]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_ciph.c
New Russian TLS 1.2 implementation
[thirdparty/openssl.git] / ssl / ssl_ciph.c
1 /*
2 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the Apache License 2.0 (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include <ctype.h>
14 #include <openssl/objects.h>
15 #include <openssl/comp.h>
16 #include <openssl/engine.h>
17 #include <openssl/crypto.h>
18 #include <openssl/conf.h>
19 #include <openssl/trace.h>
20 #include "internal/nelem.h"
21 #include "ssl_local.h"
22 #include "internal/thread_once.h"
23 #include "internal/cryptlib.h"
24
25 DEFINE_STACK_OF(SSL_COMP)
26 DEFINE_STACK_OF_CONST(SSL_CIPHER)
27
28 /* NB: make sure indices in these tables match values above */
29
30 typedef struct {
31 uint32_t mask;
32 int nid;
33 } ssl_cipher_table;
34
35 /* Table of NIDs for each cipher */
36 static const ssl_cipher_table ssl_cipher_table_cipher[SSL_ENC_NUM_IDX] = {
37 {SSL_DES, NID_des_cbc}, /* SSL_ENC_DES_IDX 0 */
38 {SSL_3DES, NID_des_ede3_cbc}, /* SSL_ENC_3DES_IDX 1 */
39 {SSL_RC4, NID_rc4}, /* SSL_ENC_RC4_IDX 2 */
40 {SSL_RC2, NID_rc2_cbc}, /* SSL_ENC_RC2_IDX 3 */
41 {SSL_IDEA, NID_idea_cbc}, /* SSL_ENC_IDEA_IDX 4 */
42 {SSL_eNULL, NID_undef}, /* SSL_ENC_NULL_IDX 5 */
43 {SSL_AES128, NID_aes_128_cbc}, /* SSL_ENC_AES128_IDX 6 */
44 {SSL_AES256, NID_aes_256_cbc}, /* SSL_ENC_AES256_IDX 7 */
45 {SSL_CAMELLIA128, NID_camellia_128_cbc}, /* SSL_ENC_CAMELLIA128_IDX 8 */
46 {SSL_CAMELLIA256, NID_camellia_256_cbc}, /* SSL_ENC_CAMELLIA256_IDX 9 */
47 {SSL_eGOST2814789CNT, NID_gost89_cnt}, /* SSL_ENC_GOST89_IDX 10 */
48 {SSL_SEED, NID_seed_cbc}, /* SSL_ENC_SEED_IDX 11 */
49 {SSL_AES128GCM, NID_aes_128_gcm}, /* SSL_ENC_AES128GCM_IDX 12 */
50 {SSL_AES256GCM, NID_aes_256_gcm}, /* SSL_ENC_AES256GCM_IDX 13 */
51 {SSL_AES128CCM, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM_IDX 14 */
52 {SSL_AES256CCM, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM_IDX 15 */
53 {SSL_AES128CCM8, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM8_IDX 16 */
54 {SSL_AES256CCM8, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM8_IDX 17 */
55 {SSL_eGOST2814789CNT12, NID_gost89_cnt_12}, /* SSL_ENC_GOST8912_IDX 18 */
56 {SSL_CHACHA20POLY1305, NID_chacha20_poly1305}, /* SSL_ENC_CHACHA_IDX 19 */
57 {SSL_ARIA128GCM, NID_aria_128_gcm}, /* SSL_ENC_ARIA128GCM_IDX 20 */
58 {SSL_ARIA256GCM, NID_aria_256_gcm}, /* SSL_ENC_ARIA256GCM_IDX 21 */
59 {SSL_MAGMA, NID_magma_ctr_acpkm}, /* SSL_ENC_MAGMA_IDX */
60 {SSL_KUZNYECHIK, NID_kuznyechik_ctr_acpkm}, /* SSL_ENC_KUZNYECHIK_IDX */
61 };
62
63 #define SSL_COMP_NULL_IDX 0
64 #define SSL_COMP_ZLIB_IDX 1
65 #define SSL_COMP_NUM_IDX 2
66
67 static STACK_OF(SSL_COMP) *ssl_comp_methods = NULL;
68
69 #ifndef OPENSSL_NO_COMP
70 static CRYPTO_ONCE ssl_load_builtin_comp_once = CRYPTO_ONCE_STATIC_INIT;
71 #endif
72
73 /* NB: make sure indices in this table matches values above */
74 static const ssl_cipher_table ssl_cipher_table_mac[SSL_MD_NUM_IDX] = {
75 {SSL_MD5, NID_md5}, /* SSL_MD_MD5_IDX 0 */
76 {SSL_SHA1, NID_sha1}, /* SSL_MD_SHA1_IDX 1 */
77 {SSL_GOST94, NID_id_GostR3411_94}, /* SSL_MD_GOST94_IDX 2 */
78 {SSL_GOST89MAC, NID_id_Gost28147_89_MAC}, /* SSL_MD_GOST89MAC_IDX 3 */
79 {SSL_SHA256, NID_sha256}, /* SSL_MD_SHA256_IDX 4 */
80 {SSL_SHA384, NID_sha384}, /* SSL_MD_SHA384_IDX 5 */
81 {SSL_GOST12_256, NID_id_GostR3411_2012_256}, /* SSL_MD_GOST12_256_IDX 6 */
82 {SSL_GOST89MAC12, NID_gost_mac_12}, /* SSL_MD_GOST89MAC12_IDX 7 */
83 {SSL_GOST12_512, NID_id_GostR3411_2012_512}, /* SSL_MD_GOST12_512_IDX 8 */
84 {0, NID_md5_sha1}, /* SSL_MD_MD5_SHA1_IDX 9 */
85 {0, NID_sha224}, /* SSL_MD_SHA224_IDX 10 */
86 {0, NID_sha512}, /* SSL_MD_SHA512_IDX 11 */
87 {SSL_MAGMAOMAC, NID_magma_mac}, /* sSL_MD_MAGMAOMAC_IDX */
88 {SSL_KUZNYECHIKOMAC, NID_kuznyechik_mac} /* SSL_MD_KUZNYECHIKOMAC_IDX */
89 };
90
91 /* *INDENT-OFF* */
92 static const ssl_cipher_table ssl_cipher_table_kx[] = {
93 {SSL_kRSA, NID_kx_rsa},
94 {SSL_kECDHE, NID_kx_ecdhe},
95 {SSL_kDHE, NID_kx_dhe},
96 {SSL_kECDHEPSK, NID_kx_ecdhe_psk},
97 {SSL_kDHEPSK, NID_kx_dhe_psk},
98 {SSL_kRSAPSK, NID_kx_rsa_psk},
99 {SSL_kPSK, NID_kx_psk},
100 {SSL_kSRP, NID_kx_srp},
101 {SSL_kGOST, NID_kx_gost},
102 {SSL_kGOST18, NID_kx_gost18},
103 {SSL_kANY, NID_kx_any}
104 };
105
106 static const ssl_cipher_table ssl_cipher_table_auth[] = {
107 {SSL_aRSA, NID_auth_rsa},
108 {SSL_aECDSA, NID_auth_ecdsa},
109 {SSL_aPSK, NID_auth_psk},
110 {SSL_aDSS, NID_auth_dss},
111 {SSL_aGOST01, NID_auth_gost01},
112 {SSL_aGOST12, NID_auth_gost12},
113 {SSL_aSRP, NID_auth_srp},
114 {SSL_aNULL, NID_auth_null},
115 {SSL_aANY, NID_auth_any}
116 };
117 /* *INDENT-ON* */
118
119 /* Utility function for table lookup */
120 static int ssl_cipher_info_find(const ssl_cipher_table * table,
121 size_t table_cnt, uint32_t mask)
122 {
123 size_t i;
124 for (i = 0; i < table_cnt; i++, table++) {
125 if (table->mask == mask)
126 return (int)i;
127 }
128 return -1;
129 }
130
131 #define ssl_cipher_info_lookup(table, x) \
132 ssl_cipher_info_find(table, OSSL_NELEM(table), x)
133
134 /*
135 * PKEY_TYPE for GOST89MAC is known in advance, but, because implementation
136 * is engine-provided, we'll fill it only if corresponding EVP_PKEY_METHOD is
137 * found
138 */
139 static int ssl_mac_pkey_id[SSL_MD_NUM_IDX] = {
140 /* MD5, SHA, GOST94, MAC89 */
141 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
142 /* SHA256, SHA384, GOST2012_256, MAC89-12 */
143 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
144 /* GOST2012_512 */
145 EVP_PKEY_HMAC,
146 /* MD5/SHA1, SHA224, SHA512, MAGMAOMAC, KUZNYECHIKOMAC */
147 NID_undef, NID_undef, NID_undef, NID_undef, NID_undef
148 };
149
150 #define CIPHER_ADD 1
151 #define CIPHER_KILL 2
152 #define CIPHER_DEL 3
153 #define CIPHER_ORD 4
154 #define CIPHER_SPECIAL 5
155 /*
156 * Bump the ciphers to the top of the list.
157 * This rule isn't currently supported by the public cipherstring API.
158 */
159 #define CIPHER_BUMP 6
160
161 typedef struct cipher_order_st {
162 const SSL_CIPHER *cipher;
163 int active;
164 int dead;
165 struct cipher_order_st *next, *prev;
166 } CIPHER_ORDER;
167
168 static const SSL_CIPHER cipher_aliases[] = {
169 /* "ALL" doesn't include eNULL (must be specifically enabled) */
170 {0, SSL_TXT_ALL, NULL, 0, 0, 0, ~SSL_eNULL},
171 /* "COMPLEMENTOFALL" */
172 {0, SSL_TXT_CMPALL, NULL, 0, 0, 0, SSL_eNULL},
173
174 /*
175 * "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in
176 * ALL!)
177 */
178 {0, SSL_TXT_CMPDEF, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_NOT_DEFAULT},
179
180 /*
181 * key exchange aliases (some of those using only a single bit here
182 * combine multiple key exchange algs according to the RFCs, e.g. kDHE
183 * combines DHE_DSS and DHE_RSA)
184 */
185 {0, SSL_TXT_kRSA, NULL, 0, SSL_kRSA},
186
187 {0, SSL_TXT_kEDH, NULL, 0, SSL_kDHE},
188 {0, SSL_TXT_kDHE, NULL, 0, SSL_kDHE},
189 {0, SSL_TXT_DH, NULL, 0, SSL_kDHE},
190
191 {0, SSL_TXT_kEECDH, NULL, 0, SSL_kECDHE},
192 {0, SSL_TXT_kECDHE, NULL, 0, SSL_kECDHE},
193 {0, SSL_TXT_ECDH, NULL, 0, SSL_kECDHE},
194
195 {0, SSL_TXT_kPSK, NULL, 0, SSL_kPSK},
196 {0, SSL_TXT_kRSAPSK, NULL, 0, SSL_kRSAPSK},
197 {0, SSL_TXT_kECDHEPSK, NULL, 0, SSL_kECDHEPSK},
198 {0, SSL_TXT_kDHEPSK, NULL, 0, SSL_kDHEPSK},
199 {0, SSL_TXT_kSRP, NULL, 0, SSL_kSRP},
200 {0, SSL_TXT_kGOST, NULL, 0, SSL_kGOST},
201 {0, SSL_TXT_kGOST18, NULL, 0, SSL_kGOST18},
202
203 /* server authentication aliases */
204 {0, SSL_TXT_aRSA, NULL, 0, 0, SSL_aRSA},
205 {0, SSL_TXT_aDSS, NULL, 0, 0, SSL_aDSS},
206 {0, SSL_TXT_DSS, NULL, 0, 0, SSL_aDSS},
207 {0, SSL_TXT_aNULL, NULL, 0, 0, SSL_aNULL},
208 {0, SSL_TXT_aECDSA, NULL, 0, 0, SSL_aECDSA},
209 {0, SSL_TXT_ECDSA, NULL, 0, 0, SSL_aECDSA},
210 {0, SSL_TXT_aPSK, NULL, 0, 0, SSL_aPSK},
211 {0, SSL_TXT_aGOST01, NULL, 0, 0, SSL_aGOST01},
212 {0, SSL_TXT_aGOST12, NULL, 0, 0, SSL_aGOST12},
213 {0, SSL_TXT_aGOST, NULL, 0, 0, SSL_aGOST01 | SSL_aGOST12},
214 {0, SSL_TXT_aSRP, NULL, 0, 0, SSL_aSRP},
215
216 /* aliases combining key exchange and server authentication */
217 {0, SSL_TXT_EDH, NULL, 0, SSL_kDHE, ~SSL_aNULL},
218 {0, SSL_TXT_DHE, NULL, 0, SSL_kDHE, ~SSL_aNULL},
219 {0, SSL_TXT_EECDH, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
220 {0, SSL_TXT_ECDHE, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
221 {0, SSL_TXT_NULL, NULL, 0, 0, 0, SSL_eNULL},
222 {0, SSL_TXT_RSA, NULL, 0, SSL_kRSA, SSL_aRSA},
223 {0, SSL_TXT_ADH, NULL, 0, SSL_kDHE, SSL_aNULL},
224 {0, SSL_TXT_AECDH, NULL, 0, SSL_kECDHE, SSL_aNULL},
225 {0, SSL_TXT_PSK, NULL, 0, SSL_PSK},
226 {0, SSL_TXT_SRP, NULL, 0, SSL_kSRP},
227
228 /* symmetric encryption aliases */
229 {0, SSL_TXT_3DES, NULL, 0, 0, 0, SSL_3DES},
230 {0, SSL_TXT_RC4, NULL, 0, 0, 0, SSL_RC4},
231 {0, SSL_TXT_RC2, NULL, 0, 0, 0, SSL_RC2},
232 {0, SSL_TXT_IDEA, NULL, 0, 0, 0, SSL_IDEA},
233 {0, SSL_TXT_SEED, NULL, 0, 0, 0, SSL_SEED},
234 {0, SSL_TXT_eNULL, NULL, 0, 0, 0, SSL_eNULL},
235 {0, SSL_TXT_GOST, NULL, 0, 0, 0,
236 SSL_eGOST2814789CNT | SSL_eGOST2814789CNT12 | SSL_MAGMA | SSL_KUZNYECHIK},
237 {0, SSL_TXT_AES128, NULL, 0, 0, 0,
238 SSL_AES128 | SSL_AES128GCM | SSL_AES128CCM | SSL_AES128CCM8},
239 {0, SSL_TXT_AES256, NULL, 0, 0, 0,
240 SSL_AES256 | SSL_AES256GCM | SSL_AES256CCM | SSL_AES256CCM8},
241 {0, SSL_TXT_AES, NULL, 0, 0, 0, SSL_AES},
242 {0, SSL_TXT_AES_GCM, NULL, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM},
243 {0, SSL_TXT_AES_CCM, NULL, 0, 0, 0,
244 SSL_AES128CCM | SSL_AES256CCM | SSL_AES128CCM8 | SSL_AES256CCM8},
245 {0, SSL_TXT_AES_CCM_8, NULL, 0, 0, 0, SSL_AES128CCM8 | SSL_AES256CCM8},
246 {0, SSL_TXT_CAMELLIA128, NULL, 0, 0, 0, SSL_CAMELLIA128},
247 {0, SSL_TXT_CAMELLIA256, NULL, 0, 0, 0, SSL_CAMELLIA256},
248 {0, SSL_TXT_CAMELLIA, NULL, 0, 0, 0, SSL_CAMELLIA},
249 {0, SSL_TXT_CHACHA20, NULL, 0, 0, 0, SSL_CHACHA20},
250 {0, SSL_TXT_GOST2012_GOST8912_GOST8912, NULL, 0, 0, 0, SSL_eGOST2814789CNT12},
251
252 {0, SSL_TXT_ARIA, NULL, 0, 0, 0, SSL_ARIA},
253 {0, SSL_TXT_ARIA_GCM, NULL, 0, 0, 0, SSL_ARIA128GCM | SSL_ARIA256GCM},
254 {0, SSL_TXT_ARIA128, NULL, 0, 0, 0, SSL_ARIA128GCM},
255 {0, SSL_TXT_ARIA256, NULL, 0, 0, 0, SSL_ARIA256GCM},
256
257 /* MAC aliases */
258 {0, SSL_TXT_MD5, NULL, 0, 0, 0, 0, SSL_MD5},
259 {0, SSL_TXT_SHA1, NULL, 0, 0, 0, 0, SSL_SHA1},
260 {0, SSL_TXT_SHA, NULL, 0, 0, 0, 0, SSL_SHA1},
261 {0, SSL_TXT_GOST94, NULL, 0, 0, 0, 0, SSL_GOST94},
262 {0, SSL_TXT_GOST89MAC, NULL, 0, 0, 0, 0, SSL_GOST89MAC | SSL_GOST89MAC12},
263 {0, SSL_TXT_SHA256, NULL, 0, 0, 0, 0, SSL_SHA256},
264 {0, SSL_TXT_SHA384, NULL, 0, 0, 0, 0, SSL_SHA384},
265 {0, SSL_TXT_GOST12, NULL, 0, 0, 0, 0, SSL_GOST12_256},
266
267 /* protocol version aliases */
268 {0, SSL_TXT_SSLV3, NULL, 0, 0, 0, 0, 0, SSL3_VERSION},
269 {0, SSL_TXT_TLSV1, NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
270 {0, "TLSv1.0", NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
271 {0, SSL_TXT_TLSV1_2, NULL, 0, 0, 0, 0, 0, TLS1_2_VERSION},
272
273 /* strength classes */
274 {0, SSL_TXT_LOW, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_LOW},
275 {0, SSL_TXT_MEDIUM, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_MEDIUM},
276 {0, SSL_TXT_HIGH, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_HIGH},
277 /* FIPS 140-2 approved ciphersuite */
278 {0, SSL_TXT_FIPS, NULL, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, SSL_FIPS},
279
280 /* "EDH-" aliases to "DHE-" labels (for backward compatibility) */
281 {0, SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA, NULL, 0,
282 SSL_kDHE, SSL_aDSS, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
283 {0, SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA, NULL, 0,
284 SSL_kDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
285
286 };
287
288 /*
289 * Search for public key algorithm with given name and return its pkey_id if
290 * it is available. Otherwise return 0
291 */
292 #ifdef OPENSSL_NO_ENGINE
293
294 static int get_optional_pkey_id(const char *pkey_name)
295 {
296 const EVP_PKEY_ASN1_METHOD *ameth;
297 int pkey_id = 0;
298 ameth = EVP_PKEY_asn1_find_str(NULL, pkey_name, -1);
299 if (ameth && EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
300 ameth) > 0)
301 return pkey_id;
302 return 0;
303 }
304
305 #else
306
307 static int get_optional_pkey_id(const char *pkey_name)
308 {
309 const EVP_PKEY_ASN1_METHOD *ameth;
310 ENGINE *tmpeng = NULL;
311 int pkey_id = 0;
312 ameth = EVP_PKEY_asn1_find_str(&tmpeng, pkey_name, -1);
313 if (ameth) {
314 if (EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
315 ameth) <= 0)
316 pkey_id = 0;
317 }
318 ENGINE_finish(tmpeng);
319 return pkey_id;
320 }
321
322 #endif
323
324 /* masks of disabled algorithms */
325 static uint32_t disabled_enc_mask;
326 static uint32_t disabled_mac_mask;
327 static uint32_t disabled_mkey_mask;
328 static uint32_t disabled_auth_mask;
329
330 int ssl_load_ciphers(SSL_CTX *ctx)
331 {
332 size_t i;
333 const ssl_cipher_table *t;
334
335 disabled_enc_mask = 0;
336 for (i = 0, t = ssl_cipher_table_cipher; i < SSL_ENC_NUM_IDX; i++, t++) {
337 if (t->nid != NID_undef) {
338 const EVP_CIPHER *cipher
339 = ssl_evp_cipher_fetch(ctx->libctx, t->nid, ctx->propq);
340
341 ctx->ssl_cipher_methods[i] = cipher;
342 if (cipher == NULL)
343 disabled_enc_mask |= t->mask;
344 }
345 }
346 disabled_mac_mask = 0;
347 for (i = 0, t = ssl_cipher_table_mac; i < SSL_MD_NUM_IDX; i++, t++) {
348 const EVP_MD *md
349 = ssl_evp_md_fetch(ctx->libctx, t->nid, ctx->propq);
350
351 ctx->ssl_digest_methods[i] = md;
352 if (md == NULL) {
353 disabled_mac_mask |= t->mask;
354 } else {
355 int tmpsize = EVP_MD_size(md);
356 if (!ossl_assert(tmpsize >= 0))
357 return 0;
358 ctx->ssl_mac_secret_size[i] = tmpsize;
359 }
360 }
361
362 disabled_mkey_mask = 0;
363 disabled_auth_mask = 0;
364
365 #ifdef OPENSSL_NO_RSA
366 disabled_mkey_mask |= SSL_kRSA | SSL_kRSAPSK;
367 disabled_auth_mask |= SSL_aRSA;
368 #endif
369 #ifdef OPENSSL_NO_DSA
370 disabled_auth_mask |= SSL_aDSS;
371 #endif
372 #ifdef OPENSSL_NO_DH
373 disabled_mkey_mask |= SSL_kDHE | SSL_kDHEPSK;
374 #endif
375 #ifdef OPENSSL_NO_EC
376 disabled_mkey_mask |= SSL_kECDHE | SSL_kECDHEPSK;
377 disabled_auth_mask |= SSL_aECDSA;
378 #endif
379 #ifdef OPENSSL_NO_PSK
380 disabled_mkey_mask |= SSL_PSK;
381 disabled_auth_mask |= SSL_aPSK;
382 #endif
383 #ifdef OPENSSL_NO_SRP
384 disabled_mkey_mask |= SSL_kSRP;
385 #endif
386
387 /*
388 * Check for presence of GOST 34.10 algorithms, and if they are not
389 * present, disable appropriate auth and key exchange
390 */
391 ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] = get_optional_pkey_id(SN_id_Gost28147_89_MAC);
392 if (ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX])
393 ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32;
394 else
395 disabled_mac_mask |= SSL_GOST89MAC;
396
397 ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX] =
398 get_optional_pkey_id(SN_gost_mac_12);
399 if (ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX])
400 ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC12_IDX] = 32;
401 else
402 disabled_mac_mask |= SSL_GOST89MAC12;
403
404 ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX] =
405 get_optional_pkey_id(SN_magma_mac);
406 if (ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX])
407 ctx->ssl_mac_secret_size[SSL_MD_MAGMAOMAC_IDX] = 32;
408 else
409 disabled_mac_mask |= SSL_MAGMAOMAC;
410
411 ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX] =
412 get_optional_pkey_id(SN_kuznyechik_mac);
413 if (ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX])
414 ctx->ssl_mac_secret_size[SSL_MD_KUZNYECHIKOMAC_IDX] = 32;
415 else
416 disabled_mac_mask |= SSL_KUZNYECHIKOMAC;
417
418 if (!get_optional_pkey_id(SN_id_GostR3410_2001))
419 disabled_auth_mask |= SSL_aGOST01 | SSL_aGOST12;
420 if (!get_optional_pkey_id(SN_id_GostR3410_2012_256))
421 disabled_auth_mask |= SSL_aGOST12;
422 if (!get_optional_pkey_id(SN_id_GostR3410_2012_512))
423 disabled_auth_mask |= SSL_aGOST12;
424 /*
425 * Disable GOST key exchange if no GOST signature algs are available *
426 */
427 if ((disabled_auth_mask & (SSL_aGOST01 | SSL_aGOST12)) ==
428 (SSL_aGOST01 | SSL_aGOST12))
429 disabled_mkey_mask |= SSL_kGOST;
430
431 if ((disabled_auth_mask & SSL_aGOST12) == SSL_aGOST12)
432 disabled_mkey_mask |= SSL_kGOST18;
433
434 return 1;
435 }
436
437 #ifndef OPENSSL_NO_COMP
438
439 static int sk_comp_cmp(const SSL_COMP *const *a, const SSL_COMP *const *b)
440 {
441 return ((*a)->id - (*b)->id);
442 }
443
444 DEFINE_RUN_ONCE_STATIC(do_load_builtin_compressions)
445 {
446 SSL_COMP *comp = NULL;
447 COMP_METHOD *method = COMP_zlib();
448
449 ssl_comp_methods = sk_SSL_COMP_new(sk_comp_cmp);
450
451 if (COMP_get_type(method) != NID_undef && ssl_comp_methods != NULL) {
452 comp = OPENSSL_malloc(sizeof(*comp));
453 if (comp != NULL) {
454 comp->method = method;
455 comp->id = SSL_COMP_ZLIB_IDX;
456 comp->name = COMP_get_name(method);
457 sk_SSL_COMP_push(ssl_comp_methods, comp);
458 sk_SSL_COMP_sort(ssl_comp_methods);
459 }
460 }
461 return 1;
462 }
463
464 static int load_builtin_compressions(void)
465 {
466 return RUN_ONCE(&ssl_load_builtin_comp_once, do_load_builtin_compressions);
467 }
468 #endif
469
470 int ssl_cipher_get_evp_cipher(SSL_CTX *ctx, const SSL_CIPHER *sslc,
471 const EVP_CIPHER **enc)
472 {
473 int i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, sslc->algorithm_enc);
474
475 if (i == -1) {
476 *enc = NULL;
477 } else {
478 if (i == SSL_ENC_NULL_IDX) {
479 /*
480 * We assume we don't care about this coming from an ENGINE so
481 * just do a normal EVP_CIPHER_fetch instead of
482 * ssl_evp_cipher_fetch()
483 */
484 *enc = EVP_CIPHER_fetch(ctx->libctx, "NULL", ctx->propq);
485 if (*enc == NULL)
486 return 0;
487 } else {
488 const EVP_CIPHER *cipher = ctx->ssl_cipher_methods[i];
489
490 if (cipher == NULL
491 || !ssl_evp_cipher_up_ref(cipher))
492 return 0;
493 *enc = ctx->ssl_cipher_methods[i];
494 }
495 }
496 return 1;
497 }
498
499 int ssl_cipher_get_evp(SSL_CTX *ctx, const SSL_SESSION *s,
500 const EVP_CIPHER **enc, const EVP_MD **md,
501 int *mac_pkey_type, size_t *mac_secret_size,
502 SSL_COMP **comp, int use_etm)
503 {
504 int i;
505 const SSL_CIPHER *c;
506
507 c = s->cipher;
508 if (c == NULL)
509 return 0;
510 if (comp != NULL) {
511 SSL_COMP ctmp;
512 #ifndef OPENSSL_NO_COMP
513 if (!load_builtin_compressions()) {
514 /*
515 * Currently don't care, since a failure only means that
516 * ssl_comp_methods is NULL, which is perfectly OK
517 */
518 }
519 #endif
520 *comp = NULL;
521 ctmp.id = s->compress_meth;
522 if (ssl_comp_methods != NULL) {
523 i = sk_SSL_COMP_find(ssl_comp_methods, &ctmp);
524 *comp = sk_SSL_COMP_value(ssl_comp_methods, i);
525 }
526 /* If were only interested in comp then return success */
527 if ((enc == NULL) && (md == NULL))
528 return 1;
529 }
530
531 if ((enc == NULL) || (md == NULL))
532 return 0;
533
534 if (!ssl_cipher_get_evp_cipher(ctx, c, enc))
535 return 0;
536
537 i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
538 if (i == -1) {
539 *md = NULL;
540 if (mac_pkey_type != NULL)
541 *mac_pkey_type = NID_undef;
542 if (mac_secret_size != NULL)
543 *mac_secret_size = 0;
544 if (c->algorithm_mac == SSL_AEAD)
545 mac_pkey_type = NULL;
546 } else {
547 if (!ssl_evp_md_up_ref(ctx->ssl_digest_methods[i])) {
548 ssl_evp_cipher_free(*enc);
549 return 0;
550 }
551 *md = ctx->ssl_digest_methods[i];
552 if (mac_pkey_type != NULL)
553 *mac_pkey_type = ssl_mac_pkey_id[i];
554 if (mac_secret_size != NULL)
555 *mac_secret_size = ctx->ssl_mac_secret_size[i];
556 }
557
558 if ((*enc != NULL) &&
559 (*md != NULL || (EVP_CIPHER_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER))
560 && (!mac_pkey_type || *mac_pkey_type != NID_undef)) {
561 const EVP_CIPHER *evp = NULL;
562
563 if (use_etm
564 || s->ssl_version >> 8 != TLS1_VERSION_MAJOR
565 || s->ssl_version < TLS1_VERSION)
566 return 1;
567
568 if (c->algorithm_enc == SSL_RC4
569 && c->algorithm_mac == SSL_MD5)
570 evp = ssl_evp_cipher_fetch(ctx->libctx, NID_rc4_hmac_md5,
571 ctx->propq);
572 else if (c->algorithm_enc == SSL_AES128
573 && c->algorithm_mac == SSL_SHA1)
574 evp = ssl_evp_cipher_fetch(ctx->libctx,
575 NID_aes_128_cbc_hmac_sha1,
576 ctx->propq);
577 else if (c->algorithm_enc == SSL_AES256
578 && c->algorithm_mac == SSL_SHA1)
579 evp = ssl_evp_cipher_fetch(ctx->libctx,
580 NID_aes_256_cbc_hmac_sha1,
581 ctx->propq);
582 else if (c->algorithm_enc == SSL_AES128
583 && c->algorithm_mac == SSL_SHA256)
584 evp = ssl_evp_cipher_fetch(ctx->libctx,
585 NID_aes_128_cbc_hmac_sha256,
586 ctx->propq);
587 else if (c->algorithm_enc == SSL_AES256
588 && c->algorithm_mac == SSL_SHA256)
589 evp = ssl_evp_cipher_fetch(ctx->libctx,
590 NID_aes_256_cbc_hmac_sha256,
591 ctx->propq);
592
593 if (evp != NULL) {
594 ssl_evp_cipher_free(*enc);
595 ssl_evp_md_free(*md);
596 *enc = evp;
597 *md = NULL;
598 }
599 return 1;
600 }
601
602 return 0;
603 }
604
605 const EVP_MD *ssl_md(SSL_CTX *ctx, int idx)
606 {
607 idx &= SSL_HANDSHAKE_MAC_MASK;
608 if (idx < 0 || idx >= SSL_MD_NUM_IDX)
609 return NULL;
610 return ctx->ssl_digest_methods[idx];
611 }
612
613 const EVP_MD *ssl_handshake_md(SSL *s)
614 {
615 return ssl_md(s->ctx, ssl_get_algorithm2(s));
616 }
617
618 const EVP_MD *ssl_prf_md(SSL *s)
619 {
620 return ssl_md(s->ctx, ssl_get_algorithm2(s) >> TLS1_PRF_DGST_SHIFT);
621 }
622
623 #define ITEM_SEP(a) \
624 (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
625
626 static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
627 CIPHER_ORDER **tail)
628 {
629 if (curr == *tail)
630 return;
631 if (curr == *head)
632 *head = curr->next;
633 if (curr->prev != NULL)
634 curr->prev->next = curr->next;
635 if (curr->next != NULL)
636 curr->next->prev = curr->prev;
637 (*tail)->next = curr;
638 curr->prev = *tail;
639 curr->next = NULL;
640 *tail = curr;
641 }
642
643 static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
644 CIPHER_ORDER **tail)
645 {
646 if (curr == *head)
647 return;
648 if (curr == *tail)
649 *tail = curr->prev;
650 if (curr->next != NULL)
651 curr->next->prev = curr->prev;
652 if (curr->prev != NULL)
653 curr->prev->next = curr->next;
654 (*head)->prev = curr;
655 curr->next = *head;
656 curr->prev = NULL;
657 *head = curr;
658 }
659
660 static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
661 int num_of_ciphers,
662 uint32_t disabled_mkey,
663 uint32_t disabled_auth,
664 uint32_t disabled_enc,
665 uint32_t disabled_mac,
666 CIPHER_ORDER *co_list,
667 CIPHER_ORDER **head_p,
668 CIPHER_ORDER **tail_p)
669 {
670 int i, co_list_num;
671 const SSL_CIPHER *c;
672
673 /*
674 * We have num_of_ciphers descriptions compiled in, depending on the
675 * method selected (SSLv3, TLSv1 etc).
676 * These will later be sorted in a linked list with at most num
677 * entries.
678 */
679
680 /* Get the initial list of ciphers */
681 co_list_num = 0; /* actual count of ciphers */
682 for (i = 0; i < num_of_ciphers; i++) {
683 c = ssl_method->get_cipher(i);
684 /* drop those that use any of that is not available */
685 if (c == NULL || !c->valid)
686 continue;
687 if ((c->algorithm_mkey & disabled_mkey) ||
688 (c->algorithm_auth & disabled_auth) ||
689 (c->algorithm_enc & disabled_enc) ||
690 (c->algorithm_mac & disabled_mac))
691 continue;
692 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) == 0) &&
693 c->min_tls == 0)
694 continue;
695 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) != 0) &&
696 c->min_dtls == 0)
697 continue;
698
699 co_list[co_list_num].cipher = c;
700 co_list[co_list_num].next = NULL;
701 co_list[co_list_num].prev = NULL;
702 co_list[co_list_num].active = 0;
703 co_list_num++;
704 }
705
706 /*
707 * Prepare linked list from list entries
708 */
709 if (co_list_num > 0) {
710 co_list[0].prev = NULL;
711
712 if (co_list_num > 1) {
713 co_list[0].next = &co_list[1];
714
715 for (i = 1; i < co_list_num - 1; i++) {
716 co_list[i].prev = &co_list[i - 1];
717 co_list[i].next = &co_list[i + 1];
718 }
719
720 co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
721 }
722
723 co_list[co_list_num - 1].next = NULL;
724
725 *head_p = &co_list[0];
726 *tail_p = &co_list[co_list_num - 1];
727 }
728 }
729
730 static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list,
731 int num_of_group_aliases,
732 uint32_t disabled_mkey,
733 uint32_t disabled_auth,
734 uint32_t disabled_enc,
735 uint32_t disabled_mac,
736 CIPHER_ORDER *head)
737 {
738 CIPHER_ORDER *ciph_curr;
739 const SSL_CIPHER **ca_curr;
740 int i;
741 uint32_t mask_mkey = ~disabled_mkey;
742 uint32_t mask_auth = ~disabled_auth;
743 uint32_t mask_enc = ~disabled_enc;
744 uint32_t mask_mac = ~disabled_mac;
745
746 /*
747 * First, add the real ciphers as already collected
748 */
749 ciph_curr = head;
750 ca_curr = ca_list;
751 while (ciph_curr != NULL) {
752 *ca_curr = ciph_curr->cipher;
753 ca_curr++;
754 ciph_curr = ciph_curr->next;
755 }
756
757 /*
758 * Now we add the available ones from the cipher_aliases[] table.
759 * They represent either one or more algorithms, some of which
760 * in any affected category must be supported (set in enabled_mask),
761 * or represent a cipher strength value (will be added in any case because algorithms=0).
762 */
763 for (i = 0; i < num_of_group_aliases; i++) {
764 uint32_t algorithm_mkey = cipher_aliases[i].algorithm_mkey;
765 uint32_t algorithm_auth = cipher_aliases[i].algorithm_auth;
766 uint32_t algorithm_enc = cipher_aliases[i].algorithm_enc;
767 uint32_t algorithm_mac = cipher_aliases[i].algorithm_mac;
768
769 if (algorithm_mkey)
770 if ((algorithm_mkey & mask_mkey) == 0)
771 continue;
772
773 if (algorithm_auth)
774 if ((algorithm_auth & mask_auth) == 0)
775 continue;
776
777 if (algorithm_enc)
778 if ((algorithm_enc & mask_enc) == 0)
779 continue;
780
781 if (algorithm_mac)
782 if ((algorithm_mac & mask_mac) == 0)
783 continue;
784
785 *ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
786 ca_curr++;
787 }
788
789 *ca_curr = NULL; /* end of list */
790 }
791
792 static void ssl_cipher_apply_rule(uint32_t cipher_id, uint32_t alg_mkey,
793 uint32_t alg_auth, uint32_t alg_enc,
794 uint32_t alg_mac, int min_tls,
795 uint32_t algo_strength, int rule,
796 int32_t strength_bits, CIPHER_ORDER **head_p,
797 CIPHER_ORDER **tail_p)
798 {
799 CIPHER_ORDER *head, *tail, *curr, *next, *last;
800 const SSL_CIPHER *cp;
801 int reverse = 0;
802
803 OSSL_TRACE_BEGIN(TLS_CIPHER){
804 BIO_printf(trc_out,
805 "Applying rule %d with %08x/%08x/%08x/%08x/%08x %08x (%d)\n",
806 rule, alg_mkey, alg_auth, alg_enc, alg_mac, min_tls,
807 algo_strength, strength_bits);
808 }
809
810 if (rule == CIPHER_DEL || rule == CIPHER_BUMP)
811 reverse = 1; /* needed to maintain sorting between currently
812 * deleted ciphers */
813
814 head = *head_p;
815 tail = *tail_p;
816
817 if (reverse) {
818 next = tail;
819 last = head;
820 } else {
821 next = head;
822 last = tail;
823 }
824
825 curr = NULL;
826 for (;;) {
827 if (curr == last)
828 break;
829
830 curr = next;
831
832 if (curr == NULL)
833 break;
834
835 next = reverse ? curr->prev : curr->next;
836
837 cp = curr->cipher;
838
839 /*
840 * Selection criteria is either the value of strength_bits
841 * or the algorithms used.
842 */
843 if (strength_bits >= 0) {
844 if (strength_bits != cp->strength_bits)
845 continue;
846 } else {
847 if (trc_out != NULL) {
848 BIO_printf(trc_out,
849 "\nName: %s:"
850 "\nAlgo = %08x/%08x/%08x/%08x/%08x Algo_strength = %08x\n",
851 cp->name, cp->algorithm_mkey, cp->algorithm_auth,
852 cp->algorithm_enc, cp->algorithm_mac, cp->min_tls,
853 cp->algo_strength);
854 }
855 if (cipher_id != 0 && (cipher_id != cp->id))
856 continue;
857 if (alg_mkey && !(alg_mkey & cp->algorithm_mkey))
858 continue;
859 if (alg_auth && !(alg_auth & cp->algorithm_auth))
860 continue;
861 if (alg_enc && !(alg_enc & cp->algorithm_enc))
862 continue;
863 if (alg_mac && !(alg_mac & cp->algorithm_mac))
864 continue;
865 if (min_tls && (min_tls != cp->min_tls))
866 continue;
867 if ((algo_strength & SSL_STRONG_MASK)
868 && !(algo_strength & SSL_STRONG_MASK & cp->algo_strength))
869 continue;
870 if ((algo_strength & SSL_DEFAULT_MASK)
871 && !(algo_strength & SSL_DEFAULT_MASK & cp->algo_strength))
872 continue;
873 }
874
875 if (trc_out != NULL)
876 BIO_printf(trc_out, "Action = %d\n", rule);
877
878 /* add the cipher if it has not been added yet. */
879 if (rule == CIPHER_ADD) {
880 /* reverse == 0 */
881 if (!curr->active) {
882 ll_append_tail(&head, curr, &tail);
883 curr->active = 1;
884 }
885 }
886 /* Move the added cipher to this location */
887 else if (rule == CIPHER_ORD) {
888 /* reverse == 0 */
889 if (curr->active) {
890 ll_append_tail(&head, curr, &tail);
891 }
892 } else if (rule == CIPHER_DEL) {
893 /* reverse == 1 */
894 if (curr->active) {
895 /*
896 * most recently deleted ciphersuites get best positions for
897 * any future CIPHER_ADD (note that the CIPHER_DEL loop works
898 * in reverse to maintain the order)
899 */
900 ll_append_head(&head, curr, &tail);
901 curr->active = 0;
902 }
903 } else if (rule == CIPHER_BUMP) {
904 if (curr->active)
905 ll_append_head(&head, curr, &tail);
906 } else if (rule == CIPHER_KILL) {
907 /* reverse == 0 */
908 if (head == curr)
909 head = curr->next;
910 else
911 curr->prev->next = curr->next;
912 if (tail == curr)
913 tail = curr->prev;
914 curr->active = 0;
915 if (curr->next != NULL)
916 curr->next->prev = curr->prev;
917 if (curr->prev != NULL)
918 curr->prev->next = curr->next;
919 curr->next = NULL;
920 curr->prev = NULL;
921 }
922 }
923
924 *head_p = head;
925 *tail_p = tail;
926
927 OSSL_TRACE_END(TLS_CIPHER);
928 }
929
930 static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
931 CIPHER_ORDER **tail_p)
932 {
933 int32_t max_strength_bits;
934 int i, *number_uses;
935 CIPHER_ORDER *curr;
936
937 /*
938 * This routine sorts the ciphers with descending strength. The sorting
939 * must keep the pre-sorted sequence, so we apply the normal sorting
940 * routine as '+' movement to the end of the list.
941 */
942 max_strength_bits = 0;
943 curr = *head_p;
944 while (curr != NULL) {
945 if (curr->active && (curr->cipher->strength_bits > max_strength_bits))
946 max_strength_bits = curr->cipher->strength_bits;
947 curr = curr->next;
948 }
949
950 number_uses = OPENSSL_zalloc(sizeof(int) * (max_strength_bits + 1));
951 if (number_uses == NULL) {
952 SSLerr(SSL_F_SSL_CIPHER_STRENGTH_SORT, ERR_R_MALLOC_FAILURE);
953 return 0;
954 }
955
956 /*
957 * Now find the strength_bits values actually used
958 */
959 curr = *head_p;
960 while (curr != NULL) {
961 if (curr->active)
962 number_uses[curr->cipher->strength_bits]++;
963 curr = curr->next;
964 }
965 /*
966 * Go through the list of used strength_bits values in descending
967 * order.
968 */
969 for (i = max_strength_bits; i >= 0; i--)
970 if (number_uses[i] > 0)
971 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p,
972 tail_p);
973
974 OPENSSL_free(number_uses);
975 return 1;
976 }
977
978 static int ssl_cipher_process_rulestr(const char *rule_str,
979 CIPHER_ORDER **head_p,
980 CIPHER_ORDER **tail_p,
981 const SSL_CIPHER **ca_list, CERT *c)
982 {
983 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, algo_strength;
984 int min_tls;
985 const char *l, *buf;
986 int j, multi, found, rule, retval, ok, buflen;
987 uint32_t cipher_id = 0;
988 char ch;
989
990 retval = 1;
991 l = rule_str;
992 for ( ; ; ) {
993 ch = *l;
994
995 if (ch == '\0')
996 break; /* done */
997 if (ch == '-') {
998 rule = CIPHER_DEL;
999 l++;
1000 } else if (ch == '+') {
1001 rule = CIPHER_ORD;
1002 l++;
1003 } else if (ch == '!') {
1004 rule = CIPHER_KILL;
1005 l++;
1006 } else if (ch == '@') {
1007 rule = CIPHER_SPECIAL;
1008 l++;
1009 } else {
1010 rule = CIPHER_ADD;
1011 }
1012
1013 if (ITEM_SEP(ch)) {
1014 l++;
1015 continue;
1016 }
1017
1018 alg_mkey = 0;
1019 alg_auth = 0;
1020 alg_enc = 0;
1021 alg_mac = 0;
1022 min_tls = 0;
1023 algo_strength = 0;
1024
1025 for (;;) {
1026 ch = *l;
1027 buf = l;
1028 buflen = 0;
1029 #ifndef CHARSET_EBCDIC
1030 while (((ch >= 'A') && (ch <= 'Z')) ||
1031 ((ch >= '0') && (ch <= '9')) ||
1032 ((ch >= 'a') && (ch <= 'z')) ||
1033 (ch == '-') || (ch == '.') || (ch == '='))
1034 #else
1035 while (isalnum((unsigned char)ch) || (ch == '-') || (ch == '.')
1036 || (ch == '='))
1037 #endif
1038 {
1039 ch = *(++l);
1040 buflen++;
1041 }
1042
1043 if (buflen == 0) {
1044 /*
1045 * We hit something we cannot deal with,
1046 * it is no command or separator nor
1047 * alphanumeric, so we call this an error.
1048 */
1049 SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR, SSL_R_INVALID_COMMAND);
1050 retval = found = 0;
1051 l++;
1052 break;
1053 }
1054
1055 if (rule == CIPHER_SPECIAL) {
1056 found = 0; /* unused -- avoid compiler warning */
1057 break; /* special treatment */
1058 }
1059
1060 /* check for multi-part specification */
1061 if (ch == '+') {
1062 multi = 1;
1063 l++;
1064 } else {
1065 multi = 0;
1066 }
1067
1068 /*
1069 * Now search for the cipher alias in the ca_list. Be careful
1070 * with the strncmp, because the "buflen" limitation
1071 * will make the rule "ADH:SOME" and the cipher
1072 * "ADH-MY-CIPHER" look like a match for buflen=3.
1073 * So additionally check whether the cipher name found
1074 * has the correct length. We can save a strlen() call:
1075 * just checking for the '\0' at the right place is
1076 * sufficient, we have to strncmp() anyway. (We cannot
1077 * use strcmp(), because buf is not '\0' terminated.)
1078 */
1079 j = found = 0;
1080 cipher_id = 0;
1081 while (ca_list[j]) {
1082 if (strncmp(buf, ca_list[j]->name, buflen) == 0
1083 && (ca_list[j]->name[buflen] == '\0')) {
1084 found = 1;
1085 break;
1086 } else
1087 j++;
1088 }
1089
1090 if (!found)
1091 break; /* ignore this entry */
1092
1093 if (ca_list[j]->algorithm_mkey) {
1094 if (alg_mkey) {
1095 alg_mkey &= ca_list[j]->algorithm_mkey;
1096 if (!alg_mkey) {
1097 found = 0;
1098 break;
1099 }
1100 } else {
1101 alg_mkey = ca_list[j]->algorithm_mkey;
1102 }
1103 }
1104
1105 if (ca_list[j]->algorithm_auth) {
1106 if (alg_auth) {
1107 alg_auth &= ca_list[j]->algorithm_auth;
1108 if (!alg_auth) {
1109 found = 0;
1110 break;
1111 }
1112 } else {
1113 alg_auth = ca_list[j]->algorithm_auth;
1114 }
1115 }
1116
1117 if (ca_list[j]->algorithm_enc) {
1118 if (alg_enc) {
1119 alg_enc &= ca_list[j]->algorithm_enc;
1120 if (!alg_enc) {
1121 found = 0;
1122 break;
1123 }
1124 } else {
1125 alg_enc = ca_list[j]->algorithm_enc;
1126 }
1127 }
1128
1129 if (ca_list[j]->algorithm_mac) {
1130 if (alg_mac) {
1131 alg_mac &= ca_list[j]->algorithm_mac;
1132 if (!alg_mac) {
1133 found = 0;
1134 break;
1135 }
1136 } else {
1137 alg_mac = ca_list[j]->algorithm_mac;
1138 }
1139 }
1140
1141 if (ca_list[j]->algo_strength & SSL_STRONG_MASK) {
1142 if (algo_strength & SSL_STRONG_MASK) {
1143 algo_strength &=
1144 (ca_list[j]->algo_strength & SSL_STRONG_MASK) |
1145 ~SSL_STRONG_MASK;
1146 if (!(algo_strength & SSL_STRONG_MASK)) {
1147 found = 0;
1148 break;
1149 }
1150 } else {
1151 algo_strength = ca_list[j]->algo_strength & SSL_STRONG_MASK;
1152 }
1153 }
1154
1155 if (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) {
1156 if (algo_strength & SSL_DEFAULT_MASK) {
1157 algo_strength &=
1158 (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) |
1159 ~SSL_DEFAULT_MASK;
1160 if (!(algo_strength & SSL_DEFAULT_MASK)) {
1161 found = 0;
1162 break;
1163 }
1164 } else {
1165 algo_strength |=
1166 ca_list[j]->algo_strength & SSL_DEFAULT_MASK;
1167 }
1168 }
1169
1170 if (ca_list[j]->valid) {
1171 /*
1172 * explicit ciphersuite found; its protocol version does not
1173 * become part of the search pattern!
1174 */
1175
1176 cipher_id = ca_list[j]->id;
1177 } else {
1178 /*
1179 * not an explicit ciphersuite; only in this case, the
1180 * protocol version is considered part of the search pattern
1181 */
1182
1183 if (ca_list[j]->min_tls) {
1184 if (min_tls != 0 && min_tls != ca_list[j]->min_tls) {
1185 found = 0;
1186 break;
1187 } else {
1188 min_tls = ca_list[j]->min_tls;
1189 }
1190 }
1191 }
1192
1193 if (!multi)
1194 break;
1195 }
1196
1197 /*
1198 * Ok, we have the rule, now apply it
1199 */
1200 if (rule == CIPHER_SPECIAL) { /* special command */
1201 ok = 0;
1202 if ((buflen == 8) && strncmp(buf, "STRENGTH", 8) == 0) {
1203 ok = ssl_cipher_strength_sort(head_p, tail_p);
1204 } else if (buflen == 10 && strncmp(buf, "SECLEVEL=", 9) == 0) {
1205 int level = buf[9] - '0';
1206 if (level < 0 || level > 5) {
1207 SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR,
1208 SSL_R_INVALID_COMMAND);
1209 } else {
1210 c->sec_level = level;
1211 ok = 1;
1212 }
1213 } else {
1214 SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR, SSL_R_INVALID_COMMAND);
1215 }
1216 if (ok == 0)
1217 retval = 0;
1218 /*
1219 * We do not support any "multi" options
1220 * together with "@", so throw away the
1221 * rest of the command, if any left, until
1222 * end or ':' is found.
1223 */
1224 while ((*l != '\0') && !ITEM_SEP(*l))
1225 l++;
1226 } else if (found) {
1227 ssl_cipher_apply_rule(cipher_id,
1228 alg_mkey, alg_auth, alg_enc, alg_mac,
1229 min_tls, algo_strength, rule, -1, head_p,
1230 tail_p);
1231 } else {
1232 while ((*l != '\0') && !ITEM_SEP(*l))
1233 l++;
1234 }
1235 if (*l == '\0')
1236 break; /* done */
1237 }
1238
1239 return retval;
1240 }
1241
1242 #ifndef OPENSSL_NO_EC
1243 static int check_suiteb_cipher_list(const SSL_METHOD *meth, CERT *c,
1244 const char **prule_str)
1245 {
1246 unsigned int suiteb_flags = 0, suiteb_comb2 = 0;
1247 if (strncmp(*prule_str, "SUITEB128ONLY", 13) == 0) {
1248 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS_ONLY;
1249 } else if (strncmp(*prule_str, "SUITEB128C2", 11) == 0) {
1250 suiteb_comb2 = 1;
1251 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1252 } else if (strncmp(*prule_str, "SUITEB128", 9) == 0) {
1253 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1254 } else if (strncmp(*prule_str, "SUITEB192", 9) == 0) {
1255 suiteb_flags = SSL_CERT_FLAG_SUITEB_192_LOS;
1256 }
1257
1258 if (suiteb_flags) {
1259 c->cert_flags &= ~SSL_CERT_FLAG_SUITEB_128_LOS;
1260 c->cert_flags |= suiteb_flags;
1261 } else {
1262 suiteb_flags = c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS;
1263 }
1264
1265 if (!suiteb_flags)
1266 return 1;
1267 /* Check version: if TLS 1.2 ciphers allowed we can use Suite B */
1268
1269 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)) {
1270 SSLerr(SSL_F_CHECK_SUITEB_CIPHER_LIST,
1271 SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE);
1272 return 0;
1273 }
1274 # ifndef OPENSSL_NO_EC
1275 switch (suiteb_flags) {
1276 case SSL_CERT_FLAG_SUITEB_128_LOS:
1277 if (suiteb_comb2)
1278 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1279 else
1280 *prule_str =
1281 "ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384";
1282 break;
1283 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1284 *prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256";
1285 break;
1286 case SSL_CERT_FLAG_SUITEB_192_LOS:
1287 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1288 break;
1289 }
1290 return 1;
1291 # else
1292 SSLerr(SSL_F_CHECK_SUITEB_CIPHER_LIST, SSL_R_ECDH_REQUIRED_FOR_SUITEB_MODE);
1293 return 0;
1294 # endif
1295 }
1296 #endif
1297
1298 static int ciphersuite_cb(const char *elem, int len, void *arg)
1299 {
1300 STACK_OF(SSL_CIPHER) *ciphersuites = (STACK_OF(SSL_CIPHER) *)arg;
1301 const SSL_CIPHER *cipher;
1302 /* Arbitrary sized temp buffer for the cipher name. Should be big enough */
1303 char name[80];
1304
1305 if (len > (int)(sizeof(name) - 1)) {
1306 SSLerr(SSL_F_CIPHERSUITE_CB, SSL_R_NO_CIPHER_MATCH);
1307 return 0;
1308 }
1309
1310 memcpy(name, elem, len);
1311 name[len] = '\0';
1312
1313 cipher = ssl3_get_cipher_by_std_name(name);
1314 if (cipher == NULL) {
1315 SSLerr(SSL_F_CIPHERSUITE_CB, SSL_R_NO_CIPHER_MATCH);
1316 return 0;
1317 }
1318
1319 if (!sk_SSL_CIPHER_push(ciphersuites, cipher)) {
1320 SSLerr(SSL_F_CIPHERSUITE_CB, ERR_R_INTERNAL_ERROR);
1321 return 0;
1322 }
1323
1324 return 1;
1325 }
1326
1327 static __owur int set_ciphersuites(STACK_OF(SSL_CIPHER) **currciphers, const char *str)
1328 {
1329 STACK_OF(SSL_CIPHER) *newciphers = sk_SSL_CIPHER_new_null();
1330
1331 if (newciphers == NULL)
1332 return 0;
1333
1334 /* Parse the list. We explicitly allow an empty list */
1335 if (*str != '\0'
1336 && !CONF_parse_list(str, ':', 1, ciphersuite_cb, newciphers)) {
1337 sk_SSL_CIPHER_free(newciphers);
1338 return 0;
1339 }
1340 sk_SSL_CIPHER_free(*currciphers);
1341 *currciphers = newciphers;
1342
1343 return 1;
1344 }
1345
1346 static int update_cipher_list_by_id(STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1347 STACK_OF(SSL_CIPHER) *cipherstack)
1348 {
1349 STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
1350
1351 if (tmp_cipher_list == NULL) {
1352 return 0;
1353 }
1354
1355 sk_SSL_CIPHER_free(*cipher_list_by_id);
1356 *cipher_list_by_id = tmp_cipher_list;
1357
1358 (void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id, ssl_cipher_ptr_id_cmp);
1359 sk_SSL_CIPHER_sort(*cipher_list_by_id);
1360
1361 return 1;
1362 }
1363
1364 static int update_cipher_list(STACK_OF(SSL_CIPHER) **cipher_list,
1365 STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1366 STACK_OF(SSL_CIPHER) *tls13_ciphersuites)
1367 {
1368 int i;
1369 STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(*cipher_list);
1370
1371 if (tmp_cipher_list == NULL)
1372 return 0;
1373
1374 /*
1375 * Delete any existing TLSv1.3 ciphersuites. These are always first in the
1376 * list.
1377 */
1378 while (sk_SSL_CIPHER_num(tmp_cipher_list) > 0
1379 && sk_SSL_CIPHER_value(tmp_cipher_list, 0)->min_tls
1380 == TLS1_3_VERSION)
1381 sk_SSL_CIPHER_delete(tmp_cipher_list, 0);
1382
1383 /* Insert the new TLSv1.3 ciphersuites */
1384 for (i = 0; i < sk_SSL_CIPHER_num(tls13_ciphersuites); i++)
1385 sk_SSL_CIPHER_insert(tmp_cipher_list,
1386 sk_SSL_CIPHER_value(tls13_ciphersuites, i), i);
1387
1388 if (!update_cipher_list_by_id(cipher_list_by_id, tmp_cipher_list))
1389 return 0;
1390
1391 sk_SSL_CIPHER_free(*cipher_list);
1392 *cipher_list = tmp_cipher_list;
1393
1394 return 1;
1395 }
1396
1397 int SSL_CTX_set_ciphersuites(SSL_CTX *ctx, const char *str)
1398 {
1399 int ret = set_ciphersuites(&(ctx->tls13_ciphersuites), str);
1400
1401 if (ret && ctx->cipher_list != NULL)
1402 return update_cipher_list(&ctx->cipher_list, &ctx->cipher_list_by_id,
1403 ctx->tls13_ciphersuites);
1404
1405 return ret;
1406 }
1407
1408 int SSL_set_ciphersuites(SSL *s, const char *str)
1409 {
1410 STACK_OF(SSL_CIPHER) *cipher_list;
1411 int ret = set_ciphersuites(&(s->tls13_ciphersuites), str);
1412
1413 if (s->cipher_list == NULL) {
1414 if ((cipher_list = SSL_get_ciphers(s)) != NULL)
1415 s->cipher_list = sk_SSL_CIPHER_dup(cipher_list);
1416 }
1417 if (ret && s->cipher_list != NULL)
1418 return update_cipher_list(&s->cipher_list, &s->cipher_list_by_id,
1419 s->tls13_ciphersuites);
1420
1421 return ret;
1422 }
1423
1424 STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(const SSL_METHOD *ssl_method,
1425 STACK_OF(SSL_CIPHER) *tls13_ciphersuites,
1426 STACK_OF(SSL_CIPHER) **cipher_list,
1427 STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1428 const char *rule_str,
1429 CERT *c)
1430 {
1431 int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases, i;
1432 uint32_t disabled_mkey, disabled_auth, disabled_enc, disabled_mac;
1433 STACK_OF(SSL_CIPHER) *cipherstack;
1434 const char *rule_p;
1435 CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
1436 const SSL_CIPHER **ca_list = NULL;
1437
1438 /*
1439 * Return with error if nothing to do.
1440 */
1441 if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
1442 return NULL;
1443 #ifndef OPENSSL_NO_EC
1444 if (!check_suiteb_cipher_list(ssl_method, c, &rule_str))
1445 return NULL;
1446 #endif
1447
1448 /*
1449 * To reduce the work to do we only want to process the compiled
1450 * in algorithms, so we first get the mask of disabled ciphers.
1451 */
1452
1453 disabled_mkey = disabled_mkey_mask;
1454 disabled_auth = disabled_auth_mask;
1455 disabled_enc = disabled_enc_mask;
1456 disabled_mac = disabled_mac_mask;
1457
1458 /*
1459 * Now we have to collect the available ciphers from the compiled
1460 * in ciphers. We cannot get more than the number compiled in, so
1461 * it is used for allocation.
1462 */
1463 num_of_ciphers = ssl_method->num_ciphers();
1464
1465 co_list = OPENSSL_malloc(sizeof(*co_list) * num_of_ciphers);
1466 if (co_list == NULL) {
1467 SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
1468 return NULL; /* Failure */
1469 }
1470
1471 ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers,
1472 disabled_mkey, disabled_auth, disabled_enc,
1473 disabled_mac, co_list, &head, &tail);
1474
1475 /* Now arrange all ciphers by preference. */
1476
1477 /*
1478 * Everything else being equal, prefer ephemeral ECDH over other key
1479 * exchange mechanisms.
1480 * For consistency, prefer ECDSA over RSA (though this only matters if the
1481 * server has both certificates, and is using the DEFAULT, or a client
1482 * preference).
1483 */
1484 ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, 0, 0, 0, 0, CIPHER_ADD,
1485 -1, &head, &tail);
1486 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head,
1487 &tail);
1488 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head,
1489 &tail);
1490
1491 /* Within each strength group, we prefer GCM over CHACHA... */
1492 ssl_cipher_apply_rule(0, 0, 0, SSL_AESGCM, 0, 0, 0, CIPHER_ADD, -1,
1493 &head, &tail);
1494 ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20, 0, 0, 0, CIPHER_ADD, -1,
1495 &head, &tail);
1496
1497 /*
1498 * ...and generally, our preferred cipher is AES.
1499 * Note that AEADs will be bumped to take preference after sorting by
1500 * strength.
1501 */
1502 ssl_cipher_apply_rule(0, 0, 0, SSL_AES ^ SSL_AESGCM, 0, 0, 0, CIPHER_ADD,
1503 -1, &head, &tail);
1504
1505 /* Temporarily enable everything else for sorting */
1506 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
1507
1508 /* Low priority for MD5 */
1509 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head,
1510 &tail);
1511
1512 /*
1513 * Move anonymous ciphers to the end. Usually, these will remain
1514 * disabled. (For applications that allow them, they aren't too bad, but
1515 * we prefer authenticated ciphers.)
1516 */
1517 ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1518 &tail);
1519
1520 ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1521 &tail);
1522 ssl_cipher_apply_rule(0, SSL_kPSK, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1523 &tail);
1524
1525 /* RC4 is sort-of broken -- move to the end */
1526 ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head,
1527 &tail);
1528
1529 /*
1530 * Now sort by symmetric encryption strength. The above ordering remains
1531 * in force within each class
1532 */
1533 if (!ssl_cipher_strength_sort(&head, &tail)) {
1534 OPENSSL_free(co_list);
1535 return NULL;
1536 }
1537
1538 /*
1539 * Partially overrule strength sort to prefer TLS 1.2 ciphers/PRFs.
1540 * TODO(openssl-team): is there an easier way to accomplish all this?
1541 */
1542 ssl_cipher_apply_rule(0, 0, 0, 0, 0, TLS1_2_VERSION, 0, CIPHER_BUMP, -1,
1543 &head, &tail);
1544
1545 /*
1546 * Irrespective of strength, enforce the following order:
1547 * (EC)DHE + AEAD > (EC)DHE > rest of AEAD > rest.
1548 * Within each group, ciphers remain sorted by strength and previous
1549 * preference, i.e.,
1550 * 1) ECDHE > DHE
1551 * 2) GCM > CHACHA
1552 * 3) AES > rest
1553 * 4) TLS 1.2 > legacy
1554 *
1555 * Because we now bump ciphers to the top of the list, we proceed in
1556 * reverse order of preference.
1557 */
1558 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_AEAD, 0, 0, CIPHER_BUMP, -1,
1559 &head, &tail);
1560 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, 0, 0, 0,
1561 CIPHER_BUMP, -1, &head, &tail);
1562 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, SSL_AEAD, 0, 0,
1563 CIPHER_BUMP, -1, &head, &tail);
1564
1565 /* Now disable everything (maintaining the ordering!) */
1566 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
1567
1568 /*
1569 * We also need cipher aliases for selecting based on the rule_str.
1570 * There might be two types of entries in the rule_str: 1) names
1571 * of ciphers themselves 2) aliases for groups of ciphers.
1572 * For 1) we need the available ciphers and for 2) the cipher
1573 * groups of cipher_aliases added together in one list (otherwise
1574 * we would be happy with just the cipher_aliases table).
1575 */
1576 num_of_group_aliases = OSSL_NELEM(cipher_aliases);
1577 num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
1578 ca_list = OPENSSL_malloc(sizeof(*ca_list) * num_of_alias_max);
1579 if (ca_list == NULL) {
1580 OPENSSL_free(co_list);
1581 SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
1582 return NULL; /* Failure */
1583 }
1584 ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
1585 disabled_mkey, disabled_auth, disabled_enc,
1586 disabled_mac, head);
1587
1588 /*
1589 * If the rule_string begins with DEFAULT, apply the default rule
1590 * before using the (possibly available) additional rules.
1591 */
1592 ok = 1;
1593 rule_p = rule_str;
1594 if (strncmp(rule_str, "DEFAULT", 7) == 0) {
1595 ok = ssl_cipher_process_rulestr(OSSL_default_cipher_list(),
1596 &head, &tail, ca_list, c);
1597 rule_p += 7;
1598 if (*rule_p == ':')
1599 rule_p++;
1600 }
1601
1602 if (ok && (rule_p[0] != '\0'))
1603 ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list, c);
1604
1605 OPENSSL_free(ca_list); /* Not needed anymore */
1606
1607 if (!ok) { /* Rule processing failure */
1608 OPENSSL_free(co_list);
1609 return NULL;
1610 }
1611
1612 /*
1613 * Allocate new "cipherstack" for the result, return with error
1614 * if we cannot get one.
1615 */
1616 if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) {
1617 OPENSSL_free(co_list);
1618 return NULL;
1619 }
1620
1621 /* Add TLSv1.3 ciphers first - we always prefer those if possible */
1622 for (i = 0; i < sk_SSL_CIPHER_num(tls13_ciphersuites); i++) {
1623 const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1624
1625 /* Don't include any TLSv1.3 ciphers that are disabled */
1626 if ((sslc->algorithm_enc & disabled_enc) != 0
1627 || (ssl_cipher_table_mac[sslc->algorithm2
1628 & SSL_HANDSHAKE_MAC_MASK].mask
1629 & disabled_mac_mask) != 0)
1630 continue;
1631
1632 if (!sk_SSL_CIPHER_push(cipherstack, sslc)) {
1633 sk_SSL_CIPHER_free(cipherstack);
1634 return NULL;
1635 }
1636 }
1637
1638 OSSL_TRACE_BEGIN(TLS_CIPHER) {
1639 BIO_printf(trc_out, "cipher selection:\n");
1640 }
1641 /*
1642 * The cipher selection for the list is done. The ciphers are added
1643 * to the resulting precedence to the STACK_OF(SSL_CIPHER).
1644 */
1645 for (curr = head; curr != NULL; curr = curr->next) {
1646 if (curr->active) {
1647 if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) {
1648 OPENSSL_free(co_list);
1649 sk_SSL_CIPHER_free(cipherstack);
1650 OSSL_TRACE_CANCEL(TLS_CIPHER);
1651 return NULL;
1652 }
1653 if (trc_out != NULL)
1654 BIO_printf(trc_out, "<%s>\n", curr->cipher->name);
1655 }
1656 }
1657 OPENSSL_free(co_list); /* Not needed any longer */
1658 OSSL_TRACE_END(TLS_CIPHER);
1659
1660 if (!update_cipher_list_by_id(cipher_list_by_id, cipherstack)) {
1661 sk_SSL_CIPHER_free(cipherstack);
1662 return NULL;
1663 }
1664 sk_SSL_CIPHER_free(*cipher_list);
1665 *cipher_list = cipherstack;
1666
1667 return cipherstack;
1668 }
1669
1670 char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
1671 {
1672 const char *ver;
1673 const char *kx, *au, *enc, *mac;
1674 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
1675 static const char *format = "%-30s %-7s Kx=%-8s Au=%-5s Enc=%-9s Mac=%-4s\n";
1676
1677 if (buf == NULL) {
1678 len = 128;
1679 if ((buf = OPENSSL_malloc(len)) == NULL) {
1680 SSLerr(SSL_F_SSL_CIPHER_DESCRIPTION, ERR_R_MALLOC_FAILURE);
1681 return NULL;
1682 }
1683 } else if (len < 128) {
1684 return NULL;
1685 }
1686
1687 alg_mkey = cipher->algorithm_mkey;
1688 alg_auth = cipher->algorithm_auth;
1689 alg_enc = cipher->algorithm_enc;
1690 alg_mac = cipher->algorithm_mac;
1691
1692 ver = ssl_protocol_to_string(cipher->min_tls);
1693
1694 switch (alg_mkey) {
1695 case SSL_kRSA:
1696 kx = "RSA";
1697 break;
1698 case SSL_kDHE:
1699 kx = "DH";
1700 break;
1701 case SSL_kECDHE:
1702 kx = "ECDH";
1703 break;
1704 case SSL_kPSK:
1705 kx = "PSK";
1706 break;
1707 case SSL_kRSAPSK:
1708 kx = "RSAPSK";
1709 break;
1710 case SSL_kECDHEPSK:
1711 kx = "ECDHEPSK";
1712 break;
1713 case SSL_kDHEPSK:
1714 kx = "DHEPSK";
1715 break;
1716 case SSL_kSRP:
1717 kx = "SRP";
1718 break;
1719 case SSL_kGOST:
1720 kx = "GOST";
1721 break;
1722 case SSL_kGOST18:
1723 kx = "GOST18";
1724 break;
1725 case SSL_kANY:
1726 kx = "any";
1727 break;
1728 default:
1729 kx = "unknown";
1730 }
1731
1732 switch (alg_auth) {
1733 case SSL_aRSA:
1734 au = "RSA";
1735 break;
1736 case SSL_aDSS:
1737 au = "DSS";
1738 break;
1739 case SSL_aNULL:
1740 au = "None";
1741 break;
1742 case SSL_aECDSA:
1743 au = "ECDSA";
1744 break;
1745 case SSL_aPSK:
1746 au = "PSK";
1747 break;
1748 case SSL_aSRP:
1749 au = "SRP";
1750 break;
1751 case SSL_aGOST01:
1752 au = "GOST01";
1753 break;
1754 /* New GOST ciphersuites have both SSL_aGOST12 and SSL_aGOST01 bits */
1755 case (SSL_aGOST12 | SSL_aGOST01):
1756 au = "GOST12";
1757 break;
1758 case SSL_aANY:
1759 au = "any";
1760 break;
1761 default:
1762 au = "unknown";
1763 break;
1764 }
1765
1766 switch (alg_enc) {
1767 case SSL_DES:
1768 enc = "DES(56)";
1769 break;
1770 case SSL_3DES:
1771 enc = "3DES(168)";
1772 break;
1773 case SSL_RC4:
1774 enc = "RC4(128)";
1775 break;
1776 case SSL_RC2:
1777 enc = "RC2(128)";
1778 break;
1779 case SSL_IDEA:
1780 enc = "IDEA(128)";
1781 break;
1782 case SSL_eNULL:
1783 enc = "None";
1784 break;
1785 case SSL_AES128:
1786 enc = "AES(128)";
1787 break;
1788 case SSL_AES256:
1789 enc = "AES(256)";
1790 break;
1791 case SSL_AES128GCM:
1792 enc = "AESGCM(128)";
1793 break;
1794 case SSL_AES256GCM:
1795 enc = "AESGCM(256)";
1796 break;
1797 case SSL_AES128CCM:
1798 enc = "AESCCM(128)";
1799 break;
1800 case SSL_AES256CCM:
1801 enc = "AESCCM(256)";
1802 break;
1803 case SSL_AES128CCM8:
1804 enc = "AESCCM8(128)";
1805 break;
1806 case SSL_AES256CCM8:
1807 enc = "AESCCM8(256)";
1808 break;
1809 case SSL_CAMELLIA128:
1810 enc = "Camellia(128)";
1811 break;
1812 case SSL_CAMELLIA256:
1813 enc = "Camellia(256)";
1814 break;
1815 case SSL_ARIA128GCM:
1816 enc = "ARIAGCM(128)";
1817 break;
1818 case SSL_ARIA256GCM:
1819 enc = "ARIAGCM(256)";
1820 break;
1821 case SSL_SEED:
1822 enc = "SEED(128)";
1823 break;
1824 case SSL_eGOST2814789CNT:
1825 case SSL_eGOST2814789CNT12:
1826 enc = "GOST89(256)";
1827 break;
1828 case SSL_MAGMA:
1829 enc = "MAGMA";
1830 break;
1831 case SSL_KUZNYECHIK:
1832 enc = "KUZNYECHIK";
1833 break;
1834 case SSL_CHACHA20POLY1305:
1835 enc = "CHACHA20/POLY1305(256)";
1836 break;
1837 default:
1838 enc = "unknown";
1839 break;
1840 }
1841
1842 switch (alg_mac) {
1843 case SSL_MD5:
1844 mac = "MD5";
1845 break;
1846 case SSL_SHA1:
1847 mac = "SHA1";
1848 break;
1849 case SSL_SHA256:
1850 mac = "SHA256";
1851 break;
1852 case SSL_SHA384:
1853 mac = "SHA384";
1854 break;
1855 case SSL_AEAD:
1856 mac = "AEAD";
1857 break;
1858 case SSL_GOST89MAC:
1859 case SSL_GOST89MAC12:
1860 mac = "GOST89";
1861 break;
1862 case SSL_GOST94:
1863 mac = "GOST94";
1864 break;
1865 case SSL_GOST12_256:
1866 case SSL_GOST12_512:
1867 mac = "GOST2012";
1868 break;
1869 default:
1870 mac = "unknown";
1871 break;
1872 }
1873
1874 BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac);
1875
1876 return buf;
1877 }
1878
1879 const char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
1880 {
1881 if (c == NULL)
1882 return "(NONE)";
1883
1884 /*
1885 * Backwards-compatibility crutch. In almost all contexts we report TLS
1886 * 1.0 as "TLSv1", but for ciphers we report "TLSv1.0".
1887 */
1888 if (c->min_tls == TLS1_VERSION)
1889 return "TLSv1.0";
1890 return ssl_protocol_to_string(c->min_tls);
1891 }
1892
1893 /* return the actual cipher being used */
1894 const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
1895 {
1896 if (c != NULL)
1897 return c->name;
1898 return "(NONE)";
1899 }
1900
1901 /* return the actual cipher being used in RFC standard name */
1902 const char *SSL_CIPHER_standard_name(const SSL_CIPHER *c)
1903 {
1904 if (c != NULL)
1905 return c->stdname;
1906 return "(NONE)";
1907 }
1908
1909 /* return the OpenSSL name based on given RFC standard name */
1910 const char *OPENSSL_cipher_name(const char *stdname)
1911 {
1912 const SSL_CIPHER *c;
1913
1914 if (stdname == NULL)
1915 return "(NONE)";
1916 c = ssl3_get_cipher_by_std_name(stdname);
1917 return SSL_CIPHER_get_name(c);
1918 }
1919
1920 /* number of bits for symmetric cipher */
1921 int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
1922 {
1923 int ret = 0;
1924
1925 if (c != NULL) {
1926 if (alg_bits != NULL)
1927 *alg_bits = (int)c->alg_bits;
1928 ret = (int)c->strength_bits;
1929 }
1930 return ret;
1931 }
1932
1933 uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *c)
1934 {
1935 return c->id;
1936 }
1937
1938 uint16_t SSL_CIPHER_get_protocol_id(const SSL_CIPHER *c)
1939 {
1940 return c->id & 0xFFFF;
1941 }
1942
1943 SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
1944 {
1945 SSL_COMP *ctmp;
1946 int i, nn;
1947
1948 if ((n == 0) || (sk == NULL))
1949 return NULL;
1950 nn = sk_SSL_COMP_num(sk);
1951 for (i = 0; i < nn; i++) {
1952 ctmp = sk_SSL_COMP_value(sk, i);
1953 if (ctmp->id == n)
1954 return ctmp;
1955 }
1956 return NULL;
1957 }
1958
1959 #ifdef OPENSSL_NO_COMP
1960 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1961 {
1962 return NULL;
1963 }
1964
1965 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1966 *meths)
1967 {
1968 return meths;
1969 }
1970
1971 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
1972 {
1973 return 1;
1974 }
1975
1976 #else
1977 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1978 {
1979 load_builtin_compressions();
1980 return ssl_comp_methods;
1981 }
1982
1983 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1984 *meths)
1985 {
1986 STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
1987 ssl_comp_methods = meths;
1988 return old_meths;
1989 }
1990
1991 static void cmeth_free(SSL_COMP *cm)
1992 {
1993 OPENSSL_free(cm);
1994 }
1995
1996 void ssl_comp_free_compression_methods_int(void)
1997 {
1998 STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
1999 ssl_comp_methods = NULL;
2000 sk_SSL_COMP_pop_free(old_meths, cmeth_free);
2001 }
2002
2003 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
2004 {
2005 SSL_COMP *comp;
2006
2007 if (cm == NULL || COMP_get_type(cm) == NID_undef)
2008 return 1;
2009
2010 /*-
2011 * According to draft-ietf-tls-compression-04.txt, the
2012 * compression number ranges should be the following:
2013 *
2014 * 0 to 63: methods defined by the IETF
2015 * 64 to 192: external party methods assigned by IANA
2016 * 193 to 255: reserved for private use
2017 */
2018 if (id < 193 || id > 255) {
2019 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,
2020 SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE);
2021 return 1;
2022 }
2023
2024 comp = OPENSSL_malloc(sizeof(*comp));
2025 if (comp == NULL) {
2026 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD, ERR_R_MALLOC_FAILURE);
2027 return 1;
2028 }
2029
2030 comp->id = id;
2031 comp->method = cm;
2032 load_builtin_compressions();
2033 if (ssl_comp_methods && sk_SSL_COMP_find(ssl_comp_methods, comp) >= 0) {
2034 OPENSSL_free(comp);
2035 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,
2036 SSL_R_DUPLICATE_COMPRESSION_ID);
2037 return 1;
2038 }
2039 if (ssl_comp_methods == NULL || !sk_SSL_COMP_push(ssl_comp_methods, comp)) {
2040 OPENSSL_free(comp);
2041 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD, ERR_R_MALLOC_FAILURE);
2042 return 1;
2043 }
2044 return 0;
2045 }
2046 #endif
2047
2048 const char *SSL_COMP_get_name(const COMP_METHOD *comp)
2049 {
2050 #ifndef OPENSSL_NO_COMP
2051 return comp ? COMP_get_name(comp) : NULL;
2052 #else
2053 return NULL;
2054 #endif
2055 }
2056
2057 const char *SSL_COMP_get0_name(const SSL_COMP *comp)
2058 {
2059 #ifndef OPENSSL_NO_COMP
2060 return comp->name;
2061 #else
2062 return NULL;
2063 #endif
2064 }
2065
2066 int SSL_COMP_get_id(const SSL_COMP *comp)
2067 {
2068 #ifndef OPENSSL_NO_COMP
2069 return comp->id;
2070 #else
2071 return -1;
2072 #endif
2073 }
2074
2075 const SSL_CIPHER *ssl_get_cipher_by_char(SSL *ssl, const unsigned char *ptr,
2076 int all)
2077 {
2078 const SSL_CIPHER *c = ssl->method->get_cipher_by_char(ptr);
2079
2080 if (c == NULL || (!all && c->valid == 0))
2081 return NULL;
2082 return c;
2083 }
2084
2085 const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr)
2086 {
2087 return ssl->method->get_cipher_by_char(ptr);
2088 }
2089
2090 int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c)
2091 {
2092 int i;
2093 if (c == NULL)
2094 return NID_undef;
2095 i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc);
2096 if (i == -1)
2097 return NID_undef;
2098 return ssl_cipher_table_cipher[i].nid;
2099 }
2100
2101 int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c)
2102 {
2103 int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
2104
2105 if (i == -1)
2106 return NID_undef;
2107 return ssl_cipher_table_mac[i].nid;
2108 }
2109
2110 int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c)
2111 {
2112 int i = ssl_cipher_info_lookup(ssl_cipher_table_kx, c->algorithm_mkey);
2113
2114 if (i == -1)
2115 return NID_undef;
2116 return ssl_cipher_table_kx[i].nid;
2117 }
2118
2119 int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c)
2120 {
2121 int i = ssl_cipher_info_lookup(ssl_cipher_table_auth, c->algorithm_auth);
2122
2123 if (i == -1)
2124 return NID_undef;
2125 return ssl_cipher_table_auth[i].nid;
2126 }
2127
2128 const EVP_MD *SSL_CIPHER_get_handshake_digest(const SSL_CIPHER *c)
2129 {
2130 int idx = c->algorithm2 & SSL_HANDSHAKE_MAC_MASK;
2131
2132 if (idx < 0 || idx >= SSL_MD_NUM_IDX)
2133 return NULL;
2134 return EVP_get_digestbynid(ssl_cipher_table_mac[idx].nid);
2135 }
2136
2137 int SSL_CIPHER_is_aead(const SSL_CIPHER *c)
2138 {
2139 return (c->algorithm_mac & SSL_AEAD) ? 1 : 0;
2140 }
2141
2142 int ssl_cipher_get_overhead(const SSL_CIPHER *c, size_t *mac_overhead,
2143 size_t *int_overhead, size_t *blocksize,
2144 size_t *ext_overhead)
2145 {
2146 size_t mac = 0, in = 0, blk = 0, out = 0;
2147
2148 /* Some hard-coded numbers for the CCM/Poly1305 MAC overhead
2149 * because there are no handy #defines for those. */
2150 if (c->algorithm_enc & (SSL_AESGCM | SSL_ARIAGCM)) {
2151 out = EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
2152 } else if (c->algorithm_enc & (SSL_AES128CCM | SSL_AES256CCM)) {
2153 out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 16;
2154 } else if (c->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8)) {
2155 out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 8;
2156 } else if (c->algorithm_enc & SSL_CHACHA20POLY1305) {
2157 out = 16;
2158 } else if (c->algorithm_mac & SSL_AEAD) {
2159 /* We're supposed to have handled all the AEAD modes above */
2160 return 0;
2161 } else {
2162 /* Non-AEAD modes. Calculate MAC/cipher overhead separately */
2163 int digest_nid = SSL_CIPHER_get_digest_nid(c);
2164 const EVP_MD *e_md = EVP_get_digestbynid(digest_nid);
2165
2166 if (e_md == NULL)
2167 return 0;
2168
2169 mac = EVP_MD_size(e_md);
2170 if (c->algorithm_enc != SSL_eNULL) {
2171 int cipher_nid = SSL_CIPHER_get_cipher_nid(c);
2172 const EVP_CIPHER *e_ciph = EVP_get_cipherbynid(cipher_nid);
2173
2174 /* If it wasn't AEAD or SSL_eNULL, we expect it to be a
2175 known CBC cipher. */
2176 if (e_ciph == NULL ||
2177 EVP_CIPHER_mode(e_ciph) != EVP_CIPH_CBC_MODE)
2178 return 0;
2179
2180 in = 1; /* padding length byte */
2181 out = EVP_CIPHER_iv_length(e_ciph);
2182 blk = EVP_CIPHER_block_size(e_ciph);
2183 }
2184 }
2185
2186 *mac_overhead = mac;
2187 *int_overhead = in;
2188 *blocksize = blk;
2189 *ext_overhead = out;
2190
2191 return 1;
2192 }
2193
2194 int ssl_cert_is_disabled(size_t idx)
2195 {
2196 const SSL_CERT_LOOKUP *cl = ssl_cert_lookup_by_idx(idx);
2197
2198 if (cl == NULL || (cl->amask & disabled_auth_mask) != 0)
2199 return 1;
2200 return 0;
2201 }
2202
2203 /*
2204 * Default list of TLSv1.2 (and earlier) ciphers
2205 * SSL_DEFAULT_CIPHER_LIST deprecated in 3.0.0
2206 * Update both macro and function simultaneously
2207 */
2208 const char *OSSL_default_cipher_list(void)
2209 {
2210 return "ALL:!COMPLEMENTOFDEFAULT:!eNULL";
2211 }
2212
2213 /*
2214 * Default list of TLSv1.3 (and later) ciphers
2215 * TLS_DEFAULT_CIPHERSUITES deprecated in 3.0.0
2216 * Update both macro and function simultaneously
2217 */
2218 const char *OSSL_default_ciphersuites(void)
2219 {
2220 return "TLS_AES_256_GCM_SHA384:"
2221 #if !defined(OPENSSL_NO_CHACHA) && !defined(OPENSSL_NO_POLY1305)
2222 "TLS_CHACHA20_POLY1305_SHA256:"
2223 #endif
2224 "TLS_AES_128_GCM_SHA256";
2225 }