYPTO_ONCE_STATIC_INIT;
71 #endif
72
73 /* NB: make sure indices in this table matches values above */
74 static const ssl_cipher_table ssl_cipher_table_mac[SSL_MD_NUM_IDX] = {
75 {SSL_MD5, NID_md5}, /* SSL_MD_MD5_IDX 0 */
76 {SSL_SHA1, NID_sha1}, /* SSL_MD_SHA1_IDX 1 */
77 {SSL_GOST94, NID_id_GostR3411_94}, /* SSL_MD_GOST94_IDX 2 */
78 {SSL_GOST89MAC, NID_id_Gost28147_89_MAC}, /* SSL_MD_GOST89MAC_IDX 3 */
79 {SSL_SHA256, NID_sha256}, /* SSL_MD_SHA256_IDX 4 */
80 {SSL_SHA384, NID_sha384}, /* SSL_MD_SHA384_IDX 5 */
81 {SSL_GOST12_256, NID_id_GostR3411_2012_256}, /* SSL_MD_GOST12_256_IDX 6 */
82 {SSL_GOST89MAC12, NID_gost_mac_12}, /* SSL_MD_GOST89MAC12_IDX 7 */
83 {SSL_GOST12_512, NID_id_GostR3411_2012_512}, /* SSL_MD_GOST12_512_IDX 8 */
84 {0, NID_md5_sha1}, /* SSL_MD_MD5_SHA1_IDX 9 */
85 {0, NID_sha224}, /* SSL_MD_SHA224_IDX 10 */
86 {0, NID_sha512}, /* SSL_MD_SHA512_IDX 11 */
87 {SSL_MAGMAOMAC, NID_magma_mac}, /* sSL_MD_MAGMAOMAC_IDX */
88 {SSL_KUZNYECHIKOMAC, NID_kuznyechik_mac} /* SSL_MD_KUZNYECHIKOMAC_IDX */
89 };
90
91 /* *INDENT-OFF* */
92 static const ssl_cipher_table ssl_cipher_table_kx[] = {
93 {SSL_kRSA, NID_kx_rsa},
94 {SSL_kECDHE, NID_kx_ecdhe},
95 {SSL_kDHE, NID_kx_dhe},
96 {SSL_kECDHEPSK, NID_kx_ecdhe_psk},
97 {SSL_kDHEPSK, NID_kx_dhe_psk},
98 {SSL_kRSAPSK, NID_kx_rsa_psk},
99 {SSL_kPSK, NID_kx_psk},
100 {SSL_kSRP, NID_kx_srp},
101 {SSL_kGOST, NID_kx_gost},
102 {SSL_kGOST18, NID_kx_gost18},
103 {SSL_kANY, NID_kx_any}
104 };
105
106 static const ssl_cipher_table ssl_cipher_table_auth[] = {
107 {SSL_aRSA, NID_auth_rsa},
108 {SSL_aECDSA, NID_auth_ecdsa},
109 {SSL_aPSK, NID_auth_psk},
110 {SSL_aDSS, NID_auth_dss},
111 {SSL_aGOST01, NID_auth_gost01},
112 {SSL_aGOST12, NID_auth_gost12},
113 {SSL_aSRP, NID_auth_srp},
114 {SSL_aNULL, NID_auth_null},
115 {SSL_aANY, NID_auth_any}
116 };
117 /* *INDENT-ON* */
118
119 /* Utility function for table lookup */
120 static int ssl_cipher_info_find(const ssl_cipher_table * table,
121 size_t table_cnt, uint32_t mask)
122 {
123 size_t i;
124 for (i = 0; i < table_cnt; i++, table++) {
125 if (table->mask == mask)
126 return (int)i;
127 }
128 return -1;
129 }
130
131 #define ssl_cipher_info_lookup(table, x) \
132 ssl_cipher_info_find(table, OSSL_NELEM(table), x)
133
134 /*
135 * PKEY_TYPE for GOST89MAC is known in advance, but, because implementation
136 * is engine-provided, we'll fill it only if corresponding EVP_PKEY_METHOD is
137 * found
138 */
139 static int ssl_mac_pkey_id[SSL_MD_NUM_IDX] = {
140 /* MD5, SHA, GOST94, MAC89 */
141 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
142 /* SHA256, SHA384, GOST2012_256, MAC89-12 */
143 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
144 /* GOST2012_512 */
145 EVP_PKEY_HMAC,
146 /* MD5/SHA1, SHA224, SHA512, MAGMAOMAC, KUZNYECHIKOMAC */
147 NID_undef, NID_undef, NID_undef, NID_undef, NID_undef
148 };
149
150 #define CIPHER_ADD 1
151 #define CIPHER_KILL 2
152 #define CIPHER_DEL 3
153 #define CIPHER_ORD 4
154 #define CIPHER_SPECIAL 5
155 /*
156 * Bump the ciphers to the top of the list.
157 * This rule isn't currently supported by the public cipherstring API.
158 */
159 #define CIPHER_BUMP 6
160
161 typedef struct cipher_order_st {
162 const SSL_CIPHER *cipher;
163 int active;
164 int dead;
165 struct cipher_order_st *next, *prev;
166 } CIPHER_ORDER;
167
168 static const SSL_CIPHER cipher_aliases[] = {
169 /* "ALL" doesn't include eNULL (must be specifically enabled) */
170 {0, SSL_TXT_ALL, NULL, 0, 0, 0, ~SSL_eNULL},
171 /* "COMPLEMENTOFALL" */
172 {0, SSL_TXT_CMPALL, NULL, 0, 0, 0, SSL_eNULL},
173
174 /*
175 * "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in
176 * ALL!)
177 */
178 {0, SSL_TXT_CMPDEF, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_NOT_DEFAULT},
179
180 /*
181 * key exchange aliases (some of those using only a single bit here
182 * combine multiple key exchange algs according to the RFCs, e.g. kDHE
183 * combines DHE_DSS and DHE_RSA)
184 */
185 {0, SSL_TXT_kRSA, NULL, 0, SSL_kRSA},
186
187 {0, SSL_TXT_kEDH, NULL, 0, SSL_kDHE},
188 {0, SSL_TXT_kDHE, NULL, 0, SSL_kDHE},
189 {0, SSL_TXT_DH, NULL, 0, SSL_kDHE},
190
191 {0, SSL_TXT_kEECDH, NULL, 0, SSL_kECDHE},
192 {0, SSL_TXT_kECDHE, NULL, 0, SSL_kECDHE},
193 {0, SSL_TXT_ECDH, NULL, 0, SSL_kECDHE},
194
195 {0, SSL_TXT_kPSK, NULL, 0, SSL_kPSK},
196 {0, SSL_TXT_kRSAPSK, NULL, 0, SSL_kRSAPSK},
197 {0, SSL_TXT_kECDHEPSK, NULL, 0, SSL_kECDHEPSK},
198 {0, SSL_TXT_kDHEPSK, NULL, 0, SSL_kDHEPSK},
199 {0, SSL_TXT_kSRP, NULL, 0, SSL_kSRP},
200 {0, SSL_TXT_kGOST, NULL, 0, SSL_kGOST},
201 {0, SSL_TXT_kGOST18, NULL, 0, SSL_kGOST18},
202
203 /* server authentication aliases */
204 {0, SSL_TXT_aRSA, NULL, 0, 0, SSL_aRSA},
205 {0, SSL_TXT_aDSS, NULL, 0, 0, SSL_aDSS},
206 {0, SSL_TXT_DSS, NULL, 0, 0, SSL_aDSS},
207 {0, SSL_TXT_aNULL, NULL, 0, 0, SSL_aNULL},
208 {0, SSL_TXT_aECDSA, NULL, 0, 0, SSL_aECDSA},
209 {0, SSL_TXT_ECDSA, NULL, 0, 0, SSL_aECDSA},
210 {0, SSL_TXT_aPSK, NULL, 0, 0, SSL_aPSK},
211 {0, SSL_TXT_aGOST01, NULL, 0, 0, SSL_aGOST01},
212 {0, SSL_TXT_aGOST12, NULL, 0, 0, SSL_aGOST12},
213 {0, SSL_TXT_aGOST, NULL, 0, 0, SSL_aGOST01 | SSL_aGOST12},
214 {0, SSL_TXT_aSRP, NULL, 0, 0, SSL_aSRP},
215
216 /* aliases combining key exchange and server authentication */
217 {0, SSL_TXT_EDH, NULL, 0, SSL_kDHE, ~SSL_aNULL},
218 {0, SSL_TXT_DHE, NULL, 0, SSL_kDHE, ~SSL_aNULL},
219 {0, SSL_TXT_EECDH, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
220 {0, SSL_TXT_ECDHE, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
221 {0, SSL_TXT_NULL, NULL, 0, 0, 0, SSL_eNULL},
222 {0, SSL_TXT_RSA, NULL, 0, SSL_kRSA, SSL_aRSA},
223 {0, SSL_TXT_ADH, NULL, 0, SSL_kDHE, SSL_aNULL},
224 {0, SSL_TXT_AECDH, NULL, 0, SSL_kECDHE, SSL_aNULL},
225 {0, SSL_TXT_PSK, NULL, 0, SSL_PSK},
226 {0, SSL_TXT_SRP, NULL, 0, SSL_kSRP},
227
228 /* symmetric encryption aliases */
229 {0, SSL_TXT_3DES, NULL, 0, 0, 0, SSL_3DES},
230 {0, SSL_TXT_RC4, NULL, 0, 0, 0, SSL_RC4},
231 {0, SSL_TXT_RC2, NULL, 0, 0, 0, SSL_RC2},
232 {0, SSL_TXT_IDEA, NULL, 0, 0, 0, SSL_IDEA},
233 {0, SSL_TXT_SEED, NULL, 0, 0, 0, SSL_SEED},
234 {0, SSL_TXT_eNULL, NULL, 0, 0, 0, SSL_eNULL},
235 {0, SSL_TXT_GOST, NULL, 0, 0, 0,
236 SSL_eGOST2814789CNT | SSL_eGOST2814789CNT12 | SSL_MAGMA | SSL_KUZNYECHIK},
237 {0, SSL_TXT_AES128, NULL, 0, 0, 0,
238 SSL_AES128 | SSL_AES128GCM | SSL_AES128CCM | SSL_AES128CCM8},
239 {0, SSL_TXT_AES256, NULL, 0, 0, 0,
240 SSL_AES256 | SSL_AES256GCM | SSL_AES256CCM | SSL_AES256CCM8},
241 {0, SSL_TXT_AES, NULL, 0, 0, 0, SSL_AES},
242 {0, SSL_TXT_AES_GCM, NULL, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM},
243 {0, SSL_TXT_AES_CCM, NULL, 0, 0, 0,
244 SSL_AES128CCM | SSL_AES256CCM | SSL_AES128CCM8 | SSL_AES256CCM8},
245 {0, SSL_TXT_AES_CCM_8, NULL, 0, 0, 0, SSL_AES128CCM8 | SSL_AES256CCM8},
246 {0, SSL_TXT_CAMELLIA128, NULL, 0, 0, 0, SSL_CAMELLIA128},
247 {0, SSL_TXT_CAMELLIA256, NULL, 0, 0, 0, SSL_CAMELLIA256},
248 {0, SSL_TXT_CAMELLIA, NULL, 0, 0, 0, SSL_CAMELLIA},
249 {0, SSL_TXT_CHACHA20, NULL, 0, 0, 0, SSL_CHACHA20},
250 {0, SSL_TXT_GOST2012_GOST8912_GOST8912, NULL, 0, 0, 0, SSL_eGOST2814789CNT12},
251
252 {0, SSL_TXT_ARIA, NULL, 0, 0, 0, SSL_ARIA},
253 {0, SSL_TXT_ARIA_GCM, NULL, 0, 0, 0, SSL_ARIA128GCM | SSL_ARIA256GCM},
254 {0, SSL_TXT_ARIA128, NULL, 0, 0, 0, SSL_ARIA128GCM},
255 {0, SSL_TXT_ARIA256, NULL, 0, 0, 0, SSL_ARIA256GCM},
256 {0, SSL_TXT_CBC, NULL, 0, 0, 0, SSL_CBC},
257
258 /* MAC aliases */
259 {0, SSL_TXT_MD5, NULL, 0, 0, 0, 0, SSL_MD5},
260 {0, SSL_TXT_SHA1, NULL, 0, 0, 0, 0, SSL_SHA1},
261 {0, SSL_TXT_SHA, NULL, 0, 0, 0, 0, SSL_SHA1},
262 {0, SSL_TXT_GOST94, NULL, 0, 0, 0, 0, SSL_GOST94},
263 {0, SSL_TXT_GOST89MAC, NULL, 0, 0, 0, 0, SSL_GOST89MAC | SSL_GOST89MAC12},
264 {0, SSL_TXT_SHA256, NULL, 0, 0, 0, 0, SSL_SHA256},
265 {0, SSL_TXT_SHA384, NULL, 0, 0, 0, 0, SSL_SHA384},
266 {0, SSL_TXT_GOST12, NULL, 0, 0, 0, 0, SSL_GOST12_256},
267
268 /* protocol version aliases */
269 {0, SSL_TXT_SSLV3, NULL, 0, 0, 0, 0, 0, SSL3_VERSION},
270 {0, SSL_TXT_TLSV1, NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
271 {0, "TLSv1.0", NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
272 {0, SSL_TXT_TLSV1_2, NULL, 0, 0, 0, 0, 0, TLS1_2_VERSION},
273
274 /* strength classes */
275 {0, SSL_TXT_LOW, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_LOW},
276 {0, SSL_TXT_MEDIUM, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_MEDIUM},
277 {0, SSL_TXT_HIGH, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_HIGH},
278 /* FIPS 140-2 approved ciphersuite */
279 {0, SSL_TXT_FIPS, NULL, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, SSL_FIPS},
280
281 /* "EDH-" aliases to "DHE-" labels (for backward compatibility) */
282 {0, SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA, NULL, 0,
283 SSL_kDHE, SSL_aDSS, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
284 {0, SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA, NULL, 0,
285 SSL_kDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
286
287 };
288
289 /*
290 * Search for public key algorithm with given name and return its pkey_id if
291 * it is available. Otherwise return 0
292 */
293 #ifdef OPENSSL_NO_ENGINE
294
295 static int get_optional_pkey_id(const char *pkey_name)
296 {
297 const EVP_PKEY_ASN1_METHOD *ameth;
298 int pkey_id = 0;
299 ameth = EVP_PKEY_asn1_find_str(NULL, pkey_name, -1);
300 if (ameth && EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
301 ameth) > 0)
302 return pkey_id;
303 return 0;
304 }
305
306 #else
307
308 static int get_optional_pkey_id(const char *pkey_name)
309 {
310 const EVP_PKEY_ASN1_METHOD *ameth;
311 ENGINE *tmpeng = NULL;
312 int pkey_id = 0;
313 ameth = EVP_PKEY_asn1_find_str(&tmpeng, pkey_name, -1);
314 if (ameth) {
315 if (EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
316 ameth) <= 0)
317 pkey_id = 0;
318 }
319 ENGINE_finish(tmpeng);
320 return pkey_id;
321 }
322
323 #endif
324
325 /* masks of disabled algorithms */
326 static uint32_t disabled_enc_mask;
327 static uint32_t disabled_mac_mask;
328 static uint32_t disabled_mkey_mask;
329 static uint32_t disabled_auth_mask;
330
331 int ssl_load_ciphers(SSL_CTX *ctx)
332 {
333 size_t i;
334 const ssl_cipher_table *t;
335
336 disabled_enc_mask = 0;
337 for (i = 0, t = ssl_cipher_table_cipher; i < SSL_ENC_NUM_IDX; i++, t++) {
338 if (t->nid != NID_undef) {
339 const EVP_CIPHER *cipher
340 = ssl_evp_cipher_fetch(ctx->libctx, t->nid, ctx->propq);
341
342 ctx->ssl_cipher_methods[i] = cipher;
343 if (cipher == NULL)
344 disabled_enc_mask |= t->mask;
345 }
346 }
347 disabled_mac_mask = 0;
348 for (i = 0, t = ssl_cipher_table_mac; i < SSL_MD_NUM_IDX; i++, t++) {
349 const EVP_MD *md
350 = ssl_evp_md_fetch(ctx->libctx, t->nid, ctx->propq);
351
352 ctx->ssl_digest_methods[i] = md;
353 if (md == NULL) {
354 disabled_mac_mask |= t->mask;
355 } else {
356 int tmpsize = EVP_MD_size(md);
357 if (!ossl_assert(tmpsize >= 0))
358 return 0;
359 ctx->ssl_mac_secret_size[i] = tmpsize;
360 }
361 }
362
363 disabled_mkey_mask = 0;
364 disabled_auth_mask = 0;
365
366 #ifdef OPENSSL_NO_RSA
367 disabled_mkey_mask |= SSL_kRSA | SSL_kRSAPSK;
368 disabled_auth_mask |= SSL_aRSA;
369 #endif
370 #ifdef OPENSSL_NO_DSA
371 disabled_auth_mask |= SSL_aDSS;
372 #endif
373 #ifdef OPENSSL_NO_DH
374 disabled_mkey_mask |= SSL_kDHE | SSL_kDHEPSK;
375 #endif
376 #ifdef OPENSSL_NO_EC
377 disabled_mkey_mask |= SSL_kECDHE | SSL_kECDHEPSK;
378 disabled_auth_mask |= SSL_aECDSA;
379 #endif
380 #ifdef OPENSSL_NO_PSK
381 disabled_mkey_mask |= SSL_PSK;
382 disabled_auth_mask |= SSL_aPSK;
383 #endif
384 #ifdef OPENSSL_NO_SRP
385 disabled_mkey_mask |= SSL_kSRP;
386 #endif
387
388 /*
389 * Check for presence of GOST 34.10 algorithms, and if they are not
390 * present, disable appropriate auth and key exchange
391 */
392 ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] = get_optional_pkey_id(SN_id_Gost28147_89_MAC);
393 if (ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX])
394 ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32;
395 else
396 disabled_mac_mask |= SSL_GOST89MAC;
397
398 ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX] =
399 get_optional_pkey_id(SN_gost_mac_12);
400 if (ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX])
401 ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC12_IDX] = 32;
402 else
403 disabled_mac_mask |= SSL_GOST89MAC12;
404
405 ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX] =
406 get_optional_pkey_id(SN_magma_mac);
407 if (ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX])
408 ctx->ssl_mac_secret_size[SSL_MD_MAGMAOMAC_IDX] = 32;
409 else
410 disabled_mac_mask |= SSL_MAGMAOMAC;
411
412 ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX] =
413 get_optional_pkey_id(SN_kuznyechik_mac);
414 if (ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX])
415 ctx->ssl_mac_secret_size[SSL_MD_KUZNYECHIKOMAC_IDX] = 32;
416 else
417 disabled_mac_mask |= SSL_KUZNYECHIKOMAC;
418
419 if (!get_optional_pkey_id(SN_id_GostR3410_2001))
420 disabled_auth_mask |= SSL_aGOST01 | SSL_aGOST12;
421 if (!get_optional_pkey_id(SN_id_GostR3410_2012_256))
422 disabled_auth_mask |= SSL_aGOST12;
423 if (!get_optional_pkey_id(SN_id_GostR3410_2012_512))
424 disabled_auth_mask |= SSL_aGOST12;
425 /*
426 * Disable GOST key exchange if no GOST signature algs are available *
427 */
428 if ((disabled_auth_mask & (SSL_aGOST01 | SSL_aGOST12)) ==
429 (SSL_aGOST01 | SSL_aGOST12))
430 disabled_mkey_mask |= SSL_kGOST;
431
432 if ((disabled_auth_mask & SSL_aGOST12) == SSL_aGOST12)
433 disabled_mkey_mask |= SSL_kGOST18;
434
435 return 1;
436 }
437
438 #ifndef OPENSSL_NO_COMP
439
440 static int sk_comp_cmp(const SSL_COMP *const *a, const SSL_COMP *const *b)
441 {
442 return ((*a)->id - (*b)->id);
443 }
444
445 DEFINE_RUN_ONCE_STATIC(do_load_builtin_compressions)
446 {
447 SSL_COMP *comp = NULL;
448 COMP_METHOD *method = COMP_zlib();
449
450 ssl_comp_methods = sk_SSL_COMP_new(sk_comp_cmp);
451
452 if (COMP_get_type(method) != NID_undef && ssl_comp_methods != NULL) {
453 comp = OPENSSL_malloc(sizeof(*comp));
454 if (comp != NULL) {
455 comp->method = method;
456 comp->id = SSL_COMP_ZLIB_IDX;
457 comp->name = COMP_get_name(method);
458 sk_SSL_COMP_push(ssl_comp_methods, comp);
459 sk_SSL_COMP_sort(ssl_comp_methods);
460 }
461 }
462 return 1;
463 }
464
465 static int load_builtin_compressions(void)
466 {
467 return RUN_ONCE(&ssl_load_builtin_comp_once, do_load_builtin_compressions);
468 }
469 #endif
470
471 int ssl_cipher_get_evp_cipher(SSL_CTX *ctx, const SSL_CIPHER *sslc,
472 const EVP_CIPHER **enc)
473 {
474 int i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, sslc->algorithm_enc);
475
476 if (i == -1) {
477 *enc = NULL;
478 } else {
479 if (i == SSL_ENC_NULL_IDX) {
480 /*
481 * We assume we don't care about this coming from an ENGINE so
482 * just do a normal EVP_CIPHER_fetch instead of
483 * ssl_evp_cipher_fetch()
484 */
485 *enc = EVP_CIPHER_fetch(ctx->libctx, "NULL", ctx->propq);
486 if (*enc == NULL)
487 return 0;
488 } else {
489 const EVP_CIPHER *cipher = ctx->ssl_cipher_methods[i];
490
491 if (cipher == NULL
492 || !ssl_evp_cipher_up_ref(cipher))
493 return 0;
494 *enc = ctx->ssl_cipher_methods[i];
495 }
496 }
497 return 1;
498 }
499
500 int ssl_cipher_get_evp(SSL_CTX *ctx, const SSL_SESSION *s,
501 const EVP_CIPHER **enc, const EVP_MD **md,
502 int *mac_pkey_type, size_t *mac_secret_size,
503 SSL_COMP **comp, int use_etm)
504 {
505 int i;
506 const SSL_CIPHER *c;
507
508 c = s->cipher;
509 if (c == NULL)
510 return 0;
511 if (comp != NULL) {
512 SSL_COMP ctmp;
513 #ifndef OPENSSL_NO_COMP
514 if (!load_builtin_compressions()) {
515 /*
516 * Currently don't care, since a failure only means that
517 * ssl_comp_methods is NULL, which is perfectly OK
518 */
519 }
520 #endif
521 *comp = NULL;
522 ctmp.id = s->compress_meth;
523 if (ssl_comp_methods != NULL) {
524 i = sk_SSL_COMP_find(ssl_comp_methods, &ctmp);
525 *comp = sk_SSL_COMP_value(ssl_comp_methods, i);
526 }
527 /* If were only interested in comp then return success */
528 if ((enc == NULL) && (md == NULL))
529 return 1;
530 }
531
532 if ((enc == NULL) || (md == NULL))
533 return 0;
534
535 if (!ssl_cipher_get_evp_cipher(ctx, c, enc))
536 return 0;
537
538 i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
539 if (i == -1) {
540 *md = NULL;
541 if (mac_pkey_type != NULL)
542 *mac_pkey_type = NID_undef;
543 if (mac_secret_size != NULL)
544 *mac_secret_size = 0;
545 if (c->algorithm_mac == SSL_AEAD)
546 mac_pkey_type = NULL;
547 } else {
548 if (!ssl_evp_md_up_ref(ctx->ssl_digest_methods[i])) {
549 ssl_evp_cipher_free(*enc);
550 return 0;
551 }
552 *md = ctx->ssl_digest_methods[i];
553 if (mac_pkey_type != NULL)
554 *mac_pkey_type = ssl_mac_pkey_id[i];
555 if (mac_secret_size != NULL)
556 *mac_secret_size = ctx->ssl_mac_secret_size[i];
557 }
558
559 if ((*enc != NULL) &&
560 (*md != NULL || (EVP_CIPHER_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER))
561 && (!mac_pkey_type || *mac_pkey_type != NID_undef)) {
562 const EVP_CIPHER *evp = NULL;
563
564 if (use_etm
565 || s->ssl_version >> 8 != TLS1_VERSION_MAJOR
566 || s->ssl_version < TLS1_VERSION)
567 return 1;
568
569 if (c->algorithm_enc == SSL_RC4
570 && c->algorithm_mac == SSL_MD5)
571 evp = ssl_evp_cipher_fetch(ctx->libctx, NID_rc4_hmac_md5,
572 ctx->propq);
573 else if (c->algorithm_enc == SSL_AES128
574 && c->algorithm_mac == SSL_SHA1)
575 evp = ssl_evp_cipher_fetch(ctx->libctx,
576 NID_aes_128_cbc_hmac_sha1,
577 ctx->propq);
578 else if (c->algorithm_enc == SSL_AES256
579 && c->algorithm_mac == SSL_SHA1)
580 evp = ssl_evp_cipher_fetch(ctx->libctx,
581 NID_aes_256_cbc_hmac_sha1,
582 ctx->propq);
583 else if (c->algorithm_enc == SSL_AES128
584 && c->algorithm_mac == SSL_SHA256)
585 evp = ssl_evp_cipher_fetch(ctx->libctx,
586 NID_aes_128_cbc_hmac_sha256,
587 ctx->propq);
588 else if (c->algorithm_enc == SSL_AES256
589 && c->algorithm_mac == SSL_SHA256)
590 evp = ssl_evp_cipher_fetch(ctx->libctx,
591 NID_aes_256_cbc_hmac_sha256,
592 ctx->propq);
593
594 if (evp != NULL) {
595 ssl_evp_cipher_free(*enc);
596 ssl_evp_md_free(*md);
597 *enc = evp;
598 *md = NULL;
599 }
600 return 1;
601 }
602
603 return 0;
604 }
605
606 const EVP_MD *ssl_md(SSL_CTX *ctx, int idx)
607 {
608 idx &= SSL_HANDSHAKE_MAC_MASK;
609 if (idx < 0 || idx >= SSL_MD_NUM_IDX)
610 return NULL;
611 return ctx->ssl_digest_methods[idx];
612 }
613
614 const EVP_MD *ssl_handshake_md(SSL *s)
615 {
616 return ssl_md(s->ctx, ssl_get_algorithm2(s));
617 }
618
619 const EVP_MD *ssl_prf_md(SSL *s)
620 {
621 return ssl_md(s->ctx, ssl_get_algorithm2(s) >> TLS1_PRF_DGST_SHIFT);
622 }
623
624 #define ITEM_SEP(a) \
625 (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
626
627 static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
628 CIPHER_ORDER **tail)
629 {
630 if (curr == *tail)
631 return;
632 if (curr == *head)
633 *head = curr->next;
634 if (curr->prev != NULL)
635 curr->prev->next = curr->next;
636 if (curr->next != NULL)
637 curr->next->prev = curr->prev;
638 (*tail)->next = curr;
639 curr->prev = *tail;
640 curr->next = NULL;
641 *tail = curr;
642 }
643
644 static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
645 CIPHER_ORDER **tail)
646 {
647 if (curr == *head)
648 return;
649 if (curr == *tail)
650 *tail = curr->prev;
651 if (curr->next != NULL)
652 curr->next->prev = curr->prev;
653 if (curr->prev != NULL)
654 curr->prev->next = curr->next;
655 (*head)->prev = curr;
656 curr->next = *head;
657 curr->prev = NULL;
658 *head = curr;
659 }
660
661 static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
662 int num_of_ciphers,
663 uint32_t disabled_mkey,
664 uint32_t disabled_auth,
665 uint32_t disabled_enc,
666 uint32_t disabled_mac,
667 CIPHER_ORDER *co_list,
668 CIPHER_ORDER **head_p,
669 CIPHER_ORDER **tail_p)
670 {
671 int i, co_list_num;
672 const SSL_CIPHER *c;
673
674 /*
675 * We have num_of_ciphers descriptions compiled in, depending on the
676 * method selected (SSLv3, TLSv1 etc).
677 * These will later be sorted in a linked list with at most num
678 * entries.
679 */
680
681 /* Get the initial list of ciphers */
682 co_list_num = 0; /* actual count of ciphers */
683 for (i = 0; i < num_of_ciphers; i++) {
684 c = ssl_method->get_cipher(i);
685 /* drop those that use any of that is not available */
686 if (c == NULL || !c->valid)
687 continue;
688 if ((c->algorithm_mkey & disabled_mkey) ||
689 (c->algorithm_auth & disabled_auth) ||
690 (c->algorithm_enc & disabled_enc) ||
691 (c->algorithm_mac & disabled_mac))
692 continue;
693 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) == 0) &&
694 c->min_tls == 0)
695 continue;
696 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) != 0) &&
697 c->min_dtls == 0)
698 continue;
699
700 co_list[co_list_num].cipher = c;
701 co_list[co_list_num].next = NULL;
702 co_list[co_list_num].prev = NULL;
703 co_list[co_list_num].active = 0;
704 co_list_num++;
705 }
706
707 /*
708 * Prepare linked list from list entries
709 */
710 if (co_list_num > 0) {
711 co_list[0].prev = NULL;
712
713 if (co_list_num > 1) {
714 co_list[0].next = &co_list[1];
715
716 for (i = 1; i < co_list_num - 1; i++) {
717 co_list[i].prev = &co_list[i - 1];
718 co_list[i].next = &co_list[i + 1];
719 }
720
721 co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
722 }
723
724 co_list[co_list_num - 1].next = NULL;
725
726 *head_p = &co_list[0];
727 *tail_p = &co_list[co_list_num - 1];
728 }
729 }
730
731 static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list,
732 int num_of_group_aliases,
733 uint32_t disabled_mkey,
734 uint32_t disabled_auth,
735 uint32_t disabled_enc,
736 uint32_t disabled_mac,
737 CIPHER_ORDER *head)
738 {
739 CIPHER_ORDER *ciph_curr;
740 const SSL_CIPHER **ca_curr;
741 int i;
742 uint32_t mask_mkey = ~disabled_mkey;
743 uint32_t mask_auth = ~disabled_auth;
744 uint32_t mask_enc = ~disabled_enc;
745 uint32_t mask_mac = ~disabled_mac;
746
747 /*
748 * First, add the real ciphers as already collected
749 */
750 ciph_curr = head;
751 ca_curr = ca_list;
752 while (ciph_curr != NULL) {
753 *ca_curr = ciph_curr->cipher;
754 ca_curr++;
755 ciph_curr = ciph_curr->next;
756 }
757
758 /*
759 * Now we add the available ones from the cipher_aliases[] table.
760 * They represent either one or more algorithms, some of which
761 * in any affected category must be supported (set in enabled_mask),
762 * or represent a cipher strength value (will be added in any case because algorithms=0).
763 */
764 for (i = 0; i < num_of_group_aliases; i++) {
765 uint32_t algorithm_mkey = cipher_aliases[i].algorithm_mkey;
766 uint32_t algorithm_auth = cipher_aliases[i].algorithm_auth;
767 uint32_t algorithm_enc = cipher_aliases[i].algorithm_enc;
768 uint32_t algorithm_mac = cipher_aliases[i].algorithm_mac;
769
770 if (algorithm_mkey)
771 if ((algorithm_mkey & mask_mkey) == 0)
772 continue;
773
774 if (algorithm_auth)
775 if ((algorithm_auth & mask_auth) == 0)
776 continue;
777
778 if (algorithm_enc)
779 if ((algorithm_enc & mask_enc) == 0)
780 continue;
781
782 if (algorithm_mac)
783 if ((algorithm_mac & mask_mac) == 0)
784 continue;
785
786 *ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
787 ca_curr++;
788 }
789
790 *ca_curr = NULL; /* end of list */
791 }
792
793 static void ssl_cipher_apply_rule(uint32_t cipher_id, uint32_t alg_mkey,
794 uint32_t alg_auth, uint32_t alg_enc,
795 uint32_t alg_mac, int min_tls,
796 uint32_t algo_strength, int rule,
797 int32_t strength_bits, CIPHER_ORDER **head_p,
798 CIPHER_ORDER **tail_p)
799 {
800 CIPHER_ORDER *head, *tail, *curr, *next, *last;
801 const SSL_CIPHER *cp;
802 int reverse = 0;
803
804 OSSL_TRACE_BEGIN(TLS_CIPHER){
805 BIO_printf(trc_out,
806 "Applying rule %d with %08x/%08x/%08x/%08x/%08x %08x (%d)\n",
807 rule, alg_mkey, alg_auth, alg_enc, alg_mac, min_tls,
808 algo_strength, strength_bits);
809 }
810
811 if (rule == CIPHER_DEL || rule == CIPHER_BUMP)
812 reverse = 1; /* needed to maintain sorting between currently
813 * deleted ciphers */
814
815 head = *head_p;
816 tail = *tail_p;
817
818 if (reverse) {
819 next = tail;
820 last = head;
821 } else {
822 next = head;
823 last = tail;
824 }
825
826 curr = NULL;
827 for (;;) {
828 if (curr == last)
829 break;
830
831 curr = next;
832
833 if (curr == NULL)
834 break;
835
836 next = reverse ? curr->prev : curr->next;
837
838 cp = curr->cipher;
839
840 /*
841 * Selection criteria is either the value of strength_bits
842 * or the algorithms used.
843 */
844 if (strength_bits >= 0) {
845 if (strength_bits != cp->strength_bits)
846 continue;
847 } else {
848 if (trc_out != NULL) {
849 BIO_printf(trc_out,
850 "\nName: %s:"
851 "\nAlgo = %08x/%08x/%08x/%08x/%08x Algo_strength = %08x\n",
852 cp->name, cp->algorithm_mkey, cp->algorithm_auth,
853 cp->algorithm_enc, cp->algorithm_mac, cp->min_tls,
854 cp->algo_strength);
855 }
856 if (cipher_id != 0 && (cipher_id != cp->id))
857 continue;
858 if (alg_mkey && !(alg_mkey & cp->algorithm_mkey))
859 continue;
860 if (alg_auth && !(alg_auth & cp->algorithm_auth))
861 continue;
862 if (alg_enc && !(alg_enc & cp->algorithm_enc))
863 continue;
864 if (alg_mac && !(alg_mac & cp->algorithm_mac))
865 continue;
866 if (min_tls && (min_tls != cp->min_tls))
867 continue;
868 if ((algo_strength & SSL_STRONG_MASK)
869 && !(algo_strength & SSL_STRONG_MASK & cp->algo_strength))
870 continue;
871 if ((algo_strength & SSL_DEFAULT_MASK)
872 && !(algo_strength & SSL_DEFAULT_MASK & cp->algo_strength))
873 continue;
874 }
875
876 if (trc_out != NULL)
877 BIO_printf(trc_out, "Action = %d\n", rule);
878
879 /* add the cipher if it has not been added yet. */
880 if (rule == CIPHER_ADD) {
881 /* reverse == 0 */
882 if (!curr->active) {
883 ll_append_tail(&head, curr, &tail);
884 curr->active = 1;
885 }
886 }
887 /* Move the added cipher to this location */
888 else if (rule == CIPHER_ORD) {
889 /* reverse == 0 */
890 if (curr->active) {
891 ll_append_tail(&head, curr, &tail);
892 }
893 } else if (rule == CIPHER_DEL) {
894 /* reverse == 1 */
895 if (curr->active) {
896 /*
897 * most recently deleted ciphersuites get best positions for
898 * any future CIPHER_ADD (note that the CIPHER_DEL loop works
899 * in reverse to maintain the order)
900 */
901 ll_append_head(&head, curr, &tail);
902 curr->active = 0;
903 }
904 } else if (rule == CIPHER_BUMP) {
905 if (curr->active)
906 ll_append_head(&head, curr, &tail);
907 } else if (rule == CIPHER_KILL) {
908 /* reverse == 0 */
909 if (head == curr)
910 head = curr->next;
911 else
912 curr->prev->next = curr->next;
913 if (tail == curr)
914 tail = curr->prev;
915 curr->active = 0;
916 if (curr->next != NULL)
917 curr->next->prev = curr->prev;
918 if (curr->prev != NULL)
919 curr->prev->next = curr->next;
920 curr->next = NULL;
921 curr->prev = NULL;
922 }
923 }
924
925 *head_p = head;
926 *tail_p = tail;
927
928 OSSL_TRACE_END(TLS_CIPHER);
929 }
930
931 static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
932 CIPHER_ORDER **tail_p)
933 {
934 int32_t max_strength_bits;
935 int i, *number_uses;
936 CIPHER_ORDER *curr;
937
938 /*
939 * This routine sorts the ciphers with descending strength. The sorting
940 * must keep the pre-sorted sequence, so we apply the normal sorting
941 * routine as '+' movement to the end of the list.
942 */
943 max_strength_bits = 0;
944 curr = *head_p;
945 while (curr != NULL) {
946 if (curr->active && (curr->cipher->strength_bits > max_strength_bits))
947 max_strength_bits = curr->cipher->strength_bits;
948 curr = curr->next;
949 }
950
951 number_uses = OPENSSL_zalloc(sizeof(int) * (max_strength_bits + 1));
952 if (number_uses == NULL) {
953 SSLerr(SSL_F_SSL_CIPHER_STRENGTH_SORT, ERR_R_MALLOC_FAILURE);
954 return 0;
955 }
956
957 /*
958 * Now find the strength_bits values actually used
959 */
960 curr = *head_p;
961 while (curr != NULL) {
962 if (curr->active)
963 number_uses[curr->cipher->strength_bits]++;
964 curr = curr->next;
965 }
966 /*
967 * Go through the list of used strength_bits values in descending
968 * order.
969 */
970 for (i = max_strength_bits; i >= 0; i--)
971 if (number_uses[i] > 0)
972 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p,
973 tail_p);
974
975 OPENSSL_free(number_uses);
976 return 1;
977 }
978
979 static int ssl_cipher_process_rulestr(const char *rule_str,
980 CIPHER_ORDER **head_p,
981 CIPHER_ORDER **tail_p,
982 const SSL_CIPHER **ca_list, CERT *c)
983 {
984 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, algo_strength;
985 int min_tls;
986 const char *l, *buf;
987 int j, multi, found, rule, retval, ok, buflen;
988 uint32_t cipher_id = 0;
989 char ch;
990
991 retval = 1;
992 l = rule_str;
993 for ( ; ; ) {
994 ch = *l;
995
996 if (ch == '\0')
997 break; /* done */
998 if (ch == '-') {
999 rule = CIPHER_DEL;
1000 l++;
1001 } else if (ch == '+') {
1002 rule = CIPHER_ORD;
1003 l++;
1004 } else if (ch == '!') {
1005 rule = CIPHER_KILL;
1006 l++;
1007 } else if (ch == '@') {
1008 rule = CIPHER_SPECIAL;
1009 l++;
1010 } else {
1011 rule = CIPHER_ADD;
1012 }
1013
1014 if (ITEM_SEP(ch)) {
1015 l++;
1016 continue;
1017 }
1018
1019 alg_mkey = 0;
1020 alg_auth = 0;
1021 alg_enc = 0;
1022 alg_mac = 0;
1023 min_tls = 0;
1024 algo_strength = 0;
1025
1026 for (;;) {
1027 ch = *l;
1028 buf = l;
1029 buflen = 0;
1030 #ifndef CHARSET_EBCDIC
1031 while (((ch >= 'A') && (ch <= 'Z')) ||
1032 ((ch >= '0') && (ch <= '9')) ||
1033 ((ch >= 'a') && (ch <= 'z')) ||
1034 (ch == '-') || (ch == '.') || (ch == '='))
1035 #else
1036 while (isalnum((unsigned char)ch) || (ch == '-') || (ch == '.')
1037 || (ch == '='))
1038 #endif
1039 {
1040 ch = *(++l);
1041 buflen++;
1042 }
1043
1044 if (buflen == 0) {
1045 /*
1046 * We hit something we cannot deal with,
1047 * it is no command or separator nor
1048 * alphanumeric, so we call this an error.
1049 */
1050 SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR, SSL_R_INVALID_COMMAND);
1051 retval = found = 0;
1052 l++;
1053 break;
1054 }
1055
1056 if (rule == CIPHER_SPECIAL) {
1057 found = 0; /* unused -- avoid compiler warning */
1058 break; /* special treatment */
1059 }
1060
1061 /* check for multi-part specification */
1062 if (ch == '+') {
1063 multi = 1;
1064 l++;
1065 } else {
1066 multi = 0;
1067 }
1068
1069 /*
1070 * Now search for the cipher alias in the ca_list. Be careful
1071 * with the strncmp, because the "buflen" limitation
1072 * will make the rule "ADH:SOME" and the cipher
1073 * "ADH-MY-CIPHER" look like a match for buflen=3.
1074 * So additionally check whether the cipher name found
1075 * has the correct length. We can save a strlen() call:
1076 * just checking for the '\0' at the right place is
1077 * sufficient, we have to strncmp() anyway. (We cannot
1078 * use strcmp(), because buf is not '\0' terminated.)
1079 */
1080 j = found = 0;
1081 cipher_id = 0;
1082 while (ca_list[j]) {
1083 if (strncmp(buf, ca_list[j]->name, buflen) == 0
1084 && (ca_list[j]->name[buflen] == '\0')) {
1085 found = 1;
1086 break;
1087 } else
1088 j++;
1089 }
1090
1091 if (!found)
1092 break; /* ignore this entry */
1093
1094 if (ca_list[j]->algorithm_mkey) {
1095 if (alg_mkey) {
1096 alg_mkey &= ca_list[j]->algorithm_mkey;
1097 if (!alg_mkey) {
1098 found = 0;
1099 break;
1100 }
1101 } else {
1102 alg_mkey = ca_list[j]->algorithm_mkey;
1103 }
1104 }
1105
1106 if (ca_list[j]->algorithm_auth) {
1107 if (alg_auth) {
1108 alg_auth &= ca_list[j]->algorithm_auth;
1109 if (!alg_auth) {
1110 found = 0;
1111 break;
1112 }
1113 } else {
1114 alg_auth = ca_list[j]->algorithm_auth;
1115 }
1116 }
1117
1118 if (ca_list[j]->algorithm_enc) {
1119 if (alg_enc) {
1120 alg_enc &= ca_list[j]->algorithm_enc;
1121 if (!alg_enc) {
1122 found = 0;
1123 break;
1124 }
1125 } else {
1126 alg_enc = ca_list[j]->algorithm_enc;
1127 }
1128 }
1129
1130 if (ca_list[j]->algorithm_mac) {
1131 if (alg_mac) {
1132 alg_mac &= ca_list[j]->algorithm_mac;
1133 if (!alg_mac) {
1134 found = 0;
1135 break;
1136 }
1137 } else {
1138 alg_mac = ca_list[j]->algorithm_mac;
1139 }
1140 }
1141
1142 if (ca_list[j]->algo_strength & SSL_STRONG_MASK) {
1143 if (algo_strength & SSL_STRONG_MASK) {
1144 algo_strength &=
1145 (ca_list[j]->algo_strength & SSL_STRONG_MASK) |
1146 ~SSL_STRONG_MASK;
1147 if (!(algo_strength & SSL_STRONG_MASK)) {
1148 found = 0;
1149 break;
1150 }
1151 } else {
1152 algo_strength = ca_list[j]->algo_strength & SSL_STRONG_MASK;
1153 }
1154 }
1155
1156 if (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) {
1157 if (algo_strength & SSL_DEFAULT_MASK) {
1158 algo_strength &=
1159 (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) |
1160 ~SSL_DEFAULT_MASK;
1161 if (!(algo_strength & SSL_DEFAULT_MASK)) {
1162 found = 0;
1163 break;
1164 }
1165 } else {
1166 algo_strength |=
1167 ca_list[j]->algo_strength & SSL_DEFAULT_MASK;
1168 }
1169 }
1170
1171 if (ca_list[j]->valid) {
1172 /*
1173 * explicit ciphersuite found; its protocol version does not
1174 * become part of the search pattern!
1175 */
1176
1177 cipher_id = ca_list[j]->id;
1178 } else {
1179 /*
1180 * not an explicit ciphersuite; only in this case, the
1181 * protocol version is considered part of the search pattern
1182 */
1183
1184 if (ca_list[j]->min_tls) {
1185 if (min_tls != 0 && min_tls != ca_list[j]->min_tls) {
1186 found = 0;
1187 break;
1188 } else {
1189 min_tls = ca_list[j]->min_tls;
1190 }
1191 }
1192 }
1193
1194 if (!multi)
1195 break;
1196 }
1197
1198 /*
1199 * Ok, we have the rule, now apply it
1200 */
1201 if (rule == CIPHER_SPECIAL) { /* special command */
1202 ok = 0;
1203 if ((buflen == 8) && strncmp(buf, "STRENGTH", 8) == 0) {
1204 ok = ssl_cipher_strength_sort(head_p, tail_p);
1205 } else if (buflen == 10 && strncmp(buf, "SECLEVEL=", 9) == 0) {
1206 int level = buf[9] - '0';
1207 if (level < 0 || level > 5) {
1208 SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR,
1209 SSL_R_INVALID_COMMAND);
1210 } else {
1211 c->sec_level = level;
1212 ok = 1;
1213 }
1214 } else {
1215 SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR, SSL_R_INVALID_COMMAND);
1216 }
1217 if (ok == 0)
1218 retval = 0;
1219 /*
1220 * We do not support any "multi" options
1221 * together with "@", so throw away the
1222 * rest of the command, if any left, until
1223 * end or ':' is found.
1224 */
1225 while ((*l != '\0') && !ITEM_SEP(*l))
1226 l++;
1227 } else if (found) {
1228 ssl_cipher_apply_rule(cipher_id,
1229 alg_mkey, alg_auth, alg_enc, alg_mac,
1230 min_tls, algo_strength, rule, -1, head_p,
1231 tail_p);
1232 } else {
1233 while ((*l != '\0') && !ITEM_SEP(*l))
1234 l++;
1235 }
1236 if (*l == '\0')
1237 break; /* done */
1238 }
1239
1240 return retval;
1241 }
1242
1243 #ifndef OPENSSL_NO_EC
1244 static int check_suiteb_cipher_list(const SSL_METHOD *meth, CERT *c,
1245 const char **prule_str)
1246 {
1247 unsigned int suiteb_flags = 0, suiteb_comb2 = 0;
1248 if (strncmp(*prule_str, "SUITEB128ONLY", 13) == 0) {
1249 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS_ONLY;
1250 } else if (strncmp(*prule_str, "SUITEB128C2", 11) == 0) {
1251 suiteb_comb2 = 1;
1252 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1253 } else if (strncmp(*prule_str, "SUITEB128", 9) == 0) {
1254 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1255 } else if (strncmp(*prule_str, "SUITEB192", 9) == 0) {
1256 suiteb_flags = SSL_CERT_FLAG_SUITEB_192_LOS;
1257 }
1258
1259 if (suiteb_flags) {
1260 c->cert_flags &= ~SSL_CERT_FLAG_SUITEB_128_LOS;
1261 c->cert_flags |= suiteb_flags;
1262 } else {
1263 suiteb_flags = c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS;
1264 }
1265
1266 if (!suiteb_flags)
1267 return 1;
1268 /* Check version: if TLS 1.2 ciphers allowed we can use Suite B */
1269
1270 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)) {
1271 SSLerr(SSL_F_CHECK_SUITEB_CIPHER_LIST,
1272 SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE);
1273 return 0;
1274 }
1275 # ifndef OPENSSL_NO_EC
1276 switch (suiteb_flags) {
1277 case SSL_CERT_FLAG_SUITEB_128_LOS:
1278 if (suiteb_comb2)
1279 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1280 else
1281 *prule_str =
1282 "ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384";
1283 break;
1284 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1285 *prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256";
1286 break;
1287 case SSL_CERT_FLAG_SUITEB_192_LOS:
1288 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1289 break;
1290 }
1291 return 1;
1292 # else
1293 SSLerr(SSL_F_CHECK_SUITEB_CIPHER_LIST, SSL_R_ECDH_REQUIRED_FOR_SUITEB_MODE);
1294 return 0;
1295 # endif
1296 }
1297 #endif
1298
1299 static int ciphersuite_cb(const char *elem, int len, void *arg)
1300 {
1301 STACK_OF(SSL_CIPHER) *ciphersuites = (STACK_OF(SSL_CIPHER) *)arg;
1302 const SSL_CIPHER *cipher;
1303 /* Arbitrary sized temp buffer for the cipher name. Should be big enough */
1304 char name[80];
1305
1306 if (len > (int)(sizeof(name) - 1)) {
1307 SSLerr(SSL_F_CIPHERSUITE_CB, SSL_R_NO_CIPHER_MATCH);
1308 return 0;
1309 }
1310
1311 memcpy(name, elem, len);
1312 name[len] = '\0';
1313
1314 cipher = ssl3_get_cipher_by_std_name(name);
1315 if (cipher == NULL) {
1316 SSLerr(SSL_F_CIPHERSUITE_CB, SSL_R_NO_CIPHER_MATCH);
1317 return 0;
1318 }
1319
1320 if (!sk_SSL_CIPHER_push(ciphersuites, cipher)) {
1321 SSLerr(SSL_F_CIPHERSUITE_CB, ERR_R_INTERNAL_ERROR);
1322 return 0;
1323 }
1324
1325 return 1;
1326 }
1327
1328 static __owur int set_ciphersuites(STACK_OF(SSL_CIPHER) **currciphers, const char *str)
1329 {
1330 STACK_OF(SSL_CIPHER) *newciphers = sk_SSL_CIPHER_new_null();
1331
1332 if (newciphers == NULL)
1333 return 0;
1334
1335 /* Parse the list. We explicitly allow an empty list */
1336 if (*str != '\0'
1337 && !CONF_parse_list(str, ':', 1, ciphersuite_cb, newciphers)) {
1338 sk_SSL_CIPHER_free(newciphers);
1339 return 0;
1340 }
1341 sk_SSL_CIPHER_free(*currciphers);
1342 *currciphers = newciphers;
1343
1344 return 1;
1345 }
1346
1347 static int update_cipher_list_by_id(STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1348 STACK_OF(SSL_CIPHER) *cipherstack)
1349 {
1350 STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
1351
1352 if (tmp_cipher_list == NULL) {
1353 return 0;
1354 }
1355
1356 sk_SSL_CIPHER_free(*cipher_list_by_id);
1357 *cipher_list_by_id = tmp_cipher_list;
1358
1359 (void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id, ssl_cipher_ptr_id_cmp);
1360 sk_SSL_CIPHER_sort(*cipher_list_by_id);
1361
1362 return 1;
1363 }
1364
1365 static int update_cipher_list(STACK_OF(SSL_CIPHER) **cipher_list,
1366 STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1367 STACK_OF(SSL_CIPHER) *tls13_ciphersuites)
1368 {
1369 int i;
1370 STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(*cipher_list);
1371
1372 if (tmp_cipher_list == NULL)
1373 return 0;
1374
1375 /*
1376 * Delete any existing TLSv1.3 ciphersuites. These are always first in the
1377 * list.
1378 */
1379 while (sk_SSL_CIPHER_num(tmp_cipher_list) > 0
1380 && sk_SSL_CIPHER_value(tmp_cipher_list, 0)->min_tls
1381 == TLS1_3_VERSION)
1382 sk_SSL_CIPHER_delete(tmp_cipher_list, 0);
1383
1384 /* Insert the new TLSv1.3 ciphersuites */
1385 for (i = 0; i < sk_SSL_CIPHER_num(tls13_ciphersuites); i++)
1386 sk_SSL_CIPHER_insert(tmp_cipher_list,
1387 sk_SSL_CIPHER_value(tls13_ciphersuites, i), i);
1388
1389 if (!update_cipher_list_by_id(cipher_list_by_id, tmp_cipher_list))
1390 return 0;
1391
1392 sk_SSL_CIPHER_free(*cipher_list);
1393 *cipher_list = tmp_cipher_list;
1394
1395 return 1;
1396 }
1397
1398 int SSL_CTX_set_ciphersuites(SSL_CTX *ctx, const char *str)
1399 {
1400 int ret = set_ciphersuites(&(ctx->tls13_ciphersuites), str);
1401
1402 if (ret && ctx->cipher_list != NULL)
1403 return update_cipher_list(&ctx->cipher_list, &ctx->cipher_list_by_id,
1404 ctx->tls13_ciphersuites);
1405
1406 return ret;
1407 }
1408
1409 int SSL_set_ciphersuites(SSL *s, const char *str)
1410 {
1411 STACK_OF(SSL_CIPHER) *cipher_list;
1412 int ret = set_ciphersuites(&(s->tls13_ciphersuites), str);
1413
1414 if (s->cipher_list == NULL) {
1415 if ((cipher_list = SSL_get_ciphers(s)) != NULL)
1416 s->cipher_list = sk_SSL_CIPHER_dup(cipher_list);
1417 }
1418 if (ret && s->cipher_list != NULL)
1419 return update_cipher_list(&s->cipher_list, &s->cipher_list_by_id,
1420 s->tls13_ciphersuites);
1421
1422 return ret;
1423 }
1424
1425 STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(const SSL_METHOD *ssl_method,
1426 STACK_OF(SSL_CIPHER) *tls13_ciphersuites,
1427 STACK_OF(SSL_CIPHER) **cipher_list,
1428 STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1429 const char *rule_str,
1430 CERT *c)
1431 {
1432 int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases, i;
1433 uint32_t disabled_mkey, disabled_auth, disabled_enc, disabled_mac;
1434 STACK_OF(SSL_CIPHER) *cipherstack;
1435 const char *rule_p;
1436 CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
1437 const SSL_CIPHER **ca_list = NULL;
1438
1439 /*
1440 * Return with error if nothing to do.
1441 */
1442 if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
1443 return NULL;
1444 #ifndef OPENSSL_NO_EC
1445 if (!check_suiteb_cipher_list(ssl_method, c, &rule_str))
1446 return NULL;
1447 #endif
1448
1449 /*
1450 * To reduce the work to do we only want to process the compiled
1451 * in algorithms, so we first get the mask of disabled ciphers.
1452 */
1453
1454 disabled_mkey = disabled_mkey_mask;
1455 disabled_auth = disabled_auth_mask;
1456 disabled_enc = disabled_enc_mask;
1457 disabled_mac = disabled_mac_mask;
1458
1459 /*
1460 * Now we have to collect the available ciphers from the compiled
1461 * in ciphers. We cannot get more than the number compiled in, so
1462 * it is used for allocation.
1463 */
1464 num_of_ciphers = ssl_method->num_ciphers();
1465
1466 co_list = OPENSSL_malloc(sizeof(*co_list) * num_of_ciphers);
1467 if (co_list == NULL) {
1468 SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
1469 return NULL; /* Failure */
1470 }
1471
1472 ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers,
1473 disabled_mkey, disabled_auth, disabled_enc,
1474 disabled_mac, co_list, &head, &tail);
1475
1476 /* Now arrange all ciphers by preference. */
1477
1478 /*
1479 * Everything else being equal, prefer ephemeral ECDH over other key
1480 * exchange mechanisms.
1481 * For consistency, prefer ECDSA over RSA (though this only matters if the
1482 * server has both certificates, and is using the DEFAULT, or a client
1483 * preference).
1484 */
1485 ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, 0, 0, 0, 0, CIPHER_ADD,
1486 -1, &head, &tail);
1487 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head,
1488 &tail);
1489 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head,
1490 &tail);
1491
1492 /* Within each strength group, we prefer GCM over CHACHA... */
1493 ssl_cipher_apply_rule(0, 0, 0, SSL_AESGCM, 0, 0, 0, CIPHER_ADD, -1,
1494 &head, &tail);
1495 ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20, 0, 0, 0, CIPHER_ADD, -1,
1496 &head, &tail);
1497
1498 /*
1499 * ...and generally, our preferred cipher is AES.
1500 * Note that AEADs will be bumped to take preference after sorting by
1501 * strength.
1502 */
1503 ssl_cipher_apply_rule(0, 0, 0, SSL_AES ^ SSL_AESGCM, 0, 0, 0, CIPHER_ADD,
1504 -1, &head, &tail);
1505
1506 /* Temporarily enable everything else for sorting */
1507 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
1508
1509 /* Low priority for MD5 */
1510 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head,
1511 &tail);
1512
1513 /*
1514 * Move anonymous ciphers to the end. Usually, these will remain
1515 * disabled. (For applications that allow them, they aren't too bad, but
1516 * we prefer authenticated ciphers.)
1517 */
1518 ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1519 &tail);
1520
1521 ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1522 &tail);
1523 ssl_cipher_apply_rule(0, SSL_kPSK, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1524 &tail);
1525
1526 /* RC4 is sort-of broken -- move to the end */
1527 ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head,
1528 &tail);
1529
1530 /*
1531 * Now sort by symmetric encryption strength. The above ordering remains
1532 * in force within each class
1533 */
1534 if (!ssl_cipher_strength_sort(&head, &tail)) {
1535 OPENSSL_free(co_list);
1536 return NULL;
1537 }
1538
1539 /*
1540 * Partially overrule strength sort to prefer TLS 1.2 ciphers/PRFs.
1541 * TODO(openssl-team): is there an easier way to accomplish all this?
1542 */
1543 ssl_cipher_apply_rule(0, 0, 0, 0, 0, TLS1_2_VERSION, 0, CIPHER_BUMP, -1,
1544 &head, &tail);
1545
1546 /*
1547 * Irrespective of strength, enforce the following order:
1548 * (EC)DHE + AEAD > (EC)DHE > rest of AEAD > rest.
1549 * Within each group, ciphers remain sorted by strength and previous
1550 * preference, i.e.,
1551 * 1) ECDHE > DHE
1552 * 2) GCM > CHACHA
1553 * 3) AES > rest
1554 * 4) TLS 1.2 > legacy
1555 *
1556 * Because we now bump ciphers to the top of the list, we proceed in
1557 * reverse order of preference.
1558 */
1559 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_AEAD, 0, 0, CIPHER_BUMP, -1,
1560 &head, &tail);
1561 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, 0, 0, 0,
1562 CIPHER_BUMP, -1, &head, &tail);
1563 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, SSL_AEAD, 0, 0,
1564 CIPHER_BUMP, -1, &head, &tail);
1565
1566 /* Now disable everything (maintaining the ordering!) */
1567 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
1568
1569 /*
1570 * We also need cipher aliases for selecting based on the rule_str.
1571 * There might be two types of entries in the rule_str: 1) names
1572 * of ciphers themselves 2) aliases for groups of ciphers.
1573 * For 1) we need the available ciphers and for 2) the cipher
1574 * groups of cipher_aliases added together in one list (otherwise
1575 * we would be happy with just the cipher_aliases table).
1576 */
1577 num_of_group_aliases = OSSL_NELEM(cipher_aliases);
1578 num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
1579 ca_list = OPENSSL_malloc(sizeof(*ca_list) * num_of_alias_max);
1580 if (ca_list == NULL) {
1581 OPENSSL_free(co_list);
1582 SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
1583 return NULL; /* Failure */
1584 }
1585 ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
1586 disabled_mkey, disabled_auth, disabled_enc,
1587 disabled_mac, head);
1588
1589 /*
1590 * If the rule_string begins with DEFAULT, apply the default rule
1591 * before using the (possibly available) additional rules.
1592 */
1593 ok = 1;
1594 rule_p = rule_str;
1595 if (strncmp(rule_str, "DEFAULT", 7) == 0) {
1596 ok = ssl_cipher_process_rulestr(OSSL_default_cipher_list(),
1597 &head, &tail, ca_list, c);
1598 rule_p += 7;
1599 if (*rule_p == ':')
1600 rule_p++;
1601 }
1602
1603 if (ok && (rule_p[0] != '\0'))
1604 ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list, c);
1605
1606 OPENSSL_free(ca_list); /* Not needed anymore */
1607
1608 if (!ok) { /* Rule processing failure */
1609 OPENSSL_free(co_list);
1610 return NULL;
1611 }
1612
1613 /*
1614 * Allocate new "cipherstack" for the result, return with error
1615 * if we cannot get one.
1616 */
1617 if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) {
1618 OPENSSL_free(co_list);
1619 return NULL;
1620 }
1621
1622 /* Add TLSv1.3 ciphers first - we always prefer those if possible */
1623 for (i = 0; i < sk_SSL_CIPHER_num(tls13_ciphersuites); i++) {
1624 const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1625
1626 /* Don't include any TLSv1.3 ciphers that are disabled */
1627 if ((sslc->algorithm_enc & disabled_enc) != 0
1628 || (ssl_cipher_table_mac[sslc->algorithm2
1629 & SSL_HANDSHAKE_MAC_MASK].mask
1630 & disabled_mac_mask) != 0)
1631 continue;
1632
1633 if (!sk_SSL_CIPHER_push(cipherstack, sslc)) {
1634 sk_SSL_CIPHER_free(cipherstack);
1635 return NULL;
1636 }
1637 }
1638
1639 OSSL_TRACE_BEGIN(TLS_CIPHER) {
1640 BIO_printf(trc_out, "cipher selection:\n");
1641 }
1642 /*
1643 * The cipher selection for the list is done. The ciphers are added
1644 * to the resulting precedence to the STACK_OF(SSL_CIPHER).
1645 */
1646 for (curr = head; curr != NULL; curr = curr->next) {
1647 if (curr->active) {
1648 if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) {
1649 OPENSSL_free(co_list);
1650 sk_SSL_CIPHER_free(cipherstack);
1651 OSSL_TRACE_CANCEL(TLS_CIPHER);
1652 return NULL;
1653 }
1654 if (trc_out != NULL)
1655 BIO_printf(trc_out, "<%s>\n", curr->cipher->name);
1656 }
1657 }
1658 OPENSSL_free(co_list); /* Not needed any longer */
1659 OSSL_TRACE_END(TLS_CIPHER);
1660
1661 if (!update_cipher_list_by_id(cipher_list_by_id, cipherstack)) {
1662 sk_SSL_CIPHER_free(cipherstack);
1663 return NULL;
1664 }
1665 sk_SSL_CIPHER_free(*cipher_list);
1666 *cipher_list = cipherstack;
1667
1668 return cipherstack;
1669 }
1670
1671 char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
1672 {
1673 const char *ver;
1674 const char *kx, *au, *enc, *mac;
1675 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
1676 static const char *format = "%-30s %-7s Kx=%-8s Au=%-5s Enc=%-9s Mac=%-4s\n";
1677
1678 if (buf == NULL) {
1679 len = 128;
1680 if ((buf = OPENSSL_malloc(len)) == NULL) {
1681 SSLerr(SSL_F_SSL_CIPHER_DESCRIPTION, ERR_R_MALLOC_FAILURE);
1682 return NULL;
1683 }
1684 } else if (len < 128) {
1685 return NULL;
1686 }
1687
1688 alg_mkey = cipher->algorithm_mkey;
1689 alg_auth = cipher->algorithm_auth;
1690 alg_enc = cipher->algorithm_enc;
1691 alg_mac = cipher->algorithm_mac;
1692
1693 ver = ssl_protocol_to_string(cipher->min_tls);
1694
1695 switch (alg_mkey) {
1696 case SSL_kRSA:
1697 kx = "RSA";
1698 break;
1699 case SSL_kDHE:
1700 kx = "DH";
1701 break;
1702 case SSL_kECDHE:
1703 kx = "ECDH";
1704 break;
1705 case SSL_kPSK:
1706 kx = "PSK";
1707 break;
1708 case SSL_kRSAPSK:
1709 kx = "RSAPSK";
1710 break;
1711 case SSL_kECDHEPSK:
1712 kx = "ECDHEPSK";
1713 break;
1714 case SSL_kDHEPSK:
1715 kx = "DHEPSK";
1716 break;
1717 case SSL_kSRP:
1718 kx = "SRP";
1719 break;
1720 case SSL_kGOST:
1721 kx = "GOST";
1722 break;
1723 case SSL_kGOST18:
1724 kx = "GOST18";
1725 break;
1726 case SSL_kANY:
1727 kx = "any";
1728 break;
1729 default:
1730 kx = "unknown";
1731 }
1732
1733 switch (alg_auth) {
1734 case SSL_aRSA:
1735 au = "RSA";
1736 break;
1737 case SSL_aDSS:
1738 au = "DSS";
1739 break;
1740 case SSL_aNULL:
1741 au = "None";
1742 break;
1743 case SSL_aECDSA:
1744 au = "ECDSA";
1745 break;
1746 case SSL_aPSK:
1747 au = "PSK";
1748 break;
1749 case SSL_aSRP:
1750 au = "SRP";
1751 break;
1752 case SSL_aGOST01:
1753 au = "GOST01";
1754 break;
1755 /* New GOST ciphersuites have both SSL_aGOST12 and SSL_aGOST01 bits */
1756 case (SSL_aGOST12 | SSL_aGOST01):
1757 au = "GOST12";
1758 break;
1759 case SSL_aANY:
1760 au = "any";
1761 break;
1762 default:
1763 au = "unknown";
1764 break;
1765 }
1766
1767 switch (alg_enc) {
1768 case SSL_DES:
1769 enc = "DES(56)";
1770 break;
1771 case SSL_3DES:
1772 enc = "3DES(168)";
1773 break;
1774 case SSL_RC4:
1775 enc = "RC4(128)";
1776 break;
1777 case SSL_RC2:
1778 enc = "RC2(128)";
1779 break;
1780 case SSL_IDEA:
1781 enc = "IDEA(128)";
1782 break;
1783 case SSL_eNULL:
1784 enc = "None";
1785 break;
1786 case SSL_AES128:
1787 enc = "AES(128)";
1788 break;
1789 case SSL_AES256:
1790 enc = "AES(256)";
1791 break;
1792 case SSL_AES128GCM:
1793 enc = "AESGCM(128)";
1794 break;
1795 case SSL_AES256GCM:
1796 enc = "AESGCM(256)";
1797 break;
1798 case SSL_AES128CCM:
1799 enc = "AESCCM(128)";
1800 break;
1801 case SSL_AES256CCM:
1802 enc = "AESCCM(256)";
1803 break;
1804 case SSL_AES128CCM8:
1805 enc = "AESCCM8(128)";
1806 break;
1807 case SSL_AES256CCM8:
1808 enc = "AESCCM8(256)";
1809 break;
1810 case SSL_CAMELLIA128:
1811 enc = "Camellia(128)";
1812 break;
1813 case SSL_CAMELLIA256:
1814 enc = "Camellia(256)";
1815 break;
1816 case SSL_ARIA128GCM:
1817 enc = "ARIAGCM(128)";
1818 break;
1819 case SSL_ARIA256GCM:
1820 enc = "ARIAGCM(256)";
1821 break;
1822 case SSL_SEED:
1823 enc = "SEED(128)";
1824 break;
1825 case SSL_eGOST2814789CNT:
1826 case SSL_eGOST2814789CNT12:
1827 enc = "GOST89(256)";
1828 break;
1829 case SSL_MAGMA:
1830 enc = "MAGMA";
1831 break;
1832 case SSL_KUZNYECHIK:
1833 enc = "KUZNYECHIK";
1834 break;
1835 case SSL_CHACHA20POLY1305:
1836 enc = "CHACHA20/POLY1305(256)";
1837 break;
1838 default:
1839 enc = "unknown";
1840 break;
1841 }
1842
1843 switch (alg_mac) {
1844 case SSL_MD5:
1845 mac = "MD5";
1846 break;
1847 case SSL_SHA1:
1848 mac = "SHA1";
1849 break;
1850 case SSL_SHA256:
1851 mac = "SHA256";
1852 break;
1853 case SSL_SHA384:
1854 mac = "SHA384";
1855 break;
1856 case SSL_AEAD:
1857 mac = "AEAD";
1858 break;
1859 case SSL_GOST89MAC:
1860 case SSL_GOST89MAC12:
1861 mac = "GOST89";
1862 break;
1863 case SSL_GOST94:
1864 mac = "GOST94";
1865 break;
1866 case SSL_GOST12_256:
1867 case SSL_GOST12_512:
1868 mac = "GOST2012";
1869 break;
1870 default:
1871 mac = "unknown";
1872 break;
1873 }
1874
1875 BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac);
1876
1877 return buf;
1878 }
1879
1880 const char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
1881 {
1882 if (c == NULL)
1883 return "(NONE)";
1884
1885 /*
1886 * Backwards-compatibility crutch. In almost all contexts we report TLS
1887 * 1.0 as "TLSv1", but for ciphers we report "TLSv1.0".
1888 */
1889 if (c->min_tls == TLS1_VERSION)
1890 return "TLSv1.0";
1891 return ssl_protocol_to_string(c->min_tls);
1892 }
1893
1894 /* return the actual cipher being used */
1895 const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
1896 {
1897 if (c != NULL)
1898 return c->name;
1899 return "(NONE)";
1900 }
1901
1902 /* return the actual cipher being used in RFC standard name */
1903 const char *SSL_CIPHER_standard_name(const SSL_CIPHER *c)
1904 {
1905 if (c != NULL)
1906 return c->stdname;
1907 return "(NONE)";
1908 }
1909
1910 /* return the OpenSSL name based on given RFC standard name */
1911 const char *OPENSSL_cipher_name(const char *stdname)
1912 {
1913 const SSL_CIPHER *c;
1914
1915 if (stdname == NULL)
1916 return "(NONE)";
1917 c = ssl3_get_cipher_by_std_name(stdname);
1918 return SSL_CIPHER_get_name(c);
1919 }
1920
1921 /* number of bits for symmetric cipher */
1922 int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
1923 {
1924 int ret = 0;
1925
1926 if (c != NULL) {
1927 if (alg_bits != NULL)
1928 *alg_bits = (int)c->alg_bits;
1929 ret = (int)c->strength_bits;
1930 }
1931 return ret;
1932 }
1933
1934 uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *c)
1935 {
1936 return c->id;
1937 }
1938
1939 uint16_t SSL_CIPHER_get_protocol_id(const SSL_CIPHER *c)
1940 {
1941 return c->id & 0xFFFF;
1942 }
1943
1944 SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
1945 {
1946 SSL_COMP *ctmp;
1947 int i, nn;
1948
1949 if ((n == 0) || (sk == NULL))
1950 return NULL;
1951 nn = sk_SSL_COMP_num(sk);
1952 for (i = 0; i < nn; i++) {
1953 ctmp = sk_SSL_COMP_value(sk, i);
1954 if (ctmp->id == n)
1955 return ctmp;
1956 }
1957 return NULL;
1958 }
1959
1960 #ifdef OPENSSL_NO_COMP
1961 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1962 {
1963 return NULL;
1964 }
1965
1966 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1967 *meths)
1968 {
1969 return meths;
1970 }
1971
1972 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
1973 {
1974 return 1;
1975 }
1976
1977 #else
1978 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1979 {
1980 load_builtin_compressions();
1981 return ssl_comp_methods;
1982 }
1983
1984 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1985 *meths)
1986 {
1987 STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
1988 ssl_comp_methods = meths;
1989 return old_meths;
1990 }
1991
1992 static void cmeth_free(SSL_COMP *cm)
1993 {
1994 OPENSSL_free(cm);
1995 }
1996
1997 void ssl_comp_free_compression_methods_int(void)
1998 {
1999 STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
2000 ssl_comp_methods = NULL;
2001 sk_SSL_COMP_pop_free(old_meths, cmeth_free);
2002 }
2003
2004 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
2005 {
2006 SSL_COMP *comp;
2007
2008 if (cm == NULL || COMP_get_type(cm) == NID_undef)
2009 return 1;
2010
2011 /*-
2012 * According to draft-ietf-tls-compression-04.txt, the
2013 * compression number ranges should be the following:
2014 *
2015 * 0 to 63: methods defined by the IETF
2016 * 64 to 192: external party methods assigned by IANA
2017 * 193 to 255: reserved for private use
2018 */
2019 if (id < 193 || id > 255) {
2020 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,
2021 SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE);
2022 return 1;
2023 }
2024
2025 comp = OPENSSL_malloc(sizeof(*comp));
2026 if (comp == NULL) {
2027 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD, ERR_R_MALLOC_FAILURE);
2028 return 1;
2029 }
2030
2031 comp->id = id;
2032 comp->method = cm;
2033 load_builtin_compressions();
2034 if (ssl_comp_methods && sk_SSL_COMP_find(ssl_comp_methods, comp) >= 0) {
2035 OPENSSL_free(comp);
2036 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,
2037 SSL_R_DUPLICATE_COMPRESSION_ID);
2038 return 1;
2039 }
2040 if (ssl_comp_methods == NULL || !sk_SSL_COMP_push(ssl_comp_methods, comp)) {
2041 OPENSSL_free(comp);
2042 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD, ERR_R_MALLOC_FAILURE);
2043 return 1;
2044 }
2045 return 0;
2046 }
2047 #endif
2048
2049 const char *SSL_COMP_get_name(const COMP_METHOD *comp)
2050 {
2051 #ifndef OPENSSL_NO_COMP
2052 return comp ? COMP_get_name(comp) : NULL;
2053 #else
2054 return NULL;
2055 #endif
2056 }
2057
2058 const char *SSL_COMP_get0_name(const SSL_COMP *comp)
2059 {
2060 #ifndef OPENSSL_NO_COMP
2061 return comp->name;
2062 #else
2063 return NULL;
2064 #endif
2065 }
2066
2067 int SSL_COMP_get_id(const SSL_COMP *comp)
2068 {
2069 #ifndef OPENSSL_NO_COMP
2070 return comp->id;
2071 #else
2072 return -1;
2073 #endif
2074 }
2075
2076 const SSL_CIPHER *ssl_get_cipher_by_char(SSL *ssl, const unsigned char *ptr,
2077 int all)
2078 {
2079 const SSL_CIPHER *c = ssl->method->get_cipher_by_char(ptr);
2080
2081 if (c == NULL || (!all && c->valid == 0))
2082 return NULL;
2083 return c;
2084 }
2085
2086 const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr)
2087 {
2088 return ssl->method->get_cipher_by_char(ptr);
2089 }
2090
2091 int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c)
2092 {
2093 int i;
2094 if (c == NULL)
2095 return NID_undef;
2096 i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc);
2097 if (i == -1)
2098 return NID_undef;
2099 return ssl_cipher_table_cipher[i].nid;
2100 }
2101
2102 int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c)
2103 {
2104 int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
2105
2106 if (i == -1)
2107 return NID_undef;
2108 return ssl_cipher_table_mac[i].nid;
2109 }
2110
2111 int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c)
2112 {
2113 int i = ssl_cipher_info_lookup(ssl_cipher_table_kx, c->algorithm_mkey);
2114
2115 if (i == -1)
2116 return NID_undef;
2117 return ssl_cipher_table_kx[i].nid;
2118 }
2119
2120 int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c)
2121 {
2122 int i = ssl_cipher_info_lookup(ssl_cipher_table_auth, c->algorithm_auth);
2123
2124 if (i == -1)
2125 return NID_undef;
2126 return ssl_cipher_table_auth[i].nid;
2127 }
2128
2129 const EVP_MD *SSL_CIPHER_get_handshake_digest(const SSL_CIPHER *c)
2130 {
2131 int idx = c->algorithm2 & SSL_HANDSHAKE_MAC_MASK;
2132
2133 if (idx < 0 || idx >= SSL_MD_NUM_IDX)
2134 return NULL;
2135 return EVP_get_digestbynid(ssl_cipher_table_mac[idx].nid);
2136 }
2137
2138 int SSL_CIPHER_is_aead(const SSL_CIPHER *c)
2139 {
2140 return (c->algorithm_mac & SSL_AEAD) ? 1 : 0;
2141 }
2142
2143 int ssl_cipher_get_overhead(const SSL_CIPHER *c, size_t *mac_overhead,
2144 size_t *int_overhead, size_t *blocksize,
2145 size_t *ext_overhead)
2146 {
2147 size_t mac = 0, in = 0, blk = 0, out = 0;
2148
2149 /* Some hard-coded numbers for the CCM/Poly1305 MAC overhead
2150 * because there are no handy #defines for those. */
2151 if (c->algorithm_enc & (SSL_AESGCM | SSL_ARIAGCM)) {
2152 out = EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
2153 } else if (c->algorithm_enc & (SSL_AES128CCM | SSL_AES256CCM)) {
2154 out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 16;
2155 } else if (c->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8)) {
2156 out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 8;
2157 } else if (c->algorithm_enc & SSL_CHACHA20POLY1305) {
2158 out = 16;
2159 } else if (c->algorithm_mac & SSL_AEAD) {
2160 /* We're supposed to have handled all the AEAD modes above */
2161 return 0;
2162 } else {
2163 /* Non-AEAD modes. Calculate MAC/cipher overhead separately */
2164 int digest_nid = SSL_CIPHER_get_digest_nid(c);
2165 const EVP_MD *e_md = EVP_get_digestbynid(digest_nid);
2166
2167 if (e_md == NULL)
2168 return 0;
2169
2170 mac = EVP_MD_size(e_md);
2171 if (c->algorithm_enc != SSL_eNULL) {
2172 int cipher_nid = SSL_CIPHER_get_cipher_nid(c);
2173 const EVP_CIPHER *e_ciph = EVP_get_cipherbynid(cipher_nid);
2174
2175 /* If it wasn't AEAD or SSL_eNULL, we expect it to be a
2176 known CBC cipher. */
2177 if (e_ciph == NULL ||
2178 EVP_CIPHER_mode(e_ciph) != EVP_CIPH_CBC_MODE)
2179 return 0;
2180
2181 in = 1; /* padding length byte */
2182 out = EVP_CIPHER_iv_length(e_ciph);
2183 blk = EVP_CIPHER_block_size(e_ciph);
2184 }
2185 }
2186
2187 *mac_overhead = mac;
2188 *int_overhead = in;
2189 *blocksize = blk;
2190 *ext_overhead = out;
2191
2192 return 1;
2193 }
2194
2195 int ssl_cert_is_disabled(size_t idx)
2196 {
2197 const SSL_CERT_LOOKUP *cl = ssl_cert_lookup_by_idx(idx);
2198
2199 if (cl == NULL || (cl->amask & disabled_auth_mask) != 0)
2200 return 1;
2201 return 0;
2202 }
2203
2204 /*
2205 * Default list of TLSv1.2 (and earlier) ciphers
2206 * SSL_DEFAULT_CIPHER_LIST deprecated in 3.0.0
2207 * Update both macro and function simultaneously
2208 */
2209 const char *OSSL_default_cipher_list(void)
2210 {
2211 return "ALL:!COMPLEMENTOFDEFAULT:!eNULL";
2212 }
2213
2214 /*
2215 * Default list of TLSv1.3 (and later) ciphers
2216 * TLS_DEFAULT_CIPHERSUITES deprecated in 3.0.0
2217 * Update both macro and function simultaneously
2218 */
2219 const char *OSSL_default_ciphersuites(void)
2220 {
2221 return "TLS_AES_256_GCM_SHA384:"
2222 #if !defined(OPENSSL_NO_CHACHA) && !defined(OPENSSL_NO_POLY1305)
2223 "TLS_CHACHA20_POLY1305_SHA256:"
2224 #endif
2225 "TLS_AES_128_GCM_SHA256";
2226 }