]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_ciph.c
More configurable crypto and ssl library initialization
[thirdparty/openssl.git] / ssl / ssl_ciph.c
1 /*
2 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the Apache License 2.0 (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include <ctype.h>
14 #include <openssl/objects.h>
15 #include <openssl/comp.h>
16 #include <openssl/engine.h>
17 #include <openssl/crypto.h>
18 #include <openssl/conf.h>
19 #include "internal/nelem.h"
20 #include "ssl_locl.h"
21 #include "internal/thread_once.h"
22 #include "internal/cryptlib.h"
23
24 #define SSL_ENC_DES_IDX 0
25 #define SSL_ENC_3DES_IDX 1
26 #define SSL_ENC_RC4_IDX 2
27 #define SSL_ENC_RC2_IDX 3
28 #define SSL_ENC_IDEA_IDX 4
29 #define SSL_ENC_NULL_IDX 5
30 #define SSL_ENC_AES128_IDX 6
31 #define SSL_ENC_AES256_IDX 7
32 #define SSL_ENC_CAMELLIA128_IDX 8
33 #define SSL_ENC_CAMELLIA256_IDX 9
34 #define SSL_ENC_GOST89_IDX 10
35 #define SSL_ENC_SEED_IDX 11
36 #define SSL_ENC_AES128GCM_IDX 12
37 #define SSL_ENC_AES256GCM_IDX 13
38 #define SSL_ENC_AES128CCM_IDX 14
39 #define SSL_ENC_AES256CCM_IDX 15
40 #define SSL_ENC_AES128CCM8_IDX 16
41 #define SSL_ENC_AES256CCM8_IDX 17
42 #define SSL_ENC_GOST8912_IDX 18
43 #define SSL_ENC_CHACHA_IDX 19
44 #define SSL_ENC_ARIA128GCM_IDX 20
45 #define SSL_ENC_ARIA256GCM_IDX 21
46 #define SSL_ENC_NUM_IDX 22
47
48 /* NB: make sure indices in these tables match values above */
49
50 typedef struct {
51 uint32_t mask;
52 int nid;
53 } ssl_cipher_table;
54
55 /* Table of NIDs for each cipher */
56 static const ssl_cipher_table ssl_cipher_table_cipher[SSL_ENC_NUM_IDX] = {
57 {SSL_DES, NID_des_cbc}, /* SSL_ENC_DES_IDX 0 */
58 {SSL_3DES, NID_des_ede3_cbc}, /* SSL_ENC_3DES_IDX 1 */
59 {SSL_RC4, NID_rc4}, /* SSL_ENC_RC4_IDX 2 */
60 {SSL_RC2, NID_rc2_cbc}, /* SSL_ENC_RC2_IDX 3 */
61 {SSL_IDEA, NID_idea_cbc}, /* SSL_ENC_IDEA_IDX 4 */
62 {SSL_eNULL, NID_undef}, /* SSL_ENC_NULL_IDX 5 */
63 {SSL_AES128, NID_aes_128_cbc}, /* SSL_ENC_AES128_IDX 6 */
64 {SSL_AES256, NID_aes_256_cbc}, /* SSL_ENC_AES256_IDX 7 */
65 {SSL_CAMELLIA128, NID_camellia_128_cbc}, /* SSL_ENC_CAMELLIA128_IDX 8 */
66 {SSL_CAMELLIA256, NID_camellia_256_cbc}, /* SSL_ENC_CAMELLIA256_IDX 9 */
67 {SSL_eGOST2814789CNT, NID_gost89_cnt}, /* SSL_ENC_GOST89_IDX 10 */
68 {SSL_SEED, NID_seed_cbc}, /* SSL_ENC_SEED_IDX 11 */
69 {SSL_AES128GCM, NID_aes_128_gcm}, /* SSL_ENC_AES128GCM_IDX 12 */
70 {SSL_AES256GCM, NID_aes_256_gcm}, /* SSL_ENC_AES256GCM_IDX 13 */
71 {SSL_AES128CCM, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM_IDX 14 */
72 {SSL_AES256CCM, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM_IDX 15 */
73 {SSL_AES128CCM8, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM8_IDX 16 */
74 {SSL_AES256CCM8, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM8_IDX 17 */
75 {SSL_eGOST2814789CNT12, NID_gost89_cnt_12}, /* SSL_ENC_GOST8912_IDX 18 */
76 {SSL_CHACHA20POLY1305, NID_chacha20_poly1305}, /* SSL_ENC_CHACHA_IDX 19 */
77 {SSL_ARIA128GCM, NID_aria_128_gcm}, /* SSL_ENC_ARIA128GCM_IDX 20 */
78 {SSL_ARIA256GCM, NID_aria_256_gcm}, /* SSL_ENC_ARIA256GCM_IDX 21 */
79 };
80
81 static const EVP_CIPHER *ssl_cipher_methods[SSL_ENC_NUM_IDX];
82
83 #define SSL_COMP_NULL_IDX 0
84 #define SSL_COMP_ZLIB_IDX 1
85 #define SSL_COMP_NUM_IDX 2
86
87 static STACK_OF(SSL_COMP) *ssl_comp_methods = NULL;
88
89 #ifndef OPENSSL_NO_COMP
90 static CRYPTO_ONCE ssl_load_builtin_comp_once = CRYPTO_ONCE_STATIC_INIT;
91 #endif
92
93 /*
94 * Constant SSL_MAX_DIGEST equal to size of digests array should be defined
95 * in the ssl_locl.h
96 */
97
98 #define SSL_MD_NUM_IDX SSL_MAX_DIGEST
99
100 /* NB: make sure indices in this table matches values above */
101 static const ssl_cipher_table ssl_cipher_table_mac[SSL_MD_NUM_IDX] = {
102 {SSL_MD5, NID_md5}, /* SSL_MD_MD5_IDX 0 */
103 {SSL_SHA1, NID_sha1}, /* SSL_MD_SHA1_IDX 1 */
104 {SSL_GOST94, NID_id_GostR3411_94}, /* SSL_MD_GOST94_IDX 2 */
105 {SSL_GOST89MAC, NID_id_Gost28147_89_MAC}, /* SSL_MD_GOST89MAC_IDX 3 */
106 {SSL_SHA256, NID_sha256}, /* SSL_MD_SHA256_IDX 4 */
107 {SSL_SHA384, NID_sha384}, /* SSL_MD_SHA384_IDX 5 */
108 {SSL_GOST12_256, NID_id_GostR3411_2012_256}, /* SSL_MD_GOST12_256_IDX 6 */
109 {SSL_GOST89MAC12, NID_gost_mac_12}, /* SSL_MD_GOST89MAC12_IDX 7 */
110 {SSL_GOST12_512, NID_id_GostR3411_2012_512}, /* SSL_MD_GOST12_512_IDX 8 */
111 {0, NID_md5_sha1}, /* SSL_MD_MD5_SHA1_IDX 9 */
112 {0, NID_sha224}, /* SSL_MD_SHA224_IDX 10 */
113 {0, NID_sha512} /* SSL_MD_SHA512_IDX 11 */
114 };
115
116 static const EVP_MD *ssl_digest_methods[SSL_MD_NUM_IDX] = {
117 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
118 };
119
120 /* *INDENT-OFF* */
121 static const ssl_cipher_table ssl_cipher_table_kx[] = {
122 {SSL_kRSA, NID_kx_rsa},
123 {SSL_kECDHE, NID_kx_ecdhe},
124 {SSL_kDHE, NID_kx_dhe},
125 {SSL_kECDHEPSK, NID_kx_ecdhe_psk},
126 {SSL_kDHEPSK, NID_kx_dhe_psk},
127 {SSL_kRSAPSK, NID_kx_rsa_psk},
128 {SSL_kPSK, NID_kx_psk},
129 {SSL_kSRP, NID_kx_srp},
130 {SSL_kGOST, NID_kx_gost},
131 {SSL_kANY, NID_kx_any}
132 };
133
134 static const ssl_cipher_table ssl_cipher_table_auth[] = {
135 {SSL_aRSA, NID_auth_rsa},
136 {SSL_aECDSA, NID_auth_ecdsa},
137 {SSL_aPSK, NID_auth_psk},
138 {SSL_aDSS, NID_auth_dss},
139 {SSL_aGOST01, NID_auth_gost01},
140 {SSL_aGOST12, NID_auth_gost12},
141 {SSL_aSRP, NID_auth_srp},
142 {SSL_aNULL, NID_auth_null},
143 {SSL_aANY, NID_auth_any}
144 };
145 /* *INDENT-ON* */
146
147 /* Utility function for table lookup */
148 static int ssl_cipher_info_find(const ssl_cipher_table * table,
149 size_t table_cnt, uint32_t mask)
150 {
151 size_t i;
152 for (i = 0; i < table_cnt; i++, table++) {
153 if (table->mask == mask)
154 return (int)i;
155 }
156 return -1;
157 }
158
159 #define ssl_cipher_info_lookup(table, x) \
160 ssl_cipher_info_find(table, OSSL_NELEM(table), x)
161
162 /*
163 * PKEY_TYPE for GOST89MAC is known in advance, but, because implementation
164 * is engine-provided, we'll fill it only if corresponding EVP_PKEY_METHOD is
165 * found
166 */
167 static int ssl_mac_pkey_id[SSL_MD_NUM_IDX] = {
168 /* MD5, SHA, GOST94, MAC89 */
169 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
170 /* SHA256, SHA384, GOST2012_256, MAC89-12 */
171 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
172 /* GOST2012_512 */
173 EVP_PKEY_HMAC,
174 };
175
176 static size_t ssl_mac_secret_size[SSL_MD_NUM_IDX];
177
178 #define CIPHER_ADD 1
179 #define CIPHER_KILL 2
180 #define CIPHER_DEL 3
181 #define CIPHER_ORD 4
182 #define CIPHER_SPECIAL 5
183 /*
184 * Bump the ciphers to the top of the list.
185 * This rule isn't currently supported by the public cipherstring API.
186 */
187 #define CIPHER_BUMP 6
188
189 typedef struct cipher_order_st {
190 const SSL_CIPHER *cipher;
191 int active;
192 int dead;
193 struct cipher_order_st *next, *prev;
194 } CIPHER_ORDER;
195
196 static const SSL_CIPHER cipher_aliases[] = {
197 /* "ALL" doesn't include eNULL (must be specifically enabled) */
198 {0, SSL_TXT_ALL, NULL, 0, 0, 0, ~SSL_eNULL},
199 /* "COMPLEMENTOFALL" */
200 {0, SSL_TXT_CMPALL, NULL, 0, 0, 0, SSL_eNULL},
201
202 /*
203 * "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in
204 * ALL!)
205 */
206 {0, SSL_TXT_CMPDEF, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_NOT_DEFAULT},
207
208 /*
209 * key exchange aliases (some of those using only a single bit here
210 * combine multiple key exchange algs according to the RFCs, e.g. kDHE
211 * combines DHE_DSS and DHE_RSA)
212 */
213 {0, SSL_TXT_kRSA, NULL, 0, SSL_kRSA},
214
215 {0, SSL_TXT_kEDH, NULL, 0, SSL_kDHE},
216 {0, SSL_TXT_kDHE, NULL, 0, SSL_kDHE},
217 {0, SSL_TXT_DH, NULL, 0, SSL_kDHE},
218
219 {0, SSL_TXT_kEECDH, NULL, 0, SSL_kECDHE},
220 {0, SSL_TXT_kECDHE, NULL, 0, SSL_kECDHE},
221 {0, SSL_TXT_ECDH, NULL, 0, SSL_kECDHE},
222
223 {0, SSL_TXT_kPSK, NULL, 0, SSL_kPSK},
224 {0, SSL_TXT_kRSAPSK, NULL, 0, SSL_kRSAPSK},
225 {0, SSL_TXT_kECDHEPSK, NULL, 0, SSL_kECDHEPSK},
226 {0, SSL_TXT_kDHEPSK, NULL, 0, SSL_kDHEPSK},
227 {0, SSL_TXT_kSRP, NULL, 0, SSL_kSRP},
228 {0, SSL_TXT_kGOST, NULL, 0, SSL_kGOST},
229
230 /* server authentication aliases */
231 {0, SSL_TXT_aRSA, NULL, 0, 0, SSL_aRSA},
232 {0, SSL_TXT_aDSS, NULL, 0, 0, SSL_aDSS},
233 {0, SSL_TXT_DSS, NULL, 0, 0, SSL_aDSS},
234 {0, SSL_TXT_aNULL, NULL, 0, 0, SSL_aNULL},
235 {0, SSL_TXT_aECDSA, NULL, 0, 0, SSL_aECDSA},
236 {0, SSL_TXT_ECDSA, NULL, 0, 0, SSL_aECDSA},
237 {0, SSL_TXT_aPSK, NULL, 0, 0, SSL_aPSK},
238 {0, SSL_TXT_aGOST01, NULL, 0, 0, SSL_aGOST01},
239 {0, SSL_TXT_aGOST12, NULL, 0, 0, SSL_aGOST12},
240 {0, SSL_TXT_aGOST, NULL, 0, 0, SSL_aGOST01 | SSL_aGOST12},
241 {0, SSL_TXT_aSRP, NULL, 0, 0, SSL_aSRP},
242
243 /* aliases combining key exchange and server authentication */
244 {0, SSL_TXT_EDH, NULL, 0, SSL_kDHE, ~SSL_aNULL},
245 {0, SSL_TXT_DHE, NULL, 0, SSL_kDHE, ~SSL_aNULL},
246 {0, SSL_TXT_EECDH, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
247 {0, SSL_TXT_ECDHE, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
248 {0, SSL_TXT_NULL, NULL, 0, 0, 0, SSL_eNULL},
249 {0, SSL_TXT_RSA, NULL, 0, SSL_kRSA, SSL_aRSA},
250 {0, SSL_TXT_ADH, NULL, 0, SSL_kDHE, SSL_aNULL},
251 {0, SSL_TXT_AECDH, NULL, 0, SSL_kECDHE, SSL_aNULL},
252 {0, SSL_TXT_PSK, NULL, 0, SSL_PSK},
253 {0, SSL_TXT_SRP, NULL, 0, SSL_kSRP},
254
255 /* symmetric encryption aliases */
256 {0, SSL_TXT_3DES, NULL, 0, 0, 0, SSL_3DES},
257 {0, SSL_TXT_RC4, NULL, 0, 0, 0, SSL_RC4},
258 {0, SSL_TXT_RC2, NULL, 0, 0, 0, SSL_RC2},
259 {0, SSL_TXT_IDEA, NULL, 0, 0, 0, SSL_IDEA},
260 {0, SSL_TXT_SEED, NULL, 0, 0, 0, SSL_SEED},
261 {0, SSL_TXT_eNULL, NULL, 0, 0, 0, SSL_eNULL},
262 {0, SSL_TXT_GOST, NULL, 0, 0, 0, SSL_eGOST2814789CNT | SSL_eGOST2814789CNT12},
263 {0, SSL_TXT_AES128, NULL, 0, 0, 0,
264 SSL_AES128 | SSL_AES128GCM | SSL_AES128CCM | SSL_AES128CCM8},
265 {0, SSL_TXT_AES256, NULL, 0, 0, 0,
266 SSL_AES256 | SSL_AES256GCM | SSL_AES256CCM | SSL_AES256CCM8},
267 {0, SSL_TXT_AES, NULL, 0, 0, 0, SSL_AES},
268 {0, SSL_TXT_AES_GCM, NULL, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM},
269 {0, SSL_TXT_AES_CCM, NULL, 0, 0, 0,
270 SSL_AES128CCM | SSL_AES256CCM | SSL_AES128CCM8 | SSL_AES256CCM8},
271 {0, SSL_TXT_AES_CCM_8, NULL, 0, 0, 0, SSL_AES128CCM8 | SSL_AES256CCM8},
272 {0, SSL_TXT_CAMELLIA128, NULL, 0, 0, 0, SSL_CAMELLIA128},
273 {0, SSL_TXT_CAMELLIA256, NULL, 0, 0, 0, SSL_CAMELLIA256},
274 {0, SSL_TXT_CAMELLIA, NULL, 0, 0, 0, SSL_CAMELLIA},
275 {0, SSL_TXT_CHACHA20, NULL, 0, 0, 0, SSL_CHACHA20},
276
277 {0, SSL_TXT_ARIA, NULL, 0, 0, 0, SSL_ARIA},
278 {0, SSL_TXT_ARIA_GCM, NULL, 0, 0, 0, SSL_ARIA128GCM | SSL_ARIA256GCM},
279 {0, SSL_TXT_ARIA128, NULL, 0, 0, 0, SSL_ARIA128GCM},
280 {0, SSL_TXT_ARIA256, NULL, 0, 0, 0, SSL_ARIA256GCM},
281
282 /* MAC aliases */
283 {0, SSL_TXT_MD5, NULL, 0, 0, 0, 0, SSL_MD5},
284 {0, SSL_TXT_SHA1, NULL, 0, 0, 0, 0, SSL_SHA1},
285 {0, SSL_TXT_SHA, NULL, 0, 0, 0, 0, SSL_SHA1},
286 {0, SSL_TXT_GOST94, NULL, 0, 0, 0, 0, SSL_GOST94},
287 {0, SSL_TXT_GOST89MAC, NULL, 0, 0, 0, 0, SSL_GOST89MAC | SSL_GOST89MAC12},
288 {0, SSL_TXT_SHA256, NULL, 0, 0, 0, 0, SSL_SHA256},
289 {0, SSL_TXT_SHA384, NULL, 0, 0, 0, 0, SSL_SHA384},
290 {0, SSL_TXT_GOST12, NULL, 0, 0, 0, 0, SSL_GOST12_256},
291
292 /* protocol version aliases */
293 {0, SSL_TXT_SSLV3, NULL, 0, 0, 0, 0, 0, SSL3_VERSION},
294 {0, SSL_TXT_TLSV1, NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
295 {0, "TLSv1.0", NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
296 {0, SSL_TXT_TLSV1_2, NULL, 0, 0, 0, 0, 0, TLS1_2_VERSION},
297
298 /* strength classes */
299 {0, SSL_TXT_LOW, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_LOW},
300 {0, SSL_TXT_MEDIUM, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_MEDIUM},
301 {0, SSL_TXT_HIGH, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_HIGH},
302 /* FIPS 140-2 approved ciphersuite */
303 {0, SSL_TXT_FIPS, NULL, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, SSL_FIPS},
304
305 /* "EDH-" aliases to "DHE-" labels (for backward compatibility) */
306 {0, SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA, NULL, 0,
307 SSL_kDHE, SSL_aDSS, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
308 {0, SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA, NULL, 0,
309 SSL_kDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
310
311 };
312
313 /*
314 * Search for public key algorithm with given name and return its pkey_id if
315 * it is available. Otherwise return 0
316 */
317 #ifdef OPENSSL_NO_ENGINE
318
319 static int get_optional_pkey_id(const char *pkey_name)
320 {
321 const EVP_PKEY_ASN1_METHOD *ameth;
322 int pkey_id = 0;
323 ameth = EVP_PKEY_asn1_find_str(NULL, pkey_name, -1);
324 if (ameth && EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
325 ameth) > 0)
326 return pkey_id;
327 return 0;
328 }
329
330 #else
331
332 static int get_optional_pkey_id(const char *pkey_name)
333 {
334 const EVP_PKEY_ASN1_METHOD *ameth;
335 ENGINE *tmpeng = NULL;
336 int pkey_id = 0;
337 ameth = EVP_PKEY_asn1_find_str(&tmpeng, pkey_name, -1);
338 if (ameth) {
339 if (EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
340 ameth) <= 0)
341 pkey_id = 0;
342 }
343 ENGINE_finish(tmpeng);
344 return pkey_id;
345 }
346
347 #endif
348
349 /* masks of disabled algorithms */
350 static uint32_t disabled_enc_mask;
351 static uint32_t disabled_mac_mask;
352 static uint32_t disabled_mkey_mask;
353 static uint32_t disabled_auth_mask;
354
355 int ssl_load_ciphers(void)
356 {
357 size_t i;
358 const ssl_cipher_table *t;
359
360 disabled_enc_mask = 0;
361 ssl_sort_cipher_list();
362 for (i = 0, t = ssl_cipher_table_cipher; i < SSL_ENC_NUM_IDX; i++, t++) {
363 if (t->nid == NID_undef) {
364 ssl_cipher_methods[i] = NULL;
365 } else {
366 const EVP_CIPHER *cipher = EVP_get_cipherbynid(t->nid);
367 ssl_cipher_methods[i] = cipher;
368 if (cipher == NULL)
369 disabled_enc_mask |= t->mask;
370 }
371 }
372 disabled_mac_mask = 0;
373 for (i = 0, t = ssl_cipher_table_mac; i < SSL_MD_NUM_IDX; i++, t++) {
374 const EVP_MD *md = EVP_get_digestbynid(t->nid);
375 ssl_digest_methods[i] = md;
376 if (md == NULL) {
377 disabled_mac_mask |= t->mask;
378 } else {
379 int tmpsize = EVP_MD_size(md);
380 if (!ossl_assert(tmpsize >= 0))
381 return 0;
382 ssl_mac_secret_size[i] = tmpsize;
383 }
384 }
385 /* Make sure we can access MD5 and SHA1 */
386 if (!ossl_assert(ssl_digest_methods[SSL_MD_MD5_IDX] != NULL))
387 return 0;
388 if (!ossl_assert(ssl_digest_methods[SSL_MD_SHA1_IDX] != NULL))
389 return 0;
390
391 disabled_mkey_mask = 0;
392 disabled_auth_mask = 0;
393
394 #ifdef OPENSSL_NO_RSA
395 disabled_mkey_mask |= SSL_kRSA | SSL_kRSAPSK;
396 disabled_auth_mask |= SSL_aRSA;
397 #endif
398 #ifdef OPENSSL_NO_DSA
399 disabled_auth_mask |= SSL_aDSS;
400 #endif
401 #ifdef OPENSSL_NO_DH
402 disabled_mkey_mask |= SSL_kDHE | SSL_kDHEPSK;
403 #endif
404 #ifdef OPENSSL_NO_EC
405 disabled_mkey_mask |= SSL_kECDHE | SSL_kECDHEPSK;
406 disabled_auth_mask |= SSL_aECDSA;
407 #endif
408 #ifdef OPENSSL_NO_PSK
409 disabled_mkey_mask |= SSL_PSK;
410 disabled_auth_mask |= SSL_aPSK;
411 #endif
412 #ifdef OPENSSL_NO_SRP
413 disabled_mkey_mask |= SSL_kSRP;
414 #endif
415
416 /*
417 * Check for presence of GOST 34.10 algorithms, and if they are not
418 * present, disable appropriate auth and key exchange
419 */
420 ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] = get_optional_pkey_id("gost-mac");
421 if (ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX])
422 ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32;
423 else
424 disabled_mac_mask |= SSL_GOST89MAC;
425
426 ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX] =
427 get_optional_pkey_id("gost-mac-12");
428 if (ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX])
429 ssl_mac_secret_size[SSL_MD_GOST89MAC12_IDX] = 32;
430 else
431 disabled_mac_mask |= SSL_GOST89MAC12;
432
433 if (!get_optional_pkey_id("gost2001"))
434 disabled_auth_mask |= SSL_aGOST01 | SSL_aGOST12;
435 if (!get_optional_pkey_id("gost2012_256"))
436 disabled_auth_mask |= SSL_aGOST12;
437 if (!get_optional_pkey_id("gost2012_512"))
438 disabled_auth_mask |= SSL_aGOST12;
439 /*
440 * Disable GOST key exchange if no GOST signature algs are available *
441 */
442 if ((disabled_auth_mask & (SSL_aGOST01 | SSL_aGOST12)) ==
443 (SSL_aGOST01 | SSL_aGOST12))
444 disabled_mkey_mask |= SSL_kGOST;
445
446 return 1;
447 }
448
449 #ifndef OPENSSL_NO_COMP
450
451 static int sk_comp_cmp(const SSL_COMP *const *a, const SSL_COMP *const *b)
452 {
453 return ((*a)->id - (*b)->id);
454 }
455
456 DEFINE_RUN_ONCE_STATIC(do_load_builtin_compressions)
457 {
458 SSL_COMP *comp = NULL;
459 COMP_METHOD *method = COMP_zlib();
460
461 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_DISABLE);
462 ssl_comp_methods = sk_SSL_COMP_new(sk_comp_cmp);
463
464 if (COMP_get_type(method) != NID_undef && ssl_comp_methods != NULL) {
465 comp = OPENSSL_malloc(sizeof(*comp));
466 if (comp != NULL) {
467 comp->method = method;
468 comp->id = SSL_COMP_ZLIB_IDX;
469 comp->name = COMP_get_name(method);
470 sk_SSL_COMP_push(ssl_comp_methods, comp);
471 sk_SSL_COMP_sort(ssl_comp_methods);
472 }
473 }
474 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE);
475 return 1;
476 }
477
478 static int load_builtin_compressions(void)
479 {
480 return RUN_ONCE(&ssl_load_builtin_comp_once, do_load_builtin_compressions);
481 }
482 #endif
483
484 int ssl_cipher_get_evp(const SSL_SESSION *s, const EVP_CIPHER **enc,
485 const EVP_MD **md, int *mac_pkey_type,
486 size_t *mac_secret_size, SSL_COMP **comp, int use_etm)
487 {
488 int i;
489 const SSL_CIPHER *c;
490
491 c = s->cipher;
492 if (c == NULL)
493 return 0;
494 if (comp != NULL) {
495 SSL_COMP ctmp;
496 #ifndef OPENSSL_NO_COMP
497 if (!load_builtin_compressions()) {
498 /*
499 * Currently don't care, since a failure only means that
500 * ssl_comp_methods is NULL, which is perfectly OK
501 */
502 }
503 #endif
504 *comp = NULL;
505 ctmp.id = s->compress_meth;
506 if (ssl_comp_methods != NULL) {
507 i = sk_SSL_COMP_find(ssl_comp_methods, &ctmp);
508 *comp = sk_SSL_COMP_value(ssl_comp_methods, i);
509 }
510 /* If were only interested in comp then return success */
511 if ((enc == NULL) && (md == NULL))
512 return 1;
513 }
514
515 if ((enc == NULL) || (md == NULL))
516 return 0;
517
518 i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc);
519
520 if (i == -1) {
521 *enc = NULL;
522 } else {
523 if (i == SSL_ENC_NULL_IDX)
524 *enc = EVP_enc_null();
525 else
526 *enc = ssl_cipher_methods[i];
527 }
528
529 i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
530 if (i == -1) {
531 *md = NULL;
532 if (mac_pkey_type != NULL)
533 *mac_pkey_type = NID_undef;
534 if (mac_secret_size != NULL)
535 *mac_secret_size = 0;
536 if (c->algorithm_mac == SSL_AEAD)
537 mac_pkey_type = NULL;
538 } else {
539 *md = ssl_digest_methods[i];
540 if (mac_pkey_type != NULL)
541 *mac_pkey_type = ssl_mac_pkey_id[i];
542 if (mac_secret_size != NULL)
543 *mac_secret_size = ssl_mac_secret_size[i];
544 }
545
546 if ((*enc != NULL) &&
547 (*md != NULL || (EVP_CIPHER_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER))
548 && (!mac_pkey_type || *mac_pkey_type != NID_undef)) {
549 const EVP_CIPHER *evp;
550
551 if (use_etm)
552 return 1;
553
554 if (s->ssl_version >> 8 != TLS1_VERSION_MAJOR ||
555 s->ssl_version < TLS1_VERSION)
556 return 1;
557
558 if (c->algorithm_enc == SSL_RC4 &&
559 c->algorithm_mac == SSL_MD5 &&
560 (evp = EVP_get_cipherbyname("RC4-HMAC-MD5")))
561 *enc = evp, *md = NULL;
562 else if (c->algorithm_enc == SSL_AES128 &&
563 c->algorithm_mac == SSL_SHA1 &&
564 (evp = EVP_get_cipherbyname("AES-128-CBC-HMAC-SHA1")))
565 *enc = evp, *md = NULL;
566 else if (c->algorithm_enc == SSL_AES256 &&
567 c->algorithm_mac == SSL_SHA1 &&
568 (evp = EVP_get_cipherbyname("AES-256-CBC-HMAC-SHA1")))
569 *enc = evp, *md = NULL;
570 else if (c->algorithm_enc == SSL_AES128 &&
571 c->algorithm_mac == SSL_SHA256 &&
572 (evp = EVP_get_cipherbyname("AES-128-CBC-HMAC-SHA256")))
573 *enc = evp, *md = NULL;
574 else if (c->algorithm_enc == SSL_AES256 &&
575 c->algorithm_mac == SSL_SHA256 &&
576 (evp = EVP_get_cipherbyname("AES-256-CBC-HMAC-SHA256")))
577 *enc = evp, *md = NULL;
578 return 1;
579 } else {
580 return 0;
581 }
582 }
583
584 const EVP_MD *ssl_md(int idx)
585 {
586 idx &= SSL_HANDSHAKE_MAC_MASK;
587 if (idx < 0 || idx >= SSL_MD_NUM_IDX)
588 return NULL;
589 return ssl_digest_methods[idx];
590 }
591
592 const EVP_MD *ssl_handshake_md(SSL *s)
593 {
594 return ssl_md(ssl_get_algorithm2(s));
595 }
596
597 const EVP_MD *ssl_prf_md(SSL *s)
598 {
599 return ssl_md(ssl_get_algorithm2(s) >> TLS1_PRF_DGST_SHIFT);
600 }
601
602 #define ITEM_SEP(a) \
603 (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
604
605 static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
606 CIPHER_ORDER **tail)
607 {
608 if (curr == *tail)
609 return;
610 if (curr == *head)
611 *head = curr->next;
612 if (curr->prev != NULL)
613 curr->prev->next = curr->next;
614 if (curr->next != NULL)
615 curr->next->prev = curr->prev;
616 (*tail)->next = curr;
617 curr->prev = *tail;
618 curr->next = NULL;
619 *tail = curr;
620 }
621
622 static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
623 CIPHER_ORDER **tail)
624 {
625 if (curr == *head)
626 return;
627 if (curr == *tail)
628 *tail = curr->prev;
629 if (curr->next != NULL)
630 curr->next->prev = curr->prev;
631 if (curr->prev != NULL)
632 curr->prev->next = curr->next;
633 (*head)->prev = curr;
634 curr->next = *head;
635 curr->prev = NULL;
636 *head = curr;
637 }
638
639 static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
640 int num_of_ciphers,
641 uint32_t disabled_mkey,
642 uint32_t disabled_auth,
643 uint32_t disabled_enc,
644 uint32_t disabled_mac,
645 CIPHER_ORDER *co_list,
646 CIPHER_ORDER **head_p,
647 CIPHER_ORDER **tail_p)
648 {
649 int i, co_list_num;
650 const SSL_CIPHER *c;
651
652 /*
653 * We have num_of_ciphers descriptions compiled in, depending on the
654 * method selected (SSLv3, TLSv1 etc).
655 * These will later be sorted in a linked list with at most num
656 * entries.
657 */
658
659 /* Get the initial list of ciphers */
660 co_list_num = 0; /* actual count of ciphers */
661 for (i = 0; i < num_of_ciphers; i++) {
662 c = ssl_method->get_cipher(i);
663 /* drop those that use any of that is not available */
664 if (c == NULL || !c->valid)
665 continue;
666 if ((c->algorithm_mkey & disabled_mkey) ||
667 (c->algorithm_auth & disabled_auth) ||
668 (c->algorithm_enc & disabled_enc) ||
669 (c->algorithm_mac & disabled_mac))
670 continue;
671 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) == 0) &&
672 c->min_tls == 0)
673 continue;
674 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) != 0) &&
675 c->min_dtls == 0)
676 continue;
677
678 co_list[co_list_num].cipher = c;
679 co_list[co_list_num].next = NULL;
680 co_list[co_list_num].prev = NULL;
681 co_list[co_list_num].active = 0;
682 co_list_num++;
683 }
684
685 /*
686 * Prepare linked list from list entries
687 */
688 if (co_list_num > 0) {
689 co_list[0].prev = NULL;
690
691 if (co_list_num > 1) {
692 co_list[0].next = &co_list[1];
693
694 for (i = 1; i < co_list_num - 1; i++) {
695 co_list[i].prev = &co_list[i - 1];
696 co_list[i].next = &co_list[i + 1];
697 }
698
699 co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
700 }
701
702 co_list[co_list_num - 1].next = NULL;
703
704 *head_p = &co_list[0];
705 *tail_p = &co_list[co_list_num - 1];
706 }
707 }
708
709 static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list,
710 int num_of_group_aliases,
711 uint32_t disabled_mkey,
712 uint32_t disabled_auth,
713 uint32_t disabled_enc,
714 uint32_t disabled_mac,
715 CIPHER_ORDER *head)
716 {
717 CIPHER_ORDER *ciph_curr;
718 const SSL_CIPHER **ca_curr;
719 int i;
720 uint32_t mask_mkey = ~disabled_mkey;
721 uint32_t mask_auth = ~disabled_auth;
722 uint32_t mask_enc = ~disabled_enc;
723 uint32_t mask_mac = ~disabled_mac;
724
725 /*
726 * First, add the real ciphers as already collected
727 */
728 ciph_curr = head;
729 ca_curr = ca_list;
730 while (ciph_curr != NULL) {
731 *ca_curr = ciph_curr->cipher;
732 ca_curr++;
733 ciph_curr = ciph_curr->next;
734 }
735
736 /*
737 * Now we add the available ones from the cipher_aliases[] table.
738 * They represent either one or more algorithms, some of which
739 * in any affected category must be supported (set in enabled_mask),
740 * or represent a cipher strength value (will be added in any case because algorithms=0).
741 */
742 for (i = 0; i < num_of_group_aliases; i++) {
743 uint32_t algorithm_mkey = cipher_aliases[i].algorithm_mkey;
744 uint32_t algorithm_auth = cipher_aliases[i].algorithm_auth;
745 uint32_t algorithm_enc = cipher_aliases[i].algorithm_enc;
746 uint32_t algorithm_mac = cipher_aliases[i].algorithm_mac;
747
748 if (algorithm_mkey)
749 if ((algorithm_mkey & mask_mkey) == 0)
750 continue;
751
752 if (algorithm_auth)
753 if ((algorithm_auth & mask_auth) == 0)
754 continue;
755
756 if (algorithm_enc)
757 if ((algorithm_enc & mask_enc) == 0)
758 continue;
759
760 if (algorithm_mac)
761 if ((algorithm_mac & mask_mac) == 0)
762 continue;
763
764 *ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
765 ca_curr++;
766 }
767
768 *ca_curr = NULL; /* end of list */
769 }
770
771 static void ssl_cipher_apply_rule(uint32_t cipher_id, uint32_t alg_mkey,
772 uint32_t alg_auth, uint32_t alg_enc,
773 uint32_t alg_mac, int min_tls,
774 uint32_t algo_strength, int rule,
775 int32_t strength_bits, CIPHER_ORDER **head_p,
776 CIPHER_ORDER **tail_p)
777 {
778 CIPHER_ORDER *head, *tail, *curr, *next, *last;
779 const SSL_CIPHER *cp;
780 int reverse = 0;
781
782 #ifdef CIPHER_DEBUG
783 fprintf(stderr,
784 "Applying rule %d with %08x/%08x/%08x/%08x/%08x %08x (%d)\n",
785 rule, alg_mkey, alg_auth, alg_enc, alg_mac, min_tls,
786 algo_strength, strength_bits);
787 #endif
788
789 if (rule == CIPHER_DEL || rule == CIPHER_BUMP)
790 reverse = 1; /* needed to maintain sorting between currently
791 * deleted ciphers */
792
793 head = *head_p;
794 tail = *tail_p;
795
796 if (reverse) {
797 next = tail;
798 last = head;
799 } else {
800 next = head;
801 last = tail;
802 }
803
804 curr = NULL;
805 for (;;) {
806 if (curr == last)
807 break;
808
809 curr = next;
810
811 if (curr == NULL)
812 break;
813
814 next = reverse ? curr->prev : curr->next;
815
816 cp = curr->cipher;
817
818 /*
819 * Selection criteria is either the value of strength_bits
820 * or the algorithms used.
821 */
822 if (strength_bits >= 0) {
823 if (strength_bits != cp->strength_bits)
824 continue;
825 } else {
826 #ifdef CIPHER_DEBUG
827 fprintf(stderr,
828 "\nName: %s:\nAlgo = %08x/%08x/%08x/%08x/%08x Algo_strength = %08x\n",
829 cp->name, cp->algorithm_mkey, cp->algorithm_auth,
830 cp->algorithm_enc, cp->algorithm_mac, cp->min_tls,
831 cp->algo_strength);
832 #endif
833 if (cipher_id != 0 && (cipher_id != cp->id))
834 continue;
835 if (alg_mkey && !(alg_mkey & cp->algorithm_mkey))
836 continue;
837 if (alg_auth && !(alg_auth & cp->algorithm_auth))
838 continue;
839 if (alg_enc && !(alg_enc & cp->algorithm_enc))
840 continue;
841 if (alg_mac && !(alg_mac & cp->algorithm_mac))
842 continue;
843 if (min_tls && (min_tls != cp->min_tls))
844 continue;
845 if ((algo_strength & SSL_STRONG_MASK)
846 && !(algo_strength & SSL_STRONG_MASK & cp->algo_strength))
847 continue;
848 if ((algo_strength & SSL_DEFAULT_MASK)
849 && !(algo_strength & SSL_DEFAULT_MASK & cp->algo_strength))
850 continue;
851 }
852
853 #ifdef CIPHER_DEBUG
854 fprintf(stderr, "Action = %d\n", rule);
855 #endif
856
857 /* add the cipher if it has not been added yet. */
858 if (rule == CIPHER_ADD) {
859 /* reverse == 0 */
860 if (!curr->active) {
861 ll_append_tail(&head, curr, &tail);
862 curr->active = 1;
863 }
864 }
865 /* Move the added cipher to this location */
866 else if (rule == CIPHER_ORD) {
867 /* reverse == 0 */
868 if (curr->active) {
869 ll_append_tail(&head, curr, &tail);
870 }
871 } else if (rule == CIPHER_DEL) {
872 /* reverse == 1 */
873 if (curr->active) {
874 /*
875 * most recently deleted ciphersuites get best positions for
876 * any future CIPHER_ADD (note that the CIPHER_DEL loop works
877 * in reverse to maintain the order)
878 */
879 ll_append_head(&head, curr, &tail);
880 curr->active = 0;
881 }
882 } else if (rule == CIPHER_BUMP) {
883 if (curr->active)
884 ll_append_head(&head, curr, &tail);
885 } else if (rule == CIPHER_KILL) {
886 /* reverse == 0 */
887 if (head == curr)
888 head = curr->next;
889 else
890 curr->prev->next = curr->next;
891 if (tail == curr)
892 tail = curr->prev;
893 curr->active = 0;
894 if (curr->next != NULL)
895 curr->next->prev = curr->prev;
896 if (curr->prev != NULL)
897 curr->prev->next = curr->next;
898 curr->next = NULL;
899 curr->prev = NULL;
900 }
901 }
902
903 *head_p = head;
904 *tail_p = tail;
905 }
906
907 static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
908 CIPHER_ORDER **tail_p)
909 {
910 int32_t max_strength_bits;
911 int i, *number_uses;
912 CIPHER_ORDER *curr;
913
914 /*
915 * This routine sorts the ciphers with descending strength. The sorting
916 * must keep the pre-sorted sequence, so we apply the normal sorting
917 * routine as '+' movement to the end of the list.
918 */
919 max_strength_bits = 0;
920 curr = *head_p;
921 while (curr != NULL) {
922 if (curr->active && (curr->cipher->strength_bits > max_strength_bits))
923 max_strength_bits = curr->cipher->strength_bits;
924 curr = curr->next;
925 }
926
927 number_uses = OPENSSL_zalloc(sizeof(int) * (max_strength_bits + 1));
928 if (number_uses == NULL) {
929 SSLerr(SSL_F_SSL_CIPHER_STRENGTH_SORT, ERR_R_MALLOC_FAILURE);
930 return 0;
931 }
932
933 /*
934 * Now find the strength_bits values actually used
935 */
936 curr = *head_p;
937 while (curr != NULL) {
938 if (curr->active)
939 number_uses[curr->cipher->strength_bits]++;
940 curr = curr->next;
941 }
942 /*
943 * Go through the list of used strength_bits values in descending
944 * order.
945 */
946 for (i = max_strength_bits; i >= 0; i--)
947 if (number_uses[i] > 0)
948 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p,
949 tail_p);
950
951 OPENSSL_free(number_uses);
952 return 1;
953 }
954
955 static int ssl_cipher_process_rulestr(const char *rule_str,
956 CIPHER_ORDER **head_p,
957 CIPHER_ORDER **tail_p,
958 const SSL_CIPHER **ca_list, CERT *c)
959 {
960 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, algo_strength;
961 int min_tls;
962 const char *l, *buf;
963 int j, multi, found, rule, retval, ok, buflen;
964 uint32_t cipher_id = 0;
965 char ch;
966
967 retval = 1;
968 l = rule_str;
969 for ( ; ; ) {
970 ch = *l;
971
972 if (ch == '\0')
973 break; /* done */
974 if (ch == '-') {
975 rule = CIPHER_DEL;
976 l++;
977 } else if (ch == '+') {
978 rule = CIPHER_ORD;
979 l++;
980 } else if (ch == '!') {
981 rule = CIPHER_KILL;
982 l++;
983 } else if (ch == '@') {
984 rule = CIPHER_SPECIAL;
985 l++;
986 } else {
987 rule = CIPHER_ADD;
988 }
989
990 if (ITEM_SEP(ch)) {
991 l++;
992 continue;
993 }
994
995 alg_mkey = 0;
996 alg_auth = 0;
997 alg_enc = 0;
998 alg_mac = 0;
999 min_tls = 0;
1000 algo_strength = 0;
1001
1002 for (;;) {
1003 ch = *l;
1004 buf = l;
1005 buflen = 0;
1006 #ifndef CHARSET_EBCDIC
1007 while (((ch >= 'A') && (ch <= 'Z')) ||
1008 ((ch >= '0') && (ch <= '9')) ||
1009 ((ch >= 'a') && (ch <= 'z')) ||
1010 (ch == '-') || (ch == '.') || (ch == '='))
1011 #else
1012 while (isalnum((unsigned char)ch) || (ch == '-') || (ch == '.')
1013 || (ch == '='))
1014 #endif
1015 {
1016 ch = *(++l);
1017 buflen++;
1018 }
1019
1020 if (buflen == 0) {
1021 /*
1022 * We hit something we cannot deal with,
1023 * it is no command or separator nor
1024 * alphanumeric, so we call this an error.
1025 */
1026 SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR, SSL_R_INVALID_COMMAND);
1027 retval = found = 0;
1028 l++;
1029 break;
1030 }
1031
1032 if (rule == CIPHER_SPECIAL) {
1033 found = 0; /* unused -- avoid compiler warning */
1034 break; /* special treatment */
1035 }
1036
1037 /* check for multi-part specification */
1038 if (ch == '+') {
1039 multi = 1;
1040 l++;
1041 } else {
1042 multi = 0;
1043 }
1044
1045 /*
1046 * Now search for the cipher alias in the ca_list. Be careful
1047 * with the strncmp, because the "buflen" limitation
1048 * will make the rule "ADH:SOME" and the cipher
1049 * "ADH-MY-CIPHER" look like a match for buflen=3.
1050 * So additionally check whether the cipher name found
1051 * has the correct length. We can save a strlen() call:
1052 * just checking for the '\0' at the right place is
1053 * sufficient, we have to strncmp() anyway. (We cannot
1054 * use strcmp(), because buf is not '\0' terminated.)
1055 */
1056 j = found = 0;
1057 cipher_id = 0;
1058 while (ca_list[j]) {
1059 if (strncmp(buf, ca_list[j]->name, buflen) == 0
1060 && (ca_list[j]->name[buflen] == '\0')) {
1061 found = 1;
1062 break;
1063 } else
1064 j++;
1065 }
1066
1067 if (!found)
1068 break; /* ignore this entry */
1069
1070 if (ca_list[j]->algorithm_mkey) {
1071 if (alg_mkey) {
1072 alg_mkey &= ca_list[j]->algorithm_mkey;
1073 if (!alg_mkey) {
1074 found = 0;
1075 break;
1076 }
1077 } else {
1078 alg_mkey = ca_list[j]->algorithm_mkey;
1079 }
1080 }
1081
1082 if (ca_list[j]->algorithm_auth) {
1083 if (alg_auth) {
1084 alg_auth &= ca_list[j]->algorithm_auth;
1085 if (!alg_auth) {
1086 found = 0;
1087 break;
1088 }
1089 } else {
1090 alg_auth = ca_list[j]->algorithm_auth;
1091 }
1092 }
1093
1094 if (ca_list[j]->algorithm_enc) {
1095 if (alg_enc) {
1096 alg_enc &= ca_list[j]->algorithm_enc;
1097 if (!alg_enc) {
1098 found = 0;
1099 break;
1100 }
1101 } else {
1102 alg_enc = ca_list[j]->algorithm_enc;
1103 }
1104 }
1105
1106 if (ca_list[j]->algorithm_mac) {
1107 if (alg_mac) {
1108 alg_mac &= ca_list[j]->algorithm_mac;
1109 if (!alg_mac) {
1110 found = 0;
1111 break;
1112 }
1113 } else {
1114 alg_mac = ca_list[j]->algorithm_mac;
1115 }
1116 }
1117
1118 if (ca_list[j]->algo_strength & SSL_STRONG_MASK) {
1119 if (algo_strength & SSL_STRONG_MASK) {
1120 algo_strength &=
1121 (ca_list[j]->algo_strength & SSL_STRONG_MASK) |
1122 ~SSL_STRONG_MASK;
1123 if (!(algo_strength & SSL_STRONG_MASK)) {
1124 found = 0;
1125 break;
1126 }
1127 } else {
1128 algo_strength = ca_list[j]->algo_strength & SSL_STRONG_MASK;
1129 }
1130 }
1131
1132 if (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) {
1133 if (algo_strength & SSL_DEFAULT_MASK) {
1134 algo_strength &=
1135 (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) |
1136 ~SSL_DEFAULT_MASK;
1137 if (!(algo_strength & SSL_DEFAULT_MASK)) {
1138 found = 0;
1139 break;
1140 }
1141 } else {
1142 algo_strength |=
1143 ca_list[j]->algo_strength & SSL_DEFAULT_MASK;
1144 }
1145 }
1146
1147 if (ca_list[j]->valid) {
1148 /*
1149 * explicit ciphersuite found; its protocol version does not
1150 * become part of the search pattern!
1151 */
1152
1153 cipher_id = ca_list[j]->id;
1154 } else {
1155 /*
1156 * not an explicit ciphersuite; only in this case, the
1157 * protocol version is considered part of the search pattern
1158 */
1159
1160 if (ca_list[j]->min_tls) {
1161 if (min_tls != 0 && min_tls != ca_list[j]->min_tls) {
1162 found = 0;
1163 break;
1164 } else {
1165 min_tls = ca_list[j]->min_tls;
1166 }
1167 }
1168 }
1169
1170 if (!multi)
1171 break;
1172 }
1173
1174 /*
1175 * Ok, we have the rule, now apply it
1176 */
1177 if (rule == CIPHER_SPECIAL) { /* special command */
1178 ok = 0;
1179 if ((buflen == 8) && strncmp(buf, "STRENGTH", 8) == 0) {
1180 ok = ssl_cipher_strength_sort(head_p, tail_p);
1181 } else if (buflen == 10 && strncmp(buf, "SECLEVEL=", 9) == 0) {
1182 int level = buf[9] - '0';
1183 if (level < 0 || level > 5) {
1184 SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR,
1185 SSL_R_INVALID_COMMAND);
1186 } else {
1187 c->sec_level = level;
1188 ok = 1;
1189 }
1190 } else {
1191 SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR, SSL_R_INVALID_COMMAND);
1192 }
1193 if (ok == 0)
1194 retval = 0;
1195 /*
1196 * We do not support any "multi" options
1197 * together with "@", so throw away the
1198 * rest of the command, if any left, until
1199 * end or ':' is found.
1200 */
1201 while ((*l != '\0') && !ITEM_SEP(*l))
1202 l++;
1203 } else if (found) {
1204 ssl_cipher_apply_rule(cipher_id,
1205 alg_mkey, alg_auth, alg_enc, alg_mac,
1206 min_tls, algo_strength, rule, -1, head_p,
1207 tail_p);
1208 } else {
1209 while ((*l != '\0') && !ITEM_SEP(*l))
1210 l++;
1211 }
1212 if (*l == '\0')
1213 break; /* done */
1214 }
1215
1216 return retval;
1217 }
1218
1219 #ifndef OPENSSL_NO_EC
1220 static int check_suiteb_cipher_list(const SSL_METHOD *meth, CERT *c,
1221 const char **prule_str)
1222 {
1223 unsigned int suiteb_flags = 0, suiteb_comb2 = 0;
1224 if (strncmp(*prule_str, "SUITEB128ONLY", 13) == 0) {
1225 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS_ONLY;
1226 } else if (strncmp(*prule_str, "SUITEB128C2", 11) == 0) {
1227 suiteb_comb2 = 1;
1228 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1229 } else if (strncmp(*prule_str, "SUITEB128", 9) == 0) {
1230 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1231 } else if (strncmp(*prule_str, "SUITEB192", 9) == 0) {
1232 suiteb_flags = SSL_CERT_FLAG_SUITEB_192_LOS;
1233 }
1234
1235 if (suiteb_flags) {
1236 c->cert_flags &= ~SSL_CERT_FLAG_SUITEB_128_LOS;
1237 c->cert_flags |= suiteb_flags;
1238 } else {
1239 suiteb_flags = c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS;
1240 }
1241
1242 if (!suiteb_flags)
1243 return 1;
1244 /* Check version: if TLS 1.2 ciphers allowed we can use Suite B */
1245
1246 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)) {
1247 SSLerr(SSL_F_CHECK_SUITEB_CIPHER_LIST,
1248 SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE);
1249 return 0;
1250 }
1251 # ifndef OPENSSL_NO_EC
1252 switch (suiteb_flags) {
1253 case SSL_CERT_FLAG_SUITEB_128_LOS:
1254 if (suiteb_comb2)
1255 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1256 else
1257 *prule_str =
1258 "ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384";
1259 break;
1260 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1261 *prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256";
1262 break;
1263 case SSL_CERT_FLAG_SUITEB_192_LOS:
1264 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1265 break;
1266 }
1267 return 1;
1268 # else
1269 SSLerr(SSL_F_CHECK_SUITEB_CIPHER_LIST, SSL_R_ECDH_REQUIRED_FOR_SUITEB_MODE);
1270 return 0;
1271 # endif
1272 }
1273 #endif
1274
1275 static int ciphersuite_cb(const char *elem, int len, void *arg)
1276 {
1277 STACK_OF(SSL_CIPHER) *ciphersuites = (STACK_OF(SSL_CIPHER) *)arg;
1278 const SSL_CIPHER *cipher;
1279 /* Arbitrary sized temp buffer for the cipher name. Should be big enough */
1280 char name[80];
1281
1282 if (len > (int)(sizeof(name) - 1)) {
1283 SSLerr(SSL_F_CIPHERSUITE_CB, SSL_R_NO_CIPHER_MATCH);
1284 return 0;
1285 }
1286
1287 memcpy(name, elem, len);
1288 name[len] = '\0';
1289
1290 cipher = ssl3_get_cipher_by_std_name(name);
1291 if (cipher == NULL) {
1292 SSLerr(SSL_F_CIPHERSUITE_CB, SSL_R_NO_CIPHER_MATCH);
1293 return 0;
1294 }
1295
1296 if (!sk_SSL_CIPHER_push(ciphersuites, cipher)) {
1297 SSLerr(SSL_F_CIPHERSUITE_CB, ERR_R_INTERNAL_ERROR);
1298 return 0;
1299 }
1300
1301 return 1;
1302 }
1303
1304 static __owur int set_ciphersuites(STACK_OF(SSL_CIPHER) **currciphers, const char *str)
1305 {
1306 STACK_OF(SSL_CIPHER) *newciphers = sk_SSL_CIPHER_new_null();
1307
1308 if (newciphers == NULL)
1309 return 0;
1310
1311 /* Parse the list. We explicitly allow an empty list */
1312 if (*str != '\0'
1313 && !CONF_parse_list(str, ':', 1, ciphersuite_cb, newciphers)) {
1314 sk_SSL_CIPHER_free(newciphers);
1315 return 0;
1316 }
1317 sk_SSL_CIPHER_free(*currciphers);
1318 *currciphers = newciphers;
1319
1320 return 1;
1321 }
1322
1323 static int update_cipher_list_by_id(STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1324 STACK_OF(SSL_CIPHER) *cipherstack)
1325 {
1326 STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
1327
1328 if (tmp_cipher_list == NULL) {
1329 return 0;
1330 }
1331
1332 sk_SSL_CIPHER_free(*cipher_list_by_id);
1333 *cipher_list_by_id = tmp_cipher_list;
1334
1335 (void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id, ssl_cipher_ptr_id_cmp);
1336 sk_SSL_CIPHER_sort(*cipher_list_by_id);
1337
1338 return 1;
1339 }
1340
1341 static int update_cipher_list(STACK_OF(SSL_CIPHER) **cipher_list,
1342 STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1343 STACK_OF(SSL_CIPHER) *tls13_ciphersuites)
1344 {
1345 int i;
1346 STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(*cipher_list);
1347
1348 if (tmp_cipher_list == NULL)
1349 return 0;
1350
1351 /*
1352 * Delete any existing TLSv1.3 ciphersuites. These are always first in the
1353 * list.
1354 */
1355 while (sk_SSL_CIPHER_num(tmp_cipher_list) > 0
1356 && sk_SSL_CIPHER_value(tmp_cipher_list, 0)->min_tls
1357 == TLS1_3_VERSION)
1358 sk_SSL_CIPHER_delete(tmp_cipher_list, 0);
1359
1360 /* Insert the new TLSv1.3 ciphersuites */
1361 for (i = 0; i < sk_SSL_CIPHER_num(tls13_ciphersuites); i++)
1362 sk_SSL_CIPHER_insert(tmp_cipher_list,
1363 sk_SSL_CIPHER_value(tls13_ciphersuites, i), i);
1364
1365 if (!update_cipher_list_by_id(cipher_list_by_id, tmp_cipher_list))
1366 return 0;
1367
1368 sk_SSL_CIPHER_free(*cipher_list);
1369 *cipher_list = tmp_cipher_list;
1370
1371 return 1;
1372 }
1373
1374 int SSL_CTX_set_ciphersuites(SSL_CTX *ctx, const char *str)
1375 {
1376 int ret = set_ciphersuites(&(ctx->tls13_ciphersuites), str);
1377
1378 if (ret && ctx->cipher_list != NULL) {
1379 /* We already have a cipher_list, so we need to update it */
1380 return update_cipher_list(&ctx->cipher_list, &ctx->cipher_list_by_id,
1381 ctx->tls13_ciphersuites);
1382 }
1383
1384 return ret;
1385 }
1386
1387 int SSL_set_ciphersuites(SSL *s, const char *str)
1388 {
1389 int ret = set_ciphersuites(&(s->tls13_ciphersuites), str);
1390
1391 if (ret && s->cipher_list != NULL) {
1392 /* We already have a cipher_list, so we need to update it */
1393 return update_cipher_list(&s->cipher_list, &s->cipher_list_by_id,
1394 s->tls13_ciphersuites);
1395 }
1396
1397 return ret;
1398 }
1399
1400 STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(const SSL_METHOD *ssl_method,
1401 STACK_OF(SSL_CIPHER) *tls13_ciphersuites,
1402 STACK_OF(SSL_CIPHER) **cipher_list,
1403 STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1404 const char *rule_str,
1405 CERT *c)
1406 {
1407 int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases, i;
1408 uint32_t disabled_mkey, disabled_auth, disabled_enc, disabled_mac;
1409 STACK_OF(SSL_CIPHER) *cipherstack;
1410 const char *rule_p;
1411 CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
1412 const SSL_CIPHER **ca_list = NULL;
1413
1414 /*
1415 * Return with error if nothing to do.
1416 */
1417 if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
1418 return NULL;
1419 #ifndef OPENSSL_NO_EC
1420 if (!check_suiteb_cipher_list(ssl_method, c, &rule_str))
1421 return NULL;
1422 #endif
1423
1424 /*
1425 * To reduce the work to do we only want to process the compiled
1426 * in algorithms, so we first get the mask of disabled ciphers.
1427 */
1428
1429 disabled_mkey = disabled_mkey_mask;
1430 disabled_auth = disabled_auth_mask;
1431 disabled_enc = disabled_enc_mask;
1432 disabled_mac = disabled_mac_mask;
1433
1434 /*
1435 * Now we have to collect the available ciphers from the compiled
1436 * in ciphers. We cannot get more than the number compiled in, so
1437 * it is used for allocation.
1438 */
1439 num_of_ciphers = ssl_method->num_ciphers();
1440
1441 co_list = OPENSSL_malloc(sizeof(*co_list) * num_of_ciphers);
1442 if (co_list == NULL) {
1443 SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
1444 return NULL; /* Failure */
1445 }
1446
1447 ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers,
1448 disabled_mkey, disabled_auth, disabled_enc,
1449 disabled_mac, co_list, &head, &tail);
1450
1451 /* Now arrange all ciphers by preference. */
1452
1453 /*
1454 * Everything else being equal, prefer ephemeral ECDH over other key
1455 * exchange mechanisms.
1456 * For consistency, prefer ECDSA over RSA (though this only matters if the
1457 * server has both certificates, and is using the DEFAULT, or a client
1458 * preference).
1459 */
1460 ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, 0, 0, 0, 0, CIPHER_ADD,
1461 -1, &head, &tail);
1462 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head,
1463 &tail);
1464 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head,
1465 &tail);
1466
1467 /* Within each strength group, we prefer GCM over CHACHA... */
1468 ssl_cipher_apply_rule(0, 0, 0, SSL_AESGCM, 0, 0, 0, CIPHER_ADD, -1,
1469 &head, &tail);
1470 ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20, 0, 0, 0, CIPHER_ADD, -1,
1471 &head, &tail);
1472
1473 /*
1474 * ...and generally, our preferred cipher is AES.
1475 * Note that AEADs will be bumped to take preference after sorting by
1476 * strength.
1477 */
1478 ssl_cipher_apply_rule(0, 0, 0, SSL_AES ^ SSL_AESGCM, 0, 0, 0, CIPHER_ADD,
1479 -1, &head, &tail);
1480
1481 /* Temporarily enable everything else for sorting */
1482 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
1483
1484 /* Low priority for MD5 */
1485 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head,
1486 &tail);
1487
1488 /*
1489 * Move anonymous ciphers to the end. Usually, these will remain
1490 * disabled. (For applications that allow them, they aren't too bad, but
1491 * we prefer authenticated ciphers.)
1492 */
1493 ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1494 &tail);
1495
1496 ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1497 &tail);
1498 ssl_cipher_apply_rule(0, SSL_kPSK, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1499 &tail);
1500
1501 /* RC4 is sort-of broken -- move to the end */
1502 ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head,
1503 &tail);
1504
1505 /*
1506 * Now sort by symmetric encryption strength. The above ordering remains
1507 * in force within each class
1508 */
1509 if (!ssl_cipher_strength_sort(&head, &tail)) {
1510 OPENSSL_free(co_list);
1511 return NULL;
1512 }
1513
1514 /*
1515 * Partially overrule strength sort to prefer TLS 1.2 ciphers/PRFs.
1516 * TODO(openssl-team): is there an easier way to accomplish all this?
1517 */
1518 ssl_cipher_apply_rule(0, 0, 0, 0, 0, TLS1_2_VERSION, 0, CIPHER_BUMP, -1,
1519 &head, &tail);
1520
1521 /*
1522 * Irrespective of strength, enforce the following order:
1523 * (EC)DHE + AEAD > (EC)DHE > rest of AEAD > rest.
1524 * Within each group, ciphers remain sorted by strength and previous
1525 * preference, i.e.,
1526 * 1) ECDHE > DHE
1527 * 2) GCM > CHACHA
1528 * 3) AES > rest
1529 * 4) TLS 1.2 > legacy
1530 *
1531 * Because we now bump ciphers to the top of the list, we proceed in
1532 * reverse order of preference.
1533 */
1534 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_AEAD, 0, 0, CIPHER_BUMP, -1,
1535 &head, &tail);
1536 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, 0, 0, 0,
1537 CIPHER_BUMP, -1, &head, &tail);
1538 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, SSL_AEAD, 0, 0,
1539 CIPHER_BUMP, -1, &head, &tail);
1540
1541 /* Now disable everything (maintaining the ordering!) */
1542 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
1543
1544 /*
1545 * We also need cipher aliases for selecting based on the rule_str.
1546 * There might be two types of entries in the rule_str: 1) names
1547 * of ciphers themselves 2) aliases for groups of ciphers.
1548 * For 1) we need the available ciphers and for 2) the cipher
1549 * groups of cipher_aliases added together in one list (otherwise
1550 * we would be happy with just the cipher_aliases table).
1551 */
1552 num_of_group_aliases = OSSL_NELEM(cipher_aliases);
1553 num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
1554 ca_list = OPENSSL_malloc(sizeof(*ca_list) * num_of_alias_max);
1555 if (ca_list == NULL) {
1556 OPENSSL_free(co_list);
1557 SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
1558 return NULL; /* Failure */
1559 }
1560 ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
1561 disabled_mkey, disabled_auth, disabled_enc,
1562 disabled_mac, head);
1563
1564 /*
1565 * If the rule_string begins with DEFAULT, apply the default rule
1566 * before using the (possibly available) additional rules.
1567 */
1568 ok = 1;
1569 rule_p = rule_str;
1570 if (strncmp(rule_str, "DEFAULT", 7) == 0) {
1571 ok = ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST,
1572 &head, &tail, ca_list, c);
1573 rule_p += 7;
1574 if (*rule_p == ':')
1575 rule_p++;
1576 }
1577
1578 if (ok && (strlen(rule_p) > 0))
1579 ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list, c);
1580
1581 OPENSSL_free(ca_list); /* Not needed anymore */
1582
1583 if (!ok) { /* Rule processing failure */
1584 OPENSSL_free(co_list);
1585 return NULL;
1586 }
1587
1588 /*
1589 * Allocate new "cipherstack" for the result, return with error
1590 * if we cannot get one.
1591 */
1592 if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) {
1593 OPENSSL_free(co_list);
1594 return NULL;
1595 }
1596
1597 /* Add TLSv1.3 ciphers first - we always prefer those if possible */
1598 for (i = 0; i < sk_SSL_CIPHER_num(tls13_ciphersuites); i++) {
1599 if (!sk_SSL_CIPHER_push(cipherstack,
1600 sk_SSL_CIPHER_value(tls13_ciphersuites, i))) {
1601 sk_SSL_CIPHER_free(cipherstack);
1602 return NULL;
1603 }
1604 }
1605
1606 /*
1607 * The cipher selection for the list is done. The ciphers are added
1608 * to the resulting precedence to the STACK_OF(SSL_CIPHER).
1609 */
1610 for (curr = head; curr != NULL; curr = curr->next) {
1611 if (curr->active) {
1612 if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) {
1613 OPENSSL_free(co_list);
1614 sk_SSL_CIPHER_free(cipherstack);
1615 return NULL;
1616 }
1617 #ifdef CIPHER_DEBUG
1618 fprintf(stderr, "<%s>\n", curr->cipher->name);
1619 #endif
1620 }
1621 }
1622 OPENSSL_free(co_list); /* Not needed any longer */
1623
1624 if (!update_cipher_list_by_id(cipher_list_by_id, cipherstack)) {
1625 sk_SSL_CIPHER_free(cipherstack);
1626 return NULL;
1627 }
1628 sk_SSL_CIPHER_free(*cipher_list);
1629 *cipher_list = cipherstack;
1630
1631 return cipherstack;
1632 }
1633
1634 char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
1635 {
1636 const char *ver;
1637 const char *kx, *au, *enc, *mac;
1638 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
1639 static const char *format = "%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s\n";
1640
1641 if (buf == NULL) {
1642 len = 128;
1643 if ((buf = OPENSSL_malloc(len)) == NULL) {
1644 SSLerr(SSL_F_SSL_CIPHER_DESCRIPTION, ERR_R_MALLOC_FAILURE);
1645 return NULL;
1646 }
1647 } else if (len < 128) {
1648 return NULL;
1649 }
1650
1651 alg_mkey = cipher->algorithm_mkey;
1652 alg_auth = cipher->algorithm_auth;
1653 alg_enc = cipher->algorithm_enc;
1654 alg_mac = cipher->algorithm_mac;
1655
1656 ver = ssl_protocol_to_string(cipher->min_tls);
1657
1658 switch (alg_mkey) {
1659 case SSL_kRSA:
1660 kx = "RSA";
1661 break;
1662 case SSL_kDHE:
1663 kx = "DH";
1664 break;
1665 case SSL_kECDHE:
1666 kx = "ECDH";
1667 break;
1668 case SSL_kPSK:
1669 kx = "PSK";
1670 break;
1671 case SSL_kRSAPSK:
1672 kx = "RSAPSK";
1673 break;
1674 case SSL_kECDHEPSK:
1675 kx = "ECDHEPSK";
1676 break;
1677 case SSL_kDHEPSK:
1678 kx = "DHEPSK";
1679 break;
1680 case SSL_kSRP:
1681 kx = "SRP";
1682 break;
1683 case SSL_kGOST:
1684 kx = "GOST";
1685 break;
1686 case SSL_kANY:
1687 kx = "any";
1688 break;
1689 default:
1690 kx = "unknown";
1691 }
1692
1693 switch (alg_auth) {
1694 case SSL_aRSA:
1695 au = "RSA";
1696 break;
1697 case SSL_aDSS:
1698 au = "DSS";
1699 break;
1700 case SSL_aNULL:
1701 au = "None";
1702 break;
1703 case SSL_aECDSA:
1704 au = "ECDSA";
1705 break;
1706 case SSL_aPSK:
1707 au = "PSK";
1708 break;
1709 case SSL_aSRP:
1710 au = "SRP";
1711 break;
1712 case SSL_aGOST01:
1713 au = "GOST01";
1714 break;
1715 /* New GOST ciphersuites have both SSL_aGOST12 and SSL_aGOST01 bits */
1716 case (SSL_aGOST12 | SSL_aGOST01):
1717 au = "GOST12";
1718 break;
1719 case SSL_aANY:
1720 au = "any";
1721 break;
1722 default:
1723 au = "unknown";
1724 break;
1725 }
1726
1727 switch (alg_enc) {
1728 case SSL_DES:
1729 enc = "DES(56)";
1730 break;
1731 case SSL_3DES:
1732 enc = "3DES(168)";
1733 break;
1734 case SSL_RC4:
1735 enc = "RC4(128)";
1736 break;
1737 case SSL_RC2:
1738 enc = "RC2(128)";
1739 break;
1740 case SSL_IDEA:
1741 enc = "IDEA(128)";
1742 break;
1743 case SSL_eNULL:
1744 enc = "None";
1745 break;
1746 case SSL_AES128:
1747 enc = "AES(128)";
1748 break;
1749 case SSL_AES256:
1750 enc = "AES(256)";
1751 break;
1752 case SSL_AES128GCM:
1753 enc = "AESGCM(128)";
1754 break;
1755 case SSL_AES256GCM:
1756 enc = "AESGCM(256)";
1757 break;
1758 case SSL_AES128CCM:
1759 enc = "AESCCM(128)";
1760 break;
1761 case SSL_AES256CCM:
1762 enc = "AESCCM(256)";
1763 break;
1764 case SSL_AES128CCM8:
1765 enc = "AESCCM8(128)";
1766 break;
1767 case SSL_AES256CCM8:
1768 enc = "AESCCM8(256)";
1769 break;
1770 case SSL_CAMELLIA128:
1771 enc = "Camellia(128)";
1772 break;
1773 case SSL_CAMELLIA256:
1774 enc = "Camellia(256)";
1775 break;
1776 case SSL_ARIA128GCM:
1777 enc = "ARIAGCM(128)";
1778 break;
1779 case SSL_ARIA256GCM:
1780 enc = "ARIAGCM(256)";
1781 break;
1782 case SSL_SEED:
1783 enc = "SEED(128)";
1784 break;
1785 case SSL_eGOST2814789CNT:
1786 case SSL_eGOST2814789CNT12:
1787 enc = "GOST89(256)";
1788 break;
1789 case SSL_CHACHA20POLY1305:
1790 enc = "CHACHA20/POLY1305(256)";
1791 break;
1792 default:
1793 enc = "unknown";
1794 break;
1795 }
1796
1797 switch (alg_mac) {
1798 case SSL_MD5:
1799 mac = "MD5";
1800 break;
1801 case SSL_SHA1:
1802 mac = "SHA1";
1803 break;
1804 case SSL_SHA256:
1805 mac = "SHA256";
1806 break;
1807 case SSL_SHA384:
1808 mac = "SHA384";
1809 break;
1810 case SSL_AEAD:
1811 mac = "AEAD";
1812 break;
1813 case SSL_GOST89MAC:
1814 case SSL_GOST89MAC12:
1815 mac = "GOST89";
1816 break;
1817 case SSL_GOST94:
1818 mac = "GOST94";
1819 break;
1820 case SSL_GOST12_256:
1821 case SSL_GOST12_512:
1822 mac = "GOST2012";
1823 break;
1824 default:
1825 mac = "unknown";
1826 break;
1827 }
1828
1829 BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac);
1830
1831 return buf;
1832 }
1833
1834 const char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
1835 {
1836 if (c == NULL)
1837 return "(NONE)";
1838
1839 /*
1840 * Backwards-compatibility crutch. In almost all contexts we report TLS
1841 * 1.0 as "TLSv1", but for ciphers we report "TLSv1.0".
1842 */
1843 if (c->min_tls == TLS1_VERSION)
1844 return "TLSv1.0";
1845 return ssl_protocol_to_string(c->min_tls);
1846 }
1847
1848 /* return the actual cipher being used */
1849 const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
1850 {
1851 if (c != NULL)
1852 return c->name;
1853 return "(NONE)";
1854 }
1855
1856 /* return the actual cipher being used in RFC standard name */
1857 const char *SSL_CIPHER_standard_name(const SSL_CIPHER *c)
1858 {
1859 if (c != NULL)
1860 return c->stdname;
1861 return "(NONE)";
1862 }
1863
1864 /* return the OpenSSL name based on given RFC standard name */
1865 const char *OPENSSL_cipher_name(const char *stdname)
1866 {
1867 const SSL_CIPHER *c;
1868
1869 if (stdname == NULL)
1870 return "(NONE)";
1871 c = ssl3_get_cipher_by_std_name(stdname);
1872 return SSL_CIPHER_get_name(c);
1873 }
1874
1875 /* number of bits for symmetric cipher */
1876 int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
1877 {
1878 int ret = 0;
1879
1880 if (c != NULL) {
1881 if (alg_bits != NULL)
1882 *alg_bits = (int)c->alg_bits;
1883 ret = (int)c->strength_bits;
1884 }
1885 return ret;
1886 }
1887
1888 uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *c)
1889 {
1890 return c->id;
1891 }
1892
1893 uint16_t SSL_CIPHER_get_protocol_id(const SSL_CIPHER *c)
1894 {
1895 return c->id & 0xFFFF;
1896 }
1897
1898 SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
1899 {
1900 SSL_COMP *ctmp;
1901 int i, nn;
1902
1903 if ((n == 0) || (sk == NULL))
1904 return NULL;
1905 nn = sk_SSL_COMP_num(sk);
1906 for (i = 0; i < nn; i++) {
1907 ctmp = sk_SSL_COMP_value(sk, i);
1908 if (ctmp->id == n)
1909 return ctmp;
1910 }
1911 return NULL;
1912 }
1913
1914 #ifdef OPENSSL_NO_COMP
1915 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1916 {
1917 return NULL;
1918 }
1919
1920 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1921 *meths)
1922 {
1923 return meths;
1924 }
1925
1926 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
1927 {
1928 return 1;
1929 }
1930
1931 #else
1932 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1933 {
1934 load_builtin_compressions();
1935 return ssl_comp_methods;
1936 }
1937
1938 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1939 *meths)
1940 {
1941 STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
1942 ssl_comp_methods = meths;
1943 return old_meths;
1944 }
1945
1946 static void cmeth_free(SSL_COMP *cm)
1947 {
1948 OPENSSL_free(cm);
1949 }
1950
1951 void ssl_comp_free_compression_methods_int(void)
1952 {
1953 STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
1954 ssl_comp_methods = NULL;
1955 sk_SSL_COMP_pop_free(old_meths, cmeth_free);
1956 }
1957
1958 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
1959 {
1960 SSL_COMP *comp;
1961
1962 if (cm == NULL || COMP_get_type(cm) == NID_undef)
1963 return 1;
1964
1965 /*-
1966 * According to draft-ietf-tls-compression-04.txt, the
1967 * compression number ranges should be the following:
1968 *
1969 * 0 to 63: methods defined by the IETF
1970 * 64 to 192: external party methods assigned by IANA
1971 * 193 to 255: reserved for private use
1972 */
1973 if (id < 193 || id > 255) {
1974 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,
1975 SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE);
1976 return 1;
1977 }
1978
1979 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_DISABLE);
1980 comp = OPENSSL_malloc(sizeof(*comp));
1981 if (comp == NULL) {
1982 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE);
1983 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD, ERR_R_MALLOC_FAILURE);
1984 return 1;
1985 }
1986
1987 comp->id = id;
1988 comp->method = cm;
1989 load_builtin_compressions();
1990 if (ssl_comp_methods && sk_SSL_COMP_find(ssl_comp_methods, comp) >= 0) {
1991 OPENSSL_free(comp);
1992 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE);
1993 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,
1994 SSL_R_DUPLICATE_COMPRESSION_ID);
1995 return 1;
1996 }
1997 if (ssl_comp_methods == NULL || !sk_SSL_COMP_push(ssl_comp_methods, comp)) {
1998 OPENSSL_free(comp);
1999 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE);
2000 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD, ERR_R_MALLOC_FAILURE);
2001 return 1;
2002 }
2003 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE);
2004 return 0;
2005 }
2006 #endif
2007
2008 const char *SSL_COMP_get_name(const COMP_METHOD *comp)
2009 {
2010 #ifndef OPENSSL_NO_COMP
2011 return comp ? COMP_get_name(comp) : NULL;
2012 #else
2013 return NULL;
2014 #endif
2015 }
2016
2017 const char *SSL_COMP_get0_name(const SSL_COMP *comp)
2018 {
2019 #ifndef OPENSSL_NO_COMP
2020 return comp->name;
2021 #else
2022 return NULL;
2023 #endif
2024 }
2025
2026 int SSL_COMP_get_id(const SSL_COMP *comp)
2027 {
2028 #ifndef OPENSSL_NO_COMP
2029 return comp->id;
2030 #else
2031 return -1;
2032 #endif
2033 }
2034
2035 const SSL_CIPHER *ssl_get_cipher_by_char(SSL *ssl, const unsigned char *ptr,
2036 int all)
2037 {
2038 const SSL_CIPHER *c = ssl->method->get_cipher_by_char(ptr);
2039
2040 if (c == NULL || (!all && c->valid == 0))
2041 return NULL;
2042 return c;
2043 }
2044
2045 const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr)
2046 {
2047 return ssl->method->get_cipher_by_char(ptr);
2048 }
2049
2050 int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c)
2051 {
2052 int i;
2053 if (c == NULL)
2054 return NID_undef;
2055 i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc);
2056 if (i == -1)
2057 return NID_undef;
2058 return ssl_cipher_table_cipher[i].nid;
2059 }
2060
2061 int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c)
2062 {
2063 int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
2064
2065 if (i == -1)
2066 return NID_undef;
2067 return ssl_cipher_table_mac[i].nid;
2068 }
2069
2070 int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c)
2071 {
2072 int i = ssl_cipher_info_lookup(ssl_cipher_table_kx, c->algorithm_mkey);
2073
2074 if (i == -1)
2075 return NID_undef;
2076 return ssl_cipher_table_kx[i].nid;
2077 }
2078
2079 int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c)
2080 {
2081 int i = ssl_cipher_info_lookup(ssl_cipher_table_auth, c->algorithm_auth);
2082
2083 if (i == -1)
2084 return NID_undef;
2085 return ssl_cipher_table_auth[i].nid;
2086 }
2087
2088 const EVP_MD *SSL_CIPHER_get_handshake_digest(const SSL_CIPHER *c)
2089 {
2090 int idx = c->algorithm2 & SSL_HANDSHAKE_MAC_MASK;
2091
2092 if (idx < 0 || idx >= SSL_MD_NUM_IDX)
2093 return NULL;
2094 return ssl_digest_methods[idx];
2095 }
2096
2097 int SSL_CIPHER_is_aead(const SSL_CIPHER *c)
2098 {
2099 return (c->algorithm_mac & SSL_AEAD) ? 1 : 0;
2100 }
2101
2102 int ssl_cipher_get_overhead(const SSL_CIPHER *c, size_t *mac_overhead,
2103 size_t *int_overhead, size_t *blocksize,
2104 size_t *ext_overhead)
2105 {
2106 size_t mac = 0, in = 0, blk = 0, out = 0;
2107
2108 /* Some hard-coded numbers for the CCM/Poly1305 MAC overhead
2109 * because there are no handy #defines for those. */
2110 if (c->algorithm_enc & (SSL_AESGCM | SSL_ARIAGCM)) {
2111 out = EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
2112 } else if (c->algorithm_enc & (SSL_AES128CCM | SSL_AES256CCM)) {
2113 out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 16;
2114 } else if (c->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8)) {
2115 out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 8;
2116 } else if (c->algorithm_enc & SSL_CHACHA20POLY1305) {
2117 out = 16;
2118 } else if (c->algorithm_mac & SSL_AEAD) {
2119 /* We're supposed to have handled all the AEAD modes above */
2120 return 0;
2121 } else {
2122 /* Non-AEAD modes. Calculate MAC/cipher overhead separately */
2123 int digest_nid = SSL_CIPHER_get_digest_nid(c);
2124 const EVP_MD *e_md = EVP_get_digestbynid(digest_nid);
2125
2126 if (e_md == NULL)
2127 return 0;
2128
2129 mac = EVP_MD_size(e_md);
2130 if (c->algorithm_enc != SSL_eNULL) {
2131 int cipher_nid = SSL_CIPHER_get_cipher_nid(c);
2132 const EVP_CIPHER *e_ciph = EVP_get_cipherbynid(cipher_nid);
2133
2134 /* If it wasn't AEAD or SSL_eNULL, we expect it to be a
2135 known CBC cipher. */
2136 if (e_ciph == NULL ||
2137 EVP_CIPHER_mode(e_ciph) != EVP_CIPH_CBC_MODE)
2138 return 0;
2139
2140 in = 1; /* padding length byte */
2141 out = EVP_CIPHER_iv_length(e_ciph);
2142 blk = EVP_CIPHER_block_size(e_ciph);
2143 }
2144 }
2145
2146 *mac_overhead = mac;
2147 *int_overhead = in;
2148 *blocksize = blk;
2149 *ext_overhead = out;
2150
2151 return 1;
2152 }
2153
2154 int ssl_cert_is_disabled(size_t idx)
2155 {
2156 const SSL_CERT_LOOKUP *cl = ssl_cert_lookup_by_idx(idx);
2157
2158 if (cl == NULL || (cl->amask & disabled_auth_mask) != 0)
2159 return 1;
2160 return 0;
2161 }