]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_lib.c
Change OSSL_PARAM return size to not be a pointer.
[thirdparty/openssl.git] / ssl / ssl_lib.c
1 /*
2 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the Apache License 2.0 (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include "ssl_locl.h"
14 #include "e_os.h"
15 #include <openssl/objects.h>
16 #include <openssl/x509v3.h>
17 #include <openssl/rand.h>
18 #include <openssl/rand_drbg.h>
19 #include <openssl/ocsp.h>
20 #include <openssl/dh.h>
21 #include <openssl/engine.h>
22 #include <openssl/async.h>
23 #include <openssl/ct.h>
24 #include <openssl/trace.h>
25 #include "internal/cryptlib.h"
26 #include "internal/refcount.h"
27 #include "internal/ktls.h"
28
29 static int ssl_undefined_function_1(SSL *ssl, SSL3_RECORD *r, size_t s, int t)
30 {
31 (void)r;
32 (void)s;
33 (void)t;
34 return ssl_undefined_function(ssl);
35 }
36
37 static int ssl_undefined_function_2(SSL *ssl, SSL3_RECORD *r, unsigned char *s,
38 int t)
39 {
40 (void)r;
41 (void)s;
42 (void)t;
43 return ssl_undefined_function(ssl);
44 }
45
46 static int ssl_undefined_function_3(SSL *ssl, unsigned char *r,
47 unsigned char *s, size_t t, size_t *u)
48 {
49 (void)r;
50 (void)s;
51 (void)t;
52 (void)u;
53 return ssl_undefined_function(ssl);
54 }
55
56 static int ssl_undefined_function_4(SSL *ssl, int r)
57 {
58 (void)r;
59 return ssl_undefined_function(ssl);
60 }
61
62 static size_t ssl_undefined_function_5(SSL *ssl, const char *r, size_t s,
63 unsigned char *t)
64 {
65 (void)r;
66 (void)s;
67 (void)t;
68 return ssl_undefined_function(ssl);
69 }
70
71 static int ssl_undefined_function_6(int r)
72 {
73 (void)r;
74 return ssl_undefined_function(NULL);
75 }
76
77 static int ssl_undefined_function_7(SSL *ssl, unsigned char *r, size_t s,
78 const char *t, size_t u,
79 const unsigned char *v, size_t w, int x)
80 {
81 (void)r;
82 (void)s;
83 (void)t;
84 (void)u;
85 (void)v;
86 (void)w;
87 (void)x;
88 return ssl_undefined_function(ssl);
89 }
90
91 SSL3_ENC_METHOD ssl3_undef_enc_method = {
92 ssl_undefined_function_1,
93 ssl_undefined_function_2,
94 ssl_undefined_function,
95 ssl_undefined_function_3,
96 ssl_undefined_function_4,
97 ssl_undefined_function_5,
98 NULL, /* client_finished_label */
99 0, /* client_finished_label_len */
100 NULL, /* server_finished_label */
101 0, /* server_finished_label_len */
102 ssl_undefined_function_6,
103 ssl_undefined_function_7,
104 };
105
106 struct ssl_async_args {
107 SSL *s;
108 void *buf;
109 size_t num;
110 enum { READFUNC, WRITEFUNC, OTHERFUNC } type;
111 union {
112 int (*func_read) (SSL *, void *, size_t, size_t *);
113 int (*func_write) (SSL *, const void *, size_t, size_t *);
114 int (*func_other) (SSL *);
115 } f;
116 };
117
118 static const struct {
119 uint8_t mtype;
120 uint8_t ord;
121 int nid;
122 } dane_mds[] = {
123 {
124 DANETLS_MATCHING_FULL, 0, NID_undef
125 },
126 {
127 DANETLS_MATCHING_2256, 1, NID_sha256
128 },
129 {
130 DANETLS_MATCHING_2512, 2, NID_sha512
131 },
132 };
133
134 static int dane_ctx_enable(struct dane_ctx_st *dctx)
135 {
136 const EVP_MD **mdevp;
137 uint8_t *mdord;
138 uint8_t mdmax = DANETLS_MATCHING_LAST;
139 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */
140 size_t i;
141
142 if (dctx->mdevp != NULL)
143 return 1;
144
145 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp));
146 mdord = OPENSSL_zalloc(n * sizeof(*mdord));
147
148 if (mdord == NULL || mdevp == NULL) {
149 OPENSSL_free(mdord);
150 OPENSSL_free(mdevp);
151 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE);
152 return 0;
153 }
154
155 /* Install default entries */
156 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) {
157 const EVP_MD *md;
158
159 if (dane_mds[i].nid == NID_undef ||
160 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL)
161 continue;
162 mdevp[dane_mds[i].mtype] = md;
163 mdord[dane_mds[i].mtype] = dane_mds[i].ord;
164 }
165
166 dctx->mdevp = mdevp;
167 dctx->mdord = mdord;
168 dctx->mdmax = mdmax;
169
170 return 1;
171 }
172
173 static void dane_ctx_final(struct dane_ctx_st *dctx)
174 {
175 OPENSSL_free(dctx->mdevp);
176 dctx->mdevp = NULL;
177
178 OPENSSL_free(dctx->mdord);
179 dctx->mdord = NULL;
180 dctx->mdmax = 0;
181 }
182
183 static void tlsa_free(danetls_record *t)
184 {
185 if (t == NULL)
186 return;
187 OPENSSL_free(t->data);
188 EVP_PKEY_free(t->spki);
189 OPENSSL_free(t);
190 }
191
192 static void dane_final(SSL_DANE *dane)
193 {
194 sk_danetls_record_pop_free(dane->trecs, tlsa_free);
195 dane->trecs = NULL;
196
197 sk_X509_pop_free(dane->certs, X509_free);
198 dane->certs = NULL;
199
200 X509_free(dane->mcert);
201 dane->mcert = NULL;
202 dane->mtlsa = NULL;
203 dane->mdpth = -1;
204 dane->pdpth = -1;
205 }
206
207 /*
208 * dane_copy - Copy dane configuration, sans verification state.
209 */
210 static int ssl_dane_dup(SSL *to, SSL *from)
211 {
212 int num;
213 int i;
214
215 if (!DANETLS_ENABLED(&from->dane))
216 return 1;
217
218 num = sk_danetls_record_num(from->dane.trecs);
219 dane_final(&to->dane);
220 to->dane.flags = from->dane.flags;
221 to->dane.dctx = &to->ctx->dane;
222 to->dane.trecs = sk_danetls_record_new_reserve(NULL, num);
223
224 if (to->dane.trecs == NULL) {
225 SSLerr(SSL_F_SSL_DANE_DUP, ERR_R_MALLOC_FAILURE);
226 return 0;
227 }
228
229 for (i = 0; i < num; ++i) {
230 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i);
231
232 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype,
233 t->data, t->dlen) <= 0)
234 return 0;
235 }
236 return 1;
237 }
238
239 static int dane_mtype_set(struct dane_ctx_st *dctx,
240 const EVP_MD *md, uint8_t mtype, uint8_t ord)
241 {
242 int i;
243
244 if (mtype == DANETLS_MATCHING_FULL && md != NULL) {
245 SSLerr(SSL_F_DANE_MTYPE_SET, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL);
246 return 0;
247 }
248
249 if (mtype > dctx->mdmax) {
250 const EVP_MD **mdevp;
251 uint8_t *mdord;
252 int n = ((int)mtype) + 1;
253
254 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp));
255 if (mdevp == NULL) {
256 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
257 return -1;
258 }
259 dctx->mdevp = mdevp;
260
261 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord));
262 if (mdord == NULL) {
263 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
264 return -1;
265 }
266 dctx->mdord = mdord;
267
268 /* Zero-fill any gaps */
269 for (i = dctx->mdmax + 1; i < mtype; ++i) {
270 mdevp[i] = NULL;
271 mdord[i] = 0;
272 }
273
274 dctx->mdmax = mtype;
275 }
276
277 dctx->mdevp[mtype] = md;
278 /* Coerce ordinal of disabled matching types to 0 */
279 dctx->mdord[mtype] = (md == NULL) ? 0 : ord;
280
281 return 1;
282 }
283
284 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype)
285 {
286 if (mtype > dane->dctx->mdmax)
287 return NULL;
288 return dane->dctx->mdevp[mtype];
289 }
290
291 static int dane_tlsa_add(SSL_DANE *dane,
292 uint8_t usage,
293 uint8_t selector,
294 uint8_t mtype, unsigned const char *data, size_t dlen)
295 {
296 danetls_record *t;
297 const EVP_MD *md = NULL;
298 int ilen = (int)dlen;
299 int i;
300 int num;
301
302 if (dane->trecs == NULL) {
303 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED);
304 return -1;
305 }
306
307 if (ilen < 0 || dlen != (size_t)ilen) {
308 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH);
309 return 0;
310 }
311
312 if (usage > DANETLS_USAGE_LAST) {
313 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE);
314 return 0;
315 }
316
317 if (selector > DANETLS_SELECTOR_LAST) {
318 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR);
319 return 0;
320 }
321
322 if (mtype != DANETLS_MATCHING_FULL) {
323 md = tlsa_md_get(dane, mtype);
324 if (md == NULL) {
325 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE);
326 return 0;
327 }
328 }
329
330 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) {
331 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH);
332 return 0;
333 }
334 if (!data) {
335 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA);
336 return 0;
337 }
338
339 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) {
340 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
341 return -1;
342 }
343
344 t->usage = usage;
345 t->selector = selector;
346 t->mtype = mtype;
347 t->data = OPENSSL_malloc(dlen);
348 if (t->data == NULL) {
349 tlsa_free(t);
350 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
351 return -1;
352 }
353 memcpy(t->data, data, dlen);
354 t->dlen = dlen;
355
356 /* Validate and cache full certificate or public key */
357 if (mtype == DANETLS_MATCHING_FULL) {
358 const unsigned char *p = data;
359 X509 *cert = NULL;
360 EVP_PKEY *pkey = NULL;
361
362 switch (selector) {
363 case DANETLS_SELECTOR_CERT:
364 if (!d2i_X509(&cert, &p, ilen) || p < data ||
365 dlen != (size_t)(p - data)) {
366 tlsa_free(t);
367 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
368 return 0;
369 }
370 if (X509_get0_pubkey(cert) == NULL) {
371 tlsa_free(t);
372 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
373 return 0;
374 }
375
376 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) {
377 X509_free(cert);
378 break;
379 }
380
381 /*
382 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA
383 * records that contain full certificates of trust-anchors that are
384 * not present in the wire chain. For usage PKIX-TA(0), we augment
385 * the chain with untrusted Full(0) certificates from DNS, in case
386 * they are missing from the chain.
387 */
388 if ((dane->certs == NULL &&
389 (dane->certs = sk_X509_new_null()) == NULL) ||
390 !sk_X509_push(dane->certs, cert)) {
391 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
392 X509_free(cert);
393 tlsa_free(t);
394 return -1;
395 }
396 break;
397
398 case DANETLS_SELECTOR_SPKI:
399 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data ||
400 dlen != (size_t)(p - data)) {
401 tlsa_free(t);
402 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY);
403 return 0;
404 }
405
406 /*
407 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA
408 * records that contain full bare keys of trust-anchors that are
409 * not present in the wire chain.
410 */
411 if (usage == DANETLS_USAGE_DANE_TA)
412 t->spki = pkey;
413 else
414 EVP_PKEY_free(pkey);
415 break;
416 }
417 }
418
419 /*-
420 * Find the right insertion point for the new record.
421 *
422 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that
423 * they can be processed first, as they require no chain building, and no
424 * expiration or hostname checks. Because DANE-EE(3) is numerically
425 * largest, this is accomplished via descending sort by "usage".
426 *
427 * We also sort in descending order by matching ordinal to simplify
428 * the implementation of digest agility in the verification code.
429 *
430 * The choice of order for the selector is not significant, so we
431 * use the same descending order for consistency.
432 */
433 num = sk_danetls_record_num(dane->trecs);
434 for (i = 0; i < num; ++i) {
435 danetls_record *rec = sk_danetls_record_value(dane->trecs, i);
436
437 if (rec->usage > usage)
438 continue;
439 if (rec->usage < usage)
440 break;
441 if (rec->selector > selector)
442 continue;
443 if (rec->selector < selector)
444 break;
445 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype])
446 continue;
447 break;
448 }
449
450 if (!sk_danetls_record_insert(dane->trecs, t, i)) {
451 tlsa_free(t);
452 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
453 return -1;
454 }
455 dane->umask |= DANETLS_USAGE_BIT(usage);
456
457 return 1;
458 }
459
460 /*
461 * Return 0 if there is only one version configured and it was disabled
462 * at configure time. Return 1 otherwise.
463 */
464 static int ssl_check_allowed_versions(int min_version, int max_version)
465 {
466 int minisdtls = 0, maxisdtls = 0;
467
468 /* Figure out if we're doing DTLS versions or TLS versions */
469 if (min_version == DTLS1_BAD_VER
470 || min_version >> 8 == DTLS1_VERSION_MAJOR)
471 minisdtls = 1;
472 if (max_version == DTLS1_BAD_VER
473 || max_version >> 8 == DTLS1_VERSION_MAJOR)
474 maxisdtls = 1;
475 /* A wildcard version of 0 could be DTLS or TLS. */
476 if ((minisdtls && !maxisdtls && max_version != 0)
477 || (maxisdtls && !minisdtls && min_version != 0)) {
478 /* Mixing DTLS and TLS versions will lead to sadness; deny it. */
479 return 0;
480 }
481
482 if (minisdtls || maxisdtls) {
483 /* Do DTLS version checks. */
484 if (min_version == 0)
485 /* Ignore DTLS1_BAD_VER */
486 min_version = DTLS1_VERSION;
487 if (max_version == 0)
488 max_version = DTLS1_2_VERSION;
489 #ifdef OPENSSL_NO_DTLS1_2
490 if (max_version == DTLS1_2_VERSION)
491 max_version = DTLS1_VERSION;
492 #endif
493 #ifdef OPENSSL_NO_DTLS1
494 if (min_version == DTLS1_VERSION)
495 min_version = DTLS1_2_VERSION;
496 #endif
497 /* Done massaging versions; do the check. */
498 if (0
499 #ifdef OPENSSL_NO_DTLS1
500 || (DTLS_VERSION_GE(min_version, DTLS1_VERSION)
501 && DTLS_VERSION_GE(DTLS1_VERSION, max_version))
502 #endif
503 #ifdef OPENSSL_NO_DTLS1_2
504 || (DTLS_VERSION_GE(min_version, DTLS1_2_VERSION)
505 && DTLS_VERSION_GE(DTLS1_2_VERSION, max_version))
506 #endif
507 )
508 return 0;
509 } else {
510 /* Regular TLS version checks. */
511 if (min_version == 0)
512 min_version = SSL3_VERSION;
513 if (max_version == 0)
514 max_version = TLS1_3_VERSION;
515 #ifdef OPENSSL_NO_TLS1_3
516 if (max_version == TLS1_3_VERSION)
517 max_version = TLS1_2_VERSION;
518 #endif
519 #ifdef OPENSSL_NO_TLS1_2
520 if (max_version == TLS1_2_VERSION)
521 max_version = TLS1_1_VERSION;
522 #endif
523 #ifdef OPENSSL_NO_TLS1_1
524 if (max_version == TLS1_1_VERSION)
525 max_version = TLS1_VERSION;
526 #endif
527 #ifdef OPENSSL_NO_TLS1
528 if (max_version == TLS1_VERSION)
529 max_version = SSL3_VERSION;
530 #endif
531 #ifdef OPENSSL_NO_SSL3
532 if (min_version == SSL3_VERSION)
533 min_version = TLS1_VERSION;
534 #endif
535 #ifdef OPENSSL_NO_TLS1
536 if (min_version == TLS1_VERSION)
537 min_version = TLS1_1_VERSION;
538 #endif
539 #ifdef OPENSSL_NO_TLS1_1
540 if (min_version == TLS1_1_VERSION)
541 min_version = TLS1_2_VERSION;
542 #endif
543 #ifdef OPENSSL_NO_TLS1_2
544 if (min_version == TLS1_2_VERSION)
545 min_version = TLS1_3_VERSION;
546 #endif
547 /* Done massaging versions; do the check. */
548 if (0
549 #ifdef OPENSSL_NO_SSL3
550 || (min_version <= SSL3_VERSION && SSL3_VERSION <= max_version)
551 #endif
552 #ifdef OPENSSL_NO_TLS1
553 || (min_version <= TLS1_VERSION && TLS1_VERSION <= max_version)
554 #endif
555 #ifdef OPENSSL_NO_TLS1_1
556 || (min_version <= TLS1_1_VERSION && TLS1_1_VERSION <= max_version)
557 #endif
558 #ifdef OPENSSL_NO_TLS1_2
559 || (min_version <= TLS1_2_VERSION && TLS1_2_VERSION <= max_version)
560 #endif
561 #ifdef OPENSSL_NO_TLS1_3
562 || (min_version <= TLS1_3_VERSION && TLS1_3_VERSION <= max_version)
563 #endif
564 )
565 return 0;
566 }
567 return 1;
568 }
569
570 static void clear_ciphers(SSL *s)
571 {
572 /* clear the current cipher */
573 ssl_clear_cipher_ctx(s);
574 ssl_clear_hash_ctx(&s->read_hash);
575 ssl_clear_hash_ctx(&s->write_hash);
576 }
577
578 int SSL_clear(SSL *s)
579 {
580 if (s->method == NULL) {
581 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED);
582 return 0;
583 }
584
585 if (ssl_clear_bad_session(s)) {
586 SSL_SESSION_free(s->session);
587 s->session = NULL;
588 }
589 SSL_SESSION_free(s->psksession);
590 s->psksession = NULL;
591 OPENSSL_free(s->psksession_id);
592 s->psksession_id = NULL;
593 s->psksession_id_len = 0;
594 s->hello_retry_request = 0;
595 s->sent_tickets = 0;
596
597 s->error = 0;
598 s->hit = 0;
599 s->shutdown = 0;
600
601 if (s->renegotiate) {
602 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR);
603 return 0;
604 }
605
606 ossl_statem_clear(s);
607
608 s->version = s->method->version;
609 s->client_version = s->version;
610 s->rwstate = SSL_NOTHING;
611
612 BUF_MEM_free(s->init_buf);
613 s->init_buf = NULL;
614 clear_ciphers(s);
615 s->first_packet = 0;
616
617 s->key_update = SSL_KEY_UPDATE_NONE;
618
619 EVP_MD_CTX_free(s->pha_dgst);
620 s->pha_dgst = NULL;
621
622 /* Reset DANE verification result state */
623 s->dane.mdpth = -1;
624 s->dane.pdpth = -1;
625 X509_free(s->dane.mcert);
626 s->dane.mcert = NULL;
627 s->dane.mtlsa = NULL;
628
629 /* Clear the verification result peername */
630 X509_VERIFY_PARAM_move_peername(s->param, NULL);
631
632 /*
633 * Check to see if we were changed into a different method, if so, revert
634 * back.
635 */
636 if (s->method != s->ctx->method) {
637 s->method->ssl_free(s);
638 s->method = s->ctx->method;
639 if (!s->method->ssl_new(s))
640 return 0;
641 } else {
642 if (!s->method->ssl_clear(s))
643 return 0;
644 }
645
646 RECORD_LAYER_clear(&s->rlayer);
647
648 return 1;
649 }
650
651 /** Used to change an SSL_CTXs default SSL method type */
652 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth)
653 {
654 STACK_OF(SSL_CIPHER) *sk;
655
656 ctx->method = meth;
657
658 if (!SSL_CTX_set_ciphersuites(ctx, OSSL_default_ciphersuites())) {
659 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
660 return 0;
661 }
662 sk = ssl_create_cipher_list(ctx->method,
663 ctx->tls13_ciphersuites,
664 &(ctx->cipher_list),
665 &(ctx->cipher_list_by_id),
666 OSSL_default_cipher_list(), ctx->cert);
667 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) {
668 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
669 return 0;
670 }
671 return 1;
672 }
673
674 SSL *SSL_new(SSL_CTX *ctx)
675 {
676 SSL *s;
677
678 if (ctx == NULL) {
679 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX);
680 return NULL;
681 }
682 if (ctx->method == NULL) {
683 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
684 return NULL;
685 }
686
687 s = OPENSSL_zalloc(sizeof(*s));
688 if (s == NULL)
689 goto err;
690
691 s->references = 1;
692 s->lock = CRYPTO_THREAD_lock_new();
693 if (s->lock == NULL) {
694 OPENSSL_free(s);
695 s = NULL;
696 goto err;
697 }
698
699 RECORD_LAYER_init(&s->rlayer, s);
700
701 s->options = ctx->options;
702 s->dane.flags = ctx->dane.flags;
703 s->min_proto_version = ctx->min_proto_version;
704 s->max_proto_version = ctx->max_proto_version;
705 s->mode = ctx->mode;
706 s->max_cert_list = ctx->max_cert_list;
707 s->max_early_data = ctx->max_early_data;
708 s->recv_max_early_data = ctx->recv_max_early_data;
709 s->num_tickets = ctx->num_tickets;
710 s->pha_enabled = ctx->pha_enabled;
711
712 /* Shallow copy of the ciphersuites stack */
713 s->tls13_ciphersuites = sk_SSL_CIPHER_dup(ctx->tls13_ciphersuites);
714 if (s->tls13_ciphersuites == NULL)
715 goto err;
716
717 /*
718 * Earlier library versions used to copy the pointer to the CERT, not
719 * its contents; only when setting new parameters for the per-SSL
720 * copy, ssl_cert_new would be called (and the direct reference to
721 * the per-SSL_CTX settings would be lost, but those still were
722 * indirectly accessed for various purposes, and for that reason they
723 * used to be known as s->ctx->default_cert). Now we don't look at the
724 * SSL_CTX's CERT after having duplicated it once.
725 */
726 s->cert = ssl_cert_dup(ctx->cert);
727 if (s->cert == NULL)
728 goto err;
729
730 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead);
731 s->msg_callback = ctx->msg_callback;
732 s->msg_callback_arg = ctx->msg_callback_arg;
733 s->verify_mode = ctx->verify_mode;
734 s->not_resumable_session_cb = ctx->not_resumable_session_cb;
735 s->record_padding_cb = ctx->record_padding_cb;
736 s->record_padding_arg = ctx->record_padding_arg;
737 s->block_padding = ctx->block_padding;
738 s->sid_ctx_length = ctx->sid_ctx_length;
739 if (!ossl_assert(s->sid_ctx_length <= sizeof(s->sid_ctx)))
740 goto err;
741 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
742 s->verify_callback = ctx->default_verify_callback;
743 s->generate_session_id = ctx->generate_session_id;
744
745 s->param = X509_VERIFY_PARAM_new();
746 if (s->param == NULL)
747 goto err;
748 X509_VERIFY_PARAM_inherit(s->param, ctx->param);
749 s->quiet_shutdown = ctx->quiet_shutdown;
750
751 s->ext.max_fragment_len_mode = ctx->ext.max_fragment_len_mode;
752 s->max_send_fragment = ctx->max_send_fragment;
753 s->split_send_fragment = ctx->split_send_fragment;
754 s->max_pipelines = ctx->max_pipelines;
755 if (s->max_pipelines > 1)
756 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
757 if (ctx->default_read_buf_len > 0)
758 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len);
759
760 SSL_CTX_up_ref(ctx);
761 s->ctx = ctx;
762 s->ext.debug_cb = 0;
763 s->ext.debug_arg = NULL;
764 s->ext.ticket_expected = 0;
765 s->ext.status_type = ctx->ext.status_type;
766 s->ext.status_expected = 0;
767 s->ext.ocsp.ids = NULL;
768 s->ext.ocsp.exts = NULL;
769 s->ext.ocsp.resp = NULL;
770 s->ext.ocsp.resp_len = 0;
771 SSL_CTX_up_ref(ctx);
772 s->session_ctx = ctx;
773 #ifndef OPENSSL_NO_EC
774 if (ctx->ext.ecpointformats) {
775 s->ext.ecpointformats =
776 OPENSSL_memdup(ctx->ext.ecpointformats,
777 ctx->ext.ecpointformats_len);
778 if (!s->ext.ecpointformats)
779 goto err;
780 s->ext.ecpointformats_len =
781 ctx->ext.ecpointformats_len;
782 }
783 #endif
784 if (ctx->ext.supportedgroups) {
785 s->ext.supportedgroups =
786 OPENSSL_memdup(ctx->ext.supportedgroups,
787 ctx->ext.supportedgroups_len
788 * sizeof(*ctx->ext.supportedgroups));
789 if (!s->ext.supportedgroups)
790 goto err;
791 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len;
792 }
793
794 #ifndef OPENSSL_NO_NEXTPROTONEG
795 s->ext.npn = NULL;
796 #endif
797
798 if (s->ctx->ext.alpn) {
799 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len);
800 if (s->ext.alpn == NULL)
801 goto err;
802 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len);
803 s->ext.alpn_len = s->ctx->ext.alpn_len;
804 }
805
806 s->verified_chain = NULL;
807 s->verify_result = X509_V_OK;
808
809 s->default_passwd_callback = ctx->default_passwd_callback;
810 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata;
811
812 s->method = ctx->method;
813
814 s->key_update = SSL_KEY_UPDATE_NONE;
815
816 s->allow_early_data_cb = ctx->allow_early_data_cb;
817 s->allow_early_data_cb_data = ctx->allow_early_data_cb_data;
818
819 if (!s->method->ssl_new(s))
820 goto err;
821
822 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1;
823
824 if (!SSL_clear(s))
825 goto err;
826
827 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data))
828 goto err;
829
830 #ifndef OPENSSL_NO_PSK
831 s->psk_client_callback = ctx->psk_client_callback;
832 s->psk_server_callback = ctx->psk_server_callback;
833 #endif
834 s->psk_find_session_cb = ctx->psk_find_session_cb;
835 s->psk_use_session_cb = ctx->psk_use_session_cb;
836
837 s->async_cb = ctx->async_cb;
838 s->async_cb_arg = ctx->async_cb_arg;
839
840 s->job = NULL;
841
842 #ifndef OPENSSL_NO_CT
843 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback,
844 ctx->ct_validation_callback_arg))
845 goto err;
846 #endif
847
848 return s;
849 err:
850 SSL_free(s);
851 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
852 return NULL;
853 }
854
855 int SSL_is_dtls(const SSL *s)
856 {
857 return SSL_IS_DTLS(s) ? 1 : 0;
858 }
859
860 int SSL_up_ref(SSL *s)
861 {
862 int i;
863
864 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0)
865 return 0;
866
867 REF_PRINT_COUNT("SSL", s);
868 REF_ASSERT_ISNT(i < 2);
869 return ((i > 1) ? 1 : 0);
870 }
871
872 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
873 unsigned int sid_ctx_len)
874 {
875 if (sid_ctx_len > sizeof(ctx->sid_ctx)) {
876 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT,
877 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
878 return 0;
879 }
880 ctx->sid_ctx_length = sid_ctx_len;
881 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
882
883 return 1;
884 }
885
886 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
887 unsigned int sid_ctx_len)
888 {
889 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
890 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT,
891 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
892 return 0;
893 }
894 ssl->sid_ctx_length = sid_ctx_len;
895 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
896
897 return 1;
898 }
899
900 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb)
901 {
902 CRYPTO_THREAD_write_lock(ctx->lock);
903 ctx->generate_session_id = cb;
904 CRYPTO_THREAD_unlock(ctx->lock);
905 return 1;
906 }
907
908 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb)
909 {
910 CRYPTO_THREAD_write_lock(ssl->lock);
911 ssl->generate_session_id = cb;
912 CRYPTO_THREAD_unlock(ssl->lock);
913 return 1;
914 }
915
916 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
917 unsigned int id_len)
918 {
919 /*
920 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how
921 * we can "construct" a session to give us the desired check - i.e. to
922 * find if there's a session in the hash table that would conflict with
923 * any new session built out of this id/id_len and the ssl_version in use
924 * by this SSL.
925 */
926 SSL_SESSION r, *p;
927
928 if (id_len > sizeof(r.session_id))
929 return 0;
930
931 r.ssl_version = ssl->version;
932 r.session_id_length = id_len;
933 memcpy(r.session_id, id, id_len);
934
935 CRYPTO_THREAD_read_lock(ssl->session_ctx->lock);
936 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r);
937 CRYPTO_THREAD_unlock(ssl->session_ctx->lock);
938 return (p != NULL);
939 }
940
941 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose)
942 {
943 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
944 }
945
946 int SSL_set_purpose(SSL *s, int purpose)
947 {
948 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
949 }
950
951 int SSL_CTX_set_trust(SSL_CTX *s, int trust)
952 {
953 return X509_VERIFY_PARAM_set_trust(s->param, trust);
954 }
955
956 int SSL_set_trust(SSL *s, int trust)
957 {
958 return X509_VERIFY_PARAM_set_trust(s->param, trust);
959 }
960
961 int SSL_set1_host(SSL *s, const char *hostname)
962 {
963 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0);
964 }
965
966 int SSL_add1_host(SSL *s, const char *hostname)
967 {
968 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0);
969 }
970
971 void SSL_set_hostflags(SSL *s, unsigned int flags)
972 {
973 X509_VERIFY_PARAM_set_hostflags(s->param, flags);
974 }
975
976 const char *SSL_get0_peername(SSL *s)
977 {
978 return X509_VERIFY_PARAM_get0_peername(s->param);
979 }
980
981 int SSL_CTX_dane_enable(SSL_CTX *ctx)
982 {
983 return dane_ctx_enable(&ctx->dane);
984 }
985
986 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags)
987 {
988 unsigned long orig = ctx->dane.flags;
989
990 ctx->dane.flags |= flags;
991 return orig;
992 }
993
994 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags)
995 {
996 unsigned long orig = ctx->dane.flags;
997
998 ctx->dane.flags &= ~flags;
999 return orig;
1000 }
1001
1002 int SSL_dane_enable(SSL *s, const char *basedomain)
1003 {
1004 SSL_DANE *dane = &s->dane;
1005
1006 if (s->ctx->dane.mdmax == 0) {
1007 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED);
1008 return 0;
1009 }
1010 if (dane->trecs != NULL) {
1011 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED);
1012 return 0;
1013 }
1014
1015 /*
1016 * Default SNI name. This rejects empty names, while set1_host below
1017 * accepts them and disables host name checks. To avoid side-effects with
1018 * invalid input, set the SNI name first.
1019 */
1020 if (s->ext.hostname == NULL) {
1021 if (!SSL_set_tlsext_host_name(s, basedomain)) {
1022 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
1023 return -1;
1024 }
1025 }
1026
1027 /* Primary RFC6125 reference identifier */
1028 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) {
1029 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
1030 return -1;
1031 }
1032
1033 dane->mdpth = -1;
1034 dane->pdpth = -1;
1035 dane->dctx = &s->ctx->dane;
1036 dane->trecs = sk_danetls_record_new_null();
1037
1038 if (dane->trecs == NULL) {
1039 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE);
1040 return -1;
1041 }
1042 return 1;
1043 }
1044
1045 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags)
1046 {
1047 unsigned long orig = ssl->dane.flags;
1048
1049 ssl->dane.flags |= flags;
1050 return orig;
1051 }
1052
1053 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags)
1054 {
1055 unsigned long orig = ssl->dane.flags;
1056
1057 ssl->dane.flags &= ~flags;
1058 return orig;
1059 }
1060
1061 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki)
1062 {
1063 SSL_DANE *dane = &s->dane;
1064
1065 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1066 return -1;
1067 if (dane->mtlsa) {
1068 if (mcert)
1069 *mcert = dane->mcert;
1070 if (mspki)
1071 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL;
1072 }
1073 return dane->mdpth;
1074 }
1075
1076 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector,
1077 uint8_t *mtype, unsigned const char **data, size_t *dlen)
1078 {
1079 SSL_DANE *dane = &s->dane;
1080
1081 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1082 return -1;
1083 if (dane->mtlsa) {
1084 if (usage)
1085 *usage = dane->mtlsa->usage;
1086 if (selector)
1087 *selector = dane->mtlsa->selector;
1088 if (mtype)
1089 *mtype = dane->mtlsa->mtype;
1090 if (data)
1091 *data = dane->mtlsa->data;
1092 if (dlen)
1093 *dlen = dane->mtlsa->dlen;
1094 }
1095 return dane->mdpth;
1096 }
1097
1098 SSL_DANE *SSL_get0_dane(SSL *s)
1099 {
1100 return &s->dane;
1101 }
1102
1103 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector,
1104 uint8_t mtype, unsigned const char *data, size_t dlen)
1105 {
1106 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen);
1107 }
1108
1109 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype,
1110 uint8_t ord)
1111 {
1112 return dane_mtype_set(&ctx->dane, md, mtype, ord);
1113 }
1114
1115 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm)
1116 {
1117 return X509_VERIFY_PARAM_set1(ctx->param, vpm);
1118 }
1119
1120 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm)
1121 {
1122 return X509_VERIFY_PARAM_set1(ssl->param, vpm);
1123 }
1124
1125 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx)
1126 {
1127 return ctx->param;
1128 }
1129
1130 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl)
1131 {
1132 return ssl->param;
1133 }
1134
1135 void SSL_certs_clear(SSL *s)
1136 {
1137 ssl_cert_clear_certs(s->cert);
1138 }
1139
1140 void SSL_free(SSL *s)
1141 {
1142 int i;
1143
1144 if (s == NULL)
1145 return;
1146 CRYPTO_DOWN_REF(&s->references, &i, s->lock);
1147 REF_PRINT_COUNT("SSL", s);
1148 if (i > 0)
1149 return;
1150 REF_ASSERT_ISNT(i < 0);
1151
1152 X509_VERIFY_PARAM_free(s->param);
1153 dane_final(&s->dane);
1154 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
1155
1156 RECORD_LAYER_release(&s->rlayer);
1157
1158 /* Ignore return value */
1159 ssl_free_wbio_buffer(s);
1160
1161 BIO_free_all(s->wbio);
1162 s->wbio = NULL;
1163 BIO_free_all(s->rbio);
1164 s->rbio = NULL;
1165
1166 BUF_MEM_free(s->init_buf);
1167
1168 /* add extra stuff */
1169 sk_SSL_CIPHER_free(s->cipher_list);
1170 sk_SSL_CIPHER_free(s->cipher_list_by_id);
1171 sk_SSL_CIPHER_free(s->tls13_ciphersuites);
1172 sk_SSL_CIPHER_free(s->peer_ciphers);
1173
1174 /* Make the next call work :-) */
1175 if (s->session != NULL) {
1176 ssl_clear_bad_session(s);
1177 SSL_SESSION_free(s->session);
1178 }
1179 SSL_SESSION_free(s->psksession);
1180 OPENSSL_free(s->psksession_id);
1181
1182 clear_ciphers(s);
1183
1184 ssl_cert_free(s->cert);
1185 /* Free up if allocated */
1186
1187 OPENSSL_free(s->ext.hostname);
1188 SSL_CTX_free(s->session_ctx);
1189 #ifndef OPENSSL_NO_EC
1190 OPENSSL_free(s->ext.ecpointformats);
1191 OPENSSL_free(s->ext.peer_ecpointformats);
1192 OPENSSL_free(s->ext.supportedgroups);
1193 OPENSSL_free(s->ext.peer_supportedgroups);
1194 #endif /* OPENSSL_NO_EC */
1195 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free);
1196 #ifndef OPENSSL_NO_OCSP
1197 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free);
1198 #endif
1199 #ifndef OPENSSL_NO_CT
1200 SCT_LIST_free(s->scts);
1201 OPENSSL_free(s->ext.scts);
1202 #endif
1203 OPENSSL_free(s->ext.ocsp.resp);
1204 OPENSSL_free(s->ext.alpn);
1205 OPENSSL_free(s->ext.tls13_cookie);
1206 OPENSSL_free(s->clienthello);
1207 OPENSSL_free(s->pha_context);
1208 EVP_MD_CTX_free(s->pha_dgst);
1209
1210 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free);
1211 sk_X509_NAME_pop_free(s->client_ca_names, X509_NAME_free);
1212
1213 sk_X509_pop_free(s->verified_chain, X509_free);
1214
1215 if (s->method != NULL)
1216 s->method->ssl_free(s);
1217
1218 SSL_CTX_free(s->ctx);
1219
1220 ASYNC_WAIT_CTX_free(s->waitctx);
1221
1222 #if !defined(OPENSSL_NO_NEXTPROTONEG)
1223 OPENSSL_free(s->ext.npn);
1224 #endif
1225
1226 #ifndef OPENSSL_NO_SRTP
1227 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles);
1228 #endif
1229
1230 CRYPTO_THREAD_lock_free(s->lock);
1231
1232 OPENSSL_free(s);
1233 }
1234
1235 void SSL_set0_rbio(SSL *s, BIO *rbio)
1236 {
1237 BIO_free_all(s->rbio);
1238 s->rbio = rbio;
1239 }
1240
1241 void SSL_set0_wbio(SSL *s, BIO *wbio)
1242 {
1243 /*
1244 * If the output buffering BIO is still in place, remove it
1245 */
1246 if (s->bbio != NULL)
1247 s->wbio = BIO_pop(s->wbio);
1248
1249 BIO_free_all(s->wbio);
1250 s->wbio = wbio;
1251
1252 /* Re-attach |bbio| to the new |wbio|. */
1253 if (s->bbio != NULL)
1254 s->wbio = BIO_push(s->bbio, s->wbio);
1255 }
1256
1257 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio)
1258 {
1259 /*
1260 * For historical reasons, this function has many different cases in
1261 * ownership handling.
1262 */
1263
1264 /* If nothing has changed, do nothing */
1265 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s))
1266 return;
1267
1268 /*
1269 * If the two arguments are equal then one fewer reference is granted by the
1270 * caller than we want to take
1271 */
1272 if (rbio != NULL && rbio == wbio)
1273 BIO_up_ref(rbio);
1274
1275 /*
1276 * If only the wbio is changed only adopt one reference.
1277 */
1278 if (rbio == SSL_get_rbio(s)) {
1279 SSL_set0_wbio(s, wbio);
1280 return;
1281 }
1282 /*
1283 * There is an asymmetry here for historical reasons. If only the rbio is
1284 * changed AND the rbio and wbio were originally different, then we only
1285 * adopt one reference.
1286 */
1287 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) {
1288 SSL_set0_rbio(s, rbio);
1289 return;
1290 }
1291
1292 /* Otherwise, adopt both references. */
1293 SSL_set0_rbio(s, rbio);
1294 SSL_set0_wbio(s, wbio);
1295 }
1296
1297 BIO *SSL_get_rbio(const SSL *s)
1298 {
1299 return s->rbio;
1300 }
1301
1302 BIO *SSL_get_wbio(const SSL *s)
1303 {
1304 if (s->bbio != NULL) {
1305 /*
1306 * If |bbio| is active, the true caller-configured BIO is its
1307 * |next_bio|.
1308 */
1309 return BIO_next(s->bbio);
1310 }
1311 return s->wbio;
1312 }
1313
1314 int SSL_get_fd(const SSL *s)
1315 {
1316 return SSL_get_rfd(s);
1317 }
1318
1319 int SSL_get_rfd(const SSL *s)
1320 {
1321 int ret = -1;
1322 BIO *b, *r;
1323
1324 b = SSL_get_rbio(s);
1325 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1326 if (r != NULL)
1327 BIO_get_fd(r, &ret);
1328 return ret;
1329 }
1330
1331 int SSL_get_wfd(const SSL *s)
1332 {
1333 int ret = -1;
1334 BIO *b, *r;
1335
1336 b = SSL_get_wbio(s);
1337 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1338 if (r != NULL)
1339 BIO_get_fd(r, &ret);
1340 return ret;
1341 }
1342
1343 #ifndef OPENSSL_NO_SOCK
1344 int SSL_set_fd(SSL *s, int fd)
1345 {
1346 int ret = 0;
1347 BIO *bio = NULL;
1348
1349 bio = BIO_new(BIO_s_socket());
1350
1351 if (bio == NULL) {
1352 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB);
1353 goto err;
1354 }
1355 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1356 SSL_set_bio(s, bio, bio);
1357 #ifndef OPENSSL_NO_KTLS
1358 /*
1359 * The new socket is created successfully regardless of ktls_enable.
1360 * ktls_enable doesn't change any functionality of the socket, except
1361 * changing the setsockopt to enable the processing of ktls_start.
1362 * Thus, it is not a problem to call it for non-TLS sockets.
1363 */
1364 ktls_enable(fd);
1365 #endif /* OPENSSL_NO_KTLS */
1366 ret = 1;
1367 err:
1368 return ret;
1369 }
1370
1371 int SSL_set_wfd(SSL *s, int fd)
1372 {
1373 BIO *rbio = SSL_get_rbio(s);
1374
1375 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET
1376 || (int)BIO_get_fd(rbio, NULL) != fd) {
1377 BIO *bio = BIO_new(BIO_s_socket());
1378
1379 if (bio == NULL) {
1380 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB);
1381 return 0;
1382 }
1383 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1384 SSL_set0_wbio(s, bio);
1385 #ifndef OPENSSL_NO_KTLS
1386 /*
1387 * The new socket is created successfully regardless of ktls_enable.
1388 * ktls_enable doesn't change any functionality of the socket, except
1389 * changing the setsockopt to enable the processing of ktls_start.
1390 * Thus, it is not a problem to call it for non-TLS sockets.
1391 */
1392 ktls_enable(fd);
1393 #endif /* OPENSSL_NO_KTLS */
1394 } else {
1395 BIO_up_ref(rbio);
1396 SSL_set0_wbio(s, rbio);
1397 }
1398 return 1;
1399 }
1400
1401 int SSL_set_rfd(SSL *s, int fd)
1402 {
1403 BIO *wbio = SSL_get_wbio(s);
1404
1405 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET
1406 || ((int)BIO_get_fd(wbio, NULL) != fd)) {
1407 BIO *bio = BIO_new(BIO_s_socket());
1408
1409 if (bio == NULL) {
1410 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB);
1411 return 0;
1412 }
1413 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1414 SSL_set0_rbio(s, bio);
1415 } else {
1416 BIO_up_ref(wbio);
1417 SSL_set0_rbio(s, wbio);
1418 }
1419
1420 return 1;
1421 }
1422 #endif
1423
1424 /* return length of latest Finished message we sent, copy to 'buf' */
1425 size_t SSL_get_finished(const SSL *s, void *buf, size_t count)
1426 {
1427 size_t ret = 0;
1428
1429 ret = s->s3.tmp.finish_md_len;
1430 if (count > ret)
1431 count = ret;
1432 memcpy(buf, s->s3.tmp.finish_md, count);
1433 return ret;
1434 }
1435
1436 /* return length of latest Finished message we expected, copy to 'buf' */
1437 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count)
1438 {
1439 size_t ret = 0;
1440
1441 ret = s->s3.tmp.peer_finish_md_len;
1442 if (count > ret)
1443 count = ret;
1444 memcpy(buf, s->s3.tmp.peer_finish_md, count);
1445 return ret;
1446 }
1447
1448 int SSL_get_verify_mode(const SSL *s)
1449 {
1450 return s->verify_mode;
1451 }
1452
1453 int SSL_get_verify_depth(const SSL *s)
1454 {
1455 return X509_VERIFY_PARAM_get_depth(s->param);
1456 }
1457
1458 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) {
1459 return s->verify_callback;
1460 }
1461
1462 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx)
1463 {
1464 return ctx->verify_mode;
1465 }
1466
1467 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx)
1468 {
1469 return X509_VERIFY_PARAM_get_depth(ctx->param);
1470 }
1471
1472 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) {
1473 return ctx->default_verify_callback;
1474 }
1475
1476 void SSL_set_verify(SSL *s, int mode,
1477 int (*callback) (int ok, X509_STORE_CTX *ctx))
1478 {
1479 s->verify_mode = mode;
1480 if (callback != NULL)
1481 s->verify_callback = callback;
1482 }
1483
1484 void SSL_set_verify_depth(SSL *s, int depth)
1485 {
1486 X509_VERIFY_PARAM_set_depth(s->param, depth);
1487 }
1488
1489 void SSL_set_read_ahead(SSL *s, int yes)
1490 {
1491 RECORD_LAYER_set_read_ahead(&s->rlayer, yes);
1492 }
1493
1494 int SSL_get_read_ahead(const SSL *s)
1495 {
1496 return RECORD_LAYER_get_read_ahead(&s->rlayer);
1497 }
1498
1499 int SSL_pending(const SSL *s)
1500 {
1501 size_t pending = s->method->ssl_pending(s);
1502
1503 /*
1504 * SSL_pending cannot work properly if read-ahead is enabled
1505 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is
1506 * impossible to fix since SSL_pending cannot report errors that may be
1507 * observed while scanning the new data. (Note that SSL_pending() is
1508 * often used as a boolean value, so we'd better not return -1.)
1509 *
1510 * SSL_pending also cannot work properly if the value >INT_MAX. In that case
1511 * we just return INT_MAX.
1512 */
1513 return pending < INT_MAX ? (int)pending : INT_MAX;
1514 }
1515
1516 int SSL_has_pending(const SSL *s)
1517 {
1518 /*
1519 * Similar to SSL_pending() but returns a 1 to indicate that we have
1520 * unprocessed data available or 0 otherwise (as opposed to the number of
1521 * bytes available). Unlike SSL_pending() this will take into account
1522 * read_ahead data. A 1 return simply indicates that we have unprocessed
1523 * data. That data may not result in any application data, or we may fail
1524 * to parse the records for some reason.
1525 */
1526 if (RECORD_LAYER_processed_read_pending(&s->rlayer))
1527 return 1;
1528
1529 return RECORD_LAYER_read_pending(&s->rlayer);
1530 }
1531
1532 X509 *SSL_get_peer_certificate(const SSL *s)
1533 {
1534 X509 *r;
1535
1536 if ((s == NULL) || (s->session == NULL))
1537 r = NULL;
1538 else
1539 r = s->session->peer;
1540
1541 if (r == NULL)
1542 return r;
1543
1544 X509_up_ref(r);
1545
1546 return r;
1547 }
1548
1549 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s)
1550 {
1551 STACK_OF(X509) *r;
1552
1553 if ((s == NULL) || (s->session == NULL))
1554 r = NULL;
1555 else
1556 r = s->session->peer_chain;
1557
1558 /*
1559 * If we are a client, cert_chain includes the peer's own certificate; if
1560 * we are a server, it does not.
1561 */
1562
1563 return r;
1564 }
1565
1566 /*
1567 * Now in theory, since the calling process own 't' it should be safe to
1568 * modify. We need to be able to read f without being hassled
1569 */
1570 int SSL_copy_session_id(SSL *t, const SSL *f)
1571 {
1572 int i;
1573 /* Do we need to to SSL locking? */
1574 if (!SSL_set_session(t, SSL_get_session(f))) {
1575 return 0;
1576 }
1577
1578 /*
1579 * what if we are setup for one protocol version but want to talk another
1580 */
1581 if (t->method != f->method) {
1582 t->method->ssl_free(t);
1583 t->method = f->method;
1584 if (t->method->ssl_new(t) == 0)
1585 return 0;
1586 }
1587
1588 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock);
1589 ssl_cert_free(t->cert);
1590 t->cert = f->cert;
1591 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) {
1592 return 0;
1593 }
1594
1595 return 1;
1596 }
1597
1598 /* Fix this so it checks all the valid key/cert options */
1599 int SSL_CTX_check_private_key(const SSL_CTX *ctx)
1600 {
1601 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) {
1602 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1603 return 0;
1604 }
1605 if (ctx->cert->key->privatekey == NULL) {
1606 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1607 return 0;
1608 }
1609 return X509_check_private_key
1610 (ctx->cert->key->x509, ctx->cert->key->privatekey);
1611 }
1612
1613 /* Fix this function so that it takes an optional type parameter */
1614 int SSL_check_private_key(const SSL *ssl)
1615 {
1616 if (ssl == NULL) {
1617 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER);
1618 return 0;
1619 }
1620 if (ssl->cert->key->x509 == NULL) {
1621 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1622 return 0;
1623 }
1624 if (ssl->cert->key->privatekey == NULL) {
1625 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1626 return 0;
1627 }
1628 return X509_check_private_key(ssl->cert->key->x509,
1629 ssl->cert->key->privatekey);
1630 }
1631
1632 int SSL_waiting_for_async(SSL *s)
1633 {
1634 if (s->job)
1635 return 1;
1636
1637 return 0;
1638 }
1639
1640 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds)
1641 {
1642 ASYNC_WAIT_CTX *ctx = s->waitctx;
1643
1644 if (ctx == NULL)
1645 return 0;
1646 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds);
1647 }
1648
1649 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds,
1650 OSSL_ASYNC_FD *delfd, size_t *numdelfds)
1651 {
1652 ASYNC_WAIT_CTX *ctx = s->waitctx;
1653
1654 if (ctx == NULL)
1655 return 0;
1656 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd,
1657 numdelfds);
1658 }
1659
1660 int SSL_CTX_set_async_callback(SSL_CTX *ctx, SSL_async_callback_fn callback)
1661 {
1662 ctx->async_cb = callback;
1663 return 1;
1664 }
1665
1666 int SSL_CTX_set_async_callback_arg(SSL_CTX *ctx, void *arg)
1667 {
1668 ctx->async_cb_arg = arg;
1669 return 1;
1670 }
1671
1672 int SSL_set_async_callback(SSL *s, SSL_async_callback_fn callback)
1673 {
1674 s->async_cb = callback;
1675 return 1;
1676 }
1677
1678 int SSL_set_async_callback_arg(SSL *s, void *arg)
1679 {
1680 s->async_cb_arg = arg;
1681 return 1;
1682 }
1683
1684 int SSL_get_async_status(SSL *s, int *status)
1685 {
1686 ASYNC_WAIT_CTX *ctx = s->waitctx;
1687
1688 if (ctx == NULL)
1689 return 0;
1690 *status = ASYNC_WAIT_CTX_get_status(ctx);
1691 return 1;
1692 }
1693
1694 int SSL_accept(SSL *s)
1695 {
1696 if (s->handshake_func == NULL) {
1697 /* Not properly initialized yet */
1698 SSL_set_accept_state(s);
1699 }
1700
1701 return SSL_do_handshake(s);
1702 }
1703
1704 int SSL_connect(SSL *s)
1705 {
1706 if (s->handshake_func == NULL) {
1707 /* Not properly initialized yet */
1708 SSL_set_connect_state(s);
1709 }
1710
1711 return SSL_do_handshake(s);
1712 }
1713
1714 long SSL_get_default_timeout(const SSL *s)
1715 {
1716 return s->method->get_timeout();
1717 }
1718
1719 static int ssl_async_wait_ctx_cb(void *arg)
1720 {
1721 SSL *s = (SSL *)arg;
1722
1723 return s->async_cb(s, s->async_cb_arg);
1724 }
1725
1726 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args,
1727 int (*func) (void *))
1728 {
1729 int ret;
1730 if (s->waitctx == NULL) {
1731 s->waitctx = ASYNC_WAIT_CTX_new();
1732 if (s->waitctx == NULL)
1733 return -1;
1734 if (s->async_cb != NULL
1735 && !ASYNC_WAIT_CTX_set_callback
1736 (s->waitctx, ssl_async_wait_ctx_cb, s))
1737 return -1;
1738 }
1739 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args,
1740 sizeof(struct ssl_async_args))) {
1741 case ASYNC_ERR:
1742 s->rwstate = SSL_NOTHING;
1743 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC);
1744 return -1;
1745 case ASYNC_PAUSE:
1746 s->rwstate = SSL_ASYNC_PAUSED;
1747 return -1;
1748 case ASYNC_NO_JOBS:
1749 s->rwstate = SSL_ASYNC_NO_JOBS;
1750 return -1;
1751 case ASYNC_FINISH:
1752 s->job = NULL;
1753 return ret;
1754 default:
1755 s->rwstate = SSL_NOTHING;
1756 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR);
1757 /* Shouldn't happen */
1758 return -1;
1759 }
1760 }
1761
1762 static int ssl_io_intern(void *vargs)
1763 {
1764 struct ssl_async_args *args;
1765 SSL *s;
1766 void *buf;
1767 size_t num;
1768
1769 args = (struct ssl_async_args *)vargs;
1770 s = args->s;
1771 buf = args->buf;
1772 num = args->num;
1773 switch (args->type) {
1774 case READFUNC:
1775 return args->f.func_read(s, buf, num, &s->asyncrw);
1776 case WRITEFUNC:
1777 return args->f.func_write(s, buf, num, &s->asyncrw);
1778 case OTHERFUNC:
1779 return args->f.func_other(s);
1780 }
1781 return -1;
1782 }
1783
1784 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1785 {
1786 if (s->handshake_func == NULL) {
1787 SSLerr(SSL_F_SSL_READ_INTERNAL, SSL_R_UNINITIALIZED);
1788 return -1;
1789 }
1790
1791 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1792 s->rwstate = SSL_NOTHING;
1793 return 0;
1794 }
1795
1796 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1797 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) {
1798 SSLerr(SSL_F_SSL_READ_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1799 return 0;
1800 }
1801 /*
1802 * If we are a client and haven't received the ServerHello etc then we
1803 * better do that
1804 */
1805 ossl_statem_check_finish_init(s, 0);
1806
1807 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1808 struct ssl_async_args args;
1809 int ret;
1810
1811 args.s = s;
1812 args.buf = buf;
1813 args.num = num;
1814 args.type = READFUNC;
1815 args.f.func_read = s->method->ssl_read;
1816
1817 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1818 *readbytes = s->asyncrw;
1819 return ret;
1820 } else {
1821 return s->method->ssl_read(s, buf, num, readbytes);
1822 }
1823 }
1824
1825 int SSL_read(SSL *s, void *buf, int num)
1826 {
1827 int ret;
1828 size_t readbytes;
1829
1830 if (num < 0) {
1831 SSLerr(SSL_F_SSL_READ, SSL_R_BAD_LENGTH);
1832 return -1;
1833 }
1834
1835 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes);
1836
1837 /*
1838 * The cast is safe here because ret should be <= INT_MAX because num is
1839 * <= INT_MAX
1840 */
1841 if (ret > 0)
1842 ret = (int)readbytes;
1843
1844 return ret;
1845 }
1846
1847 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1848 {
1849 int ret = ssl_read_internal(s, buf, num, readbytes);
1850
1851 if (ret < 0)
1852 ret = 0;
1853 return ret;
1854 }
1855
1856 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes)
1857 {
1858 int ret;
1859
1860 if (!s->server) {
1861 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1862 return SSL_READ_EARLY_DATA_ERROR;
1863 }
1864
1865 switch (s->early_data_state) {
1866 case SSL_EARLY_DATA_NONE:
1867 if (!SSL_in_before(s)) {
1868 SSLerr(SSL_F_SSL_READ_EARLY_DATA,
1869 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1870 return SSL_READ_EARLY_DATA_ERROR;
1871 }
1872 /* fall through */
1873
1874 case SSL_EARLY_DATA_ACCEPT_RETRY:
1875 s->early_data_state = SSL_EARLY_DATA_ACCEPTING;
1876 ret = SSL_accept(s);
1877 if (ret <= 0) {
1878 /* NBIO or error */
1879 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY;
1880 return SSL_READ_EARLY_DATA_ERROR;
1881 }
1882 /* fall through */
1883
1884 case SSL_EARLY_DATA_READ_RETRY:
1885 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) {
1886 s->early_data_state = SSL_EARLY_DATA_READING;
1887 ret = SSL_read_ex(s, buf, num, readbytes);
1888 /*
1889 * State machine will update early_data_state to
1890 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData
1891 * message
1892 */
1893 if (ret > 0 || (ret <= 0 && s->early_data_state
1894 != SSL_EARLY_DATA_FINISHED_READING)) {
1895 s->early_data_state = SSL_EARLY_DATA_READ_RETRY;
1896 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS
1897 : SSL_READ_EARLY_DATA_ERROR;
1898 }
1899 } else {
1900 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING;
1901 }
1902 *readbytes = 0;
1903 return SSL_READ_EARLY_DATA_FINISH;
1904
1905 default:
1906 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1907 return SSL_READ_EARLY_DATA_ERROR;
1908 }
1909 }
1910
1911 int SSL_get_early_data_status(const SSL *s)
1912 {
1913 return s->ext.early_data;
1914 }
1915
1916 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1917 {
1918 if (s->handshake_func == NULL) {
1919 SSLerr(SSL_F_SSL_PEEK_INTERNAL, SSL_R_UNINITIALIZED);
1920 return -1;
1921 }
1922
1923 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1924 return 0;
1925 }
1926 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1927 struct ssl_async_args args;
1928 int ret;
1929
1930 args.s = s;
1931 args.buf = buf;
1932 args.num = num;
1933 args.type = READFUNC;
1934 args.f.func_read = s->method->ssl_peek;
1935
1936 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1937 *readbytes = s->asyncrw;
1938 return ret;
1939 } else {
1940 return s->method->ssl_peek(s, buf, num, readbytes);
1941 }
1942 }
1943
1944 int SSL_peek(SSL *s, void *buf, int num)
1945 {
1946 int ret;
1947 size_t readbytes;
1948
1949 if (num < 0) {
1950 SSLerr(SSL_F_SSL_PEEK, SSL_R_BAD_LENGTH);
1951 return -1;
1952 }
1953
1954 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes);
1955
1956 /*
1957 * The cast is safe here because ret should be <= INT_MAX because num is
1958 * <= INT_MAX
1959 */
1960 if (ret > 0)
1961 ret = (int)readbytes;
1962
1963 return ret;
1964 }
1965
1966
1967 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1968 {
1969 int ret = ssl_peek_internal(s, buf, num, readbytes);
1970
1971 if (ret < 0)
1972 ret = 0;
1973 return ret;
1974 }
1975
1976 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written)
1977 {
1978 if (s->handshake_func == NULL) {
1979 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_UNINITIALIZED);
1980 return -1;
1981 }
1982
1983 if (s->shutdown & SSL_SENT_SHUTDOWN) {
1984 s->rwstate = SSL_NOTHING;
1985 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_PROTOCOL_IS_SHUTDOWN);
1986 return -1;
1987 }
1988
1989 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1990 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY
1991 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) {
1992 SSLerr(SSL_F_SSL_WRITE_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1993 return 0;
1994 }
1995 /* If we are a client and haven't sent the Finished we better do that */
1996 ossl_statem_check_finish_init(s, 1);
1997
1998 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1999 int ret;
2000 struct ssl_async_args args;
2001
2002 args.s = s;
2003 args.buf = (void *)buf;
2004 args.num = num;
2005 args.type = WRITEFUNC;
2006 args.f.func_write = s->method->ssl_write;
2007
2008 ret = ssl_start_async_job(s, &args, ssl_io_intern);
2009 *written = s->asyncrw;
2010 return ret;
2011 } else {
2012 return s->method->ssl_write(s, buf, num, written);
2013 }
2014 }
2015
2016 ossl_ssize_t SSL_sendfile(SSL *s, int fd, off_t offset, size_t size, int flags)
2017 {
2018 ossl_ssize_t ret;
2019
2020 if (s->handshake_func == NULL) {
2021 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_UNINITIALIZED);
2022 return -1;
2023 }
2024
2025 if (s->shutdown & SSL_SENT_SHUTDOWN) {
2026 s->rwstate = SSL_NOTHING;
2027 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_PROTOCOL_IS_SHUTDOWN);
2028 return -1;
2029 }
2030
2031 if (!BIO_get_ktls_send(s->wbio)) {
2032 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_UNINITIALIZED);
2033 return -1;
2034 }
2035
2036 /* If we have an alert to send, lets send it */
2037 if (s->s3.alert_dispatch) {
2038 ret = (ossl_ssize_t)s->method->ssl_dispatch_alert(s);
2039 if (ret <= 0) {
2040 /* SSLfatal() already called if appropriate */
2041 return ret;
2042 }
2043 /* if it went, fall through and send more stuff */
2044 }
2045
2046 s->rwstate = SSL_WRITING;
2047 if (BIO_flush(s->wbio) <= 0) {
2048 if (!BIO_should_retry(s->wbio)) {
2049 s->rwstate = SSL_NOTHING;
2050 } else {
2051 #ifdef EAGAIN
2052 set_sys_error(EAGAIN);
2053 #endif
2054 }
2055 return -1;
2056 }
2057
2058 #ifndef OPENSSL_NO_KTLS
2059 ret = ktls_sendfile(SSL_get_wfd(s), fd, offset, size, flags);
2060 #else
2061 ret = -1;
2062 #endif
2063 if (ret < 0) {
2064 #if defined(EAGAIN) && defined(EINTR) && defined(EBUSY)
2065 if ((get_last_sys_error() == EAGAIN) ||
2066 (get_last_sys_error() == EINTR) ||
2067 (get_last_sys_error() == EBUSY))
2068 BIO_set_retry_write(s->wbio);
2069 else
2070 #endif
2071 #ifdef OPENSSL_NO_KTLS
2072 SYSerr(SYS_F_SENDFILE, get_last_sys_error());
2073 #else
2074 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_UNINITIALIZED);
2075 #endif
2076 return ret;
2077 }
2078 s->rwstate = SSL_NOTHING;
2079 return ret;
2080 }
2081
2082 int SSL_write(SSL *s, const void *buf, int num)
2083 {
2084 int ret;
2085 size_t written;
2086
2087 if (num < 0) {
2088 SSLerr(SSL_F_SSL_WRITE, SSL_R_BAD_LENGTH);
2089 return -1;
2090 }
2091
2092 ret = ssl_write_internal(s, buf, (size_t)num, &written);
2093
2094 /*
2095 * The cast is safe here because ret should be <= INT_MAX because num is
2096 * <= INT_MAX
2097 */
2098 if (ret > 0)
2099 ret = (int)written;
2100
2101 return ret;
2102 }
2103
2104 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written)
2105 {
2106 int ret = ssl_write_internal(s, buf, num, written);
2107
2108 if (ret < 0)
2109 ret = 0;
2110 return ret;
2111 }
2112
2113 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written)
2114 {
2115 int ret, early_data_state;
2116 size_t writtmp;
2117 uint32_t partialwrite;
2118
2119 switch (s->early_data_state) {
2120 case SSL_EARLY_DATA_NONE:
2121 if (s->server
2122 || !SSL_in_before(s)
2123 || ((s->session == NULL || s->session->ext.max_early_data == 0)
2124 && (s->psk_use_session_cb == NULL))) {
2125 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA,
2126 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2127 return 0;
2128 }
2129 /* fall through */
2130
2131 case SSL_EARLY_DATA_CONNECT_RETRY:
2132 s->early_data_state = SSL_EARLY_DATA_CONNECTING;
2133 ret = SSL_connect(s);
2134 if (ret <= 0) {
2135 /* NBIO or error */
2136 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY;
2137 return 0;
2138 }
2139 /* fall through */
2140
2141 case SSL_EARLY_DATA_WRITE_RETRY:
2142 s->early_data_state = SSL_EARLY_DATA_WRITING;
2143 /*
2144 * We disable partial write for early data because we don't keep track
2145 * of how many bytes we've written between the SSL_write_ex() call and
2146 * the flush if the flush needs to be retried)
2147 */
2148 partialwrite = s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE;
2149 s->mode &= ~SSL_MODE_ENABLE_PARTIAL_WRITE;
2150 ret = SSL_write_ex(s, buf, num, &writtmp);
2151 s->mode |= partialwrite;
2152 if (!ret) {
2153 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
2154 return ret;
2155 }
2156 s->early_data_state = SSL_EARLY_DATA_WRITE_FLUSH;
2157 /* fall through */
2158
2159 case SSL_EARLY_DATA_WRITE_FLUSH:
2160 /* The buffering BIO is still in place so we need to flush it */
2161 if (statem_flush(s) != 1)
2162 return 0;
2163 *written = num;
2164 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
2165 return 1;
2166
2167 case SSL_EARLY_DATA_FINISHED_READING:
2168 case SSL_EARLY_DATA_READ_RETRY:
2169 early_data_state = s->early_data_state;
2170 /* We are a server writing to an unauthenticated client */
2171 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING;
2172 ret = SSL_write_ex(s, buf, num, written);
2173 /* The buffering BIO is still in place */
2174 if (ret)
2175 (void)BIO_flush(s->wbio);
2176 s->early_data_state = early_data_state;
2177 return ret;
2178
2179 default:
2180 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2181 return 0;
2182 }
2183 }
2184
2185 int SSL_shutdown(SSL *s)
2186 {
2187 /*
2188 * Note that this function behaves differently from what one might
2189 * expect. Return values are 0 for no success (yet), 1 for success; but
2190 * calling it once is usually not enough, even if blocking I/O is used
2191 * (see ssl3_shutdown).
2192 */
2193
2194 if (s->handshake_func == NULL) {
2195 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED);
2196 return -1;
2197 }
2198
2199 if (!SSL_in_init(s)) {
2200 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
2201 struct ssl_async_args args;
2202
2203 args.s = s;
2204 args.type = OTHERFUNC;
2205 args.f.func_other = s->method->ssl_shutdown;
2206
2207 return ssl_start_async_job(s, &args, ssl_io_intern);
2208 } else {
2209 return s->method->ssl_shutdown(s);
2210 }
2211 } else {
2212 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT);
2213 return -1;
2214 }
2215 }
2216
2217 int SSL_key_update(SSL *s, int updatetype)
2218 {
2219 /*
2220 * TODO(TLS1.3): How will applications know whether TLSv1.3 has been
2221 * negotiated, and that it is appropriate to call SSL_key_update() instead
2222 * of SSL_renegotiate().
2223 */
2224 if (!SSL_IS_TLS13(s)) {
2225 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_WRONG_SSL_VERSION);
2226 return 0;
2227 }
2228
2229 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED
2230 && updatetype != SSL_KEY_UPDATE_REQUESTED) {
2231 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_INVALID_KEY_UPDATE_TYPE);
2232 return 0;
2233 }
2234
2235 if (!SSL_is_init_finished(s)) {
2236 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_STILL_IN_INIT);
2237 return 0;
2238 }
2239
2240 ossl_statem_set_in_init(s, 1);
2241 s->key_update = updatetype;
2242 return 1;
2243 }
2244
2245 int SSL_get_key_update_type(const SSL *s)
2246 {
2247 return s->key_update;
2248 }
2249
2250 int SSL_renegotiate(SSL *s)
2251 {
2252 if (SSL_IS_TLS13(s)) {
2253 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_WRONG_SSL_VERSION);
2254 return 0;
2255 }
2256
2257 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2258 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_NO_RENEGOTIATION);
2259 return 0;
2260 }
2261
2262 s->renegotiate = 1;
2263 s->new_session = 1;
2264
2265 return s->method->ssl_renegotiate(s);
2266 }
2267
2268 int SSL_renegotiate_abbreviated(SSL *s)
2269 {
2270 if (SSL_IS_TLS13(s)) {
2271 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_WRONG_SSL_VERSION);
2272 return 0;
2273 }
2274
2275 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2276 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_NO_RENEGOTIATION);
2277 return 0;
2278 }
2279
2280 s->renegotiate = 1;
2281 s->new_session = 0;
2282
2283 return s->method->ssl_renegotiate(s);
2284 }
2285
2286 int SSL_renegotiate_pending(const SSL *s)
2287 {
2288 /*
2289 * becomes true when negotiation is requested; false again once a
2290 * handshake has finished
2291 */
2292 return (s->renegotiate != 0);
2293 }
2294
2295 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg)
2296 {
2297 long l;
2298
2299 switch (cmd) {
2300 case SSL_CTRL_GET_READ_AHEAD:
2301 return RECORD_LAYER_get_read_ahead(&s->rlayer);
2302 case SSL_CTRL_SET_READ_AHEAD:
2303 l = RECORD_LAYER_get_read_ahead(&s->rlayer);
2304 RECORD_LAYER_set_read_ahead(&s->rlayer, larg);
2305 return l;
2306
2307 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2308 s->msg_callback_arg = parg;
2309 return 1;
2310
2311 case SSL_CTRL_MODE:
2312 return (s->mode |= larg);
2313 case SSL_CTRL_CLEAR_MODE:
2314 return (s->mode &= ~larg);
2315 case SSL_CTRL_GET_MAX_CERT_LIST:
2316 return (long)s->max_cert_list;
2317 case SSL_CTRL_SET_MAX_CERT_LIST:
2318 if (larg < 0)
2319 return 0;
2320 l = (long)s->max_cert_list;
2321 s->max_cert_list = (size_t)larg;
2322 return l;
2323 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2324 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2325 return 0;
2326 #ifndef OPENSSL_NO_KTLS
2327 if (s->wbio != NULL && BIO_get_ktls_send(s->wbio))
2328 return 0;
2329 #endif /* OPENSSL_NO_KTLS */
2330 s->max_send_fragment = larg;
2331 if (s->max_send_fragment < s->split_send_fragment)
2332 s->split_send_fragment = s->max_send_fragment;
2333 return 1;
2334 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2335 if ((size_t)larg > s->max_send_fragment || larg == 0)
2336 return 0;
2337 s->split_send_fragment = larg;
2338 return 1;
2339 case SSL_CTRL_SET_MAX_PIPELINES:
2340 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2341 return 0;
2342 s->max_pipelines = larg;
2343 if (larg > 1)
2344 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
2345 return 1;
2346 case SSL_CTRL_GET_RI_SUPPORT:
2347 return s->s3.send_connection_binding;
2348 case SSL_CTRL_CERT_FLAGS:
2349 return (s->cert->cert_flags |= larg);
2350 case SSL_CTRL_CLEAR_CERT_FLAGS:
2351 return (s->cert->cert_flags &= ~larg);
2352
2353 case SSL_CTRL_GET_RAW_CIPHERLIST:
2354 if (parg) {
2355 if (s->s3.tmp.ciphers_raw == NULL)
2356 return 0;
2357 *(unsigned char **)parg = s->s3.tmp.ciphers_raw;
2358 return (int)s->s3.tmp.ciphers_rawlen;
2359 } else {
2360 return TLS_CIPHER_LEN;
2361 }
2362 case SSL_CTRL_GET_EXTMS_SUPPORT:
2363 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s))
2364 return -1;
2365 if (s->session->flags & SSL_SESS_FLAG_EXTMS)
2366 return 1;
2367 else
2368 return 0;
2369 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2370 return ssl_check_allowed_versions(larg, s->max_proto_version)
2371 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2372 &s->min_proto_version);
2373 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2374 return s->min_proto_version;
2375 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2376 return ssl_check_allowed_versions(s->min_proto_version, larg)
2377 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2378 &s->max_proto_version);
2379 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2380 return s->max_proto_version;
2381 default:
2382 return s->method->ssl_ctrl(s, cmd, larg, parg);
2383 }
2384 }
2385
2386 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
2387 {
2388 switch (cmd) {
2389 case SSL_CTRL_SET_MSG_CALLBACK:
2390 s->msg_callback = (void (*)
2391 (int write_p, int version, int content_type,
2392 const void *buf, size_t len, SSL *ssl,
2393 void *arg))(fp);
2394 return 1;
2395
2396 default:
2397 return s->method->ssl_callback_ctrl(s, cmd, fp);
2398 }
2399 }
2400
2401 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx)
2402 {
2403 return ctx->sessions;
2404 }
2405
2406 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
2407 {
2408 long l;
2409 /* For some cases with ctx == NULL perform syntax checks */
2410 if (ctx == NULL) {
2411 switch (cmd) {
2412 #ifndef OPENSSL_NO_EC
2413 case SSL_CTRL_SET_GROUPS_LIST:
2414 return tls1_set_groups_list(NULL, NULL, parg);
2415 #endif
2416 case SSL_CTRL_SET_SIGALGS_LIST:
2417 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST:
2418 return tls1_set_sigalgs_list(NULL, parg, 0);
2419 default:
2420 return 0;
2421 }
2422 }
2423
2424 switch (cmd) {
2425 case SSL_CTRL_GET_READ_AHEAD:
2426 return ctx->read_ahead;
2427 case SSL_CTRL_SET_READ_AHEAD:
2428 l = ctx->read_ahead;
2429 ctx->read_ahead = larg;
2430 return l;
2431
2432 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2433 ctx->msg_callback_arg = parg;
2434 return 1;
2435
2436 case SSL_CTRL_GET_MAX_CERT_LIST:
2437 return (long)ctx->max_cert_list;
2438 case SSL_CTRL_SET_MAX_CERT_LIST:
2439 if (larg < 0)
2440 return 0;
2441 l = (long)ctx->max_cert_list;
2442 ctx->max_cert_list = (size_t)larg;
2443 return l;
2444
2445 case SSL_CTRL_SET_SESS_CACHE_SIZE:
2446 if (larg < 0)
2447 return 0;
2448 l = (long)ctx->session_cache_size;
2449 ctx->session_cache_size = (size_t)larg;
2450 return l;
2451 case SSL_CTRL_GET_SESS_CACHE_SIZE:
2452 return (long)ctx->session_cache_size;
2453 case SSL_CTRL_SET_SESS_CACHE_MODE:
2454 l = ctx->session_cache_mode;
2455 ctx->session_cache_mode = larg;
2456 return l;
2457 case SSL_CTRL_GET_SESS_CACHE_MODE:
2458 return ctx->session_cache_mode;
2459
2460 case SSL_CTRL_SESS_NUMBER:
2461 return lh_SSL_SESSION_num_items(ctx->sessions);
2462 case SSL_CTRL_SESS_CONNECT:
2463 return tsan_load(&ctx->stats.sess_connect);
2464 case SSL_CTRL_SESS_CONNECT_GOOD:
2465 return tsan_load(&ctx->stats.sess_connect_good);
2466 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE:
2467 return tsan_load(&ctx->stats.sess_connect_renegotiate);
2468 case SSL_CTRL_SESS_ACCEPT:
2469 return tsan_load(&ctx->stats.sess_accept);
2470 case SSL_CTRL_SESS_ACCEPT_GOOD:
2471 return tsan_load(&ctx->stats.sess_accept_good);
2472 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE:
2473 return tsan_load(&ctx->stats.sess_accept_renegotiate);
2474 case SSL_CTRL_SESS_HIT:
2475 return tsan_load(&ctx->stats.sess_hit);
2476 case SSL_CTRL_SESS_CB_HIT:
2477 return tsan_load(&ctx->stats.sess_cb_hit);
2478 case SSL_CTRL_SESS_MISSES:
2479 return tsan_load(&ctx->stats.sess_miss);
2480 case SSL_CTRL_SESS_TIMEOUTS:
2481 return tsan_load(&ctx->stats.sess_timeout);
2482 case SSL_CTRL_SESS_CACHE_FULL:
2483 return tsan_load(&ctx->stats.sess_cache_full);
2484 case SSL_CTRL_MODE:
2485 return (ctx->mode |= larg);
2486 case SSL_CTRL_CLEAR_MODE:
2487 return (ctx->mode &= ~larg);
2488 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2489 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2490 return 0;
2491 ctx->max_send_fragment = larg;
2492 if (ctx->max_send_fragment < ctx->split_send_fragment)
2493 ctx->split_send_fragment = ctx->max_send_fragment;
2494 return 1;
2495 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2496 if ((size_t)larg > ctx->max_send_fragment || larg == 0)
2497 return 0;
2498 ctx->split_send_fragment = larg;
2499 return 1;
2500 case SSL_CTRL_SET_MAX_PIPELINES:
2501 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2502 return 0;
2503 ctx->max_pipelines = larg;
2504 return 1;
2505 case SSL_CTRL_CERT_FLAGS:
2506 return (ctx->cert->cert_flags |= larg);
2507 case SSL_CTRL_CLEAR_CERT_FLAGS:
2508 return (ctx->cert->cert_flags &= ~larg);
2509 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2510 return ssl_check_allowed_versions(larg, ctx->max_proto_version)
2511 && ssl_set_version_bound(ctx->method->version, (int)larg,
2512 &ctx->min_proto_version);
2513 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2514 return ctx->min_proto_version;
2515 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2516 return ssl_check_allowed_versions(ctx->min_proto_version, larg)
2517 && ssl_set_version_bound(ctx->method->version, (int)larg,
2518 &ctx->max_proto_version);
2519 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2520 return ctx->max_proto_version;
2521 default:
2522 return ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg);
2523 }
2524 }
2525
2526 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
2527 {
2528 switch (cmd) {
2529 case SSL_CTRL_SET_MSG_CALLBACK:
2530 ctx->msg_callback = (void (*)
2531 (int write_p, int version, int content_type,
2532 const void *buf, size_t len, SSL *ssl,
2533 void *arg))(fp);
2534 return 1;
2535
2536 default:
2537 return ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp);
2538 }
2539 }
2540
2541 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b)
2542 {
2543 if (a->id > b->id)
2544 return 1;
2545 if (a->id < b->id)
2546 return -1;
2547 return 0;
2548 }
2549
2550 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap,
2551 const SSL_CIPHER *const *bp)
2552 {
2553 if ((*ap)->id > (*bp)->id)
2554 return 1;
2555 if ((*ap)->id < (*bp)->id)
2556 return -1;
2557 return 0;
2558 }
2559
2560 /** return a STACK of the ciphers available for the SSL and in order of
2561 * preference */
2562 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s)
2563 {
2564 if (s != NULL) {
2565 if (s->cipher_list != NULL) {
2566 return s->cipher_list;
2567 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) {
2568 return s->ctx->cipher_list;
2569 }
2570 }
2571 return NULL;
2572 }
2573
2574 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s)
2575 {
2576 if ((s == NULL) || !s->server)
2577 return NULL;
2578 return s->peer_ciphers;
2579 }
2580
2581 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s)
2582 {
2583 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers;
2584 int i;
2585
2586 ciphers = SSL_get_ciphers(s);
2587 if (!ciphers)
2588 return NULL;
2589 if (!ssl_set_client_disabled(s))
2590 return NULL;
2591 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
2592 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i);
2593 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) {
2594 if (!sk)
2595 sk = sk_SSL_CIPHER_new_null();
2596 if (!sk)
2597 return NULL;
2598 if (!sk_SSL_CIPHER_push(sk, c)) {
2599 sk_SSL_CIPHER_free(sk);
2600 return NULL;
2601 }
2602 }
2603 }
2604 return sk;
2605 }
2606
2607 /** return a STACK of the ciphers available for the SSL and in order of
2608 * algorithm id */
2609 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s)
2610 {
2611 if (s != NULL) {
2612 if (s->cipher_list_by_id != NULL) {
2613 return s->cipher_list_by_id;
2614 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) {
2615 return s->ctx->cipher_list_by_id;
2616 }
2617 }
2618 return NULL;
2619 }
2620
2621 /** The old interface to get the same thing as SSL_get_ciphers() */
2622 const char *SSL_get_cipher_list(const SSL *s, int n)
2623 {
2624 const SSL_CIPHER *c;
2625 STACK_OF(SSL_CIPHER) *sk;
2626
2627 if (s == NULL)
2628 return NULL;
2629 sk = SSL_get_ciphers(s);
2630 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n))
2631 return NULL;
2632 c = sk_SSL_CIPHER_value(sk, n);
2633 if (c == NULL)
2634 return NULL;
2635 return c->name;
2636 }
2637
2638 /** return a STACK of the ciphers available for the SSL_CTX and in order of
2639 * preference */
2640 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx)
2641 {
2642 if (ctx != NULL)
2643 return ctx->cipher_list;
2644 return NULL;
2645 }
2646
2647 /*
2648 * Distinguish between ciphers controlled by set_ciphersuite() and
2649 * set_cipher_list() when counting.
2650 */
2651 static int cipher_list_tls12_num(STACK_OF(SSL_CIPHER) *sk)
2652 {
2653 int i, num = 0;
2654 const SSL_CIPHER *c;
2655
2656 if (sk == NULL)
2657 return 0;
2658 for (i = 0; i < sk_SSL_CIPHER_num(sk); ++i) {
2659 c = sk_SSL_CIPHER_value(sk, i);
2660 if (c->min_tls >= TLS1_3_VERSION)
2661 continue;
2662 num++;
2663 }
2664 return num;
2665 }
2666
2667 /** specify the ciphers to be used by default by the SSL_CTX */
2668 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)
2669 {
2670 STACK_OF(SSL_CIPHER) *sk;
2671
2672 sk = ssl_create_cipher_list(ctx->method, ctx->tls13_ciphersuites,
2673 &ctx->cipher_list, &ctx->cipher_list_by_id, str,
2674 ctx->cert);
2675 /*
2676 * ssl_create_cipher_list may return an empty stack if it was unable to
2677 * find a cipher matching the given rule string (for example if the rule
2678 * string specifies a cipher which has been disabled). This is not an
2679 * error as far as ssl_create_cipher_list is concerned, and hence
2680 * ctx->cipher_list and ctx->cipher_list_by_id has been updated.
2681 */
2682 if (sk == NULL)
2683 return 0;
2684 else if (cipher_list_tls12_num(sk) == 0) {
2685 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2686 return 0;
2687 }
2688 return 1;
2689 }
2690
2691 /** specify the ciphers to be used by the SSL */
2692 int SSL_set_cipher_list(SSL *s, const char *str)
2693 {
2694 STACK_OF(SSL_CIPHER) *sk;
2695
2696 sk = ssl_create_cipher_list(s->ctx->method, s->tls13_ciphersuites,
2697 &s->cipher_list, &s->cipher_list_by_id, str,
2698 s->cert);
2699 /* see comment in SSL_CTX_set_cipher_list */
2700 if (sk == NULL)
2701 return 0;
2702 else if (cipher_list_tls12_num(sk) == 0) {
2703 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2704 return 0;
2705 }
2706 return 1;
2707 }
2708
2709 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int size)
2710 {
2711 char *p;
2712 STACK_OF(SSL_CIPHER) *clntsk, *srvrsk;
2713 const SSL_CIPHER *c;
2714 int i;
2715
2716 if (!s->server
2717 || s->peer_ciphers == NULL
2718 || size < 2)
2719 return NULL;
2720
2721 p = buf;
2722 clntsk = s->peer_ciphers;
2723 srvrsk = SSL_get_ciphers(s);
2724 if (clntsk == NULL || srvrsk == NULL)
2725 return NULL;
2726
2727 if (sk_SSL_CIPHER_num(clntsk) == 0 || sk_SSL_CIPHER_num(srvrsk) == 0)
2728 return NULL;
2729
2730 for (i = 0; i < sk_SSL_CIPHER_num(clntsk); i++) {
2731 int n;
2732
2733 c = sk_SSL_CIPHER_value(clntsk, i);
2734 if (sk_SSL_CIPHER_find(srvrsk, c) < 0)
2735 continue;
2736
2737 n = strlen(c->name);
2738 if (n + 1 > size) {
2739 if (p != buf)
2740 --p;
2741 *p = '\0';
2742 return buf;
2743 }
2744 strcpy(p, c->name);
2745 p += n;
2746 *(p++) = ':';
2747 size -= n + 1;
2748 }
2749 p[-1] = '\0';
2750 return buf;
2751 }
2752
2753 /** return a servername extension value if provided in Client Hello, or NULL.
2754 * So far, only host_name types are defined (RFC 3546).
2755 */
2756
2757 const char *SSL_get_servername(const SSL *s, const int type)
2758 {
2759 if (type != TLSEXT_NAMETYPE_host_name)
2760 return NULL;
2761
2762 /*
2763 * SNI is not negotiated in pre-TLS-1.3 resumption flows, so fake up an
2764 * SNI value to return if we are resuming/resumed. N.B. that we still
2765 * call the relevant callbacks for such resumption flows, and callbacks
2766 * might error out if there is not a SNI value available.
2767 */
2768 if (s->hit)
2769 return s->session->ext.hostname;
2770 return s->ext.hostname;
2771 }
2772
2773 int SSL_get_servername_type(const SSL *s)
2774 {
2775 if (s->session
2776 && (!s->ext.hostname ? s->session->
2777 ext.hostname : s->ext.hostname))
2778 return TLSEXT_NAMETYPE_host_name;
2779 return -1;
2780 }
2781
2782 /*
2783 * SSL_select_next_proto implements the standard protocol selection. It is
2784 * expected that this function is called from the callback set by
2785 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a
2786 * vector of 8-bit, length prefixed byte strings. The length byte itself is
2787 * not included in the length. A byte string of length 0 is invalid. No byte
2788 * string may be truncated. The current, but experimental algorithm for
2789 * selecting the protocol is: 1) If the server doesn't support NPN then this
2790 * is indicated to the callback. In this case, the client application has to
2791 * abort the connection or have a default application level protocol. 2) If
2792 * the server supports NPN, but advertises an empty list then the client
2793 * selects the first protocol in its list, but indicates via the API that this
2794 * fallback case was enacted. 3) Otherwise, the client finds the first
2795 * protocol in the server's list that it supports and selects this protocol.
2796 * This is because it's assumed that the server has better information about
2797 * which protocol a client should use. 4) If the client doesn't support any
2798 * of the server's advertised protocols, then this is treated the same as
2799 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was
2800 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
2801 */
2802 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen,
2803 const unsigned char *server,
2804 unsigned int server_len,
2805 const unsigned char *client, unsigned int client_len)
2806 {
2807 unsigned int i, j;
2808 const unsigned char *result;
2809 int status = OPENSSL_NPN_UNSUPPORTED;
2810
2811 /*
2812 * For each protocol in server preference order, see if we support it.
2813 */
2814 for (i = 0; i < server_len;) {
2815 for (j = 0; j < client_len;) {
2816 if (server[i] == client[j] &&
2817 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
2818 /* We found a match */
2819 result = &server[i];
2820 status = OPENSSL_NPN_NEGOTIATED;
2821 goto found;
2822 }
2823 j += client[j];
2824 j++;
2825 }
2826 i += server[i];
2827 i++;
2828 }
2829
2830 /* There's no overlap between our protocols and the server's list. */
2831 result = client;
2832 status = OPENSSL_NPN_NO_OVERLAP;
2833
2834 found:
2835 *out = (unsigned char *)result + 1;
2836 *outlen = result[0];
2837 return status;
2838 }
2839
2840 #ifndef OPENSSL_NO_NEXTPROTONEG
2841 /*
2842 * SSL_get0_next_proto_negotiated sets *data and *len to point to the
2843 * client's requested protocol for this connection and returns 0. If the
2844 * client didn't request any protocol, then *data is set to NULL. Note that
2845 * the client can request any protocol it chooses. The value returned from
2846 * this function need not be a member of the list of supported protocols
2847 * provided by the callback.
2848 */
2849 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data,
2850 unsigned *len)
2851 {
2852 *data = s->ext.npn;
2853 if (!*data) {
2854 *len = 0;
2855 } else {
2856 *len = (unsigned int)s->ext.npn_len;
2857 }
2858 }
2859
2860 /*
2861 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when
2862 * a TLS server needs a list of supported protocols for Next Protocol
2863 * Negotiation. The returned list must be in wire format. The list is
2864 * returned by setting |out| to point to it and |outlen| to its length. This
2865 * memory will not be modified, but one should assume that the SSL* keeps a
2866 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it
2867 * wishes to advertise. Otherwise, no such extension will be included in the
2868 * ServerHello.
2869 */
2870 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx,
2871 SSL_CTX_npn_advertised_cb_func cb,
2872 void *arg)
2873 {
2874 ctx->ext.npn_advertised_cb = cb;
2875 ctx->ext.npn_advertised_cb_arg = arg;
2876 }
2877
2878 /*
2879 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
2880 * client needs to select a protocol from the server's provided list. |out|
2881 * must be set to point to the selected protocol (which may be within |in|).
2882 * The length of the protocol name must be written into |outlen|. The
2883 * server's advertised protocols are provided in |in| and |inlen|. The
2884 * callback can assume that |in| is syntactically valid. The client must
2885 * select a protocol. It is fatal to the connection if this callback returns
2886 * a value other than SSL_TLSEXT_ERR_OK.
2887 */
2888 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx,
2889 SSL_CTX_npn_select_cb_func cb,
2890 void *arg)
2891 {
2892 ctx->ext.npn_select_cb = cb;
2893 ctx->ext.npn_select_cb_arg = arg;
2894 }
2895 #endif
2896
2897 /*
2898 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|.
2899 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2900 * length-prefixed strings). Returns 0 on success.
2901 */
2902 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos,
2903 unsigned int protos_len)
2904 {
2905 OPENSSL_free(ctx->ext.alpn);
2906 ctx->ext.alpn = OPENSSL_memdup(protos, protos_len);
2907 if (ctx->ext.alpn == NULL) {
2908 SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2909 return 1;
2910 }
2911 ctx->ext.alpn_len = protos_len;
2912
2913 return 0;
2914 }
2915
2916 /*
2917 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|.
2918 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2919 * length-prefixed strings). Returns 0 on success.
2920 */
2921 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos,
2922 unsigned int protos_len)
2923 {
2924 OPENSSL_free(ssl->ext.alpn);
2925 ssl->ext.alpn = OPENSSL_memdup(protos, protos_len);
2926 if (ssl->ext.alpn == NULL) {
2927 SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2928 return 1;
2929 }
2930 ssl->ext.alpn_len = protos_len;
2931
2932 return 0;
2933 }
2934
2935 /*
2936 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is
2937 * called during ClientHello processing in order to select an ALPN protocol
2938 * from the client's list of offered protocols.
2939 */
2940 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
2941 SSL_CTX_alpn_select_cb_func cb,
2942 void *arg)
2943 {
2944 ctx->ext.alpn_select_cb = cb;
2945 ctx->ext.alpn_select_cb_arg = arg;
2946 }
2947
2948 /*
2949 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|.
2950 * On return it sets |*data| to point to |*len| bytes of protocol name
2951 * (not including the leading length-prefix byte). If the server didn't
2952 * respond with a negotiated protocol then |*len| will be zero.
2953 */
2954 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data,
2955 unsigned int *len)
2956 {
2957 *data = ssl->s3.alpn_selected;
2958 if (*data == NULL)
2959 *len = 0;
2960 else
2961 *len = (unsigned int)ssl->s3.alpn_selected_len;
2962 }
2963
2964 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
2965 const char *label, size_t llen,
2966 const unsigned char *context, size_t contextlen,
2967 int use_context)
2968 {
2969 if (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER)
2970 return -1;
2971
2972 return s->method->ssl3_enc->export_keying_material(s, out, olen, label,
2973 llen, context,
2974 contextlen, use_context);
2975 }
2976
2977 int SSL_export_keying_material_early(SSL *s, unsigned char *out, size_t olen,
2978 const char *label, size_t llen,
2979 const unsigned char *context,
2980 size_t contextlen)
2981 {
2982 if (s->version != TLS1_3_VERSION)
2983 return 0;
2984
2985 return tls13_export_keying_material_early(s, out, olen, label, llen,
2986 context, contextlen);
2987 }
2988
2989 static unsigned long ssl_session_hash(const SSL_SESSION *a)
2990 {
2991 const unsigned char *session_id = a->session_id;
2992 unsigned long l;
2993 unsigned char tmp_storage[4];
2994
2995 if (a->session_id_length < sizeof(tmp_storage)) {
2996 memset(tmp_storage, 0, sizeof(tmp_storage));
2997 memcpy(tmp_storage, a->session_id, a->session_id_length);
2998 session_id = tmp_storage;
2999 }
3000
3001 l = (unsigned long)
3002 ((unsigned long)session_id[0]) |
3003 ((unsigned long)session_id[1] << 8L) |
3004 ((unsigned long)session_id[2] << 16L) |
3005 ((unsigned long)session_id[3] << 24L);
3006 return l;
3007 }
3008
3009 /*
3010 * NB: If this function (or indeed the hash function which uses a sort of
3011 * coarser function than this one) is changed, ensure
3012 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on
3013 * being able to construct an SSL_SESSION that will collide with any existing
3014 * session with a matching session ID.
3015 */
3016 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b)
3017 {
3018 if (a->ssl_version != b->ssl_version)
3019 return 1;
3020 if (a->session_id_length != b->session_id_length)
3021 return 1;
3022 return memcmp(a->session_id, b->session_id, a->session_id_length);
3023 }
3024
3025 /*
3026 * These wrapper functions should remain rather than redeclaring
3027 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each
3028 * variable. The reason is that the functions aren't static, they're exposed
3029 * via ssl.h.
3030 */
3031
3032 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth)
3033 {
3034 SSL_CTX *ret = NULL;
3035
3036 if (meth == NULL) {
3037 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED);
3038 return NULL;
3039 }
3040
3041 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL))
3042 return NULL;
3043
3044 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
3045 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
3046 goto err;
3047 }
3048 ret = OPENSSL_zalloc(sizeof(*ret));
3049 if (ret == NULL)
3050 goto err;
3051
3052 ret->method = meth;
3053 ret->min_proto_version = 0;
3054 ret->max_proto_version = 0;
3055 ret->mode = SSL_MODE_AUTO_RETRY;
3056 ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
3057 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
3058 /* We take the system default. */
3059 ret->session_timeout = meth->get_timeout();
3060 ret->references = 1;
3061 ret->lock = CRYPTO_THREAD_lock_new();
3062 if (ret->lock == NULL) {
3063 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
3064 OPENSSL_free(ret);
3065 return NULL;
3066 }
3067 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
3068 ret->verify_mode = SSL_VERIFY_NONE;
3069 if ((ret->cert = ssl_cert_new()) == NULL)
3070 goto err;
3071
3072 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
3073 if (ret->sessions == NULL)
3074 goto err;
3075 ret->cert_store = X509_STORE_new();
3076 if (ret->cert_store == NULL)
3077 goto err;
3078 #ifndef OPENSSL_NO_CT
3079 ret->ctlog_store = CTLOG_STORE_new();
3080 if (ret->ctlog_store == NULL)
3081 goto err;
3082 #endif
3083
3084 if (!SSL_CTX_set_ciphersuites(ret, OSSL_default_ciphersuites()))
3085 goto err;
3086
3087 if (!ssl_create_cipher_list(ret->method,
3088 ret->tls13_ciphersuites,
3089 &ret->cipher_list, &ret->cipher_list_by_id,
3090 OSSL_default_cipher_list(), ret->cert)
3091 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) {
3092 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS);
3093 goto err2;
3094 }
3095
3096 ret->param = X509_VERIFY_PARAM_new();
3097 if (ret->param == NULL)
3098 goto err;
3099
3100 if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) {
3101 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES);
3102 goto err2;
3103 }
3104 if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) {
3105 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES);
3106 goto err2;
3107 }
3108
3109 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL)
3110 goto err;
3111
3112 if ((ret->client_ca_names = sk_X509_NAME_new_null()) == NULL)
3113 goto err;
3114
3115 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data))
3116 goto err;
3117
3118 if ((ret->ext.secure = OPENSSL_secure_zalloc(sizeof(*ret->ext.secure))) == NULL)
3119 goto err;
3120
3121 /* No compression for DTLS */
3122 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS))
3123 ret->comp_methods = SSL_COMP_get_compression_methods();
3124
3125 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
3126 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
3127
3128 /* Setup RFC5077 ticket keys */
3129 if ((RAND_bytes(ret->ext.tick_key_name,
3130 sizeof(ret->ext.tick_key_name)) <= 0)
3131 || (RAND_priv_bytes(ret->ext.secure->tick_hmac_key,
3132 sizeof(ret->ext.secure->tick_hmac_key)) <= 0)
3133 || (RAND_priv_bytes(ret->ext.secure->tick_aes_key,
3134 sizeof(ret->ext.secure->tick_aes_key)) <= 0))
3135 ret->options |= SSL_OP_NO_TICKET;
3136
3137 if (RAND_priv_bytes(ret->ext.cookie_hmac_key,
3138 sizeof(ret->ext.cookie_hmac_key)) <= 0)
3139 goto err;
3140
3141 #ifndef OPENSSL_NO_SRP
3142 if (!SSL_CTX_SRP_CTX_init(ret))
3143 goto err;
3144 #endif
3145 #ifndef OPENSSL_NO_ENGINE
3146 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO
3147 # define eng_strx(x) #x
3148 # define eng_str(x) eng_strx(x)
3149 /* Use specific client engine automatically... ignore errors */
3150 {
3151 ENGINE *eng;
3152 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
3153 if (!eng) {
3154 ERR_clear_error();
3155 ENGINE_load_builtin_engines();
3156 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
3157 }
3158 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng))
3159 ERR_clear_error();
3160 }
3161 # endif
3162 #endif
3163 /*
3164 * Default is to connect to non-RI servers. When RI is more widely
3165 * deployed might change this.
3166 */
3167 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT;
3168 /*
3169 * Disable compression by default to prevent CRIME. Applications can
3170 * re-enable compression by configuring
3171 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION);
3172 * or by using the SSL_CONF library. Similarly we also enable TLSv1.3
3173 * middlebox compatibility by default. This may be disabled by default in
3174 * a later OpenSSL version.
3175 */
3176 ret->options |= SSL_OP_NO_COMPRESSION | SSL_OP_ENABLE_MIDDLEBOX_COMPAT;
3177
3178 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing;
3179
3180 /*
3181 * We cannot usefully set a default max_early_data here (which gets
3182 * propagated in SSL_new(), for the following reason: setting the
3183 * SSL field causes tls_construct_stoc_early_data() to tell the
3184 * client that early data will be accepted when constructing a TLS 1.3
3185 * session ticket, and the client will accordingly send us early data
3186 * when using that ticket (if the client has early data to send).
3187 * However, in order for the early data to actually be consumed by
3188 * the application, the application must also have calls to
3189 * SSL_read_early_data(); otherwise we'll just skip past the early data
3190 * and ignore it. So, since the application must add calls to
3191 * SSL_read_early_data(), we also require them to add
3192 * calls to SSL_CTX_set_max_early_data() in order to use early data,
3193 * eliminating the bandwidth-wasting early data in the case described
3194 * above.
3195 */
3196 ret->max_early_data = 0;
3197
3198 /*
3199 * Default recv_max_early_data is a fully loaded single record. Could be
3200 * split across multiple records in practice. We set this differently to
3201 * max_early_data so that, in the default case, we do not advertise any
3202 * support for early_data, but if a client were to send us some (e.g.
3203 * because of an old, stale ticket) then we will tolerate it and skip over
3204 * it.
3205 */
3206 ret->recv_max_early_data = SSL3_RT_MAX_PLAIN_LENGTH;
3207
3208 /* By default we send two session tickets automatically in TLSv1.3 */
3209 ret->num_tickets = 2;
3210
3211 ssl_ctx_system_config(ret);
3212
3213 return ret;
3214 err:
3215 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
3216 err2:
3217 SSL_CTX_free(ret);
3218 return NULL;
3219 }
3220
3221 int SSL_CTX_up_ref(SSL_CTX *ctx)
3222 {
3223 int i;
3224
3225 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0)
3226 return 0;
3227
3228 REF_PRINT_COUNT("SSL_CTX", ctx);
3229 REF_ASSERT_ISNT(i < 2);
3230 return ((i > 1) ? 1 : 0);
3231 }
3232
3233 void SSL_CTX_free(SSL_CTX *a)
3234 {
3235 int i;
3236
3237 if (a == NULL)
3238 return;
3239
3240 CRYPTO_DOWN_REF(&a->references, &i, a->lock);
3241 REF_PRINT_COUNT("SSL_CTX", a);
3242 if (i > 0)
3243 return;
3244 REF_ASSERT_ISNT(i < 0);
3245
3246 X509_VERIFY_PARAM_free(a->param);
3247 dane_ctx_final(&a->dane);
3248
3249 /*
3250 * Free internal session cache. However: the remove_cb() may reference
3251 * the ex_data of SSL_CTX, thus the ex_data store can only be removed
3252 * after the sessions were flushed.
3253 * As the ex_data handling routines might also touch the session cache,
3254 * the most secure solution seems to be: empty (flush) the cache, then
3255 * free ex_data, then finally free the cache.
3256 * (See ticket [openssl.org #212].)
3257 */
3258 if (a->sessions != NULL)
3259 SSL_CTX_flush_sessions(a, 0);
3260
3261 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data);
3262 lh_SSL_SESSION_free(a->sessions);
3263 X509_STORE_free(a->cert_store);
3264 #ifndef OPENSSL_NO_CT
3265 CTLOG_STORE_free(a->ctlog_store);
3266 #endif
3267 sk_SSL_CIPHER_free(a->cipher_list);
3268 sk_SSL_CIPHER_free(a->cipher_list_by_id);
3269 sk_SSL_CIPHER_free(a->tls13_ciphersuites);
3270 ssl_cert_free(a->cert);
3271 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free);
3272 sk_X509_NAME_pop_free(a->client_ca_names, X509_NAME_free);
3273 sk_X509_pop_free(a->extra_certs, X509_free);
3274 a->comp_methods = NULL;
3275 #ifndef OPENSSL_NO_SRTP
3276 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles);
3277 #endif
3278 #ifndef OPENSSL_NO_SRP
3279 SSL_CTX_SRP_CTX_free(a);
3280 #endif
3281 #ifndef OPENSSL_NO_ENGINE
3282 ENGINE_finish(a->client_cert_engine);
3283 #endif
3284
3285 #ifndef OPENSSL_NO_EC
3286 OPENSSL_free(a->ext.ecpointformats);
3287 OPENSSL_free(a->ext.supportedgroups);
3288 #endif
3289 OPENSSL_free(a->ext.alpn);
3290 OPENSSL_secure_free(a->ext.secure);
3291
3292 CRYPTO_THREAD_lock_free(a->lock);
3293
3294 OPENSSL_free(a);
3295 }
3296
3297 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb)
3298 {
3299 ctx->default_passwd_callback = cb;
3300 }
3301
3302 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u)
3303 {
3304 ctx->default_passwd_callback_userdata = u;
3305 }
3306
3307 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx)
3308 {
3309 return ctx->default_passwd_callback;
3310 }
3311
3312 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx)
3313 {
3314 return ctx->default_passwd_callback_userdata;
3315 }
3316
3317 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb)
3318 {
3319 s->default_passwd_callback = cb;
3320 }
3321
3322 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u)
3323 {
3324 s->default_passwd_callback_userdata = u;
3325 }
3326
3327 pem_password_cb *SSL_get_default_passwd_cb(SSL *s)
3328 {
3329 return s->default_passwd_callback;
3330 }
3331
3332 void *SSL_get_default_passwd_cb_userdata(SSL *s)
3333 {
3334 return s->default_passwd_callback_userdata;
3335 }
3336
3337 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
3338 int (*cb) (X509_STORE_CTX *, void *),
3339 void *arg)
3340 {
3341 ctx->app_verify_callback = cb;
3342 ctx->app_verify_arg = arg;
3343 }
3344
3345 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
3346 int (*cb) (int, X509_STORE_CTX *))
3347 {
3348 ctx->verify_mode = mode;
3349 ctx->default_verify_callback = cb;
3350 }
3351
3352 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth)
3353 {
3354 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
3355 }
3356
3357 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg)
3358 {
3359 ssl_cert_set_cert_cb(c->cert, cb, arg);
3360 }
3361
3362 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg)
3363 {
3364 ssl_cert_set_cert_cb(s->cert, cb, arg);
3365 }
3366
3367 void ssl_set_masks(SSL *s)
3368 {
3369 CERT *c = s->cert;
3370 uint32_t *pvalid = s->s3.tmp.valid_flags;
3371 int rsa_enc, rsa_sign, dh_tmp, dsa_sign;
3372 unsigned long mask_k, mask_a;
3373 #ifndef OPENSSL_NO_EC
3374 int have_ecc_cert, ecdsa_ok;
3375 #endif
3376 if (c == NULL)
3377 return;
3378
3379 #ifndef OPENSSL_NO_DH
3380 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto);
3381 #else
3382 dh_tmp = 0;
3383 #endif
3384
3385 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3386 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3387 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID;
3388 #ifndef OPENSSL_NO_EC
3389 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID;
3390 #endif
3391 mask_k = 0;
3392 mask_a = 0;
3393
3394 OSSL_TRACE4(TLS_CIPHER, "dh_tmp=%d rsa_enc=%d rsa_sign=%d dsa_sign=%d\n",
3395 dh_tmp, rsa_enc, rsa_sign, dsa_sign);
3396
3397 #ifndef OPENSSL_NO_GOST
3398 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) {
3399 mask_k |= SSL_kGOST;
3400 mask_a |= SSL_aGOST12;
3401 }
3402 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) {
3403 mask_k |= SSL_kGOST;
3404 mask_a |= SSL_aGOST12;
3405 }
3406 if (ssl_has_cert(s, SSL_PKEY_GOST01)) {
3407 mask_k |= SSL_kGOST;
3408 mask_a |= SSL_aGOST01;
3409 }
3410 #endif
3411
3412 if (rsa_enc)
3413 mask_k |= SSL_kRSA;
3414
3415 if (dh_tmp)
3416 mask_k |= SSL_kDHE;
3417
3418 /*
3419 * If we only have an RSA-PSS certificate allow RSA authentication
3420 * if TLS 1.2 and peer supports it.
3421 */
3422
3423 if (rsa_enc || rsa_sign || (ssl_has_cert(s, SSL_PKEY_RSA_PSS_SIGN)
3424 && pvalid[SSL_PKEY_RSA_PSS_SIGN] & CERT_PKEY_EXPLICIT_SIGN
3425 && TLS1_get_version(s) == TLS1_2_VERSION))
3426 mask_a |= SSL_aRSA;
3427
3428 if (dsa_sign) {
3429 mask_a |= SSL_aDSS;
3430 }
3431
3432 mask_a |= SSL_aNULL;
3433
3434 /*
3435 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites
3436 * depending on the key usage extension.
3437 */
3438 #ifndef OPENSSL_NO_EC
3439 if (have_ecc_cert) {
3440 uint32_t ex_kusage;
3441 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509);
3442 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE;
3443 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN))
3444 ecdsa_ok = 0;
3445 if (ecdsa_ok)
3446 mask_a |= SSL_aECDSA;
3447 }
3448 /* Allow Ed25519 for TLS 1.2 if peer supports it */
3449 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED25519)
3450 && pvalid[SSL_PKEY_ED25519] & CERT_PKEY_EXPLICIT_SIGN
3451 && TLS1_get_version(s) == TLS1_2_VERSION)
3452 mask_a |= SSL_aECDSA;
3453
3454 /* Allow Ed448 for TLS 1.2 if peer supports it */
3455 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED448)
3456 && pvalid[SSL_PKEY_ED448] & CERT_PKEY_EXPLICIT_SIGN
3457 && TLS1_get_version(s) == TLS1_2_VERSION)
3458 mask_a |= SSL_aECDSA;
3459 #endif
3460
3461 #ifndef OPENSSL_NO_EC
3462 mask_k |= SSL_kECDHE;
3463 #endif
3464
3465 #ifndef OPENSSL_NO_PSK
3466 mask_k |= SSL_kPSK;
3467 mask_a |= SSL_aPSK;
3468 if (mask_k & SSL_kRSA)
3469 mask_k |= SSL_kRSAPSK;
3470 if (mask_k & SSL_kDHE)
3471 mask_k |= SSL_kDHEPSK;
3472 if (mask_k & SSL_kECDHE)
3473 mask_k |= SSL_kECDHEPSK;
3474 #endif
3475
3476 s->s3.tmp.mask_k = mask_k;
3477 s->s3.tmp.mask_a = mask_a;
3478 }
3479
3480 #ifndef OPENSSL_NO_EC
3481
3482 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s)
3483 {
3484 if (s->s3.tmp.new_cipher->algorithm_auth & SSL_aECDSA) {
3485 /* key usage, if present, must allow signing */
3486 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) {
3487 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG,
3488 SSL_R_ECC_CERT_NOT_FOR_SIGNING);
3489 return 0;
3490 }
3491 }
3492 return 1; /* all checks are ok */
3493 }
3494
3495 #endif
3496
3497 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo,
3498 size_t *serverinfo_length)
3499 {
3500 CERT_PKEY *cpk = s->s3.tmp.cert;
3501 *serverinfo_length = 0;
3502
3503 if (cpk == NULL || cpk->serverinfo == NULL)
3504 return 0;
3505
3506 *serverinfo = cpk->serverinfo;
3507 *serverinfo_length = cpk->serverinfo_length;
3508 return 1;
3509 }
3510
3511 void ssl_update_cache(SSL *s, int mode)
3512 {
3513 int i;
3514
3515 /*
3516 * If the session_id_length is 0, we are not supposed to cache it, and it
3517 * would be rather hard to do anyway :-)
3518 */
3519 if (s->session->session_id_length == 0)
3520 return;
3521
3522 /*
3523 * If sid_ctx_length is 0 there is no specific application context
3524 * associated with this session, so when we try to resume it and
3525 * SSL_VERIFY_PEER is requested to verify the client identity, we have no
3526 * indication that this is actually a session for the proper application
3527 * context, and the *handshake* will fail, not just the resumption attempt.
3528 * Do not cache (on the server) these sessions that are not resumable
3529 * (clients can set SSL_VERIFY_PEER without needing a sid_ctx set).
3530 */
3531 if (s->server && s->session->sid_ctx_length == 0
3532 && (s->verify_mode & SSL_VERIFY_PEER) != 0)
3533 return;
3534
3535 i = s->session_ctx->session_cache_mode;
3536 if ((i & mode) != 0
3537 && (!s->hit || SSL_IS_TLS13(s))) {
3538 /*
3539 * Add the session to the internal cache. In server side TLSv1.3 we
3540 * normally don't do this because by default it's a full stateless ticket
3541 * with only a dummy session id so there is no reason to cache it,
3542 * unless:
3543 * - we are doing early_data, in which case we cache so that we can
3544 * detect replays
3545 * - the application has set a remove_session_cb so needs to know about
3546 * session timeout events
3547 * - SSL_OP_NO_TICKET is set in which case it is a stateful ticket
3548 */
3549 if ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) == 0
3550 && (!SSL_IS_TLS13(s)
3551 || !s->server
3552 || (s->max_early_data > 0
3553 && (s->options & SSL_OP_NO_ANTI_REPLAY) == 0)
3554 || s->session_ctx->remove_session_cb != NULL
3555 || (s->options & SSL_OP_NO_TICKET) != 0))
3556 SSL_CTX_add_session(s->session_ctx, s->session);
3557
3558 /*
3559 * Add the session to the external cache. We do this even in server side
3560 * TLSv1.3 without early data because some applications just want to
3561 * know about the creation of a session and aren't doing a full cache.
3562 */
3563 if (s->session_ctx->new_session_cb != NULL) {
3564 SSL_SESSION_up_ref(s->session);
3565 if (!s->session_ctx->new_session_cb(s, s->session))
3566 SSL_SESSION_free(s->session);
3567 }
3568 }
3569
3570 /* auto flush every 255 connections */
3571 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) {
3572 TSAN_QUALIFIER int *stat;
3573 if (mode & SSL_SESS_CACHE_CLIENT)
3574 stat = &s->session_ctx->stats.sess_connect_good;
3575 else
3576 stat = &s->session_ctx->stats.sess_accept_good;
3577 if ((tsan_load(stat) & 0xff) == 0xff)
3578 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL));
3579 }
3580 }
3581
3582 const SSL_METHOD *SSL_CTX_get_ssl_method(const SSL_CTX *ctx)
3583 {
3584 return ctx->method;
3585 }
3586
3587 const SSL_METHOD *SSL_get_ssl_method(const SSL *s)
3588 {
3589 return s->method;
3590 }
3591
3592 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth)
3593 {
3594 int ret = 1;
3595
3596 if (s->method != meth) {
3597 const SSL_METHOD *sm = s->method;
3598 int (*hf) (SSL *) = s->handshake_func;
3599
3600 if (sm->version == meth->version)
3601 s->method = meth;
3602 else {
3603 sm->ssl_free(s);
3604 s->method = meth;
3605 ret = s->method->ssl_new(s);
3606 }
3607
3608 if (hf == sm->ssl_connect)
3609 s->handshake_func = meth->ssl_connect;
3610 else if (hf == sm->ssl_accept)
3611 s->handshake_func = meth->ssl_accept;
3612 }
3613 return ret;
3614 }
3615
3616 int SSL_get_error(const SSL *s, int i)
3617 {
3618 int reason;
3619 unsigned long l;
3620 BIO *bio;
3621
3622 if (i > 0)
3623 return SSL_ERROR_NONE;
3624
3625 /*
3626 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
3627 * where we do encode the error
3628 */
3629 if ((l = ERR_peek_error()) != 0) {
3630 if (ERR_GET_LIB(l) == ERR_LIB_SYS)
3631 return SSL_ERROR_SYSCALL;
3632 else
3633 return SSL_ERROR_SSL;
3634 }
3635
3636 if (SSL_want_read(s)) {
3637 bio = SSL_get_rbio(s);
3638 if (BIO_should_read(bio))
3639 return SSL_ERROR_WANT_READ;
3640 else if (BIO_should_write(bio))
3641 /*
3642 * This one doesn't make too much sense ... We never try to write
3643 * to the rbio, and an application program where rbio and wbio
3644 * are separate couldn't even know what it should wait for.
3645 * However if we ever set s->rwstate incorrectly (so that we have
3646 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and
3647 * wbio *are* the same, this test works around that bug; so it
3648 * might be safer to keep it.
3649 */
3650 return SSL_ERROR_WANT_WRITE;
3651 else if (BIO_should_io_special(bio)) {
3652 reason = BIO_get_retry_reason(bio);
3653 if (reason == BIO_RR_CONNECT)
3654 return SSL_ERROR_WANT_CONNECT;
3655 else if (reason == BIO_RR_ACCEPT)
3656 return SSL_ERROR_WANT_ACCEPT;
3657 else
3658 return SSL_ERROR_SYSCALL; /* unknown */
3659 }
3660 }
3661
3662 if (SSL_want_write(s)) {
3663 /* Access wbio directly - in order to use the buffered bio if present */
3664 bio = s->wbio;
3665 if (BIO_should_write(bio))
3666 return SSL_ERROR_WANT_WRITE;
3667 else if (BIO_should_read(bio))
3668 /*
3669 * See above (SSL_want_read(s) with BIO_should_write(bio))
3670 */
3671 return SSL_ERROR_WANT_READ;
3672 else if (BIO_should_io_special(bio)) {
3673 reason = BIO_get_retry_reason(bio);
3674 if (reason == BIO_RR_CONNECT)
3675 return SSL_ERROR_WANT_CONNECT;
3676 else if (reason == BIO_RR_ACCEPT)
3677 return SSL_ERROR_WANT_ACCEPT;
3678 else
3679 return SSL_ERROR_SYSCALL;
3680 }
3681 }
3682 if (SSL_want_x509_lookup(s))
3683 return SSL_ERROR_WANT_X509_LOOKUP;
3684 if (SSL_want_async(s))
3685 return SSL_ERROR_WANT_ASYNC;
3686 if (SSL_want_async_job(s))
3687 return SSL_ERROR_WANT_ASYNC_JOB;
3688 if (SSL_want_client_hello_cb(s))
3689 return SSL_ERROR_WANT_CLIENT_HELLO_CB;
3690
3691 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
3692 (s->s3.warn_alert == SSL_AD_CLOSE_NOTIFY))
3693 return SSL_ERROR_ZERO_RETURN;
3694
3695 return SSL_ERROR_SYSCALL;
3696 }
3697
3698 static int ssl_do_handshake_intern(void *vargs)
3699 {
3700 struct ssl_async_args *args;
3701 SSL *s;
3702
3703 args = (struct ssl_async_args *)vargs;
3704 s = args->s;
3705
3706 return s->handshake_func(s);
3707 }
3708
3709 int SSL_do_handshake(SSL *s)
3710 {
3711 int ret = 1;
3712
3713 if (s->handshake_func == NULL) {
3714 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET);
3715 return -1;
3716 }
3717
3718 ossl_statem_check_finish_init(s, -1);
3719
3720 s->method->ssl_renegotiate_check(s, 0);
3721
3722 if (SSL_in_init(s) || SSL_in_before(s)) {
3723 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
3724 struct ssl_async_args args;
3725
3726 args.s = s;
3727
3728 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern);
3729 } else {
3730 ret = s->handshake_func(s);
3731 }
3732 }
3733 return ret;
3734 }
3735
3736 void SSL_set_accept_state(SSL *s)
3737 {
3738 s->server = 1;
3739 s->shutdown = 0;
3740 ossl_statem_clear(s);
3741 s->handshake_func = s->method->ssl_accept;
3742 clear_ciphers(s);
3743 }
3744
3745 void SSL_set_connect_state(SSL *s)
3746 {
3747 s->server = 0;
3748 s->shutdown = 0;
3749 ossl_statem_clear(s);
3750 s->handshake_func = s->method->ssl_connect;
3751 clear_ciphers(s);
3752 }
3753
3754 int ssl_undefined_function(SSL *s)
3755 {
3756 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3757 return 0;
3758 }
3759
3760 int ssl_undefined_void_function(void)
3761 {
3762 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION,
3763 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3764 return 0;
3765 }
3766
3767 int ssl_undefined_const_function(const SSL *s)
3768 {
3769 return 0;
3770 }
3771
3772 const SSL_METHOD *ssl_bad_method(int ver)
3773 {
3774 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3775 return NULL;
3776 }
3777
3778 const char *ssl_protocol_to_string(int version)
3779 {
3780 switch(version)
3781 {
3782 case TLS1_3_VERSION:
3783 return "TLSv1.3";
3784
3785 case TLS1_2_VERSION:
3786 return "TLSv1.2";
3787
3788 case TLS1_1_VERSION:
3789 return "TLSv1.1";
3790
3791 case TLS1_VERSION:
3792 return "TLSv1";
3793
3794 case SSL3_VERSION:
3795 return "SSLv3";
3796
3797 case DTLS1_BAD_VER:
3798 return "DTLSv0.9";
3799
3800 case DTLS1_VERSION:
3801 return "DTLSv1";
3802
3803 case DTLS1_2_VERSION:
3804 return "DTLSv1.2";
3805
3806 default:
3807 return "unknown";
3808 }
3809 }
3810
3811 const char *SSL_get_version(const SSL *s)
3812 {
3813 return ssl_protocol_to_string(s->version);
3814 }
3815
3816 static int dup_ca_names(STACK_OF(X509_NAME) **dst, STACK_OF(X509_NAME) *src)
3817 {
3818 STACK_OF(X509_NAME) *sk;
3819 X509_NAME *xn;
3820 int i;
3821
3822 if (src == NULL) {
3823 *dst = NULL;
3824 return 1;
3825 }
3826
3827 if ((sk = sk_X509_NAME_new_null()) == NULL)
3828 return 0;
3829 for (i = 0; i < sk_X509_NAME_num(src); i++) {
3830 xn = X509_NAME_dup(sk_X509_NAME_value(src, i));
3831 if (xn == NULL) {
3832 sk_X509_NAME_pop_free(sk, X509_NAME_free);
3833 return 0;
3834 }
3835 if (sk_X509_NAME_insert(sk, xn, i) == 0) {
3836 X509_NAME_free(xn);
3837 sk_X509_NAME_pop_free(sk, X509_NAME_free);
3838 return 0;
3839 }
3840 }
3841 *dst = sk;
3842
3843 return 1;
3844 }
3845
3846 SSL *SSL_dup(SSL *s)
3847 {
3848 SSL *ret;
3849 int i;
3850
3851 /* If we're not quiescent, just up_ref! */
3852 if (!SSL_in_init(s) || !SSL_in_before(s)) {
3853 CRYPTO_UP_REF(&s->references, &i, s->lock);
3854 return s;
3855 }
3856
3857 /*
3858 * Otherwise, copy configuration state, and session if set.
3859 */
3860 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL)
3861 return NULL;
3862
3863 if (s->session != NULL) {
3864 /*
3865 * Arranges to share the same session via up_ref. This "copies"
3866 * session-id, SSL_METHOD, sid_ctx, and 'cert'
3867 */
3868 if (!SSL_copy_session_id(ret, s))
3869 goto err;
3870 } else {
3871 /*
3872 * No session has been established yet, so we have to expect that
3873 * s->cert or ret->cert will be changed later -- they should not both
3874 * point to the same object, and thus we can't use
3875 * SSL_copy_session_id.
3876 */
3877 if (!SSL_set_ssl_method(ret, s->method))
3878 goto err;
3879
3880 if (s->cert != NULL) {
3881 ssl_cert_free(ret->cert);
3882 ret->cert = ssl_cert_dup(s->cert);
3883 if (ret->cert == NULL)
3884 goto err;
3885 }
3886
3887 if (!SSL_set_session_id_context(ret, s->sid_ctx,
3888 (int)s->sid_ctx_length))
3889 goto err;
3890 }
3891
3892 if (!ssl_dane_dup(ret, s))
3893 goto err;
3894 ret->version = s->version;
3895 ret->options = s->options;
3896 ret->mode = s->mode;
3897 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s));
3898 SSL_set_read_ahead(ret, SSL_get_read_ahead(s));
3899 ret->msg_callback = s->msg_callback;
3900 ret->msg_callback_arg = s->msg_callback_arg;
3901 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s));
3902 SSL_set_verify_depth(ret, SSL_get_verify_depth(s));
3903 ret->generate_session_id = s->generate_session_id;
3904
3905 SSL_set_info_callback(ret, SSL_get_info_callback(s));
3906
3907 /* copy app data, a little dangerous perhaps */
3908 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data))
3909 goto err;
3910
3911 /* setup rbio, and wbio */
3912 if (s->rbio != NULL) {
3913 if (!BIO_dup_state(s->rbio, (char *)&ret->rbio))
3914 goto err;
3915 }
3916 if (s->wbio != NULL) {
3917 if (s->wbio != s->rbio) {
3918 if (!BIO_dup_state(s->wbio, (char *)&ret->wbio))
3919 goto err;
3920 } else {
3921 BIO_up_ref(ret->rbio);
3922 ret->wbio = ret->rbio;
3923 }
3924 }
3925
3926 ret->server = s->server;
3927 if (s->handshake_func) {
3928 if (s->server)
3929 SSL_set_accept_state(ret);
3930 else
3931 SSL_set_connect_state(ret);
3932 }
3933 ret->shutdown = s->shutdown;
3934 ret->hit = s->hit;
3935
3936 ret->default_passwd_callback = s->default_passwd_callback;
3937 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata;
3938
3939 X509_VERIFY_PARAM_inherit(ret->param, s->param);
3940
3941 /* dup the cipher_list and cipher_list_by_id stacks */
3942 if (s->cipher_list != NULL) {
3943 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL)
3944 goto err;
3945 }
3946 if (s->cipher_list_by_id != NULL)
3947 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id))
3948 == NULL)
3949 goto err;
3950
3951 /* Dup the client_CA list */
3952 if (!dup_ca_names(&ret->ca_names, s->ca_names)
3953 || !dup_ca_names(&ret->client_ca_names, s->client_ca_names))
3954 goto err;
3955
3956 return ret;
3957
3958 err:
3959 SSL_free(ret);
3960 return NULL;
3961 }
3962
3963 void ssl_clear_cipher_ctx(SSL *s)
3964 {
3965 if (s->enc_read_ctx != NULL) {
3966 EVP_CIPHER_CTX_free(s->enc_read_ctx);
3967 s->enc_read_ctx = NULL;
3968 }
3969 if (s->enc_write_ctx != NULL) {
3970 EVP_CIPHER_CTX_free(s->enc_write_ctx);
3971 s->enc_write_ctx = NULL;
3972 }
3973 #ifndef OPENSSL_NO_COMP
3974 COMP_CTX_free(s->expand);
3975 s->expand = NULL;
3976 COMP_CTX_free(s->compress);
3977 s->compress = NULL;
3978 #endif
3979 }
3980
3981 X509 *SSL_get_certificate(const SSL *s)
3982 {
3983 if (s->cert != NULL)
3984 return s->cert->key->x509;
3985 else
3986 return NULL;
3987 }
3988
3989 EVP_PKEY *SSL_get_privatekey(const SSL *s)
3990 {
3991 if (s->cert != NULL)
3992 return s->cert->key->privatekey;
3993 else
3994 return NULL;
3995 }
3996
3997 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx)
3998 {
3999 if (ctx->cert != NULL)
4000 return ctx->cert->key->x509;
4001 else
4002 return NULL;
4003 }
4004
4005 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx)
4006 {
4007 if (ctx->cert != NULL)
4008 return ctx->cert->key->privatekey;
4009 else
4010 return NULL;
4011 }
4012
4013 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s)
4014 {
4015 if ((s->session != NULL) && (s->session->cipher != NULL))
4016 return s->session->cipher;
4017 return NULL;
4018 }
4019
4020 const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s)
4021 {
4022 return s->s3.tmp.new_cipher;
4023 }
4024
4025 const COMP_METHOD *SSL_get_current_compression(const SSL *s)
4026 {
4027 #ifndef OPENSSL_NO_COMP
4028 return s->compress ? COMP_CTX_get_method(s->compress) : NULL;
4029 #else
4030 return NULL;
4031 #endif
4032 }
4033
4034 const COMP_METHOD *SSL_get_current_expansion(const SSL *s)
4035 {
4036 #ifndef OPENSSL_NO_COMP
4037 return s->expand ? COMP_CTX_get_method(s->expand) : NULL;
4038 #else
4039 return NULL;
4040 #endif
4041 }
4042
4043 int ssl_init_wbio_buffer(SSL *s)
4044 {
4045 BIO *bbio;
4046
4047 if (s->bbio != NULL) {
4048 /* Already buffered. */
4049 return 1;
4050 }
4051
4052 bbio = BIO_new(BIO_f_buffer());
4053 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) {
4054 BIO_free(bbio);
4055 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB);
4056 return 0;
4057 }
4058 s->bbio = bbio;
4059 s->wbio = BIO_push(bbio, s->wbio);
4060
4061 return 1;
4062 }
4063
4064 int ssl_free_wbio_buffer(SSL *s)
4065 {
4066 /* callers ensure s is never null */
4067 if (s->bbio == NULL)
4068 return 1;
4069
4070 s->wbio = BIO_pop(s->wbio);
4071 BIO_free(s->bbio);
4072 s->bbio = NULL;
4073
4074 return 1;
4075 }
4076
4077 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode)
4078 {
4079 ctx->quiet_shutdown = mode;
4080 }
4081
4082 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx)
4083 {
4084 return ctx->quiet_shutdown;
4085 }
4086
4087 void SSL_set_quiet_shutdown(SSL *s, int mode)
4088 {
4089 s->quiet_shutdown = mode;
4090 }
4091
4092 int SSL_get_quiet_shutdown(const SSL *s)
4093 {
4094 return s->quiet_shutdown;
4095 }
4096
4097 void SSL_set_shutdown(SSL *s, int mode)
4098 {
4099 s->shutdown = mode;
4100 }
4101
4102 int SSL_get_shutdown(const SSL *s)
4103 {
4104 return s->shutdown;
4105 }
4106
4107 int SSL_version(const SSL *s)
4108 {
4109 return s->version;
4110 }
4111
4112 int SSL_client_version(const SSL *s)
4113 {
4114 return s->client_version;
4115 }
4116
4117 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl)
4118 {
4119 return ssl->ctx;
4120 }
4121
4122 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx)
4123 {
4124 CERT *new_cert;
4125 if (ssl->ctx == ctx)
4126 return ssl->ctx;
4127 if (ctx == NULL)
4128 ctx = ssl->session_ctx;
4129 new_cert = ssl_cert_dup(ctx->cert);
4130 if (new_cert == NULL) {
4131 return NULL;
4132 }
4133
4134 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) {
4135 ssl_cert_free(new_cert);
4136 return NULL;
4137 }
4138
4139 ssl_cert_free(ssl->cert);
4140 ssl->cert = new_cert;
4141
4142 /*
4143 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH),
4144 * so setter APIs must prevent invalid lengths from entering the system.
4145 */
4146 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx)))
4147 return NULL;
4148
4149 /*
4150 * If the session ID context matches that of the parent SSL_CTX,
4151 * inherit it from the new SSL_CTX as well. If however the context does
4152 * not match (i.e., it was set per-ssl with SSL_set_session_id_context),
4153 * leave it unchanged.
4154 */
4155 if ((ssl->ctx != NULL) &&
4156 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) &&
4157 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) {
4158 ssl->sid_ctx_length = ctx->sid_ctx_length;
4159 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx));
4160 }
4161
4162 SSL_CTX_up_ref(ctx);
4163 SSL_CTX_free(ssl->ctx); /* decrement reference count */
4164 ssl->ctx = ctx;
4165
4166 return ssl->ctx;
4167 }
4168
4169 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx)
4170 {
4171 return X509_STORE_set_default_paths(ctx->cert_store);
4172 }
4173
4174 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx)
4175 {
4176 X509_LOOKUP *lookup;
4177
4178 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir());
4179 if (lookup == NULL)
4180 return 0;
4181 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
4182
4183 /* Clear any errors if the default directory does not exist */
4184 ERR_clear_error();
4185
4186 return 1;
4187 }
4188
4189 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx)
4190 {
4191 X509_LOOKUP *lookup;
4192
4193 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file());
4194 if (lookup == NULL)
4195 return 0;
4196
4197 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT);
4198
4199 /* Clear any errors if the default file does not exist */
4200 ERR_clear_error();
4201
4202 return 1;
4203 }
4204
4205 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
4206 const char *CApath)
4207 {
4208 return X509_STORE_load_locations(ctx->cert_store, CAfile, CApath);
4209 }
4210
4211 void SSL_set_info_callback(SSL *ssl,
4212 void (*cb) (const SSL *ssl, int type, int val))
4213 {
4214 ssl->info_callback = cb;
4215 }
4216
4217 /*
4218 * One compiler (Diab DCC) doesn't like argument names in returned function
4219 * pointer.
4220 */
4221 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ ,
4222 int /* type */ ,
4223 int /* val */ ) {
4224 return ssl->info_callback;
4225 }
4226
4227 void SSL_set_verify_result(SSL *ssl, long arg)
4228 {
4229 ssl->verify_result = arg;
4230 }
4231
4232 long SSL_get_verify_result(const SSL *ssl)
4233 {
4234 return ssl->verify_result;
4235 }
4236
4237 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen)
4238 {
4239 if (outlen == 0)
4240 return sizeof(ssl->s3.client_random);
4241 if (outlen > sizeof(ssl->s3.client_random))
4242 outlen = sizeof(ssl->s3.client_random);
4243 memcpy(out, ssl->s3.client_random, outlen);
4244 return outlen;
4245 }
4246
4247 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen)
4248 {
4249 if (outlen == 0)
4250 return sizeof(ssl->s3.server_random);
4251 if (outlen > sizeof(ssl->s3.server_random))
4252 outlen = sizeof(ssl->s3.server_random);
4253 memcpy(out, ssl->s3.server_random, outlen);
4254 return outlen;
4255 }
4256
4257 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session,
4258 unsigned char *out, size_t outlen)
4259 {
4260 if (outlen == 0)
4261 return session->master_key_length;
4262 if (outlen > session->master_key_length)
4263 outlen = session->master_key_length;
4264 memcpy(out, session->master_key, outlen);
4265 return outlen;
4266 }
4267
4268 int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in,
4269 size_t len)
4270 {
4271 if (len > sizeof(sess->master_key))
4272 return 0;
4273
4274 memcpy(sess->master_key, in, len);
4275 sess->master_key_length = len;
4276 return 1;
4277 }
4278
4279
4280 int SSL_set_ex_data(SSL *s, int idx, void *arg)
4281 {
4282 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
4283 }
4284
4285 void *SSL_get_ex_data(const SSL *s, int idx)
4286 {
4287 return CRYPTO_get_ex_data(&s->ex_data, idx);
4288 }
4289
4290 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg)
4291 {
4292 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
4293 }
4294
4295 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx)
4296 {
4297 return CRYPTO_get_ex_data(&s->ex_data, idx);
4298 }
4299
4300 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx)
4301 {
4302 return ctx->cert_store;
4303 }
4304
4305 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store)
4306 {
4307 X509_STORE_free(ctx->cert_store);
4308 ctx->cert_store = store;
4309 }
4310
4311 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store)
4312 {
4313 if (store != NULL)
4314 X509_STORE_up_ref(store);
4315 SSL_CTX_set_cert_store(ctx, store);
4316 }
4317
4318 int SSL_want(const SSL *s)
4319 {
4320 return s->rwstate;
4321 }
4322
4323 /**
4324 * \brief Set the callback for generating temporary DH keys.
4325 * \param ctx the SSL context.
4326 * \param dh the callback
4327 */
4328
4329 #ifndef OPENSSL_NO_DH
4330 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
4331 DH *(*dh) (SSL *ssl, int is_export,
4332 int keylength))
4333 {
4334 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
4335 }
4336
4337 void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export,
4338 int keylength))
4339 {
4340 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
4341 }
4342 #endif
4343
4344 #ifndef OPENSSL_NO_PSK
4345 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint)
4346 {
4347 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
4348 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
4349 return 0;
4350 }
4351 OPENSSL_free(ctx->cert->psk_identity_hint);
4352 if (identity_hint != NULL) {
4353 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
4354 if (ctx->cert->psk_identity_hint == NULL)
4355 return 0;
4356 } else
4357 ctx->cert->psk_identity_hint = NULL;
4358 return 1;
4359 }
4360
4361 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint)
4362 {
4363 if (s == NULL)
4364 return 0;
4365
4366 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
4367 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
4368 return 0;
4369 }
4370 OPENSSL_free(s->cert->psk_identity_hint);
4371 if (identity_hint != NULL) {
4372 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
4373 if (s->cert->psk_identity_hint == NULL)
4374 return 0;
4375 } else
4376 s->cert->psk_identity_hint = NULL;
4377 return 1;
4378 }
4379
4380 const char *SSL_get_psk_identity_hint(const SSL *s)
4381 {
4382 if (s == NULL || s->session == NULL)
4383 return NULL;
4384 return s->session->psk_identity_hint;
4385 }
4386
4387 const char *SSL_get_psk_identity(const SSL *s)
4388 {
4389 if (s == NULL || s->session == NULL)
4390 return NULL;
4391 return s->session->psk_identity;
4392 }
4393
4394 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb)
4395 {
4396 s->psk_client_callback = cb;
4397 }
4398
4399 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb)
4400 {
4401 ctx->psk_client_callback = cb;
4402 }
4403
4404 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb)
4405 {
4406 s->psk_server_callback = cb;
4407 }
4408
4409 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb)
4410 {
4411 ctx->psk_server_callback = cb;
4412 }
4413 #endif
4414
4415 void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb)
4416 {
4417 s->psk_find_session_cb = cb;
4418 }
4419
4420 void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx,
4421 SSL_psk_find_session_cb_func cb)
4422 {
4423 ctx->psk_find_session_cb = cb;
4424 }
4425
4426 void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb)
4427 {
4428 s->psk_use_session_cb = cb;
4429 }
4430
4431 void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx,
4432 SSL_psk_use_session_cb_func cb)
4433 {
4434 ctx->psk_use_session_cb = cb;
4435 }
4436
4437 void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
4438 void (*cb) (int write_p, int version,
4439 int content_type, const void *buf,
4440 size_t len, SSL *ssl, void *arg))
4441 {
4442 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4443 }
4444
4445 void SSL_set_msg_callback(SSL *ssl,
4446 void (*cb) (int write_p, int version,
4447 int content_type, const void *buf,
4448 size_t len, SSL *ssl, void *arg))
4449 {
4450 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4451 }
4452
4453 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx,
4454 int (*cb) (SSL *ssl,
4455 int
4456 is_forward_secure))
4457 {
4458 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4459 (void (*)(void))cb);
4460 }
4461
4462 void SSL_set_not_resumable_session_callback(SSL *ssl,
4463 int (*cb) (SSL *ssl,
4464 int is_forward_secure))
4465 {
4466 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4467 (void (*)(void))cb);
4468 }
4469
4470 void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx,
4471 size_t (*cb) (SSL *ssl, int type,
4472 size_t len, void *arg))
4473 {
4474 ctx->record_padding_cb = cb;
4475 }
4476
4477 void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg)
4478 {
4479 ctx->record_padding_arg = arg;
4480 }
4481
4482 void *SSL_CTX_get_record_padding_callback_arg(const SSL_CTX *ctx)
4483 {
4484 return ctx->record_padding_arg;
4485 }
4486
4487 int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size)
4488 {
4489 /* block size of 0 or 1 is basically no padding */
4490 if (block_size == 1)
4491 ctx->block_padding = 0;
4492 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4493 ctx->block_padding = block_size;
4494 else
4495 return 0;
4496 return 1;
4497 }
4498
4499 void SSL_set_record_padding_callback(SSL *ssl,
4500 size_t (*cb) (SSL *ssl, int type,
4501 size_t len, void *arg))
4502 {
4503 ssl->record_padding_cb = cb;
4504 }
4505
4506 void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg)
4507 {
4508 ssl->record_padding_arg = arg;
4509 }
4510
4511 void *SSL_get_record_padding_callback_arg(const SSL *ssl)
4512 {
4513 return ssl->record_padding_arg;
4514 }
4515
4516 int SSL_set_block_padding(SSL *ssl, size_t block_size)
4517 {
4518 /* block size of 0 or 1 is basically no padding */
4519 if (block_size == 1)
4520 ssl->block_padding = 0;
4521 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4522 ssl->block_padding = block_size;
4523 else
4524 return 0;
4525 return 1;
4526 }
4527
4528 int SSL_set_num_tickets(SSL *s, size_t num_tickets)
4529 {
4530 s->num_tickets = num_tickets;
4531
4532 return 1;
4533 }
4534
4535 size_t SSL_get_num_tickets(const SSL *s)
4536 {
4537 return s->num_tickets;
4538 }
4539
4540 int SSL_CTX_set_num_tickets(SSL_CTX *ctx, size_t num_tickets)
4541 {
4542 ctx->num_tickets = num_tickets;
4543
4544 return 1;
4545 }
4546
4547 size_t SSL_CTX_get_num_tickets(const SSL_CTX *ctx)
4548 {
4549 return ctx->num_tickets;
4550 }
4551
4552 /*
4553 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer
4554 * variable, freeing EVP_MD_CTX previously stored in that variable, if any.
4555 * If EVP_MD pointer is passed, initializes ctx with this |md|.
4556 * Returns the newly allocated ctx;
4557 */
4558
4559 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md)
4560 {
4561 ssl_clear_hash_ctx(hash);
4562 *hash = EVP_MD_CTX_new();
4563 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) {
4564 EVP_MD_CTX_free(*hash);
4565 *hash = NULL;
4566 return NULL;
4567 }
4568 return *hash;
4569 }
4570
4571 void ssl_clear_hash_ctx(EVP_MD_CTX **hash)
4572 {
4573
4574 EVP_MD_CTX_free(*hash);
4575 *hash = NULL;
4576 }
4577
4578 /* Retrieve handshake hashes */
4579 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen,
4580 size_t *hashlen)
4581 {
4582 EVP_MD_CTX *ctx = NULL;
4583 EVP_MD_CTX *hdgst = s->s3.handshake_dgst;
4584 int hashleni = EVP_MD_CTX_size(hdgst);
4585 int ret = 0;
4586
4587 if (hashleni < 0 || (size_t)hashleni > outlen) {
4588 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH,
4589 ERR_R_INTERNAL_ERROR);
4590 goto err;
4591 }
4592
4593 ctx = EVP_MD_CTX_new();
4594 if (ctx == NULL)
4595 goto err;
4596
4597 if (!EVP_MD_CTX_copy_ex(ctx, hdgst)
4598 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0) {
4599 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH,
4600 ERR_R_INTERNAL_ERROR);
4601 goto err;
4602 }
4603
4604 *hashlen = hashleni;
4605
4606 ret = 1;
4607 err:
4608 EVP_MD_CTX_free(ctx);
4609 return ret;
4610 }
4611
4612 int SSL_session_reused(const SSL *s)
4613 {
4614 return s->hit;
4615 }
4616
4617 int SSL_is_server(const SSL *s)
4618 {
4619 return s->server;
4620 }
4621
4622 #if !OPENSSL_API_1_1_0
4623 void SSL_set_debug(SSL *s, int debug)
4624 {
4625 /* Old function was do-nothing anyway... */
4626 (void)s;
4627 (void)debug;
4628 }
4629 #endif
4630
4631 void SSL_set_security_level(SSL *s, int level)
4632 {
4633 s->cert->sec_level = level;
4634 }
4635
4636 int SSL_get_security_level(const SSL *s)
4637 {
4638 return s->cert->sec_level;
4639 }
4640
4641 void SSL_set_security_callback(SSL *s,
4642 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4643 int op, int bits, int nid,
4644 void *other, void *ex))
4645 {
4646 s->cert->sec_cb = cb;
4647 }
4648
4649 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s,
4650 const SSL_CTX *ctx, int op,
4651 int bits, int nid, void *other,
4652 void *ex) {
4653 return s->cert->sec_cb;
4654 }
4655
4656 void SSL_set0_security_ex_data(SSL *s, void *ex)
4657 {
4658 s->cert->sec_ex = ex;
4659 }
4660
4661 void *SSL_get0_security_ex_data(const SSL *s)
4662 {
4663 return s->cert->sec_ex;
4664 }
4665
4666 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level)
4667 {
4668 ctx->cert->sec_level = level;
4669 }
4670
4671 int SSL_CTX_get_security_level(const SSL_CTX *ctx)
4672 {
4673 return ctx->cert->sec_level;
4674 }
4675
4676 void SSL_CTX_set_security_callback(SSL_CTX *ctx,
4677 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4678 int op, int bits, int nid,
4679 void *other, void *ex))
4680 {
4681 ctx->cert->sec_cb = cb;
4682 }
4683
4684 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s,
4685 const SSL_CTX *ctx,
4686 int op, int bits,
4687 int nid,
4688 void *other,
4689 void *ex) {
4690 return ctx->cert->sec_cb;
4691 }
4692
4693 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex)
4694 {
4695 ctx->cert->sec_ex = ex;
4696 }
4697
4698 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx)
4699 {
4700 return ctx->cert->sec_ex;
4701 }
4702
4703 /*
4704 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that
4705 * can return unsigned long, instead of the generic long return value from the
4706 * control interface.
4707 */
4708 unsigned long SSL_CTX_get_options(const SSL_CTX *ctx)
4709 {
4710 return ctx->options;
4711 }
4712
4713 unsigned long SSL_get_options(const SSL *s)
4714 {
4715 return s->options;
4716 }
4717
4718 unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op)
4719 {
4720 return ctx->options |= op;
4721 }
4722
4723 unsigned long SSL_set_options(SSL *s, unsigned long op)
4724 {
4725 return s->options |= op;
4726 }
4727
4728 unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op)
4729 {
4730 return ctx->options &= ~op;
4731 }
4732
4733 unsigned long SSL_clear_options(SSL *s, unsigned long op)
4734 {
4735 return s->options &= ~op;
4736 }
4737
4738 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s)
4739 {
4740 return s->verified_chain;
4741 }
4742
4743 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id);
4744
4745 #ifndef OPENSSL_NO_CT
4746
4747 /*
4748 * Moves SCTs from the |src| stack to the |dst| stack.
4749 * The source of each SCT will be set to |origin|.
4750 * If |dst| points to a NULL pointer, a new stack will be created and owned by
4751 * the caller.
4752 * Returns the number of SCTs moved, or a negative integer if an error occurs.
4753 */
4754 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src,
4755 sct_source_t origin)
4756 {
4757 int scts_moved = 0;
4758 SCT *sct = NULL;
4759
4760 if (*dst == NULL) {
4761 *dst = sk_SCT_new_null();
4762 if (*dst == NULL) {
4763 SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE);
4764 goto err;
4765 }
4766 }
4767
4768 while ((sct = sk_SCT_pop(src)) != NULL) {
4769 if (SCT_set_source(sct, origin) != 1)
4770 goto err;
4771
4772 if (sk_SCT_push(*dst, sct) <= 0)
4773 goto err;
4774 scts_moved += 1;
4775 }
4776
4777 return scts_moved;
4778 err:
4779 if (sct != NULL)
4780 sk_SCT_push(src, sct); /* Put the SCT back */
4781 return -1;
4782 }
4783
4784 /*
4785 * Look for data collected during ServerHello and parse if found.
4786 * Returns the number of SCTs extracted.
4787 */
4788 static int ct_extract_tls_extension_scts(SSL *s)
4789 {
4790 int scts_extracted = 0;
4791
4792 if (s->ext.scts != NULL) {
4793 const unsigned char *p = s->ext.scts;
4794 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len);
4795
4796 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION);
4797
4798 SCT_LIST_free(scts);
4799 }
4800
4801 return scts_extracted;
4802 }
4803
4804 /*
4805 * Checks for an OCSP response and then attempts to extract any SCTs found if it
4806 * contains an SCT X509 extension. They will be stored in |s->scts|.
4807 * Returns:
4808 * - The number of SCTs extracted, assuming an OCSP response exists.
4809 * - 0 if no OCSP response exists or it contains no SCTs.
4810 * - A negative integer if an error occurs.
4811 */
4812 static int ct_extract_ocsp_response_scts(SSL *s)
4813 {
4814 # ifndef OPENSSL_NO_OCSP
4815 int scts_extracted = 0;
4816 const unsigned char *p;
4817 OCSP_BASICRESP *br = NULL;
4818 OCSP_RESPONSE *rsp = NULL;
4819 STACK_OF(SCT) *scts = NULL;
4820 int i;
4821
4822 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0)
4823 goto err;
4824
4825 p = s->ext.ocsp.resp;
4826 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len);
4827 if (rsp == NULL)
4828 goto err;
4829
4830 br = OCSP_response_get1_basic(rsp);
4831 if (br == NULL)
4832 goto err;
4833
4834 for (i = 0; i < OCSP_resp_count(br); ++i) {
4835 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i);
4836
4837 if (single == NULL)
4838 continue;
4839
4840 scts =
4841 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL);
4842 scts_extracted =
4843 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE);
4844 if (scts_extracted < 0)
4845 goto err;
4846 }
4847 err:
4848 SCT_LIST_free(scts);
4849 OCSP_BASICRESP_free(br);
4850 OCSP_RESPONSE_free(rsp);
4851 return scts_extracted;
4852 # else
4853 /* Behave as if no OCSP response exists */
4854 return 0;
4855 # endif
4856 }
4857
4858 /*
4859 * Attempts to extract SCTs from the peer certificate.
4860 * Return the number of SCTs extracted, or a negative integer if an error
4861 * occurs.
4862 */
4863 static int ct_extract_x509v3_extension_scts(SSL *s)
4864 {
4865 int scts_extracted = 0;
4866 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4867
4868 if (cert != NULL) {
4869 STACK_OF(SCT) *scts =
4870 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL);
4871
4872 scts_extracted =
4873 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION);
4874
4875 SCT_LIST_free(scts);
4876 }
4877
4878 return scts_extracted;
4879 }
4880
4881 /*
4882 * Attempts to find all received SCTs by checking TLS extensions, the OCSP
4883 * response (if it exists) and X509v3 extensions in the certificate.
4884 * Returns NULL if an error occurs.
4885 */
4886 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s)
4887 {
4888 if (!s->scts_parsed) {
4889 if (ct_extract_tls_extension_scts(s) < 0 ||
4890 ct_extract_ocsp_response_scts(s) < 0 ||
4891 ct_extract_x509v3_extension_scts(s) < 0)
4892 goto err;
4893
4894 s->scts_parsed = 1;
4895 }
4896 return s->scts;
4897 err:
4898 return NULL;
4899 }
4900
4901 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx,
4902 const STACK_OF(SCT) *scts, void *unused_arg)
4903 {
4904 return 1;
4905 }
4906
4907 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx,
4908 const STACK_OF(SCT) *scts, void *unused_arg)
4909 {
4910 int count = scts != NULL ? sk_SCT_num(scts) : 0;
4911 int i;
4912
4913 for (i = 0; i < count; ++i) {
4914 SCT *sct = sk_SCT_value(scts, i);
4915 int status = SCT_get_validation_status(sct);
4916
4917 if (status == SCT_VALIDATION_STATUS_VALID)
4918 return 1;
4919 }
4920 SSLerr(SSL_F_CT_STRICT, SSL_R_NO_VALID_SCTS);
4921 return 0;
4922 }
4923
4924 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback,
4925 void *arg)
4926 {
4927 /*
4928 * Since code exists that uses the custom extension handler for CT, look
4929 * for this and throw an error if they have already registered to use CT.
4930 */
4931 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx,
4932 TLSEXT_TYPE_signed_certificate_timestamp))
4933 {
4934 SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK,
4935 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4936 return 0;
4937 }
4938
4939 if (callback != NULL) {
4940 /*
4941 * If we are validating CT, then we MUST accept SCTs served via OCSP
4942 */
4943 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp))
4944 return 0;
4945 }
4946
4947 s->ct_validation_callback = callback;
4948 s->ct_validation_callback_arg = arg;
4949
4950 return 1;
4951 }
4952
4953 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx,
4954 ssl_ct_validation_cb callback, void *arg)
4955 {
4956 /*
4957 * Since code exists that uses the custom extension handler for CT, look for
4958 * this and throw an error if they have already registered to use CT.
4959 */
4960 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx,
4961 TLSEXT_TYPE_signed_certificate_timestamp))
4962 {
4963 SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK,
4964 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4965 return 0;
4966 }
4967
4968 ctx->ct_validation_callback = callback;
4969 ctx->ct_validation_callback_arg = arg;
4970 return 1;
4971 }
4972
4973 int SSL_ct_is_enabled(const SSL *s)
4974 {
4975 return s->ct_validation_callback != NULL;
4976 }
4977
4978 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx)
4979 {
4980 return ctx->ct_validation_callback != NULL;
4981 }
4982
4983 int ssl_validate_ct(SSL *s)
4984 {
4985 int ret = 0;
4986 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4987 X509 *issuer;
4988 SSL_DANE *dane = &s->dane;
4989 CT_POLICY_EVAL_CTX *ctx = NULL;
4990 const STACK_OF(SCT) *scts;
4991
4992 /*
4993 * If no callback is set, the peer is anonymous, or its chain is invalid,
4994 * skip SCT validation - just return success. Applications that continue
4995 * handshakes without certificates, with unverified chains, or pinned leaf
4996 * certificates are outside the scope of the WebPKI and CT.
4997 *
4998 * The above exclusions notwithstanding the vast majority of peers will
4999 * have rather ordinary certificate chains validated by typical
5000 * applications that perform certificate verification and therefore will
5001 * process SCTs when enabled.
5002 */
5003 if (s->ct_validation_callback == NULL || cert == NULL ||
5004 s->verify_result != X509_V_OK ||
5005 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1)
5006 return 1;
5007
5008 /*
5009 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3)
5010 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2
5011 */
5012 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) {
5013 switch (dane->mtlsa->usage) {
5014 case DANETLS_USAGE_DANE_TA:
5015 case DANETLS_USAGE_DANE_EE:
5016 return 1;
5017 }
5018 }
5019
5020 ctx = CT_POLICY_EVAL_CTX_new();
5021 if (ctx == NULL) {
5022 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_VALIDATE_CT,
5023 ERR_R_MALLOC_FAILURE);
5024 goto end;
5025 }
5026
5027 issuer = sk_X509_value(s->verified_chain, 1);
5028 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert);
5029 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer);
5030 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store);
5031 CT_POLICY_EVAL_CTX_set_time(
5032 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000);
5033
5034 scts = SSL_get0_peer_scts(s);
5035
5036 /*
5037 * This function returns success (> 0) only when all the SCTs are valid, 0
5038 * when some are invalid, and < 0 on various internal errors (out of
5039 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient
5040 * reason to abort the handshake, that decision is up to the callback.
5041 * Therefore, we error out only in the unexpected case that the return
5042 * value is negative.
5043 *
5044 * XXX: One might well argue that the return value of this function is an
5045 * unfortunate design choice. Its job is only to determine the validation
5046 * status of each of the provided SCTs. So long as it correctly separates
5047 * the wheat from the chaff it should return success. Failure in this case
5048 * ought to correspond to an inability to carry out its duties.
5049 */
5050 if (SCT_LIST_validate(scts, ctx) < 0) {
5051 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT,
5052 SSL_R_SCT_VERIFICATION_FAILED);
5053 goto end;
5054 }
5055
5056 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg);
5057 if (ret < 0)
5058 ret = 0; /* This function returns 0 on failure */
5059 if (!ret)
5060 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT,
5061 SSL_R_CALLBACK_FAILED);
5062
5063 end:
5064 CT_POLICY_EVAL_CTX_free(ctx);
5065 /*
5066 * With SSL_VERIFY_NONE the session may be cached and re-used despite a
5067 * failure return code here. Also the application may wish the complete
5068 * the handshake, and then disconnect cleanly at a higher layer, after
5069 * checking the verification status of the completed connection.
5070 *
5071 * We therefore force a certificate verification failure which will be
5072 * visible via SSL_get_verify_result() and cached as part of any resumed
5073 * session.
5074 *
5075 * Note: the permissive callback is for information gathering only, always
5076 * returns success, and does not affect verification status. Only the
5077 * strict callback or a custom application-specified callback can trigger
5078 * connection failure or record a verification error.
5079 */
5080 if (ret <= 0)
5081 s->verify_result = X509_V_ERR_NO_VALID_SCTS;
5082 return ret;
5083 }
5084
5085 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode)
5086 {
5087 switch (validation_mode) {
5088 default:
5089 SSLerr(SSL_F_SSL_CTX_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
5090 return 0;
5091 case SSL_CT_VALIDATION_PERMISSIVE:
5092 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL);
5093 case SSL_CT_VALIDATION_STRICT:
5094 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL);
5095 }
5096 }
5097
5098 int SSL_enable_ct(SSL *s, int validation_mode)
5099 {
5100 switch (validation_mode) {
5101 default:
5102 SSLerr(SSL_F_SSL_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
5103 return 0;
5104 case SSL_CT_VALIDATION_PERMISSIVE:
5105 return SSL_set_ct_validation_callback(s, ct_permissive, NULL);
5106 case SSL_CT_VALIDATION_STRICT:
5107 return SSL_set_ct_validation_callback(s, ct_strict, NULL);
5108 }
5109 }
5110
5111 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx)
5112 {
5113 return CTLOG_STORE_load_default_file(ctx->ctlog_store);
5114 }
5115
5116 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path)
5117 {
5118 return CTLOG_STORE_load_file(ctx->ctlog_store, path);
5119 }
5120
5121 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs)
5122 {
5123 CTLOG_STORE_free(ctx->ctlog_store);
5124 ctx->ctlog_store = logs;
5125 }
5126
5127 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx)
5128 {
5129 return ctx->ctlog_store;
5130 }
5131
5132 #endif /* OPENSSL_NO_CT */
5133
5134 void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb,
5135 void *arg)
5136 {
5137 c->client_hello_cb = cb;
5138 c->client_hello_cb_arg = arg;
5139 }
5140
5141 int SSL_client_hello_isv2(SSL *s)
5142 {
5143 if (s->clienthello == NULL)
5144 return 0;
5145 return s->clienthello->isv2;
5146 }
5147
5148 unsigned int SSL_client_hello_get0_legacy_version(SSL *s)
5149 {
5150 if (s->clienthello == NULL)
5151 return 0;
5152 return s->clienthello->legacy_version;
5153 }
5154
5155 size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out)
5156 {
5157 if (s->clienthello == NULL)
5158 return 0;
5159 if (out != NULL)
5160 *out = s->clienthello->random;
5161 return SSL3_RANDOM_SIZE;
5162 }
5163
5164 size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out)
5165 {
5166 if (s->clienthello == NULL)
5167 return 0;
5168 if (out != NULL)
5169 *out = s->clienthello->session_id;
5170 return s->clienthello->session_id_len;
5171 }
5172
5173 size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out)
5174 {
5175 if (s->clienthello == NULL)
5176 return 0;
5177 if (out != NULL)
5178 *out = PACKET_data(&s->clienthello->ciphersuites);
5179 return PACKET_remaining(&s->clienthello->ciphersuites);
5180 }
5181
5182 size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out)
5183 {
5184 if (s->clienthello == NULL)
5185 return 0;
5186 if (out != NULL)
5187 *out = s->clienthello->compressions;
5188 return s->clienthello->compressions_len;
5189 }
5190
5191 int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen)
5192 {
5193 RAW_EXTENSION *ext;
5194 int *present;
5195 size_t num = 0, i;
5196
5197 if (s->clienthello == NULL || out == NULL || outlen == NULL)
5198 return 0;
5199 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
5200 ext = s->clienthello->pre_proc_exts + i;
5201 if (ext->present)
5202 num++;
5203 }
5204 if (num == 0) {
5205 *out = NULL;
5206 *outlen = 0;
5207 return 1;
5208 }
5209 if ((present = OPENSSL_malloc(sizeof(*present) * num)) == NULL) {
5210 SSLerr(SSL_F_SSL_CLIENT_HELLO_GET1_EXTENSIONS_PRESENT,
5211 ERR_R_MALLOC_FAILURE);
5212 return 0;
5213 }
5214 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
5215 ext = s->clienthello->pre_proc_exts + i;
5216 if (ext->present) {
5217 if (ext->received_order >= num)
5218 goto err;
5219 present[ext->received_order] = ext->type;
5220 }
5221 }
5222 *out = present;
5223 *outlen = num;
5224 return 1;
5225 err:
5226 OPENSSL_free(present);
5227 return 0;
5228 }
5229
5230 int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out,
5231 size_t *outlen)
5232 {
5233 size_t i;
5234 RAW_EXTENSION *r;
5235
5236 if (s->clienthello == NULL)
5237 return 0;
5238 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) {
5239 r = s->clienthello->pre_proc_exts + i;
5240 if (r->present && r->type == type) {
5241 if (out != NULL)
5242 *out = PACKET_data(&r->data);
5243 if (outlen != NULL)
5244 *outlen = PACKET_remaining(&r->data);
5245 return 1;
5246 }
5247 }
5248 return 0;
5249 }
5250
5251 int SSL_free_buffers(SSL *ssl)
5252 {
5253 RECORD_LAYER *rl = &ssl->rlayer;
5254
5255 if (RECORD_LAYER_read_pending(rl) || RECORD_LAYER_write_pending(rl))
5256 return 0;
5257
5258 RECORD_LAYER_release(rl);
5259 return 1;
5260 }
5261
5262 int SSL_alloc_buffers(SSL *ssl)
5263 {
5264 return ssl3_setup_buffers(ssl);
5265 }
5266
5267 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb)
5268 {
5269 ctx->keylog_callback = cb;
5270 }
5271
5272 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx)
5273 {
5274 return ctx->keylog_callback;
5275 }
5276
5277 static int nss_keylog_int(const char *prefix,
5278 SSL *ssl,
5279 const uint8_t *parameter_1,
5280 size_t parameter_1_len,
5281 const uint8_t *parameter_2,
5282 size_t parameter_2_len)
5283 {
5284 char *out = NULL;
5285 char *cursor = NULL;
5286 size_t out_len = 0;
5287 size_t i;
5288 size_t prefix_len;
5289
5290 if (ssl->ctx->keylog_callback == NULL)
5291 return 1;
5292
5293 /*
5294 * Our output buffer will contain the following strings, rendered with
5295 * space characters in between, terminated by a NULL character: first the
5296 * prefix, then the first parameter, then the second parameter. The
5297 * meaning of each parameter depends on the specific key material being
5298 * logged. Note that the first and second parameters are encoded in
5299 * hexadecimal, so we need a buffer that is twice their lengths.
5300 */
5301 prefix_len = strlen(prefix);
5302 out_len = prefix_len + (2 * parameter_1_len) + (2 * parameter_2_len) + 3;
5303 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) {
5304 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, SSL_F_NSS_KEYLOG_INT,
5305 ERR_R_MALLOC_FAILURE);
5306 return 0;
5307 }
5308
5309 strcpy(cursor, prefix);
5310 cursor += prefix_len;
5311 *cursor++ = ' ';
5312
5313 for (i = 0; i < parameter_1_len; i++) {
5314 sprintf(cursor, "%02x", parameter_1[i]);
5315 cursor += 2;
5316 }
5317 *cursor++ = ' ';
5318
5319 for (i = 0; i < parameter_2_len; i++) {
5320 sprintf(cursor, "%02x", parameter_2[i]);
5321 cursor += 2;
5322 }
5323 *cursor = '\0';
5324
5325 ssl->ctx->keylog_callback(ssl, (const char *)out);
5326 OPENSSL_clear_free(out, out_len);
5327 return 1;
5328
5329 }
5330
5331 int ssl_log_rsa_client_key_exchange(SSL *ssl,
5332 const uint8_t *encrypted_premaster,
5333 size_t encrypted_premaster_len,
5334 const uint8_t *premaster,
5335 size_t premaster_len)
5336 {
5337 if (encrypted_premaster_len < 8) {
5338 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR,
5339 SSL_F_SSL_LOG_RSA_CLIENT_KEY_EXCHANGE, ERR_R_INTERNAL_ERROR);
5340 return 0;
5341 }
5342
5343 /* We only want the first 8 bytes of the encrypted premaster as a tag. */
5344 return nss_keylog_int("RSA",
5345 ssl,
5346 encrypted_premaster,
5347 8,
5348 premaster,
5349 premaster_len);
5350 }
5351
5352 int ssl_log_secret(SSL *ssl,
5353 const char *label,
5354 const uint8_t *secret,
5355 size_t secret_len)
5356 {
5357 return nss_keylog_int(label,
5358 ssl,
5359 ssl->s3.client_random,
5360 SSL3_RANDOM_SIZE,
5361 secret,
5362 secret_len);
5363 }
5364
5365 #define SSLV2_CIPHER_LEN 3
5366
5367 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format)
5368 {
5369 int n;
5370
5371 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5372
5373 if (PACKET_remaining(cipher_suites) == 0) {
5374 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_SSL_CACHE_CIPHERLIST,
5375 SSL_R_NO_CIPHERS_SPECIFIED);
5376 return 0;
5377 }
5378
5379 if (PACKET_remaining(cipher_suites) % n != 0) {
5380 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5381 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5382 return 0;
5383 }
5384
5385 OPENSSL_free(s->s3.tmp.ciphers_raw);
5386 s->s3.tmp.ciphers_raw = NULL;
5387 s->s3.tmp.ciphers_rawlen = 0;
5388
5389 if (sslv2format) {
5390 size_t numciphers = PACKET_remaining(cipher_suites) / n;
5391 PACKET sslv2ciphers = *cipher_suites;
5392 unsigned int leadbyte;
5393 unsigned char *raw;
5394
5395 /*
5396 * We store the raw ciphers list in SSLv3+ format so we need to do some
5397 * preprocessing to convert the list first. If there are any SSLv2 only
5398 * ciphersuites with a non-zero leading byte then we are going to
5399 * slightly over allocate because we won't store those. But that isn't a
5400 * problem.
5401 */
5402 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN);
5403 s->s3.tmp.ciphers_raw = raw;
5404 if (raw == NULL) {
5405 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5406 ERR_R_MALLOC_FAILURE);
5407 return 0;
5408 }
5409 for (s->s3.tmp.ciphers_rawlen = 0;
5410 PACKET_remaining(&sslv2ciphers) > 0;
5411 raw += TLS_CIPHER_LEN) {
5412 if (!PACKET_get_1(&sslv2ciphers, &leadbyte)
5413 || (leadbyte == 0
5414 && !PACKET_copy_bytes(&sslv2ciphers, raw,
5415 TLS_CIPHER_LEN))
5416 || (leadbyte != 0
5417 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) {
5418 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5419 SSL_R_BAD_PACKET);
5420 OPENSSL_free(s->s3.tmp.ciphers_raw);
5421 s->s3.tmp.ciphers_raw = NULL;
5422 s->s3.tmp.ciphers_rawlen = 0;
5423 return 0;
5424 }
5425 if (leadbyte == 0)
5426 s->s3.tmp.ciphers_rawlen += TLS_CIPHER_LEN;
5427 }
5428 } else if (!PACKET_memdup(cipher_suites, &s->s3.tmp.ciphers_raw,
5429 &s->s3.tmp.ciphers_rawlen)) {
5430 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5431 ERR_R_INTERNAL_ERROR);
5432 return 0;
5433 }
5434 return 1;
5435 }
5436
5437 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len,
5438 int isv2format, STACK_OF(SSL_CIPHER) **sk,
5439 STACK_OF(SSL_CIPHER) **scsvs)
5440 {
5441 PACKET pkt;
5442
5443 if (!PACKET_buf_init(&pkt, bytes, len))
5444 return 0;
5445 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, 0);
5446 }
5447
5448 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites,
5449 STACK_OF(SSL_CIPHER) **skp,
5450 STACK_OF(SSL_CIPHER) **scsvs_out,
5451 int sslv2format, int fatal)
5452 {
5453 const SSL_CIPHER *c;
5454 STACK_OF(SSL_CIPHER) *sk = NULL;
5455 STACK_OF(SSL_CIPHER) *scsvs = NULL;
5456 int n;
5457 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */
5458 unsigned char cipher[SSLV2_CIPHER_LEN];
5459
5460 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5461
5462 if (PACKET_remaining(cipher_suites) == 0) {
5463 if (fatal)
5464 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_BYTES_TO_CIPHER_LIST,
5465 SSL_R_NO_CIPHERS_SPECIFIED);
5466 else
5467 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_NO_CIPHERS_SPECIFIED);
5468 return 0;
5469 }
5470
5471 if (PACKET_remaining(cipher_suites) % n != 0) {
5472 if (fatal)
5473 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5474 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5475 else
5476 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST,
5477 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5478 return 0;
5479 }
5480
5481 sk = sk_SSL_CIPHER_new_null();
5482 scsvs = sk_SSL_CIPHER_new_null();
5483 if (sk == NULL || scsvs == NULL) {
5484 if (fatal)
5485 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5486 ERR_R_MALLOC_FAILURE);
5487 else
5488 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5489 goto err;
5490 }
5491
5492 while (PACKET_copy_bytes(cipher_suites, cipher, n)) {
5493 /*
5494 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the
5495 * first byte set to zero, while true SSLv2 ciphers have a non-zero
5496 * first byte. We don't support any true SSLv2 ciphers, so skip them.
5497 */
5498 if (sslv2format && cipher[0] != '\0')
5499 continue;
5500
5501 /* For SSLv2-compat, ignore leading 0-byte. */
5502 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1);
5503 if (c != NULL) {
5504 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) ||
5505 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) {
5506 if (fatal)
5507 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
5508 SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5509 else
5510 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5511 goto err;
5512 }
5513 }
5514 }
5515 if (PACKET_remaining(cipher_suites) > 0) {
5516 if (fatal)
5517 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5518 SSL_R_BAD_LENGTH);
5519 else
5520 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_BAD_LENGTH);
5521 goto err;
5522 }
5523
5524 if (skp != NULL)
5525 *skp = sk;
5526 else
5527 sk_SSL_CIPHER_free(sk);
5528 if (scsvs_out != NULL)
5529 *scsvs_out = scsvs;
5530 else
5531 sk_SSL_CIPHER_free(scsvs);
5532 return 1;
5533 err:
5534 sk_SSL_CIPHER_free(sk);
5535 sk_SSL_CIPHER_free(scsvs);
5536 return 0;
5537 }
5538
5539 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data)
5540 {
5541 ctx->max_early_data = max_early_data;
5542
5543 return 1;
5544 }
5545
5546 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx)
5547 {
5548 return ctx->max_early_data;
5549 }
5550
5551 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data)
5552 {
5553 s->max_early_data = max_early_data;
5554
5555 return 1;
5556 }
5557
5558 uint32_t SSL_get_max_early_data(const SSL *s)
5559 {
5560 return s->max_early_data;
5561 }
5562
5563 int SSL_CTX_set_recv_max_early_data(SSL_CTX *ctx, uint32_t recv_max_early_data)
5564 {
5565 ctx->recv_max_early_data = recv_max_early_data;
5566
5567 return 1;
5568 }
5569
5570 uint32_t SSL_CTX_get_recv_max_early_data(const SSL_CTX *ctx)
5571 {
5572 return ctx->recv_max_early_data;
5573 }
5574
5575 int SSL_set_recv_max_early_data(SSL *s, uint32_t recv_max_early_data)
5576 {
5577 s->recv_max_early_data = recv_max_early_data;
5578
5579 return 1;
5580 }
5581
5582 uint32_t SSL_get_recv_max_early_data(const SSL *s)
5583 {
5584 return s->recv_max_early_data;
5585 }
5586
5587 __owur unsigned int ssl_get_max_send_fragment(const SSL *ssl)
5588 {
5589 /* Return any active Max Fragment Len extension */
5590 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session))
5591 return GET_MAX_FRAGMENT_LENGTH(ssl->session);
5592
5593 /* return current SSL connection setting */
5594 return ssl->max_send_fragment;
5595 }
5596
5597 __owur unsigned int ssl_get_split_send_fragment(const SSL *ssl)
5598 {
5599 /* Return a value regarding an active Max Fragment Len extension */
5600 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session)
5601 && ssl->split_send_fragment > GET_MAX_FRAGMENT_LENGTH(ssl->session))
5602 return GET_MAX_FRAGMENT_LENGTH(ssl->session);
5603
5604 /* else limit |split_send_fragment| to current |max_send_fragment| */
5605 if (ssl->split_send_fragment > ssl->max_send_fragment)
5606 return ssl->max_send_fragment;
5607
5608 /* return current SSL connection setting */
5609 return ssl->split_send_fragment;
5610 }
5611
5612 int SSL_stateless(SSL *s)
5613 {
5614 int ret;
5615
5616 /* Ensure there is no state left over from a previous invocation */
5617 if (!SSL_clear(s))
5618 return 0;
5619
5620 ERR_clear_error();
5621
5622 s->s3.flags |= TLS1_FLAGS_STATELESS;
5623 ret = SSL_accept(s);
5624 s->s3.flags &= ~TLS1_FLAGS_STATELESS;
5625
5626 if (ret > 0 && s->ext.cookieok)
5627 return 1;
5628
5629 if (s->hello_retry_request == SSL_HRR_PENDING && !ossl_statem_in_error(s))
5630 return 0;
5631
5632 return -1;
5633 }
5634
5635 void SSL_CTX_set_post_handshake_auth(SSL_CTX *ctx, int val)
5636 {
5637 ctx->pha_enabled = val;
5638 }
5639
5640 void SSL_set_post_handshake_auth(SSL *ssl, int val)
5641 {
5642 ssl->pha_enabled = val;
5643 }
5644
5645 int SSL_verify_client_post_handshake(SSL *ssl)
5646 {
5647 if (!SSL_IS_TLS13(ssl)) {
5648 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_WRONG_SSL_VERSION);
5649 return 0;
5650 }
5651 if (!ssl->server) {
5652 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_NOT_SERVER);
5653 return 0;
5654 }
5655
5656 if (!SSL_is_init_finished(ssl)) {
5657 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_STILL_IN_INIT);
5658 return 0;
5659 }
5660
5661 switch (ssl->post_handshake_auth) {
5662 case SSL_PHA_NONE:
5663 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_EXTENSION_NOT_RECEIVED);
5664 return 0;
5665 default:
5666 case SSL_PHA_EXT_SENT:
5667 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, ERR_R_INTERNAL_ERROR);
5668 return 0;
5669 case SSL_PHA_EXT_RECEIVED:
5670 break;
5671 case SSL_PHA_REQUEST_PENDING:
5672 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_REQUEST_PENDING);
5673 return 0;
5674 case SSL_PHA_REQUESTED:
5675 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_REQUEST_SENT);
5676 return 0;
5677 }
5678
5679 ssl->post_handshake_auth = SSL_PHA_REQUEST_PENDING;
5680
5681 /* checks verify_mode and algorithm_auth */
5682 if (!send_certificate_request(ssl)) {
5683 ssl->post_handshake_auth = SSL_PHA_EXT_RECEIVED; /* restore on error */
5684 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_INVALID_CONFIG);
5685 return 0;
5686 }
5687
5688 ossl_statem_set_in_init(ssl, 1);
5689 return 1;
5690 }
5691
5692 int SSL_CTX_set_session_ticket_cb(SSL_CTX *ctx,
5693 SSL_CTX_generate_session_ticket_fn gen_cb,
5694 SSL_CTX_decrypt_session_ticket_fn dec_cb,
5695 void *arg)
5696 {
5697 ctx->generate_ticket_cb = gen_cb;
5698 ctx->decrypt_ticket_cb = dec_cb;
5699 ctx->ticket_cb_data = arg;
5700 return 1;
5701 }
5702
5703 void SSL_CTX_set_allow_early_data_cb(SSL_CTX *ctx,
5704 SSL_allow_early_data_cb_fn cb,
5705 void *arg)
5706 {
5707 ctx->allow_early_data_cb = cb;
5708 ctx->allow_early_data_cb_data = arg;
5709 }
5710
5711 void SSL_set_allow_early_data_cb(SSL *s,
5712 SSL_allow_early_data_cb_fn cb,
5713 void *arg)
5714 {
5715 s->allow_early_data_cb = cb;
5716 s->allow_early_data_cb_data = arg;
5717 }