]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_lib.c
Since return is inconsistent, I removed unnecessary parentheses and
[thirdparty/openssl.git] / ssl / ssl_lib.c
1 /*
2 * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the OpenSSL license (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include "ssl_locl.h"
14 #include <openssl/objects.h>
15 #include <openssl/x509v3.h>
16 #include <openssl/rand.h>
17 #include <openssl/ocsp.h>
18 #include <openssl/dh.h>
19 #include <openssl/engine.h>
20 #include <openssl/async.h>
21 #include <openssl/ct.h>
22 #include "internal/cryptlib.h"
23 #include "internal/rand.h"
24 #include "internal/refcount.h"
25
26 const char SSL_version_str[] = OPENSSL_VERSION_TEXT;
27
28 SSL3_ENC_METHOD ssl3_undef_enc_method = {
29 /*
30 * evil casts, but these functions are only called if there's a library
31 * bug
32 */
33 (int (*)(SSL *, SSL3_RECORD *, size_t, int))ssl_undefined_function,
34 (int (*)(SSL *, SSL3_RECORD *, unsigned char *, int))ssl_undefined_function,
35 ssl_undefined_function,
36 (int (*)(SSL *, unsigned char *, unsigned char *, size_t, size_t *))
37 ssl_undefined_function,
38 (int (*)(SSL *, int))ssl_undefined_function,
39 (size_t (*)(SSL *, const char *, size_t, unsigned char *))
40 ssl_undefined_function,
41 NULL, /* client_finished_label */
42 0, /* client_finished_label_len */
43 NULL, /* server_finished_label */
44 0, /* server_finished_label_len */
45 (int (*)(int))ssl_undefined_function,
46 (int (*)(SSL *, unsigned char *, size_t, const char *,
47 size_t, const unsigned char *, size_t,
48 int use_context))ssl_undefined_function,
49 };
50
51 struct ssl_async_args {
52 SSL *s;
53 void *buf;
54 size_t num;
55 enum { READFUNC, WRITEFUNC, OTHERFUNC } type;
56 union {
57 int (*func_read) (SSL *, void *, size_t, size_t *);
58 int (*func_write) (SSL *, const void *, size_t, size_t *);
59 int (*func_other) (SSL *);
60 } f;
61 };
62
63 static const struct {
64 uint8_t mtype;
65 uint8_t ord;
66 int nid;
67 } dane_mds[] = {
68 {
69 DANETLS_MATCHING_FULL, 0, NID_undef
70 },
71 {
72 DANETLS_MATCHING_2256, 1, NID_sha256
73 },
74 {
75 DANETLS_MATCHING_2512, 2, NID_sha512
76 },
77 };
78
79 static int dane_ctx_enable(struct dane_ctx_st *dctx)
80 {
81 const EVP_MD **mdevp;
82 uint8_t *mdord;
83 uint8_t mdmax = DANETLS_MATCHING_LAST;
84 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */
85 size_t i;
86
87 if (dctx->mdevp != NULL)
88 return 1;
89
90 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp));
91 mdord = OPENSSL_zalloc(n * sizeof(*mdord));
92
93 if (mdord == NULL || mdevp == NULL) {
94 OPENSSL_free(mdord);
95 OPENSSL_free(mdevp);
96 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE);
97 return 0;
98 }
99
100 /* Install default entries */
101 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) {
102 const EVP_MD *md;
103
104 if (dane_mds[i].nid == NID_undef ||
105 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL)
106 continue;
107 mdevp[dane_mds[i].mtype] = md;
108 mdord[dane_mds[i].mtype] = dane_mds[i].ord;
109 }
110
111 dctx->mdevp = mdevp;
112 dctx->mdord = mdord;
113 dctx->mdmax = mdmax;
114
115 return 1;
116 }
117
118 static void dane_ctx_final(struct dane_ctx_st *dctx)
119 {
120 OPENSSL_free(dctx->mdevp);
121 dctx->mdevp = NULL;
122
123 OPENSSL_free(dctx->mdord);
124 dctx->mdord = NULL;
125 dctx->mdmax = 0;
126 }
127
128 static void tlsa_free(danetls_record *t)
129 {
130 if (t == NULL)
131 return;
132 OPENSSL_free(t->data);
133 EVP_PKEY_free(t->spki);
134 OPENSSL_free(t);
135 }
136
137 static void dane_final(SSL_DANE *dane)
138 {
139 sk_danetls_record_pop_free(dane->trecs, tlsa_free);
140 dane->trecs = NULL;
141
142 sk_X509_pop_free(dane->certs, X509_free);
143 dane->certs = NULL;
144
145 X509_free(dane->mcert);
146 dane->mcert = NULL;
147 dane->mtlsa = NULL;
148 dane->mdpth = -1;
149 dane->pdpth = -1;
150 }
151
152 /*
153 * dane_copy - Copy dane configuration, sans verification state.
154 */
155 static int ssl_dane_dup(SSL *to, SSL *from)
156 {
157 int num;
158 int i;
159
160 if (!DANETLS_ENABLED(&from->dane))
161 return 1;
162
163 num = sk_danetls_record_num(from->dane.trecs);
164 dane_final(&to->dane);
165 to->dane.flags = from->dane.flags;
166 to->dane.dctx = &to->ctx->dane;
167 to->dane.trecs = sk_danetls_record_new_null();
168
169 if (to->dane.trecs == NULL) {
170 SSLerr(SSL_F_SSL_DANE_DUP, ERR_R_MALLOC_FAILURE);
171 return 0;
172 }
173 if (!sk_danetls_record_reserve(to->dane.trecs, num))
174 return 0;
175
176 for (i = 0; i < num; ++i) {
177 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i);
178
179 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype,
180 t->data, t->dlen) <= 0)
181 return 0;
182 }
183 return 1;
184 }
185
186 static int dane_mtype_set(struct dane_ctx_st *dctx,
187 const EVP_MD *md, uint8_t mtype, uint8_t ord)
188 {
189 int i;
190
191 if (mtype == DANETLS_MATCHING_FULL && md != NULL) {
192 SSLerr(SSL_F_DANE_MTYPE_SET, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL);
193 return 0;
194 }
195
196 if (mtype > dctx->mdmax) {
197 const EVP_MD **mdevp;
198 uint8_t *mdord;
199 int n = ((int)mtype) + 1;
200
201 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp));
202 if (mdevp == NULL) {
203 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
204 return -1;
205 }
206 dctx->mdevp = mdevp;
207
208 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord));
209 if (mdord == NULL) {
210 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
211 return -1;
212 }
213 dctx->mdord = mdord;
214
215 /* Zero-fill any gaps */
216 for (i = dctx->mdmax + 1; i < mtype; ++i) {
217 mdevp[i] = NULL;
218 mdord[i] = 0;
219 }
220
221 dctx->mdmax = mtype;
222 }
223
224 dctx->mdevp[mtype] = md;
225 /* Coerce ordinal of disabled matching types to 0 */
226 dctx->mdord[mtype] = (md == NULL) ? 0 : ord;
227
228 return 1;
229 }
230
231 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype)
232 {
233 if (mtype > dane->dctx->mdmax)
234 return NULL;
235 return dane->dctx->mdevp[mtype];
236 }
237
238 static int dane_tlsa_add(SSL_DANE *dane,
239 uint8_t usage,
240 uint8_t selector,
241 uint8_t mtype, unsigned char *data, size_t dlen)
242 {
243 danetls_record *t;
244 const EVP_MD *md = NULL;
245 int ilen = (int)dlen;
246 int i;
247 int num;
248
249 if (dane->trecs == NULL) {
250 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED);
251 return -1;
252 }
253
254 if (ilen < 0 || dlen != (size_t)ilen) {
255 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH);
256 return 0;
257 }
258
259 if (usage > DANETLS_USAGE_LAST) {
260 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE);
261 return 0;
262 }
263
264 if (selector > DANETLS_SELECTOR_LAST) {
265 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR);
266 return 0;
267 }
268
269 if (mtype != DANETLS_MATCHING_FULL) {
270 md = tlsa_md_get(dane, mtype);
271 if (md == NULL) {
272 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE);
273 return 0;
274 }
275 }
276
277 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) {
278 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH);
279 return 0;
280 }
281 if (!data) {
282 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA);
283 return 0;
284 }
285
286 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) {
287 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
288 return -1;
289 }
290
291 t->usage = usage;
292 t->selector = selector;
293 t->mtype = mtype;
294 t->data = OPENSSL_malloc(dlen);
295 if (t->data == NULL) {
296 tlsa_free(t);
297 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
298 return -1;
299 }
300 memcpy(t->data, data, dlen);
301 t->dlen = dlen;
302
303 /* Validate and cache full certificate or public key */
304 if (mtype == DANETLS_MATCHING_FULL) {
305 const unsigned char *p = data;
306 X509 *cert = NULL;
307 EVP_PKEY *pkey = NULL;
308
309 switch (selector) {
310 case DANETLS_SELECTOR_CERT:
311 if (!d2i_X509(&cert, &p, ilen) || p < data ||
312 dlen != (size_t)(p - data)) {
313 tlsa_free(t);
314 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
315 return 0;
316 }
317 if (X509_get0_pubkey(cert) == NULL) {
318 tlsa_free(t);
319 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
320 return 0;
321 }
322
323 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) {
324 X509_free(cert);
325 break;
326 }
327
328 /*
329 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA
330 * records that contain full certificates of trust-anchors that are
331 * not present in the wire chain. For usage PKIX-TA(0), we augment
332 * the chain with untrusted Full(0) certificates from DNS, in case
333 * they are missing from the chain.
334 */
335 if ((dane->certs == NULL &&
336 (dane->certs = sk_X509_new_null()) == NULL) ||
337 !sk_X509_push(dane->certs, cert)) {
338 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
339 X509_free(cert);
340 tlsa_free(t);
341 return -1;
342 }
343 break;
344
345 case DANETLS_SELECTOR_SPKI:
346 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data ||
347 dlen != (size_t)(p - data)) {
348 tlsa_free(t);
349 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY);
350 return 0;
351 }
352
353 /*
354 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA
355 * records that contain full bare keys of trust-anchors that are
356 * not present in the wire chain.
357 */
358 if (usage == DANETLS_USAGE_DANE_TA)
359 t->spki = pkey;
360 else
361 EVP_PKEY_free(pkey);
362 break;
363 }
364 }
365
366 /*-
367 * Find the right insertion point for the new record.
368 *
369 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that
370 * they can be processed first, as they require no chain building, and no
371 * expiration or hostname checks. Because DANE-EE(3) is numerically
372 * largest, this is accomplished via descending sort by "usage".
373 *
374 * We also sort in descending order by matching ordinal to simplify
375 * the implementation of digest agility in the verification code.
376 *
377 * The choice of order for the selector is not significant, so we
378 * use the same descending order for consistency.
379 */
380 num = sk_danetls_record_num(dane->trecs);
381 for (i = 0; i < num; ++i) {
382 danetls_record *rec = sk_danetls_record_value(dane->trecs, i);
383
384 if (rec->usage > usage)
385 continue;
386 if (rec->usage < usage)
387 break;
388 if (rec->selector > selector)
389 continue;
390 if (rec->selector < selector)
391 break;
392 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype])
393 continue;
394 break;
395 }
396
397 if (!sk_danetls_record_insert(dane->trecs, t, i)) {
398 tlsa_free(t);
399 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
400 return -1;
401 }
402 dane->umask |= DANETLS_USAGE_BIT(usage);
403
404 return 1;
405 }
406
407 /*
408 * Return 0 if there is only one version configured and it was disabled
409 * at configure time. Return 1 otherwise.
410 */
411 static int ssl_check_allowed_versions(int min_version, int max_version)
412 {
413 int minisdtls = 0, maxisdtls = 0;
414
415 /* Figure out if we're doing DTLS versions or TLS versions */
416 if (min_version == DTLS1_BAD_VER
417 || min_version >> 8 == DTLS1_VERSION_MAJOR)
418 minisdtls = 1;
419 if (max_version == DTLS1_BAD_VER
420 || max_version >> 8 == DTLS1_VERSION_MAJOR)
421 maxisdtls = 1;
422 /* A wildcard version of 0 could be DTLS or TLS. */
423 if ((minisdtls && !maxisdtls && max_version != 0)
424 || (maxisdtls && !minisdtls && min_version != 0)) {
425 /* Mixing DTLS and TLS versions will lead to sadness; deny it. */
426 return 0;
427 }
428
429 if (minisdtls || maxisdtls) {
430 /* Do DTLS version checks. */
431 if (min_version == 0)
432 /* Ignore DTLS1_BAD_VER */
433 min_version = DTLS1_VERSION;
434 if (max_version == 0)
435 max_version = DTLS1_2_VERSION;
436 #ifdef OPENSSL_NO_DTLS1_2
437 if (max_version == DTLS1_2_VERSION)
438 max_version = DTLS1_VERSION;
439 #endif
440 #ifdef OPENSSL_NO_DTLS1
441 if (min_version == DTLS1_VERSION)
442 min_version = DTLS1_2_VERSION;
443 #endif
444 /* Done massaging versions; do the check. */
445 if (0
446 #ifdef OPENSSL_NO_DTLS1
447 || (DTLS_VERSION_GE(min_version, DTLS1_VERSION)
448 && DTLS_VERSION_GE(DTLS1_VERSION, max_version))
449 #endif
450 #ifdef OPENSSL_NO_DTLS1_2
451 || (DTLS_VERSION_GE(min_version, DTLS1_2_VERSION)
452 && DTLS_VERSION_GE(DTLS1_2_VERSION, max_version))
453 #endif
454 )
455 return 0;
456 } else {
457 /* Regular TLS version checks. */
458 if (min_version == 0)
459 min_version = SSL3_VERSION;
460 if (max_version == 0)
461 max_version = TLS1_3_VERSION;
462 #ifdef OPENSSL_NO_TLS1_3
463 if (max_version == TLS1_3_VERSION)
464 max_version = TLS1_2_VERSION;
465 #endif
466 #ifdef OPENSSL_NO_TLS1_2
467 if (max_version == TLS1_2_VERSION)
468 max_version = TLS1_1_VERSION;
469 #endif
470 #ifdef OPENSSL_NO_TLS1_1
471 if (max_version == TLS1_1_VERSION)
472 max_version = TLS1_VERSION;
473 #endif
474 #ifdef OPENSSL_NO_TLS1
475 if (max_version == TLS1_VERSION)
476 max_version = SSL3_VERSION;
477 #endif
478 #ifdef OPENSSL_NO_SSL3
479 if (min_version == SSL3_VERSION)
480 min_version = TLS1_VERSION;
481 #endif
482 #ifdef OPENSSL_NO_TLS1
483 if (min_version == TLS1_VERSION)
484 min_version = TLS1_1_VERSION;
485 #endif
486 #ifdef OPENSSL_NO_TLS1_1
487 if (min_version == TLS1_1_VERSION)
488 min_version = TLS1_2_VERSION;
489 #endif
490 #ifdef OPENSSL_NO_TLS1_2
491 if (min_version == TLS1_2_VERSION)
492 min_version = TLS1_3_VERSION;
493 #endif
494 /* Done massaging versions; do the check. */
495 if (0
496 #ifdef OPENSSL_NO_SSL3
497 || (min_version <= SSL3_VERSION && SSL3_VERSION <= max_version)
498 #endif
499 #ifdef OPENSSL_NO_TLS1
500 || (min_version <= TLS1_VERSION && TLS1_VERSION <= max_version)
501 #endif
502 #ifdef OPENSSL_NO_TLS1_1
503 || (min_version <= TLS1_1_VERSION && TLS1_1_VERSION <= max_version)
504 #endif
505 #ifdef OPENSSL_NO_TLS1_2
506 || (min_version <= TLS1_2_VERSION && TLS1_2_VERSION <= max_version)
507 #endif
508 #ifdef OPENSSL_NO_TLS1_3
509 || (min_version <= TLS1_3_VERSION && TLS1_3_VERSION <= max_version)
510 #endif
511 )
512 return 0;
513 }
514 return 1;
515 }
516
517 static void clear_ciphers(SSL *s)
518 {
519 /* clear the current cipher */
520 ssl_clear_cipher_ctx(s);
521 ssl_clear_hash_ctx(&s->read_hash);
522 ssl_clear_hash_ctx(&s->write_hash);
523 }
524
525 int SSL_clear(SSL *s)
526 {
527 if (s->method == NULL) {
528 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED);
529 return 0;
530 }
531
532 if (ssl_clear_bad_session(s)) {
533 SSL_SESSION_free(s->session);
534 s->session = NULL;
535 }
536 SSL_SESSION_free(s->psksession);
537 s->psksession = NULL;
538 OPENSSL_free(s->psksession_id);
539 s->psksession_id = NULL;
540 s->psksession_id_len = 0;
541
542 s->error = 0;
543 s->hit = 0;
544 s->shutdown = 0;
545
546 if (s->renegotiate) {
547 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR);
548 return 0;
549 }
550
551 ossl_statem_clear(s);
552
553 s->version = s->method->version;
554 s->client_version = s->version;
555 s->rwstate = SSL_NOTHING;
556
557 BUF_MEM_free(s->init_buf);
558 s->init_buf = NULL;
559 clear_ciphers(s);
560 s->first_packet = 0;
561
562 s->key_update = SSL_KEY_UPDATE_NONE;
563
564 /* Reset DANE verification result state */
565 s->dane.mdpth = -1;
566 s->dane.pdpth = -1;
567 X509_free(s->dane.mcert);
568 s->dane.mcert = NULL;
569 s->dane.mtlsa = NULL;
570
571 /* Clear the verification result peername */
572 X509_VERIFY_PARAM_move_peername(s->param, NULL);
573
574 /*
575 * Check to see if we were changed into a different method, if so, revert
576 * back.
577 */
578 if (s->method != s->ctx->method) {
579 s->method->ssl_free(s);
580 s->method = s->ctx->method;
581 if (!s->method->ssl_new(s))
582 return 0;
583 } else {
584 if (!s->method->ssl_clear(s))
585 return 0;
586 }
587
588 RECORD_LAYER_clear(&s->rlayer);
589
590 return 1;
591 }
592
593 /** Used to change an SSL_CTXs default SSL method type */
594 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth)
595 {
596 STACK_OF(SSL_CIPHER) *sk;
597
598 ctx->method = meth;
599
600 sk = ssl_create_cipher_list(ctx->method, &(ctx->cipher_list),
601 &(ctx->cipher_list_by_id),
602 SSL_DEFAULT_CIPHER_LIST, ctx->cert);
603 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) {
604 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
605 return (0);
606 }
607 return 1;
608 }
609
610 SSL *SSL_new(SSL_CTX *ctx)
611 {
612 SSL *s;
613
614 if (ctx == NULL) {
615 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX);
616 return (NULL);
617 }
618 if (ctx->method == NULL) {
619 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
620 return (NULL);
621 }
622
623 s = OPENSSL_zalloc(sizeof(*s));
624 if (s == NULL)
625 goto err;
626
627 s->lock = CRYPTO_THREAD_lock_new();
628 if (s->lock == NULL)
629 goto err;
630
631 /*
632 * If not using the standard RAND (say for fuzzing), then don't use a
633 * chained DRBG.
634 */
635 if (RAND_get_rand_method() == RAND_OpenSSL()) {
636 s->drbg = RAND_DRBG_new(NID_aes_128_ctr, RAND_DRBG_FLAG_CTR_USE_DF,
637 RAND_DRBG_get0_global());
638 if (s->drbg == NULL
639 || RAND_DRBG_instantiate(s->drbg, NULL, 0) == 0) {
640 CRYPTO_THREAD_lock_free(s->lock);
641 goto err;
642 }
643 }
644
645 RECORD_LAYER_init(&s->rlayer, s);
646
647 s->options = ctx->options;
648 s->dane.flags = ctx->dane.flags;
649 s->min_proto_version = ctx->min_proto_version;
650 s->max_proto_version = ctx->max_proto_version;
651 s->mode = ctx->mode;
652 s->max_cert_list = ctx->max_cert_list;
653 s->references = 1;
654 s->max_early_data = ctx->max_early_data;
655
656 /*
657 * Earlier library versions used to copy the pointer to the CERT, not
658 * its contents; only when setting new parameters for the per-SSL
659 * copy, ssl_cert_new would be called (and the direct reference to
660 * the per-SSL_CTX settings would be lost, but those still were
661 * indirectly accessed for various purposes, and for that reason they
662 * used to be known as s->ctx->default_cert). Now we don't look at the
663 * SSL_CTX's CERT after having duplicated it once.
664 */
665 s->cert = ssl_cert_dup(ctx->cert);
666 if (s->cert == NULL)
667 goto err;
668
669 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead);
670 s->msg_callback = ctx->msg_callback;
671 s->msg_callback_arg = ctx->msg_callback_arg;
672 s->verify_mode = ctx->verify_mode;
673 s->not_resumable_session_cb = ctx->not_resumable_session_cb;
674 s->record_padding_cb = ctx->record_padding_cb;
675 s->record_padding_arg = ctx->record_padding_arg;
676 s->block_padding = ctx->block_padding;
677 s->sid_ctx_length = ctx->sid_ctx_length;
678 if (!ossl_assert(s->sid_ctx_length <= sizeof s->sid_ctx))
679 goto err;
680 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
681 s->verify_callback = ctx->default_verify_callback;
682 s->generate_session_id = ctx->generate_session_id;
683
684 s->param = X509_VERIFY_PARAM_new();
685 if (s->param == NULL)
686 goto err;
687 X509_VERIFY_PARAM_inherit(s->param, ctx->param);
688 s->quiet_shutdown = ctx->quiet_shutdown;
689 s->max_send_fragment = ctx->max_send_fragment;
690 s->split_send_fragment = ctx->split_send_fragment;
691 s->max_pipelines = ctx->max_pipelines;
692 if (s->max_pipelines > 1)
693 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
694 if (ctx->default_read_buf_len > 0)
695 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len);
696
697 SSL_CTX_up_ref(ctx);
698 s->ctx = ctx;
699 s->ext.debug_cb = 0;
700 s->ext.debug_arg = NULL;
701 s->ext.ticket_expected = 0;
702 s->ext.status_type = ctx->ext.status_type;
703 s->ext.status_expected = 0;
704 s->ext.ocsp.ids = NULL;
705 s->ext.ocsp.exts = NULL;
706 s->ext.ocsp.resp = NULL;
707 s->ext.ocsp.resp_len = 0;
708 SSL_CTX_up_ref(ctx);
709 s->session_ctx = ctx;
710 #ifndef OPENSSL_NO_EC
711 if (ctx->ext.ecpointformats) {
712 s->ext.ecpointformats =
713 OPENSSL_memdup(ctx->ext.ecpointformats,
714 ctx->ext.ecpointformats_len);
715 if (!s->ext.ecpointformats)
716 goto err;
717 s->ext.ecpointformats_len =
718 ctx->ext.ecpointformats_len;
719 }
720 if (ctx->ext.supportedgroups) {
721 s->ext.supportedgroups =
722 OPENSSL_memdup(ctx->ext.supportedgroups,
723 ctx->ext.supportedgroups_len
724 * sizeof(*ctx->ext.supportedgroups));
725 if (!s->ext.supportedgroups)
726 goto err;
727 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len;
728 }
729 #endif
730 #ifndef OPENSSL_NO_NEXTPROTONEG
731 s->ext.npn = NULL;
732 #endif
733
734 if (s->ctx->ext.alpn) {
735 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len);
736 if (s->ext.alpn == NULL)
737 goto err;
738 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len);
739 s->ext.alpn_len = s->ctx->ext.alpn_len;
740 }
741
742 s->verified_chain = NULL;
743 s->verify_result = X509_V_OK;
744
745 s->default_passwd_callback = ctx->default_passwd_callback;
746 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata;
747
748 s->method = ctx->method;
749
750 s->key_update = SSL_KEY_UPDATE_NONE;
751
752 if (!s->method->ssl_new(s))
753 goto err;
754
755 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1;
756
757 if (!SSL_clear(s))
758 goto err;
759
760 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data))
761 goto err;
762
763 #ifndef OPENSSL_NO_PSK
764 s->psk_client_callback = ctx->psk_client_callback;
765 s->psk_server_callback = ctx->psk_server_callback;
766 #endif
767 s->psk_find_session_cb = ctx->psk_find_session_cb;
768 s->psk_use_session_cb = ctx->psk_use_session_cb;
769
770 s->job = NULL;
771
772 #ifndef OPENSSL_NO_CT
773 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback,
774 ctx->ct_validation_callback_arg))
775 goto err;
776 #endif
777
778 return s;
779 err:
780 SSL_free(s);
781 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
782 return NULL;
783 }
784
785 int SSL_is_dtls(const SSL *s)
786 {
787 return SSL_IS_DTLS(s) ? 1 : 0;
788 }
789
790 int SSL_up_ref(SSL *s)
791 {
792 int i;
793
794 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0)
795 return 0;
796
797 REF_PRINT_COUNT("SSL", s);
798 REF_ASSERT_ISNT(i < 2);
799 return ((i > 1) ? 1 : 0);
800 }
801
802 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
803 unsigned int sid_ctx_len)
804 {
805 if (sid_ctx_len > sizeof ctx->sid_ctx) {
806 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT,
807 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
808 return 0;
809 }
810 ctx->sid_ctx_length = sid_ctx_len;
811 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
812
813 return 1;
814 }
815
816 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
817 unsigned int sid_ctx_len)
818 {
819 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
820 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT,
821 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
822 return 0;
823 }
824 ssl->sid_ctx_length = sid_ctx_len;
825 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
826
827 return 1;
828 }
829
830 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb)
831 {
832 CRYPTO_THREAD_write_lock(ctx->lock);
833 ctx->generate_session_id = cb;
834 CRYPTO_THREAD_unlock(ctx->lock);
835 return 1;
836 }
837
838 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb)
839 {
840 CRYPTO_THREAD_write_lock(ssl->lock);
841 ssl->generate_session_id = cb;
842 CRYPTO_THREAD_unlock(ssl->lock);
843 return 1;
844 }
845
846 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
847 unsigned int id_len)
848 {
849 /*
850 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how
851 * we can "construct" a session to give us the desired check - i.e. to
852 * find if there's a session in the hash table that would conflict with
853 * any new session built out of this id/id_len and the ssl_version in use
854 * by this SSL.
855 */
856 SSL_SESSION r, *p;
857
858 if (id_len > sizeof r.session_id)
859 return 0;
860
861 r.ssl_version = ssl->version;
862 r.session_id_length = id_len;
863 memcpy(r.session_id, id, id_len);
864
865 CRYPTO_THREAD_read_lock(ssl->session_ctx->lock);
866 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r);
867 CRYPTO_THREAD_unlock(ssl->session_ctx->lock);
868 return (p != NULL);
869 }
870
871 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose)
872 {
873 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
874 }
875
876 int SSL_set_purpose(SSL *s, int purpose)
877 {
878 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
879 }
880
881 int SSL_CTX_set_trust(SSL_CTX *s, int trust)
882 {
883 return X509_VERIFY_PARAM_set_trust(s->param, trust);
884 }
885
886 int SSL_set_trust(SSL *s, int trust)
887 {
888 return X509_VERIFY_PARAM_set_trust(s->param, trust);
889 }
890
891 int SSL_set1_host(SSL *s, const char *hostname)
892 {
893 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0);
894 }
895
896 int SSL_add1_host(SSL *s, const char *hostname)
897 {
898 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0);
899 }
900
901 void SSL_set_hostflags(SSL *s, unsigned int flags)
902 {
903 X509_VERIFY_PARAM_set_hostflags(s->param, flags);
904 }
905
906 const char *SSL_get0_peername(SSL *s)
907 {
908 return X509_VERIFY_PARAM_get0_peername(s->param);
909 }
910
911 int SSL_CTX_dane_enable(SSL_CTX *ctx)
912 {
913 return dane_ctx_enable(&ctx->dane);
914 }
915
916 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags)
917 {
918 unsigned long orig = ctx->dane.flags;
919
920 ctx->dane.flags |= flags;
921 return orig;
922 }
923
924 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags)
925 {
926 unsigned long orig = ctx->dane.flags;
927
928 ctx->dane.flags &= ~flags;
929 return orig;
930 }
931
932 int SSL_dane_enable(SSL *s, const char *basedomain)
933 {
934 SSL_DANE *dane = &s->dane;
935
936 if (s->ctx->dane.mdmax == 0) {
937 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED);
938 return 0;
939 }
940 if (dane->trecs != NULL) {
941 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED);
942 return 0;
943 }
944
945 /*
946 * Default SNI name. This rejects empty names, while set1_host below
947 * accepts them and disables host name checks. To avoid side-effects with
948 * invalid input, set the SNI name first.
949 */
950 if (s->ext.hostname == NULL) {
951 if (!SSL_set_tlsext_host_name(s, basedomain)) {
952 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
953 return -1;
954 }
955 }
956
957 /* Primary RFC6125 reference identifier */
958 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) {
959 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
960 return -1;
961 }
962
963 dane->mdpth = -1;
964 dane->pdpth = -1;
965 dane->dctx = &s->ctx->dane;
966 dane->trecs = sk_danetls_record_new_null();
967
968 if (dane->trecs == NULL) {
969 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE);
970 return -1;
971 }
972 return 1;
973 }
974
975 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags)
976 {
977 unsigned long orig = ssl->dane.flags;
978
979 ssl->dane.flags |= flags;
980 return orig;
981 }
982
983 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags)
984 {
985 unsigned long orig = ssl->dane.flags;
986
987 ssl->dane.flags &= ~flags;
988 return orig;
989 }
990
991 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki)
992 {
993 SSL_DANE *dane = &s->dane;
994
995 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
996 return -1;
997 if (dane->mtlsa) {
998 if (mcert)
999 *mcert = dane->mcert;
1000 if (mspki)
1001 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL;
1002 }
1003 return dane->mdpth;
1004 }
1005
1006 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector,
1007 uint8_t *mtype, unsigned const char **data, size_t *dlen)
1008 {
1009 SSL_DANE *dane = &s->dane;
1010
1011 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1012 return -1;
1013 if (dane->mtlsa) {
1014 if (usage)
1015 *usage = dane->mtlsa->usage;
1016 if (selector)
1017 *selector = dane->mtlsa->selector;
1018 if (mtype)
1019 *mtype = dane->mtlsa->mtype;
1020 if (data)
1021 *data = dane->mtlsa->data;
1022 if (dlen)
1023 *dlen = dane->mtlsa->dlen;
1024 }
1025 return dane->mdpth;
1026 }
1027
1028 SSL_DANE *SSL_get0_dane(SSL *s)
1029 {
1030 return &s->dane;
1031 }
1032
1033 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector,
1034 uint8_t mtype, unsigned char *data, size_t dlen)
1035 {
1036 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen);
1037 }
1038
1039 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype,
1040 uint8_t ord)
1041 {
1042 return dane_mtype_set(&ctx->dane, md, mtype, ord);
1043 }
1044
1045 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm)
1046 {
1047 return X509_VERIFY_PARAM_set1(ctx->param, vpm);
1048 }
1049
1050 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm)
1051 {
1052 return X509_VERIFY_PARAM_set1(ssl->param, vpm);
1053 }
1054
1055 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx)
1056 {
1057 return ctx->param;
1058 }
1059
1060 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl)
1061 {
1062 return ssl->param;
1063 }
1064
1065 void SSL_certs_clear(SSL *s)
1066 {
1067 ssl_cert_clear_certs(s->cert);
1068 }
1069
1070 void SSL_free(SSL *s)
1071 {
1072 int i;
1073
1074 if (s == NULL)
1075 return;
1076
1077 CRYPTO_DOWN_REF(&s->references, &i, s->lock);
1078 REF_PRINT_COUNT("SSL", s);
1079 if (i > 0)
1080 return;
1081 REF_ASSERT_ISNT(i < 0);
1082
1083 X509_VERIFY_PARAM_free(s->param);
1084 dane_final(&s->dane);
1085 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
1086
1087 /* Ignore return value */
1088 ssl_free_wbio_buffer(s);
1089
1090 BIO_free_all(s->wbio);
1091 BIO_free_all(s->rbio);
1092
1093 BUF_MEM_free(s->init_buf);
1094
1095 /* add extra stuff */
1096 sk_SSL_CIPHER_free(s->cipher_list);
1097 sk_SSL_CIPHER_free(s->cipher_list_by_id);
1098
1099 /* Make the next call work :-) */
1100 if (s->session != NULL) {
1101 ssl_clear_bad_session(s);
1102 SSL_SESSION_free(s->session);
1103 }
1104 SSL_SESSION_free(s->psksession);
1105 OPENSSL_free(s->psksession_id);
1106
1107 clear_ciphers(s);
1108
1109 ssl_cert_free(s->cert);
1110 /* Free up if allocated */
1111
1112 OPENSSL_free(s->ext.hostname);
1113 SSL_CTX_free(s->session_ctx);
1114 #ifndef OPENSSL_NO_EC
1115 OPENSSL_free(s->ext.ecpointformats);
1116 OPENSSL_free(s->ext.supportedgroups);
1117 #endif /* OPENSSL_NO_EC */
1118 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free);
1119 #ifndef OPENSSL_NO_OCSP
1120 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free);
1121 #endif
1122 #ifndef OPENSSL_NO_CT
1123 SCT_LIST_free(s->scts);
1124 OPENSSL_free(s->ext.scts);
1125 #endif
1126 OPENSSL_free(s->ext.ocsp.resp);
1127 OPENSSL_free(s->ext.alpn);
1128 OPENSSL_free(s->ext.tls13_cookie);
1129 OPENSSL_free(s->clienthello);
1130
1131 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free);
1132
1133 sk_X509_pop_free(s->verified_chain, X509_free);
1134
1135 if (s->method != NULL)
1136 s->method->ssl_free(s);
1137
1138 RECORD_LAYER_release(&s->rlayer);
1139
1140 SSL_CTX_free(s->ctx);
1141
1142 ASYNC_WAIT_CTX_free(s->waitctx);
1143
1144 #if !defined(OPENSSL_NO_NEXTPROTONEG)
1145 OPENSSL_free(s->ext.npn);
1146 #endif
1147
1148 #ifndef OPENSSL_NO_SRTP
1149 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles);
1150 #endif
1151
1152 RAND_DRBG_free(s->drbg);
1153 CRYPTO_THREAD_lock_free(s->lock);
1154
1155 OPENSSL_free(s);
1156 }
1157
1158 void SSL_set0_rbio(SSL *s, BIO *rbio)
1159 {
1160 BIO_free_all(s->rbio);
1161 s->rbio = rbio;
1162 }
1163
1164 void SSL_set0_wbio(SSL *s, BIO *wbio)
1165 {
1166 /*
1167 * If the output buffering BIO is still in place, remove it
1168 */
1169 if (s->bbio != NULL)
1170 s->wbio = BIO_pop(s->wbio);
1171
1172 BIO_free_all(s->wbio);
1173 s->wbio = wbio;
1174
1175 /* Re-attach |bbio| to the new |wbio|. */
1176 if (s->bbio != NULL)
1177 s->wbio = BIO_push(s->bbio, s->wbio);
1178 }
1179
1180 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio)
1181 {
1182 /*
1183 * For historical reasons, this function has many different cases in
1184 * ownership handling.
1185 */
1186
1187 /* If nothing has changed, do nothing */
1188 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s))
1189 return;
1190
1191 /*
1192 * If the two arguments are equal then one fewer reference is granted by the
1193 * caller than we want to take
1194 */
1195 if (rbio != NULL && rbio == wbio)
1196 BIO_up_ref(rbio);
1197
1198 /*
1199 * If only the wbio is changed only adopt one reference.
1200 */
1201 if (rbio == SSL_get_rbio(s)) {
1202 SSL_set0_wbio(s, wbio);
1203 return;
1204 }
1205 /*
1206 * There is an asymmetry here for historical reasons. If only the rbio is
1207 * changed AND the rbio and wbio were originally different, then we only
1208 * adopt one reference.
1209 */
1210 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) {
1211 SSL_set0_rbio(s, rbio);
1212 return;
1213 }
1214
1215 /* Otherwise, adopt both references. */
1216 SSL_set0_rbio(s, rbio);
1217 SSL_set0_wbio(s, wbio);
1218 }
1219
1220 BIO *SSL_get_rbio(const SSL *s)
1221 {
1222 return s->rbio;
1223 }
1224
1225 BIO *SSL_get_wbio(const SSL *s)
1226 {
1227 if (s->bbio != NULL) {
1228 /*
1229 * If |bbio| is active, the true caller-configured BIO is its
1230 * |next_bio|.
1231 */
1232 return BIO_next(s->bbio);
1233 }
1234 return s->wbio;
1235 }
1236
1237 int SSL_get_fd(const SSL *s)
1238 {
1239 return SSL_get_rfd(s);
1240 }
1241
1242 int SSL_get_rfd(const SSL *s)
1243 {
1244 int ret = -1;
1245 BIO *b, *r;
1246
1247 b = SSL_get_rbio(s);
1248 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1249 if (r != NULL)
1250 BIO_get_fd(r, &ret);
1251 return (ret);
1252 }
1253
1254 int SSL_get_wfd(const SSL *s)
1255 {
1256 int ret = -1;
1257 BIO *b, *r;
1258
1259 b = SSL_get_wbio(s);
1260 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1261 if (r != NULL)
1262 BIO_get_fd(r, &ret);
1263 return (ret);
1264 }
1265
1266 #ifndef OPENSSL_NO_SOCK
1267 int SSL_set_fd(SSL *s, int fd)
1268 {
1269 int ret = 0;
1270 BIO *bio = NULL;
1271
1272 bio = BIO_new(BIO_s_socket());
1273
1274 if (bio == NULL) {
1275 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB);
1276 goto err;
1277 }
1278 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1279 SSL_set_bio(s, bio, bio);
1280 ret = 1;
1281 err:
1282 return (ret);
1283 }
1284
1285 int SSL_set_wfd(SSL *s, int fd)
1286 {
1287 BIO *rbio = SSL_get_rbio(s);
1288
1289 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET
1290 || (int)BIO_get_fd(rbio, NULL) != fd) {
1291 BIO *bio = BIO_new(BIO_s_socket());
1292
1293 if (bio == NULL) {
1294 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB);
1295 return 0;
1296 }
1297 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1298 SSL_set0_wbio(s, bio);
1299 } else {
1300 BIO_up_ref(rbio);
1301 SSL_set0_wbio(s, rbio);
1302 }
1303 return 1;
1304 }
1305
1306 int SSL_set_rfd(SSL *s, int fd)
1307 {
1308 BIO *wbio = SSL_get_wbio(s);
1309
1310 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET
1311 || ((int)BIO_get_fd(wbio, NULL) != fd)) {
1312 BIO *bio = BIO_new(BIO_s_socket());
1313
1314 if (bio == NULL) {
1315 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB);
1316 return 0;
1317 }
1318 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1319 SSL_set0_rbio(s, bio);
1320 } else {
1321 BIO_up_ref(wbio);
1322 SSL_set0_rbio(s, wbio);
1323 }
1324
1325 return 1;
1326 }
1327 #endif
1328
1329 /* return length of latest Finished message we sent, copy to 'buf' */
1330 size_t SSL_get_finished(const SSL *s, void *buf, size_t count)
1331 {
1332 size_t ret = 0;
1333
1334 if (s->s3 != NULL) {
1335 ret = s->s3->tmp.finish_md_len;
1336 if (count > ret)
1337 count = ret;
1338 memcpy(buf, s->s3->tmp.finish_md, count);
1339 }
1340 return ret;
1341 }
1342
1343 /* return length of latest Finished message we expected, copy to 'buf' */
1344 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count)
1345 {
1346 size_t ret = 0;
1347
1348 if (s->s3 != NULL) {
1349 ret = s->s3->tmp.peer_finish_md_len;
1350 if (count > ret)
1351 count = ret;
1352 memcpy(buf, s->s3->tmp.peer_finish_md, count);
1353 }
1354 return ret;
1355 }
1356
1357 int SSL_get_verify_mode(const SSL *s)
1358 {
1359 return (s->verify_mode);
1360 }
1361
1362 int SSL_get_verify_depth(const SSL *s)
1363 {
1364 return X509_VERIFY_PARAM_get_depth(s->param);
1365 }
1366
1367 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) {
1368 return (s->verify_callback);
1369 }
1370
1371 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx)
1372 {
1373 return (ctx->verify_mode);
1374 }
1375
1376 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx)
1377 {
1378 return X509_VERIFY_PARAM_get_depth(ctx->param);
1379 }
1380
1381 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) {
1382 return (ctx->default_verify_callback);
1383 }
1384
1385 void SSL_set_verify(SSL *s, int mode,
1386 int (*callback) (int ok, X509_STORE_CTX *ctx))
1387 {
1388 s->verify_mode = mode;
1389 if (callback != NULL)
1390 s->verify_callback = callback;
1391 }
1392
1393 void SSL_set_verify_depth(SSL *s, int depth)
1394 {
1395 X509_VERIFY_PARAM_set_depth(s->param, depth);
1396 }
1397
1398 void SSL_set_read_ahead(SSL *s, int yes)
1399 {
1400 RECORD_LAYER_set_read_ahead(&s->rlayer, yes);
1401 }
1402
1403 int SSL_get_read_ahead(const SSL *s)
1404 {
1405 return RECORD_LAYER_get_read_ahead(&s->rlayer);
1406 }
1407
1408 int SSL_pending(const SSL *s)
1409 {
1410 size_t pending = s->method->ssl_pending(s);
1411
1412 /*
1413 * SSL_pending cannot work properly if read-ahead is enabled
1414 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is
1415 * impossible to fix since SSL_pending cannot report errors that may be
1416 * observed while scanning the new data. (Note that SSL_pending() is
1417 * often used as a boolean value, so we'd better not return -1.)
1418 *
1419 * SSL_pending also cannot work properly if the value >INT_MAX. In that case
1420 * we just return INT_MAX.
1421 */
1422 return pending < INT_MAX ? (int)pending : INT_MAX;
1423 }
1424
1425 int SSL_has_pending(const SSL *s)
1426 {
1427 /*
1428 * Similar to SSL_pending() but returns a 1 to indicate that we have
1429 * unprocessed data available or 0 otherwise (as opposed to the number of
1430 * bytes available). Unlike SSL_pending() this will take into account
1431 * read_ahead data. A 1 return simply indicates that we have unprocessed
1432 * data. That data may not result in any application data, or we may fail
1433 * to parse the records for some reason.
1434 */
1435 if (RECORD_LAYER_processed_read_pending(&s->rlayer))
1436 return 1;
1437
1438 return RECORD_LAYER_read_pending(&s->rlayer);
1439 }
1440
1441 X509 *SSL_get_peer_certificate(const SSL *s)
1442 {
1443 X509 *r;
1444
1445 if ((s == NULL) || (s->session == NULL))
1446 r = NULL;
1447 else
1448 r = s->session->peer;
1449
1450 if (r == NULL)
1451 return (r);
1452
1453 X509_up_ref(r);
1454
1455 return (r);
1456 }
1457
1458 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s)
1459 {
1460 STACK_OF(X509) *r;
1461
1462 if ((s == NULL) || (s->session == NULL))
1463 r = NULL;
1464 else
1465 r = s->session->peer_chain;
1466
1467 /*
1468 * If we are a client, cert_chain includes the peer's own certificate; if
1469 * we are a server, it does not.
1470 */
1471
1472 return (r);
1473 }
1474
1475 /*
1476 * Now in theory, since the calling process own 't' it should be safe to
1477 * modify. We need to be able to read f without being hassled
1478 */
1479 int SSL_copy_session_id(SSL *t, const SSL *f)
1480 {
1481 int i;
1482 /* Do we need to to SSL locking? */
1483 if (!SSL_set_session(t, SSL_get_session(f))) {
1484 return 0;
1485 }
1486
1487 /*
1488 * what if we are setup for one protocol version but want to talk another
1489 */
1490 if (t->method != f->method) {
1491 t->method->ssl_free(t);
1492 t->method = f->method;
1493 if (t->method->ssl_new(t) == 0)
1494 return 0;
1495 }
1496
1497 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock);
1498 ssl_cert_free(t->cert);
1499 t->cert = f->cert;
1500 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) {
1501 return 0;
1502 }
1503
1504 return 1;
1505 }
1506
1507 /* Fix this so it checks all the valid key/cert options */
1508 int SSL_CTX_check_private_key(const SSL_CTX *ctx)
1509 {
1510 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) {
1511 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1512 return (0);
1513 }
1514 if (ctx->cert->key->privatekey == NULL) {
1515 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1516 return (0);
1517 }
1518 return (X509_check_private_key
1519 (ctx->cert->key->x509, ctx->cert->key->privatekey));
1520 }
1521
1522 /* Fix this function so that it takes an optional type parameter */
1523 int SSL_check_private_key(const SSL *ssl)
1524 {
1525 if (ssl == NULL) {
1526 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER);
1527 return (0);
1528 }
1529 if (ssl->cert->key->x509 == NULL) {
1530 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1531 return (0);
1532 }
1533 if (ssl->cert->key->privatekey == NULL) {
1534 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1535 return (0);
1536 }
1537 return (X509_check_private_key(ssl->cert->key->x509,
1538 ssl->cert->key->privatekey));
1539 }
1540
1541 int SSL_waiting_for_async(SSL *s)
1542 {
1543 if (s->job)
1544 return 1;
1545
1546 return 0;
1547 }
1548
1549 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds)
1550 {
1551 ASYNC_WAIT_CTX *ctx = s->waitctx;
1552
1553 if (ctx == NULL)
1554 return 0;
1555 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds);
1556 }
1557
1558 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds,
1559 OSSL_ASYNC_FD *delfd, size_t *numdelfds)
1560 {
1561 ASYNC_WAIT_CTX *ctx = s->waitctx;
1562
1563 if (ctx == NULL)
1564 return 0;
1565 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd,
1566 numdelfds);
1567 }
1568
1569 int SSL_accept(SSL *s)
1570 {
1571 if (s->handshake_func == NULL) {
1572 /* Not properly initialized yet */
1573 SSL_set_accept_state(s);
1574 }
1575
1576 return SSL_do_handshake(s);
1577 }
1578
1579 int SSL_connect(SSL *s)
1580 {
1581 if (s->handshake_func == NULL) {
1582 /* Not properly initialized yet */
1583 SSL_set_connect_state(s);
1584 }
1585
1586 return SSL_do_handshake(s);
1587 }
1588
1589 long SSL_get_default_timeout(const SSL *s)
1590 {
1591 return (s->method->get_timeout());
1592 }
1593
1594 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args,
1595 int (*func) (void *))
1596 {
1597 int ret;
1598 if (s->waitctx == NULL) {
1599 s->waitctx = ASYNC_WAIT_CTX_new();
1600 if (s->waitctx == NULL)
1601 return -1;
1602 }
1603 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args,
1604 sizeof(struct ssl_async_args))) {
1605 case ASYNC_ERR:
1606 s->rwstate = SSL_NOTHING;
1607 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC);
1608 return -1;
1609 case ASYNC_PAUSE:
1610 s->rwstate = SSL_ASYNC_PAUSED;
1611 return -1;
1612 case ASYNC_NO_JOBS:
1613 s->rwstate = SSL_ASYNC_NO_JOBS;
1614 return -1;
1615 case ASYNC_FINISH:
1616 s->job = NULL;
1617 return ret;
1618 default:
1619 s->rwstate = SSL_NOTHING;
1620 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR);
1621 /* Shouldn't happen */
1622 return -1;
1623 }
1624 }
1625
1626 static int ssl_io_intern(void *vargs)
1627 {
1628 struct ssl_async_args *args;
1629 SSL *s;
1630 void *buf;
1631 size_t num;
1632
1633 args = (struct ssl_async_args *)vargs;
1634 s = args->s;
1635 buf = args->buf;
1636 num = args->num;
1637 switch (args->type) {
1638 case READFUNC:
1639 return args->f.func_read(s, buf, num, &s->asyncrw);
1640 case WRITEFUNC:
1641 return args->f.func_write(s, buf, num, &s->asyncrw);
1642 case OTHERFUNC:
1643 return args->f.func_other(s);
1644 }
1645 return -1;
1646 }
1647
1648 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1649 {
1650 if (s->handshake_func == NULL) {
1651 SSLerr(SSL_F_SSL_READ_INTERNAL, SSL_R_UNINITIALIZED);
1652 return -1;
1653 }
1654
1655 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1656 s->rwstate = SSL_NOTHING;
1657 return 0;
1658 }
1659
1660 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1661 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) {
1662 SSLerr(SSL_F_SSL_READ_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1663 return 0;
1664 }
1665 /*
1666 * If we are a client and haven't received the ServerHello etc then we
1667 * better do that
1668 */
1669 ossl_statem_check_finish_init(s, 0);
1670
1671 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1672 struct ssl_async_args args;
1673 int ret;
1674
1675 args.s = s;
1676 args.buf = buf;
1677 args.num = num;
1678 args.type = READFUNC;
1679 args.f.func_read = s->method->ssl_read;
1680
1681 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1682 *readbytes = s->asyncrw;
1683 return ret;
1684 } else {
1685 return s->method->ssl_read(s, buf, num, readbytes);
1686 }
1687 }
1688
1689 int SSL_read(SSL *s, void *buf, int num)
1690 {
1691 int ret;
1692 size_t readbytes;
1693
1694 if (num < 0) {
1695 SSLerr(SSL_F_SSL_READ, SSL_R_BAD_LENGTH);
1696 return -1;
1697 }
1698
1699 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes);
1700
1701 /*
1702 * The cast is safe here because ret should be <= INT_MAX because num is
1703 * <= INT_MAX
1704 */
1705 if (ret > 0)
1706 ret = (int)readbytes;
1707
1708 return ret;
1709 }
1710
1711 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1712 {
1713 int ret = ssl_read_internal(s, buf, num, readbytes);
1714
1715 if (ret < 0)
1716 ret = 0;
1717 return ret;
1718 }
1719
1720 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes)
1721 {
1722 int ret;
1723
1724 if (!s->server) {
1725 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1726 return SSL_READ_EARLY_DATA_ERROR;
1727 }
1728
1729 switch (s->early_data_state) {
1730 case SSL_EARLY_DATA_NONE:
1731 if (!SSL_in_before(s)) {
1732 SSLerr(SSL_F_SSL_READ_EARLY_DATA,
1733 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1734 return SSL_READ_EARLY_DATA_ERROR;
1735 }
1736 /* fall through */
1737
1738 case SSL_EARLY_DATA_ACCEPT_RETRY:
1739 s->early_data_state = SSL_EARLY_DATA_ACCEPTING;
1740 ret = SSL_accept(s);
1741 if (ret <= 0) {
1742 /* NBIO or error */
1743 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY;
1744 return SSL_READ_EARLY_DATA_ERROR;
1745 }
1746 /* fall through */
1747
1748 case SSL_EARLY_DATA_READ_RETRY:
1749 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) {
1750 s->early_data_state = SSL_EARLY_DATA_READING;
1751 ret = SSL_read_ex(s, buf, num, readbytes);
1752 /*
1753 * State machine will update early_data_state to
1754 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData
1755 * message
1756 */
1757 if (ret > 0 || (ret <= 0 && s->early_data_state
1758 != SSL_EARLY_DATA_FINISHED_READING)) {
1759 s->early_data_state = SSL_EARLY_DATA_READ_RETRY;
1760 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS
1761 : SSL_READ_EARLY_DATA_ERROR;
1762 }
1763 } else {
1764 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING;
1765 }
1766 *readbytes = 0;
1767 return SSL_READ_EARLY_DATA_FINISH;
1768
1769 default:
1770 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1771 return SSL_READ_EARLY_DATA_ERROR;
1772 }
1773 }
1774
1775 int SSL_get_early_data_status(const SSL *s)
1776 {
1777 return s->ext.early_data;
1778 }
1779
1780 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1781 {
1782 if (s->handshake_func == NULL) {
1783 SSLerr(SSL_F_SSL_PEEK_INTERNAL, SSL_R_UNINITIALIZED);
1784 return -1;
1785 }
1786
1787 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1788 return 0;
1789 }
1790 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1791 struct ssl_async_args args;
1792 int ret;
1793
1794 args.s = s;
1795 args.buf = buf;
1796 args.num = num;
1797 args.type = READFUNC;
1798 args.f.func_read = s->method->ssl_peek;
1799
1800 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1801 *readbytes = s->asyncrw;
1802 return ret;
1803 } else {
1804 return s->method->ssl_peek(s, buf, num, readbytes);
1805 }
1806 }
1807
1808 int SSL_peek(SSL *s, void *buf, int num)
1809 {
1810 int ret;
1811 size_t readbytes;
1812
1813 if (num < 0) {
1814 SSLerr(SSL_F_SSL_PEEK, SSL_R_BAD_LENGTH);
1815 return -1;
1816 }
1817
1818 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes);
1819
1820 /*
1821 * The cast is safe here because ret should be <= INT_MAX because num is
1822 * <= INT_MAX
1823 */
1824 if (ret > 0)
1825 ret = (int)readbytes;
1826
1827 return ret;
1828 }
1829
1830
1831 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1832 {
1833 int ret = ssl_peek_internal(s, buf, num, readbytes);
1834
1835 if (ret < 0)
1836 ret = 0;
1837 return ret;
1838 }
1839
1840 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written)
1841 {
1842 if (s->handshake_func == NULL) {
1843 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_UNINITIALIZED);
1844 return -1;
1845 }
1846
1847 if (s->shutdown & SSL_SENT_SHUTDOWN) {
1848 s->rwstate = SSL_NOTHING;
1849 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_PROTOCOL_IS_SHUTDOWN);
1850 return -1;
1851 }
1852
1853 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1854 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY
1855 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) {
1856 SSLerr(SSL_F_SSL_WRITE_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1857 return 0;
1858 }
1859 /* If we are a client and haven't sent the Finished we better do that */
1860 ossl_statem_check_finish_init(s, 1);
1861
1862 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1863 int ret;
1864 struct ssl_async_args args;
1865
1866 args.s = s;
1867 args.buf = (void *)buf;
1868 args.num = num;
1869 args.type = WRITEFUNC;
1870 args.f.func_write = s->method->ssl_write;
1871
1872 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1873 *written = s->asyncrw;
1874 return ret;
1875 } else {
1876 return s->method->ssl_write(s, buf, num, written);
1877 }
1878 }
1879
1880 int SSL_write(SSL *s, const void *buf, int num)
1881 {
1882 int ret;
1883 size_t written;
1884
1885 if (num < 0) {
1886 SSLerr(SSL_F_SSL_WRITE, SSL_R_BAD_LENGTH);
1887 return -1;
1888 }
1889
1890 ret = ssl_write_internal(s, buf, (size_t)num, &written);
1891
1892 /*
1893 * The cast is safe here because ret should be <= INT_MAX because num is
1894 * <= INT_MAX
1895 */
1896 if (ret > 0)
1897 ret = (int)written;
1898
1899 return ret;
1900 }
1901
1902 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written)
1903 {
1904 int ret = ssl_write_internal(s, buf, num, written);
1905
1906 if (ret < 0)
1907 ret = 0;
1908 return ret;
1909 }
1910
1911 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written)
1912 {
1913 int ret, early_data_state;
1914
1915 switch (s->early_data_state) {
1916 case SSL_EARLY_DATA_NONE:
1917 if (s->server
1918 || !SSL_in_before(s)
1919 || ((s->session == NULL || s->session->ext.max_early_data == 0)
1920 && (s->psk_use_session_cb == NULL))) {
1921 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA,
1922 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1923 return 0;
1924 }
1925 /* fall through */
1926
1927 case SSL_EARLY_DATA_CONNECT_RETRY:
1928 s->early_data_state = SSL_EARLY_DATA_CONNECTING;
1929 ret = SSL_connect(s);
1930 if (ret <= 0) {
1931 /* NBIO or error */
1932 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY;
1933 return 0;
1934 }
1935 /* fall through */
1936
1937 case SSL_EARLY_DATA_WRITE_RETRY:
1938 s->early_data_state = SSL_EARLY_DATA_WRITING;
1939 ret = SSL_write_ex(s, buf, num, written);
1940 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
1941 return ret;
1942
1943 case SSL_EARLY_DATA_FINISHED_READING:
1944 case SSL_EARLY_DATA_READ_RETRY:
1945 early_data_state = s->early_data_state;
1946 /* We are a server writing to an unauthenticated client */
1947 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING;
1948 ret = SSL_write_ex(s, buf, num, written);
1949 s->early_data_state = early_data_state;
1950 return ret;
1951
1952 default:
1953 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1954 return 0;
1955 }
1956 }
1957
1958 int SSL_shutdown(SSL *s)
1959 {
1960 /*
1961 * Note that this function behaves differently from what one might
1962 * expect. Return values are 0 for no success (yet), 1 for success; but
1963 * calling it once is usually not enough, even if blocking I/O is used
1964 * (see ssl3_shutdown).
1965 */
1966
1967 if (s->handshake_func == NULL) {
1968 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED);
1969 return -1;
1970 }
1971
1972 if (!SSL_in_init(s)) {
1973 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1974 struct ssl_async_args args;
1975
1976 args.s = s;
1977 args.type = OTHERFUNC;
1978 args.f.func_other = s->method->ssl_shutdown;
1979
1980 return ssl_start_async_job(s, &args, ssl_io_intern);
1981 } else {
1982 return s->method->ssl_shutdown(s);
1983 }
1984 } else {
1985 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT);
1986 return -1;
1987 }
1988 }
1989
1990 int SSL_key_update(SSL *s, int updatetype)
1991 {
1992 /*
1993 * TODO(TLS1.3): How will applications know whether TLSv1.3 has been
1994 * negotiated, and that it is appropriate to call SSL_key_update() instead
1995 * of SSL_renegotiate().
1996 */
1997 if (!SSL_IS_TLS13(s)) {
1998 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_WRONG_SSL_VERSION);
1999 return 0;
2000 }
2001
2002 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED
2003 && updatetype != SSL_KEY_UPDATE_REQUESTED) {
2004 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_INVALID_KEY_UPDATE_TYPE);
2005 return 0;
2006 }
2007
2008 if (!SSL_is_init_finished(s)) {
2009 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_STILL_IN_INIT);
2010 return 0;
2011 }
2012
2013 ossl_statem_set_in_init(s, 1);
2014 s->key_update = updatetype;
2015 return 1;
2016 }
2017
2018 int SSL_get_key_update_type(SSL *s)
2019 {
2020 return s->key_update;
2021 }
2022
2023 int SSL_renegotiate(SSL *s)
2024 {
2025 if (SSL_IS_TLS13(s)) {
2026 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_WRONG_SSL_VERSION);
2027 return 0;
2028 }
2029
2030 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2031 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_NO_RENEGOTIATION);
2032 return 0;
2033 }
2034
2035 s->renegotiate = 1;
2036 s->new_session = 1;
2037
2038 return (s->method->ssl_renegotiate(s));
2039 }
2040
2041 int SSL_renegotiate_abbreviated(SSL *s)
2042 {
2043 if (SSL_IS_TLS13(s)) {
2044 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_WRONG_SSL_VERSION);
2045 return 0;
2046 }
2047
2048 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2049 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_NO_RENEGOTIATION);
2050 return 0;
2051 }
2052
2053 s->renegotiate = 1;
2054 s->new_session = 0;
2055
2056 return (s->method->ssl_renegotiate(s));
2057 }
2058
2059 int SSL_renegotiate_pending(SSL *s)
2060 {
2061 /*
2062 * becomes true when negotiation is requested; false again once a
2063 * handshake has finished
2064 */
2065 return (s->renegotiate != 0);
2066 }
2067
2068 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg)
2069 {
2070 long l;
2071
2072 switch (cmd) {
2073 case SSL_CTRL_GET_READ_AHEAD:
2074 return (RECORD_LAYER_get_read_ahead(&s->rlayer));
2075 case SSL_CTRL_SET_READ_AHEAD:
2076 l = RECORD_LAYER_get_read_ahead(&s->rlayer);
2077 RECORD_LAYER_set_read_ahead(&s->rlayer, larg);
2078 return (l);
2079
2080 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2081 s->msg_callback_arg = parg;
2082 return 1;
2083
2084 case SSL_CTRL_MODE:
2085 return (s->mode |= larg);
2086 case SSL_CTRL_CLEAR_MODE:
2087 return (s->mode &= ~larg);
2088 case SSL_CTRL_GET_MAX_CERT_LIST:
2089 return (long)(s->max_cert_list);
2090 case SSL_CTRL_SET_MAX_CERT_LIST:
2091 if (larg < 0)
2092 return 0;
2093 l = (long)s->max_cert_list;
2094 s->max_cert_list = (size_t)larg;
2095 return l;
2096 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2097 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2098 return 0;
2099 s->max_send_fragment = larg;
2100 if (s->max_send_fragment < s->split_send_fragment)
2101 s->split_send_fragment = s->max_send_fragment;
2102 return 1;
2103 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2104 if ((size_t)larg > s->max_send_fragment || larg == 0)
2105 return 0;
2106 s->split_send_fragment = larg;
2107 return 1;
2108 case SSL_CTRL_SET_MAX_PIPELINES:
2109 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2110 return 0;
2111 s->max_pipelines = larg;
2112 if (larg > 1)
2113 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
2114 return 1;
2115 case SSL_CTRL_GET_RI_SUPPORT:
2116 if (s->s3)
2117 return s->s3->send_connection_binding;
2118 else
2119 return 0;
2120 case SSL_CTRL_CERT_FLAGS:
2121 return (s->cert->cert_flags |= larg);
2122 case SSL_CTRL_CLEAR_CERT_FLAGS:
2123 return (s->cert->cert_flags &= ~larg);
2124
2125 case SSL_CTRL_GET_RAW_CIPHERLIST:
2126 if (parg) {
2127 if (s->s3->tmp.ciphers_raw == NULL)
2128 return 0;
2129 *(unsigned char **)parg = s->s3->tmp.ciphers_raw;
2130 return (int)s->s3->tmp.ciphers_rawlen;
2131 } else {
2132 return TLS_CIPHER_LEN;
2133 }
2134 case SSL_CTRL_GET_EXTMS_SUPPORT:
2135 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s))
2136 return -1;
2137 if (s->session->flags & SSL_SESS_FLAG_EXTMS)
2138 return 1;
2139 else
2140 return 0;
2141 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2142 return ssl_check_allowed_versions(larg, s->max_proto_version)
2143 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2144 &s->min_proto_version);
2145 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2146 return s->min_proto_version;
2147 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2148 return ssl_check_allowed_versions(s->min_proto_version, larg)
2149 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2150 &s->max_proto_version);
2151 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2152 return s->max_proto_version;
2153 default:
2154 return (s->method->ssl_ctrl(s, cmd, larg, parg));
2155 }
2156 }
2157
2158 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
2159 {
2160 switch (cmd) {
2161 case SSL_CTRL_SET_MSG_CALLBACK:
2162 s->msg_callback = (void (*)
2163 (int write_p, int version, int content_type,
2164 const void *buf, size_t len, SSL *ssl,
2165 void *arg))(fp);
2166 return 1;
2167
2168 default:
2169 return (s->method->ssl_callback_ctrl(s, cmd, fp));
2170 }
2171 }
2172
2173 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx)
2174 {
2175 return ctx->sessions;
2176 }
2177
2178 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
2179 {
2180 long l;
2181 /* For some cases with ctx == NULL perform syntax checks */
2182 if (ctx == NULL) {
2183 switch (cmd) {
2184 #ifndef OPENSSL_NO_EC
2185 case SSL_CTRL_SET_GROUPS_LIST:
2186 return tls1_set_groups_list(NULL, NULL, parg);
2187 #endif
2188 case SSL_CTRL_SET_SIGALGS_LIST:
2189 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST:
2190 return tls1_set_sigalgs_list(NULL, parg, 0);
2191 default:
2192 return 0;
2193 }
2194 }
2195
2196 switch (cmd) {
2197 case SSL_CTRL_GET_READ_AHEAD:
2198 return (ctx->read_ahead);
2199 case SSL_CTRL_SET_READ_AHEAD:
2200 l = ctx->read_ahead;
2201 ctx->read_ahead = larg;
2202 return (l);
2203
2204 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2205 ctx->msg_callback_arg = parg;
2206 return 1;
2207
2208 case SSL_CTRL_GET_MAX_CERT_LIST:
2209 return (long)(ctx->max_cert_list);
2210 case SSL_CTRL_SET_MAX_CERT_LIST:
2211 if (larg < 0)
2212 return 0;
2213 l = (long)ctx->max_cert_list;
2214 ctx->max_cert_list = (size_t)larg;
2215 return l;
2216
2217 case SSL_CTRL_SET_SESS_CACHE_SIZE:
2218 if (larg < 0)
2219 return 0;
2220 l = (long)ctx->session_cache_size;
2221 ctx->session_cache_size = (size_t)larg;
2222 return l;
2223 case SSL_CTRL_GET_SESS_CACHE_SIZE:
2224 return (long)(ctx->session_cache_size);
2225 case SSL_CTRL_SET_SESS_CACHE_MODE:
2226 l = ctx->session_cache_mode;
2227 ctx->session_cache_mode = larg;
2228 return (l);
2229 case SSL_CTRL_GET_SESS_CACHE_MODE:
2230 return (ctx->session_cache_mode);
2231
2232 case SSL_CTRL_SESS_NUMBER:
2233 return (lh_SSL_SESSION_num_items(ctx->sessions));
2234 case SSL_CTRL_SESS_CONNECT:
2235 return (ctx->stats.sess_connect);
2236 case SSL_CTRL_SESS_CONNECT_GOOD:
2237 return (ctx->stats.sess_connect_good);
2238 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE:
2239 return (ctx->stats.sess_connect_renegotiate);
2240 case SSL_CTRL_SESS_ACCEPT:
2241 return (ctx->stats.sess_accept);
2242 case SSL_CTRL_SESS_ACCEPT_GOOD:
2243 return (ctx->stats.sess_accept_good);
2244 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE:
2245 return (ctx->stats.sess_accept_renegotiate);
2246 case SSL_CTRL_SESS_HIT:
2247 return (ctx->stats.sess_hit);
2248 case SSL_CTRL_SESS_CB_HIT:
2249 return (ctx->stats.sess_cb_hit);
2250 case SSL_CTRL_SESS_MISSES:
2251 return (ctx->stats.sess_miss);
2252 case SSL_CTRL_SESS_TIMEOUTS:
2253 return (ctx->stats.sess_timeout);
2254 case SSL_CTRL_SESS_CACHE_FULL:
2255 return (ctx->stats.sess_cache_full);
2256 case SSL_CTRL_MODE:
2257 return (ctx->mode |= larg);
2258 case SSL_CTRL_CLEAR_MODE:
2259 return (ctx->mode &= ~larg);
2260 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2261 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2262 return 0;
2263 ctx->max_send_fragment = larg;
2264 if (ctx->max_send_fragment < ctx->split_send_fragment)
2265 ctx->split_send_fragment = ctx->max_send_fragment;
2266 return 1;
2267 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2268 if ((size_t)larg > ctx->max_send_fragment || larg == 0)
2269 return 0;
2270 ctx->split_send_fragment = larg;
2271 return 1;
2272 case SSL_CTRL_SET_MAX_PIPELINES:
2273 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2274 return 0;
2275 ctx->max_pipelines = larg;
2276 return 1;
2277 case SSL_CTRL_CERT_FLAGS:
2278 return (ctx->cert->cert_flags |= larg);
2279 case SSL_CTRL_CLEAR_CERT_FLAGS:
2280 return (ctx->cert->cert_flags &= ~larg);
2281 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2282 return ssl_check_allowed_versions(larg, ctx->max_proto_version)
2283 && ssl_set_version_bound(ctx->method->version, (int)larg,
2284 &ctx->min_proto_version);
2285 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2286 return ctx->min_proto_version;
2287 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2288 return ssl_check_allowed_versions(ctx->min_proto_version, larg)
2289 && ssl_set_version_bound(ctx->method->version, (int)larg,
2290 &ctx->max_proto_version);
2291 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2292 return ctx->max_proto_version;
2293 default:
2294 return (ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg));
2295 }
2296 }
2297
2298 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
2299 {
2300 switch (cmd) {
2301 case SSL_CTRL_SET_MSG_CALLBACK:
2302 ctx->msg_callback = (void (*)
2303 (int write_p, int version, int content_type,
2304 const void *buf, size_t len, SSL *ssl,
2305 void *arg))(fp);
2306 return 1;
2307
2308 default:
2309 return (ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp));
2310 }
2311 }
2312
2313 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b)
2314 {
2315 if (a->id > b->id)
2316 return 1;
2317 if (a->id < b->id)
2318 return -1;
2319 return 0;
2320 }
2321
2322 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap,
2323 const SSL_CIPHER *const *bp)
2324 {
2325 if ((*ap)->id > (*bp)->id)
2326 return 1;
2327 if ((*ap)->id < (*bp)->id)
2328 return -1;
2329 return 0;
2330 }
2331
2332 /** return a STACK of the ciphers available for the SSL and in order of
2333 * preference */
2334 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s)
2335 {
2336 if (s != NULL) {
2337 if (s->cipher_list != NULL) {
2338 return (s->cipher_list);
2339 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) {
2340 return (s->ctx->cipher_list);
2341 }
2342 }
2343 return (NULL);
2344 }
2345
2346 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s)
2347 {
2348 if ((s == NULL) || (s->session == NULL) || !s->server)
2349 return NULL;
2350 return s->session->ciphers;
2351 }
2352
2353 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s)
2354 {
2355 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers;
2356 int i;
2357 ciphers = SSL_get_ciphers(s);
2358 if (!ciphers)
2359 return NULL;
2360 ssl_set_client_disabled(s);
2361 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
2362 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i);
2363 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) {
2364 if (!sk)
2365 sk = sk_SSL_CIPHER_new_null();
2366 if (!sk)
2367 return NULL;
2368 if (!sk_SSL_CIPHER_push(sk, c)) {
2369 sk_SSL_CIPHER_free(sk);
2370 return NULL;
2371 }
2372 }
2373 }
2374 return sk;
2375 }
2376
2377 /** return a STACK of the ciphers available for the SSL and in order of
2378 * algorithm id */
2379 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s)
2380 {
2381 if (s != NULL) {
2382 if (s->cipher_list_by_id != NULL) {
2383 return (s->cipher_list_by_id);
2384 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) {
2385 return (s->ctx->cipher_list_by_id);
2386 }
2387 }
2388 return (NULL);
2389 }
2390
2391 /** The old interface to get the same thing as SSL_get_ciphers() */
2392 const char *SSL_get_cipher_list(const SSL *s, int n)
2393 {
2394 const SSL_CIPHER *c;
2395 STACK_OF(SSL_CIPHER) *sk;
2396
2397 if (s == NULL)
2398 return (NULL);
2399 sk = SSL_get_ciphers(s);
2400 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n))
2401 return (NULL);
2402 c = sk_SSL_CIPHER_value(sk, n);
2403 if (c == NULL)
2404 return (NULL);
2405 return (c->name);
2406 }
2407
2408 /** return a STACK of the ciphers available for the SSL_CTX and in order of
2409 * preference */
2410 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx)
2411 {
2412 if (ctx != NULL)
2413 return ctx->cipher_list;
2414 return NULL;
2415 }
2416
2417 /** specify the ciphers to be used by default by the SSL_CTX */
2418 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)
2419 {
2420 STACK_OF(SSL_CIPHER) *sk;
2421
2422 sk = ssl_create_cipher_list(ctx->method, &ctx->cipher_list,
2423 &ctx->cipher_list_by_id, str, ctx->cert);
2424 /*
2425 * ssl_create_cipher_list may return an empty stack if it was unable to
2426 * find a cipher matching the given rule string (for example if the rule
2427 * string specifies a cipher which has been disabled). This is not an
2428 * error as far as ssl_create_cipher_list is concerned, and hence
2429 * ctx->cipher_list and ctx->cipher_list_by_id has been updated.
2430 */
2431 if (sk == NULL)
2432 return 0;
2433 else if (sk_SSL_CIPHER_num(sk) == 0) {
2434 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2435 return 0;
2436 }
2437 return 1;
2438 }
2439
2440 /** specify the ciphers to be used by the SSL */
2441 int SSL_set_cipher_list(SSL *s, const char *str)
2442 {
2443 STACK_OF(SSL_CIPHER) *sk;
2444
2445 sk = ssl_create_cipher_list(s->ctx->method, &s->cipher_list,
2446 &s->cipher_list_by_id, str, s->cert);
2447 /* see comment in SSL_CTX_set_cipher_list */
2448 if (sk == NULL)
2449 return 0;
2450 else if (sk_SSL_CIPHER_num(sk) == 0) {
2451 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2452 return 0;
2453 }
2454 return 1;
2455 }
2456
2457 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int len)
2458 {
2459 char *p;
2460 STACK_OF(SSL_CIPHER) *sk;
2461 const SSL_CIPHER *c;
2462 int i;
2463
2464 if ((s->session == NULL) || (s->session->ciphers == NULL) || (len < 2))
2465 return (NULL);
2466
2467 p = buf;
2468 sk = s->session->ciphers;
2469
2470 if (sk_SSL_CIPHER_num(sk) == 0)
2471 return NULL;
2472
2473 for (i = 0; i < sk_SSL_CIPHER_num(sk); i++) {
2474 int n;
2475
2476 c = sk_SSL_CIPHER_value(sk, i);
2477 n = strlen(c->name);
2478 if (n + 1 > len) {
2479 if (p != buf)
2480 --p;
2481 *p = '\0';
2482 return buf;
2483 }
2484 strcpy(p, c->name);
2485 p += n;
2486 *(p++) = ':';
2487 len -= n + 1;
2488 }
2489 p[-1] = '\0';
2490 return (buf);
2491 }
2492
2493 /** return a servername extension value if provided in Client Hello, or NULL.
2494 * So far, only host_name types are defined (RFC 3546).
2495 */
2496
2497 const char *SSL_get_servername(const SSL *s, const int type)
2498 {
2499 if (type != TLSEXT_NAMETYPE_host_name)
2500 return NULL;
2501
2502 return s->session && !s->ext.hostname ?
2503 s->session->ext.hostname : s->ext.hostname;
2504 }
2505
2506 int SSL_get_servername_type(const SSL *s)
2507 {
2508 if (s->session
2509 && (!s->ext.hostname ? s->session->
2510 ext.hostname : s->ext.hostname))
2511 return TLSEXT_NAMETYPE_host_name;
2512 return -1;
2513 }
2514
2515 /*
2516 * SSL_select_next_proto implements the standard protocol selection. It is
2517 * expected that this function is called from the callback set by
2518 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a
2519 * vector of 8-bit, length prefixed byte strings. The length byte itself is
2520 * not included in the length. A byte string of length 0 is invalid. No byte
2521 * string may be truncated. The current, but experimental algorithm for
2522 * selecting the protocol is: 1) If the server doesn't support NPN then this
2523 * is indicated to the callback. In this case, the client application has to
2524 * abort the connection or have a default application level protocol. 2) If
2525 * the server supports NPN, but advertises an empty list then the client
2526 * selects the first protocol in its list, but indicates via the API that this
2527 * fallback case was enacted. 3) Otherwise, the client finds the first
2528 * protocol in the server's list that it supports and selects this protocol.
2529 * This is because it's assumed that the server has better information about
2530 * which protocol a client should use. 4) If the client doesn't support any
2531 * of the server's advertised protocols, then this is treated the same as
2532 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was
2533 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
2534 */
2535 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen,
2536 const unsigned char *server,
2537 unsigned int server_len,
2538 const unsigned char *client, unsigned int client_len)
2539 {
2540 unsigned int i, j;
2541 const unsigned char *result;
2542 int status = OPENSSL_NPN_UNSUPPORTED;
2543
2544 /*
2545 * For each protocol in server preference order, see if we support it.
2546 */
2547 for (i = 0; i < server_len;) {
2548 for (j = 0; j < client_len;) {
2549 if (server[i] == client[j] &&
2550 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
2551 /* We found a match */
2552 result = &server[i];
2553 status = OPENSSL_NPN_NEGOTIATED;
2554 goto found;
2555 }
2556 j += client[j];
2557 j++;
2558 }
2559 i += server[i];
2560 i++;
2561 }
2562
2563 /* There's no overlap between our protocols and the server's list. */
2564 result = client;
2565 status = OPENSSL_NPN_NO_OVERLAP;
2566
2567 found:
2568 *out = (unsigned char *)result + 1;
2569 *outlen = result[0];
2570 return status;
2571 }
2572
2573 #ifndef OPENSSL_NO_NEXTPROTONEG
2574 /*
2575 * SSL_get0_next_proto_negotiated sets *data and *len to point to the
2576 * client's requested protocol for this connection and returns 0. If the
2577 * client didn't request any protocol, then *data is set to NULL. Note that
2578 * the client can request any protocol it chooses. The value returned from
2579 * this function need not be a member of the list of supported protocols
2580 * provided by the callback.
2581 */
2582 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data,
2583 unsigned *len)
2584 {
2585 *data = s->ext.npn;
2586 if (!*data) {
2587 *len = 0;
2588 } else {
2589 *len = (unsigned int)s->ext.npn_len;
2590 }
2591 }
2592
2593 /*
2594 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when
2595 * a TLS server needs a list of supported protocols for Next Protocol
2596 * Negotiation. The returned list must be in wire format. The list is
2597 * returned by setting |out| to point to it and |outlen| to its length. This
2598 * memory will not be modified, but one should assume that the SSL* keeps a
2599 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it
2600 * wishes to advertise. Otherwise, no such extension will be included in the
2601 * ServerHello.
2602 */
2603 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx,
2604 SSL_CTX_npn_advertised_cb_func cb,
2605 void *arg)
2606 {
2607 ctx->ext.npn_advertised_cb = cb;
2608 ctx->ext.npn_advertised_cb_arg = arg;
2609 }
2610
2611 /*
2612 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
2613 * client needs to select a protocol from the server's provided list. |out|
2614 * must be set to point to the selected protocol (which may be within |in|).
2615 * The length of the protocol name must be written into |outlen|. The
2616 * server's advertised protocols are provided in |in| and |inlen|. The
2617 * callback can assume that |in| is syntactically valid. The client must
2618 * select a protocol. It is fatal to the connection if this callback returns
2619 * a value other than SSL_TLSEXT_ERR_OK.
2620 */
2621 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx,
2622 SSL_CTX_npn_select_cb_func cb,
2623 void *arg)
2624 {
2625 ctx->ext.npn_select_cb = cb;
2626 ctx->ext.npn_select_cb_arg = arg;
2627 }
2628 #endif
2629
2630 /*
2631 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|.
2632 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2633 * length-prefixed strings). Returns 0 on success.
2634 */
2635 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos,
2636 unsigned int protos_len)
2637 {
2638 OPENSSL_free(ctx->ext.alpn);
2639 ctx->ext.alpn = OPENSSL_memdup(protos, protos_len);
2640 if (ctx->ext.alpn == NULL) {
2641 SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2642 return 1;
2643 }
2644 ctx->ext.alpn_len = protos_len;
2645
2646 return 0;
2647 }
2648
2649 /*
2650 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|.
2651 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2652 * length-prefixed strings). Returns 0 on success.
2653 */
2654 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos,
2655 unsigned int protos_len)
2656 {
2657 OPENSSL_free(ssl->ext.alpn);
2658 ssl->ext.alpn = OPENSSL_memdup(protos, protos_len);
2659 if (ssl->ext.alpn == NULL) {
2660 SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2661 return 1;
2662 }
2663 ssl->ext.alpn_len = protos_len;
2664
2665 return 0;
2666 }
2667
2668 /*
2669 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is
2670 * called during ClientHello processing in order to select an ALPN protocol
2671 * from the client's list of offered protocols.
2672 */
2673 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
2674 SSL_CTX_alpn_select_cb_func cb,
2675 void *arg)
2676 {
2677 ctx->ext.alpn_select_cb = cb;
2678 ctx->ext.alpn_select_cb_arg = arg;
2679 }
2680
2681 /*
2682 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|.
2683 * On return it sets |*data| to point to |*len| bytes of protocol name
2684 * (not including the leading length-prefix byte). If the server didn't
2685 * respond with a negotiated protocol then |*len| will be zero.
2686 */
2687 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data,
2688 unsigned int *len)
2689 {
2690 *data = NULL;
2691 if (ssl->s3)
2692 *data = ssl->s3->alpn_selected;
2693 if (*data == NULL)
2694 *len = 0;
2695 else
2696 *len = (unsigned int)ssl->s3->alpn_selected_len;
2697 }
2698
2699 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
2700 const char *label, size_t llen,
2701 const unsigned char *context, size_t contextlen,
2702 int use_context)
2703 {
2704 if (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER)
2705 return -1;
2706
2707 return s->method->ssl3_enc->export_keying_material(s, out, olen, label,
2708 llen, context,
2709 contextlen, use_context);
2710 }
2711
2712 static unsigned long ssl_session_hash(const SSL_SESSION *a)
2713 {
2714 const unsigned char *session_id = a->session_id;
2715 unsigned long l;
2716 unsigned char tmp_storage[4];
2717
2718 if (a->session_id_length < sizeof(tmp_storage)) {
2719 memset(tmp_storage, 0, sizeof(tmp_storage));
2720 memcpy(tmp_storage, a->session_id, a->session_id_length);
2721 session_id = tmp_storage;
2722 }
2723
2724 l = (unsigned long)
2725 ((unsigned long)session_id[0]) |
2726 ((unsigned long)session_id[1] << 8L) |
2727 ((unsigned long)session_id[2] << 16L) |
2728 ((unsigned long)session_id[3] << 24L);
2729 return (l);
2730 }
2731
2732 /*
2733 * NB: If this function (or indeed the hash function which uses a sort of
2734 * coarser function than this one) is changed, ensure
2735 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on
2736 * being able to construct an SSL_SESSION that will collide with any existing
2737 * session with a matching session ID.
2738 */
2739 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b)
2740 {
2741 if (a->ssl_version != b->ssl_version)
2742 return 1;
2743 if (a->session_id_length != b->session_id_length)
2744 return 1;
2745 return (memcmp(a->session_id, b->session_id, a->session_id_length));
2746 }
2747
2748 /*
2749 * These wrapper functions should remain rather than redeclaring
2750 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each
2751 * variable. The reason is that the functions aren't static, they're exposed
2752 * via ssl.h.
2753 */
2754
2755 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth)
2756 {
2757 SSL_CTX *ret = NULL;
2758
2759 if (meth == NULL) {
2760 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED);
2761 return (NULL);
2762 }
2763
2764 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL))
2765 return NULL;
2766
2767 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
2768 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
2769 goto err;
2770 }
2771 ret = OPENSSL_zalloc(sizeof(*ret));
2772 if (ret == NULL)
2773 goto err;
2774
2775 ret->method = meth;
2776 ret->min_proto_version = 0;
2777 ret->max_proto_version = 0;
2778 ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
2779 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
2780 /* We take the system default. */
2781 ret->session_timeout = meth->get_timeout();
2782 ret->references = 1;
2783 ret->lock = CRYPTO_THREAD_lock_new();
2784 if (ret->lock == NULL) {
2785 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2786 OPENSSL_free(ret);
2787 return NULL;
2788 }
2789 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
2790 ret->verify_mode = SSL_VERIFY_NONE;
2791 if ((ret->cert = ssl_cert_new()) == NULL)
2792 goto err;
2793
2794 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
2795 if (ret->sessions == NULL)
2796 goto err;
2797 ret->cert_store = X509_STORE_new();
2798 if (ret->cert_store == NULL)
2799 goto err;
2800 #ifndef OPENSSL_NO_CT
2801 ret->ctlog_store = CTLOG_STORE_new();
2802 if (ret->ctlog_store == NULL)
2803 goto err;
2804 #endif
2805 if (!ssl_create_cipher_list(ret->method,
2806 &ret->cipher_list, &ret->cipher_list_by_id,
2807 SSL_DEFAULT_CIPHER_LIST, ret->cert)
2808 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) {
2809 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS);
2810 goto err2;
2811 }
2812
2813 ret->param = X509_VERIFY_PARAM_new();
2814 if (ret->param == NULL)
2815 goto err;
2816
2817 if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) {
2818 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES);
2819 goto err2;
2820 }
2821 if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) {
2822 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES);
2823 goto err2;
2824 }
2825
2826 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL)
2827 goto err;
2828
2829 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data))
2830 goto err;
2831
2832 /* No compression for DTLS */
2833 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS))
2834 ret->comp_methods = SSL_COMP_get_compression_methods();
2835
2836 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2837 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2838
2839 /* Setup RFC5077 ticket keys */
2840 if ((RAND_bytes(ret->ext.tick_key_name,
2841 sizeof(ret->ext.tick_key_name)) <= 0)
2842 || (RAND_bytes(ret->ext.tick_hmac_key,
2843 sizeof(ret->ext.tick_hmac_key)) <= 0)
2844 || (RAND_bytes(ret->ext.tick_aes_key,
2845 sizeof(ret->ext.tick_aes_key)) <= 0))
2846 ret->options |= SSL_OP_NO_TICKET;
2847
2848 #ifndef OPENSSL_NO_SRP
2849 if (!SSL_CTX_SRP_CTX_init(ret))
2850 goto err;
2851 #endif
2852 #ifndef OPENSSL_NO_ENGINE
2853 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO
2854 # define eng_strx(x) #x
2855 # define eng_str(x) eng_strx(x)
2856 /* Use specific client engine automatically... ignore errors */
2857 {
2858 ENGINE *eng;
2859 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2860 if (!eng) {
2861 ERR_clear_error();
2862 ENGINE_load_builtin_engines();
2863 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2864 }
2865 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng))
2866 ERR_clear_error();
2867 }
2868 # endif
2869 #endif
2870 /*
2871 * Default is to connect to non-RI servers. When RI is more widely
2872 * deployed might change this.
2873 */
2874 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT;
2875 /*
2876 * Disable compression by default to prevent CRIME. Applications can
2877 * re-enable compression by configuring
2878 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION);
2879 * or by using the SSL_CONF library.
2880 */
2881 ret->options |= SSL_OP_NO_COMPRESSION;
2882
2883 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing;
2884
2885 /*
2886 * Default max early data is a fully loaded single record. Could be split
2887 * across multiple records in practice
2888 */
2889 ret->max_early_data = SSL3_RT_MAX_PLAIN_LENGTH;
2890
2891 return ret;
2892 err:
2893 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2894 err2:
2895 SSL_CTX_free(ret);
2896 return NULL;
2897 }
2898
2899 int SSL_CTX_up_ref(SSL_CTX *ctx)
2900 {
2901 int i;
2902
2903 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0)
2904 return 0;
2905
2906 REF_PRINT_COUNT("SSL_CTX", ctx);
2907 REF_ASSERT_ISNT(i < 2);
2908 return ((i > 1) ? 1 : 0);
2909 }
2910
2911 void SSL_CTX_free(SSL_CTX *a)
2912 {
2913 int i;
2914
2915 if (a == NULL)
2916 return;
2917
2918 CRYPTO_DOWN_REF(&a->references, &i, a->lock);
2919 REF_PRINT_COUNT("SSL_CTX", a);
2920 if (i > 0)
2921 return;
2922 REF_ASSERT_ISNT(i < 0);
2923
2924 X509_VERIFY_PARAM_free(a->param);
2925 dane_ctx_final(&a->dane);
2926
2927 /*
2928 * Free internal session cache. However: the remove_cb() may reference
2929 * the ex_data of SSL_CTX, thus the ex_data store can only be removed
2930 * after the sessions were flushed.
2931 * As the ex_data handling routines might also touch the session cache,
2932 * the most secure solution seems to be: empty (flush) the cache, then
2933 * free ex_data, then finally free the cache.
2934 * (See ticket [openssl.org #212].)
2935 */
2936 if (a->sessions != NULL)
2937 SSL_CTX_flush_sessions(a, 0);
2938
2939 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data);
2940 lh_SSL_SESSION_free(a->sessions);
2941 X509_STORE_free(a->cert_store);
2942 #ifndef OPENSSL_NO_CT
2943 CTLOG_STORE_free(a->ctlog_store);
2944 #endif
2945 sk_SSL_CIPHER_free(a->cipher_list);
2946 sk_SSL_CIPHER_free(a->cipher_list_by_id);
2947 ssl_cert_free(a->cert);
2948 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free);
2949 sk_X509_pop_free(a->extra_certs, X509_free);
2950 a->comp_methods = NULL;
2951 #ifndef OPENSSL_NO_SRTP
2952 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles);
2953 #endif
2954 #ifndef OPENSSL_NO_SRP
2955 SSL_CTX_SRP_CTX_free(a);
2956 #endif
2957 #ifndef OPENSSL_NO_ENGINE
2958 ENGINE_finish(a->client_cert_engine);
2959 #endif
2960
2961 #ifndef OPENSSL_NO_EC
2962 OPENSSL_free(a->ext.ecpointformats);
2963 OPENSSL_free(a->ext.supportedgroups);
2964 #endif
2965 OPENSSL_free(a->ext.alpn);
2966
2967 CRYPTO_THREAD_lock_free(a->lock);
2968
2969 OPENSSL_free(a);
2970 }
2971
2972 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb)
2973 {
2974 ctx->default_passwd_callback = cb;
2975 }
2976
2977 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u)
2978 {
2979 ctx->default_passwd_callback_userdata = u;
2980 }
2981
2982 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx)
2983 {
2984 return ctx->default_passwd_callback;
2985 }
2986
2987 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx)
2988 {
2989 return ctx->default_passwd_callback_userdata;
2990 }
2991
2992 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb)
2993 {
2994 s->default_passwd_callback = cb;
2995 }
2996
2997 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u)
2998 {
2999 s->default_passwd_callback_userdata = u;
3000 }
3001
3002 pem_password_cb *SSL_get_default_passwd_cb(SSL *s)
3003 {
3004 return s->default_passwd_callback;
3005 }
3006
3007 void *SSL_get_default_passwd_cb_userdata(SSL *s)
3008 {
3009 return s->default_passwd_callback_userdata;
3010 }
3011
3012 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
3013 int (*cb) (X509_STORE_CTX *, void *),
3014 void *arg)
3015 {
3016 ctx->app_verify_callback = cb;
3017 ctx->app_verify_arg = arg;
3018 }
3019
3020 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
3021 int (*cb) (int, X509_STORE_CTX *))
3022 {
3023 ctx->verify_mode = mode;
3024 ctx->default_verify_callback = cb;
3025 }
3026
3027 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth)
3028 {
3029 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
3030 }
3031
3032 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg)
3033 {
3034 ssl_cert_set_cert_cb(c->cert, cb, arg);
3035 }
3036
3037 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg)
3038 {
3039 ssl_cert_set_cert_cb(s->cert, cb, arg);
3040 }
3041
3042 void ssl_set_masks(SSL *s)
3043 {
3044 CERT *c = s->cert;
3045 uint32_t *pvalid = s->s3->tmp.valid_flags;
3046 int rsa_enc, rsa_sign, dh_tmp, dsa_sign;
3047 unsigned long mask_k, mask_a;
3048 #ifndef OPENSSL_NO_EC
3049 int have_ecc_cert, ecdsa_ok;
3050 #endif
3051 if (c == NULL)
3052 return;
3053
3054 #ifndef OPENSSL_NO_DH
3055 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto);
3056 #else
3057 dh_tmp = 0;
3058 #endif
3059
3060 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3061 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3062 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID;
3063 #ifndef OPENSSL_NO_EC
3064 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID;
3065 #endif
3066 mask_k = 0;
3067 mask_a = 0;
3068
3069 #ifdef CIPHER_DEBUG
3070 fprintf(stderr, "dht=%d re=%d rs=%d ds=%d\n",
3071 dh_tmp, rsa_enc, rsa_sign, dsa_sign);
3072 #endif
3073
3074 #ifndef OPENSSL_NO_GOST
3075 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) {
3076 mask_k |= SSL_kGOST;
3077 mask_a |= SSL_aGOST12;
3078 }
3079 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) {
3080 mask_k |= SSL_kGOST;
3081 mask_a |= SSL_aGOST12;
3082 }
3083 if (ssl_has_cert(s, SSL_PKEY_GOST01)) {
3084 mask_k |= SSL_kGOST;
3085 mask_a |= SSL_aGOST01;
3086 }
3087 #endif
3088
3089 if (rsa_enc)
3090 mask_k |= SSL_kRSA;
3091
3092 if (dh_tmp)
3093 mask_k |= SSL_kDHE;
3094
3095 /*
3096 * If we only have an RSA-PSS certificate allow RSA authentication
3097 * if TLS 1.2 and peer supports it.
3098 */
3099
3100 if (rsa_enc || rsa_sign || (ssl_has_cert(s, SSL_PKEY_RSA_PSS_SIGN)
3101 && pvalid[SSL_PKEY_RSA_PSS_SIGN] & CERT_PKEY_EXPLICIT_SIGN
3102 && TLS1_get_version(s) == TLS1_2_VERSION))
3103 mask_a |= SSL_aRSA;
3104
3105 if (dsa_sign) {
3106 mask_a |= SSL_aDSS;
3107 }
3108
3109 mask_a |= SSL_aNULL;
3110
3111 /*
3112 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites
3113 * depending on the key usage extension.
3114 */
3115 #ifndef OPENSSL_NO_EC
3116 if (have_ecc_cert) {
3117 uint32_t ex_kusage;
3118 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509);
3119 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE;
3120 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN))
3121 ecdsa_ok = 0;
3122 if (ecdsa_ok)
3123 mask_a |= SSL_aECDSA;
3124 }
3125 /* Allow Ed25519 for TLS 1.2 if peer supports it */
3126 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED25519)
3127 && pvalid[SSL_PKEY_ED25519] & CERT_PKEY_EXPLICIT_SIGN
3128 && TLS1_get_version(s) == TLS1_2_VERSION)
3129 mask_a |= SSL_aECDSA;
3130 #endif
3131
3132 #ifndef OPENSSL_NO_EC
3133 mask_k |= SSL_kECDHE;
3134 #endif
3135
3136 #ifndef OPENSSL_NO_PSK
3137 mask_k |= SSL_kPSK;
3138 mask_a |= SSL_aPSK;
3139 if (mask_k & SSL_kRSA)
3140 mask_k |= SSL_kRSAPSK;
3141 if (mask_k & SSL_kDHE)
3142 mask_k |= SSL_kDHEPSK;
3143 if (mask_k & SSL_kECDHE)
3144 mask_k |= SSL_kECDHEPSK;
3145 #endif
3146
3147 s->s3->tmp.mask_k = mask_k;
3148 s->s3->tmp.mask_a = mask_a;
3149 }
3150
3151 #ifndef OPENSSL_NO_EC
3152
3153 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s)
3154 {
3155 if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aECDSA) {
3156 /* key usage, if present, must allow signing */
3157 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) {
3158 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG,
3159 SSL_R_ECC_CERT_NOT_FOR_SIGNING);
3160 return 0;
3161 }
3162 }
3163 return 1; /* all checks are ok */
3164 }
3165
3166 #endif
3167
3168 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo,
3169 size_t *serverinfo_length)
3170 {
3171 CERT_PKEY *cpk = s->s3->tmp.cert;
3172 *serverinfo_length = 0;
3173
3174 if (cpk == NULL || cpk->serverinfo == NULL)
3175 return 0;
3176
3177 *serverinfo = cpk->serverinfo;
3178 *serverinfo_length = cpk->serverinfo_length;
3179 return 1;
3180 }
3181
3182 void ssl_update_cache(SSL *s, int mode)
3183 {
3184 int i;
3185
3186 /*
3187 * If the session_id_length is 0, we are not supposed to cache it, and it
3188 * would be rather hard to do anyway :-)
3189 */
3190 if (s->session->session_id_length == 0)
3191 return;
3192
3193 i = s->session_ctx->session_cache_mode;
3194 if ((i & mode) != 0
3195 && (!s->hit || SSL_IS_TLS13(s))
3196 && ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) != 0
3197 || SSL_CTX_add_session(s->session_ctx, s->session))
3198 && s->session_ctx->new_session_cb != NULL) {
3199 SSL_SESSION_up_ref(s->session);
3200 if (!s->session_ctx->new_session_cb(s, s->session))
3201 SSL_SESSION_free(s->session);
3202 }
3203
3204 /* auto flush every 255 connections */
3205 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) {
3206 if ((((mode & SSL_SESS_CACHE_CLIENT)
3207 ? s->session_ctx->stats.sess_connect_good
3208 : s->session_ctx->stats.sess_accept_good) & 0xff) == 0xff) {
3209 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL));
3210 }
3211 }
3212 }
3213
3214 const SSL_METHOD *SSL_CTX_get_ssl_method(SSL_CTX *ctx)
3215 {
3216 return ctx->method;
3217 }
3218
3219 const SSL_METHOD *SSL_get_ssl_method(SSL *s)
3220 {
3221 return (s->method);
3222 }
3223
3224 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth)
3225 {
3226 int ret = 1;
3227
3228 if (s->method != meth) {
3229 const SSL_METHOD *sm = s->method;
3230 int (*hf) (SSL *) = s->handshake_func;
3231
3232 if (sm->version == meth->version)
3233 s->method = meth;
3234 else {
3235 sm->ssl_free(s);
3236 s->method = meth;
3237 ret = s->method->ssl_new(s);
3238 }
3239
3240 if (hf == sm->ssl_connect)
3241 s->handshake_func = meth->ssl_connect;
3242 else if (hf == sm->ssl_accept)
3243 s->handshake_func = meth->ssl_accept;
3244 }
3245 return (ret);
3246 }
3247
3248 int SSL_get_error(const SSL *s, int i)
3249 {
3250 int reason;
3251 unsigned long l;
3252 BIO *bio;
3253
3254 if (i > 0)
3255 return (SSL_ERROR_NONE);
3256
3257 /*
3258 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
3259 * where we do encode the error
3260 */
3261 if ((l = ERR_peek_error()) != 0) {
3262 if (ERR_GET_LIB(l) == ERR_LIB_SYS)
3263 return (SSL_ERROR_SYSCALL);
3264 else
3265 return (SSL_ERROR_SSL);
3266 }
3267
3268 if (SSL_want_read(s)) {
3269 bio = SSL_get_rbio(s);
3270 if (BIO_should_read(bio))
3271 return (SSL_ERROR_WANT_READ);
3272 else if (BIO_should_write(bio))
3273 /*
3274 * This one doesn't make too much sense ... We never try to write
3275 * to the rbio, and an application program where rbio and wbio
3276 * are separate couldn't even know what it should wait for.
3277 * However if we ever set s->rwstate incorrectly (so that we have
3278 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and
3279 * wbio *are* the same, this test works around that bug; so it
3280 * might be safer to keep it.
3281 */
3282 return (SSL_ERROR_WANT_WRITE);
3283 else if (BIO_should_io_special(bio)) {
3284 reason = BIO_get_retry_reason(bio);
3285 if (reason == BIO_RR_CONNECT)
3286 return (SSL_ERROR_WANT_CONNECT);
3287 else if (reason == BIO_RR_ACCEPT)
3288 return (SSL_ERROR_WANT_ACCEPT);
3289 else
3290 return (SSL_ERROR_SYSCALL); /* unknown */
3291 }
3292 }
3293
3294 if (SSL_want_write(s)) {
3295 /* Access wbio directly - in order to use the buffered bio if present */
3296 bio = s->wbio;
3297 if (BIO_should_write(bio))
3298 return (SSL_ERROR_WANT_WRITE);
3299 else if (BIO_should_read(bio))
3300 /*
3301 * See above (SSL_want_read(s) with BIO_should_write(bio))
3302 */
3303 return (SSL_ERROR_WANT_READ);
3304 else if (BIO_should_io_special(bio)) {
3305 reason = BIO_get_retry_reason(bio);
3306 if (reason == BIO_RR_CONNECT)
3307 return (SSL_ERROR_WANT_CONNECT);
3308 else if (reason == BIO_RR_ACCEPT)
3309 return (SSL_ERROR_WANT_ACCEPT);
3310 else
3311 return (SSL_ERROR_SYSCALL);
3312 }
3313 }
3314 if (SSL_want_x509_lookup(s))
3315 return (SSL_ERROR_WANT_X509_LOOKUP);
3316 if (SSL_want_async(s))
3317 return SSL_ERROR_WANT_ASYNC;
3318 if (SSL_want_async_job(s))
3319 return SSL_ERROR_WANT_ASYNC_JOB;
3320 if (SSL_want_client_hello_cb(s))
3321 return SSL_ERROR_WANT_CLIENT_HELLO_CB;
3322
3323 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
3324 (s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY))
3325 return (SSL_ERROR_ZERO_RETURN);
3326
3327 return (SSL_ERROR_SYSCALL);
3328 }
3329
3330 static int ssl_do_handshake_intern(void *vargs)
3331 {
3332 struct ssl_async_args *args;
3333 SSL *s;
3334
3335 args = (struct ssl_async_args *)vargs;
3336 s = args->s;
3337
3338 return s->handshake_func(s);
3339 }
3340
3341 int SSL_do_handshake(SSL *s)
3342 {
3343 int ret = 1;
3344
3345 if (s->handshake_func == NULL) {
3346 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET);
3347 return -1;
3348 }
3349
3350 ossl_statem_check_finish_init(s, -1);
3351
3352 s->method->ssl_renegotiate_check(s, 0);
3353
3354 if (SSL_is_server(s)) {
3355 /* clear SNI settings at server-side */
3356 OPENSSL_free(s->ext.hostname);
3357 s->ext.hostname = NULL;
3358 }
3359
3360 if (SSL_in_init(s) || SSL_in_before(s)) {
3361 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
3362 struct ssl_async_args args;
3363
3364 args.s = s;
3365
3366 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern);
3367 } else {
3368 ret = s->handshake_func(s);
3369 }
3370 }
3371 return ret;
3372 }
3373
3374 void SSL_set_accept_state(SSL *s)
3375 {
3376 s->server = 1;
3377 s->shutdown = 0;
3378 ossl_statem_clear(s);
3379 s->handshake_func = s->method->ssl_accept;
3380 clear_ciphers(s);
3381 }
3382
3383 void SSL_set_connect_state(SSL *s)
3384 {
3385 s->server = 0;
3386 s->shutdown = 0;
3387 ossl_statem_clear(s);
3388 s->handshake_func = s->method->ssl_connect;
3389 clear_ciphers(s);
3390 }
3391
3392 int ssl_undefined_function(SSL *s)
3393 {
3394 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3395 return (0);
3396 }
3397
3398 int ssl_undefined_void_function(void)
3399 {
3400 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION,
3401 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3402 return (0);
3403 }
3404
3405 int ssl_undefined_const_function(const SSL *s)
3406 {
3407 return (0);
3408 }
3409
3410 const SSL_METHOD *ssl_bad_method(int ver)
3411 {
3412 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3413 return (NULL);
3414 }
3415
3416 const char *ssl_protocol_to_string(int version)
3417 {
3418 switch(version)
3419 {
3420 case TLS1_3_VERSION:
3421 return "TLSv1.3";
3422
3423 case TLS1_2_VERSION:
3424 return "TLSv1.2";
3425
3426 case TLS1_1_VERSION:
3427 return "TLSv1.1";
3428
3429 case TLS1_VERSION:
3430 return "TLSv1";
3431
3432 case SSL3_VERSION:
3433 return "SSLv3";
3434
3435 case DTLS1_BAD_VER:
3436 return "DTLSv0.9";
3437
3438 case DTLS1_VERSION:
3439 return "DTLSv1";
3440
3441 case DTLS1_2_VERSION:
3442 return "DTLSv1.2";
3443
3444 default:
3445 return "unknown";
3446 }
3447 }
3448
3449 const char *SSL_get_version(const SSL *s)
3450 {
3451 return ssl_protocol_to_string(s->version);
3452 }
3453
3454 SSL *SSL_dup(SSL *s)
3455 {
3456 STACK_OF(X509_NAME) *sk;
3457 X509_NAME *xn;
3458 SSL *ret;
3459 int i;
3460
3461 /* If we're not quiescent, just up_ref! */
3462 if (!SSL_in_init(s) || !SSL_in_before(s)) {
3463 CRYPTO_UP_REF(&s->references, &i, s->lock);
3464 return s;
3465 }
3466
3467 /*
3468 * Otherwise, copy configuration state, and session if set.
3469 */
3470 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL)
3471 return (NULL);
3472
3473 if (s->session != NULL) {
3474 /*
3475 * Arranges to share the same session via up_ref. This "copies"
3476 * session-id, SSL_METHOD, sid_ctx, and 'cert'
3477 */
3478 if (!SSL_copy_session_id(ret, s))
3479 goto err;
3480 } else {
3481 /*
3482 * No session has been established yet, so we have to expect that
3483 * s->cert or ret->cert will be changed later -- they should not both
3484 * point to the same object, and thus we can't use
3485 * SSL_copy_session_id.
3486 */
3487 if (!SSL_set_ssl_method(ret, s->method))
3488 goto err;
3489
3490 if (s->cert != NULL) {
3491 ssl_cert_free(ret->cert);
3492 ret->cert = ssl_cert_dup(s->cert);
3493 if (ret->cert == NULL)
3494 goto err;
3495 }
3496
3497 if (!SSL_set_session_id_context(ret, s->sid_ctx,
3498 (int)s->sid_ctx_length))
3499 goto err;
3500 }
3501
3502 if (!ssl_dane_dup(ret, s))
3503 goto err;
3504 ret->version = s->version;
3505 ret->options = s->options;
3506 ret->mode = s->mode;
3507 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s));
3508 SSL_set_read_ahead(ret, SSL_get_read_ahead(s));
3509 ret->msg_callback = s->msg_callback;
3510 ret->msg_callback_arg = s->msg_callback_arg;
3511 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s));
3512 SSL_set_verify_depth(ret, SSL_get_verify_depth(s));
3513 ret->generate_session_id = s->generate_session_id;
3514
3515 SSL_set_info_callback(ret, SSL_get_info_callback(s));
3516
3517 /* copy app data, a little dangerous perhaps */
3518 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data))
3519 goto err;
3520
3521 /* setup rbio, and wbio */
3522 if (s->rbio != NULL) {
3523 if (!BIO_dup_state(s->rbio, (char *)&ret->rbio))
3524 goto err;
3525 }
3526 if (s->wbio != NULL) {
3527 if (s->wbio != s->rbio) {
3528 if (!BIO_dup_state(s->wbio, (char *)&ret->wbio))
3529 goto err;
3530 } else {
3531 BIO_up_ref(ret->rbio);
3532 ret->wbio = ret->rbio;
3533 }
3534 }
3535
3536 ret->server = s->server;
3537 if (s->handshake_func) {
3538 if (s->server)
3539 SSL_set_accept_state(ret);
3540 else
3541 SSL_set_connect_state(ret);
3542 }
3543 ret->shutdown = s->shutdown;
3544 ret->hit = s->hit;
3545
3546 ret->default_passwd_callback = s->default_passwd_callback;
3547 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata;
3548
3549 X509_VERIFY_PARAM_inherit(ret->param, s->param);
3550
3551 /* dup the cipher_list and cipher_list_by_id stacks */
3552 if (s->cipher_list != NULL) {
3553 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL)
3554 goto err;
3555 }
3556 if (s->cipher_list_by_id != NULL)
3557 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id))
3558 == NULL)
3559 goto err;
3560
3561 /* Dup the client_CA list */
3562 if (s->ca_names != NULL) {
3563 if ((sk = sk_X509_NAME_dup(s->ca_names)) == NULL)
3564 goto err;
3565 ret->ca_names = sk;
3566 for (i = 0; i < sk_X509_NAME_num(sk); i++) {
3567 xn = sk_X509_NAME_value(sk, i);
3568 if (sk_X509_NAME_set(sk, i, X509_NAME_dup(xn)) == NULL) {
3569 X509_NAME_free(xn);
3570 goto err;
3571 }
3572 }
3573 }
3574 return ret;
3575
3576 err:
3577 SSL_free(ret);
3578 return NULL;
3579 }
3580
3581 void ssl_clear_cipher_ctx(SSL *s)
3582 {
3583 if (s->enc_read_ctx != NULL) {
3584 EVP_CIPHER_CTX_free(s->enc_read_ctx);
3585 s->enc_read_ctx = NULL;
3586 }
3587 if (s->enc_write_ctx != NULL) {
3588 EVP_CIPHER_CTX_free(s->enc_write_ctx);
3589 s->enc_write_ctx = NULL;
3590 }
3591 #ifndef OPENSSL_NO_COMP
3592 COMP_CTX_free(s->expand);
3593 s->expand = NULL;
3594 COMP_CTX_free(s->compress);
3595 s->compress = NULL;
3596 #endif
3597 }
3598
3599 X509 *SSL_get_certificate(const SSL *s)
3600 {
3601 if (s->cert != NULL)
3602 return (s->cert->key->x509);
3603 else
3604 return (NULL);
3605 }
3606
3607 EVP_PKEY *SSL_get_privatekey(const SSL *s)
3608 {
3609 if (s->cert != NULL)
3610 return (s->cert->key->privatekey);
3611 else
3612 return (NULL);
3613 }
3614
3615 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx)
3616 {
3617 if (ctx->cert != NULL)
3618 return ctx->cert->key->x509;
3619 else
3620 return NULL;
3621 }
3622
3623 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx)
3624 {
3625 if (ctx->cert != NULL)
3626 return ctx->cert->key->privatekey;
3627 else
3628 return NULL;
3629 }
3630
3631 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s)
3632 {
3633 if ((s->session != NULL) && (s->session->cipher != NULL))
3634 return (s->session->cipher);
3635 return (NULL);
3636 }
3637
3638 const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s)
3639 {
3640 return s->s3->tmp.new_cipher;
3641 }
3642
3643 const COMP_METHOD *SSL_get_current_compression(SSL *s)
3644 {
3645 #ifndef OPENSSL_NO_COMP
3646 return s->compress ? COMP_CTX_get_method(s->compress) : NULL;
3647 #else
3648 return NULL;
3649 #endif
3650 }
3651
3652 const COMP_METHOD *SSL_get_current_expansion(SSL *s)
3653 {
3654 #ifndef OPENSSL_NO_COMP
3655 return s->expand ? COMP_CTX_get_method(s->expand) : NULL;
3656 #else
3657 return NULL;
3658 #endif
3659 }
3660
3661 int ssl_init_wbio_buffer(SSL *s)
3662 {
3663 BIO *bbio;
3664
3665 if (s->bbio != NULL) {
3666 /* Already buffered. */
3667 return 1;
3668 }
3669
3670 bbio = BIO_new(BIO_f_buffer());
3671 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) {
3672 BIO_free(bbio);
3673 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB);
3674 return 0;
3675 }
3676 s->bbio = bbio;
3677 s->wbio = BIO_push(bbio, s->wbio);
3678
3679 return 1;
3680 }
3681
3682 int ssl_free_wbio_buffer(SSL *s)
3683 {
3684 /* callers ensure s is never null */
3685 if (s->bbio == NULL)
3686 return 1;
3687
3688 s->wbio = BIO_pop(s->wbio);
3689 if (!ossl_assert(s->wbio != NULL))
3690 return 0;
3691 BIO_free(s->bbio);
3692 s->bbio = NULL;
3693
3694 return 1;
3695 }
3696
3697 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode)
3698 {
3699 ctx->quiet_shutdown = mode;
3700 }
3701
3702 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx)
3703 {
3704 return (ctx->quiet_shutdown);
3705 }
3706
3707 void SSL_set_quiet_shutdown(SSL *s, int mode)
3708 {
3709 s->quiet_shutdown = mode;
3710 }
3711
3712 int SSL_get_quiet_shutdown(const SSL *s)
3713 {
3714 return (s->quiet_shutdown);
3715 }
3716
3717 void SSL_set_shutdown(SSL *s, int mode)
3718 {
3719 s->shutdown = mode;
3720 }
3721
3722 int SSL_get_shutdown(const SSL *s)
3723 {
3724 return s->shutdown;
3725 }
3726
3727 int SSL_version(const SSL *s)
3728 {
3729 return s->version;
3730 }
3731
3732 int SSL_client_version(const SSL *s)
3733 {
3734 return s->client_version;
3735 }
3736
3737 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl)
3738 {
3739 return ssl->ctx;
3740 }
3741
3742 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx)
3743 {
3744 CERT *new_cert;
3745 if (ssl->ctx == ctx)
3746 return ssl->ctx;
3747 if (ctx == NULL)
3748 ctx = ssl->session_ctx;
3749 new_cert = ssl_cert_dup(ctx->cert);
3750 if (new_cert == NULL) {
3751 return NULL;
3752 }
3753
3754 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) {
3755 ssl_cert_free(new_cert);
3756 return NULL;
3757 }
3758
3759 ssl_cert_free(ssl->cert);
3760 ssl->cert = new_cert;
3761
3762 /*
3763 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH),
3764 * so setter APIs must prevent invalid lengths from entering the system.
3765 */
3766 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx)))
3767 return NULL;
3768
3769 /*
3770 * If the session ID context matches that of the parent SSL_CTX,
3771 * inherit it from the new SSL_CTX as well. If however the context does
3772 * not match (i.e., it was set per-ssl with SSL_set_session_id_context),
3773 * leave it unchanged.
3774 */
3775 if ((ssl->ctx != NULL) &&
3776 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) &&
3777 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) {
3778 ssl->sid_ctx_length = ctx->sid_ctx_length;
3779 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx));
3780 }
3781
3782 SSL_CTX_up_ref(ctx);
3783 SSL_CTX_free(ssl->ctx); /* decrement reference count */
3784 ssl->ctx = ctx;
3785
3786 return ssl->ctx;
3787 }
3788
3789 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx)
3790 {
3791 return (X509_STORE_set_default_paths(ctx->cert_store));
3792 }
3793
3794 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx)
3795 {
3796 X509_LOOKUP *lookup;
3797
3798 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir());
3799 if (lookup == NULL)
3800 return 0;
3801 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
3802
3803 /* Clear any errors if the default directory does not exist */
3804 ERR_clear_error();
3805
3806 return 1;
3807 }
3808
3809 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx)
3810 {
3811 X509_LOOKUP *lookup;
3812
3813 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file());
3814 if (lookup == NULL)
3815 return 0;
3816
3817 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT);
3818
3819 /* Clear any errors if the default file does not exist */
3820 ERR_clear_error();
3821
3822 return 1;
3823 }
3824
3825 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
3826 const char *CApath)
3827 {
3828 return (X509_STORE_load_locations(ctx->cert_store, CAfile, CApath));
3829 }
3830
3831 void SSL_set_info_callback(SSL *ssl,
3832 void (*cb) (const SSL *ssl, int type, int val))
3833 {
3834 ssl->info_callback = cb;
3835 }
3836
3837 /*
3838 * One compiler (Diab DCC) doesn't like argument names in returned function
3839 * pointer.
3840 */
3841 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ ,
3842 int /* type */ ,
3843 int /* val */ ) {
3844 return ssl->info_callback;
3845 }
3846
3847 void SSL_set_verify_result(SSL *ssl, long arg)
3848 {
3849 ssl->verify_result = arg;
3850 }
3851
3852 long SSL_get_verify_result(const SSL *ssl)
3853 {
3854 return (ssl->verify_result);
3855 }
3856
3857 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen)
3858 {
3859 if (outlen == 0)
3860 return sizeof(ssl->s3->client_random);
3861 if (outlen > sizeof(ssl->s3->client_random))
3862 outlen = sizeof(ssl->s3->client_random);
3863 memcpy(out, ssl->s3->client_random, outlen);
3864 return outlen;
3865 }
3866
3867 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen)
3868 {
3869 if (outlen == 0)
3870 return sizeof(ssl->s3->server_random);
3871 if (outlen > sizeof(ssl->s3->server_random))
3872 outlen = sizeof(ssl->s3->server_random);
3873 memcpy(out, ssl->s3->server_random, outlen);
3874 return outlen;
3875 }
3876
3877 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session,
3878 unsigned char *out, size_t outlen)
3879 {
3880 if (outlen == 0)
3881 return session->master_key_length;
3882 if (outlen > session->master_key_length)
3883 outlen = session->master_key_length;
3884 memcpy(out, session->master_key, outlen);
3885 return outlen;
3886 }
3887
3888 int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in,
3889 size_t len)
3890 {
3891 if (len > sizeof(sess->master_key))
3892 return 0;
3893
3894 memcpy(sess->master_key, in, len);
3895 sess->master_key_length = len;
3896 return 1;
3897 }
3898
3899
3900 int SSL_set_ex_data(SSL *s, int idx, void *arg)
3901 {
3902 return (CRYPTO_set_ex_data(&s->ex_data, idx, arg));
3903 }
3904
3905 void *SSL_get_ex_data(const SSL *s, int idx)
3906 {
3907 return (CRYPTO_get_ex_data(&s->ex_data, idx));
3908 }
3909
3910 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg)
3911 {
3912 return (CRYPTO_set_ex_data(&s->ex_data, idx, arg));
3913 }
3914
3915 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx)
3916 {
3917 return (CRYPTO_get_ex_data(&s->ex_data, idx));
3918 }
3919
3920 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx)
3921 {
3922 return (ctx->cert_store);
3923 }
3924
3925 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store)
3926 {
3927 X509_STORE_free(ctx->cert_store);
3928 ctx->cert_store = store;
3929 }
3930
3931 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store)
3932 {
3933 if (store != NULL)
3934 X509_STORE_up_ref(store);
3935 SSL_CTX_set_cert_store(ctx, store);
3936 }
3937
3938 int SSL_want(const SSL *s)
3939 {
3940 return (s->rwstate);
3941 }
3942
3943 /**
3944 * \brief Set the callback for generating temporary DH keys.
3945 * \param ctx the SSL context.
3946 * \param dh the callback
3947 */
3948
3949 #ifndef OPENSSL_NO_DH
3950 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
3951 DH *(*dh) (SSL *ssl, int is_export,
3952 int keylength))
3953 {
3954 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
3955 }
3956
3957 void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export,
3958 int keylength))
3959 {
3960 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
3961 }
3962 #endif
3963
3964 #ifndef OPENSSL_NO_PSK
3965 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint)
3966 {
3967 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
3968 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
3969 return 0;
3970 }
3971 OPENSSL_free(ctx->cert->psk_identity_hint);
3972 if (identity_hint != NULL) {
3973 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
3974 if (ctx->cert->psk_identity_hint == NULL)
3975 return 0;
3976 } else
3977 ctx->cert->psk_identity_hint = NULL;
3978 return 1;
3979 }
3980
3981 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint)
3982 {
3983 if (s == NULL)
3984 return 0;
3985
3986 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
3987 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
3988 return 0;
3989 }
3990 OPENSSL_free(s->cert->psk_identity_hint);
3991 if (identity_hint != NULL) {
3992 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
3993 if (s->cert->psk_identity_hint == NULL)
3994 return 0;
3995 } else
3996 s->cert->psk_identity_hint = NULL;
3997 return 1;
3998 }
3999
4000 const char *SSL_get_psk_identity_hint(const SSL *s)
4001 {
4002 if (s == NULL || s->session == NULL)
4003 return NULL;
4004 return (s->session->psk_identity_hint);
4005 }
4006
4007 const char *SSL_get_psk_identity(const SSL *s)
4008 {
4009 if (s == NULL || s->session == NULL)
4010 return NULL;
4011 return (s->session->psk_identity);
4012 }
4013
4014 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb)
4015 {
4016 s->psk_client_callback = cb;
4017 }
4018
4019 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb)
4020 {
4021 ctx->psk_client_callback = cb;
4022 }
4023
4024 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb)
4025 {
4026 s->psk_server_callback = cb;
4027 }
4028
4029 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb)
4030 {
4031 ctx->psk_server_callback = cb;
4032 }
4033 #endif
4034
4035 void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb)
4036 {
4037 s->psk_find_session_cb = cb;
4038 }
4039
4040 void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx,
4041 SSL_psk_find_session_cb_func cb)
4042 {
4043 ctx->psk_find_session_cb = cb;
4044 }
4045
4046 void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb)
4047 {
4048 s->psk_use_session_cb = cb;
4049 }
4050
4051 void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx,
4052 SSL_psk_use_session_cb_func cb)
4053 {
4054 ctx->psk_use_session_cb = cb;
4055 }
4056
4057 void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
4058 void (*cb) (int write_p, int version,
4059 int content_type, const void *buf,
4060 size_t len, SSL *ssl, void *arg))
4061 {
4062 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4063 }
4064
4065 void SSL_set_msg_callback(SSL *ssl,
4066 void (*cb) (int write_p, int version,
4067 int content_type, const void *buf,
4068 size_t len, SSL *ssl, void *arg))
4069 {
4070 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4071 }
4072
4073 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx,
4074 int (*cb) (SSL *ssl,
4075 int
4076 is_forward_secure))
4077 {
4078 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4079 (void (*)(void))cb);
4080 }
4081
4082 void SSL_set_not_resumable_session_callback(SSL *ssl,
4083 int (*cb) (SSL *ssl,
4084 int is_forward_secure))
4085 {
4086 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4087 (void (*)(void))cb);
4088 }
4089
4090 void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx,
4091 size_t (*cb) (SSL *ssl, int type,
4092 size_t len, void *arg))
4093 {
4094 ctx->record_padding_cb = cb;
4095 }
4096
4097 void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg)
4098 {
4099 ctx->record_padding_arg = arg;
4100 }
4101
4102 void *SSL_CTX_get_record_padding_callback_arg(SSL_CTX *ctx)
4103 {
4104 return ctx->record_padding_arg;
4105 }
4106
4107 int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size)
4108 {
4109 /* block size of 0 or 1 is basically no padding */
4110 if (block_size == 1)
4111 ctx->block_padding = 0;
4112 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4113 ctx->block_padding = block_size;
4114 else
4115 return 0;
4116 return 1;
4117 }
4118
4119 void SSL_set_record_padding_callback(SSL *ssl,
4120 size_t (*cb) (SSL *ssl, int type,
4121 size_t len, void *arg))
4122 {
4123 ssl->record_padding_cb = cb;
4124 }
4125
4126 void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg)
4127 {
4128 ssl->record_padding_arg = arg;
4129 }
4130
4131 void *SSL_get_record_padding_callback_arg(SSL *ssl)
4132 {
4133 return ssl->record_padding_arg;
4134 }
4135
4136 int SSL_set_block_padding(SSL *ssl, size_t block_size)
4137 {
4138 /* block size of 0 or 1 is basically no padding */
4139 if (block_size == 1)
4140 ssl->block_padding = 0;
4141 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4142 ssl->block_padding = block_size;
4143 else
4144 return 0;
4145 return 1;
4146 }
4147
4148 /*
4149 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer
4150 * variable, freeing EVP_MD_CTX previously stored in that variable, if any.
4151 * If EVP_MD pointer is passed, initializes ctx with this |md|.
4152 * Returns the newly allocated ctx;
4153 */
4154
4155 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md)
4156 {
4157 ssl_clear_hash_ctx(hash);
4158 *hash = EVP_MD_CTX_new();
4159 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) {
4160 EVP_MD_CTX_free(*hash);
4161 *hash = NULL;
4162 return NULL;
4163 }
4164 return *hash;
4165 }
4166
4167 void ssl_clear_hash_ctx(EVP_MD_CTX **hash)
4168 {
4169
4170 EVP_MD_CTX_free(*hash);
4171 *hash = NULL;
4172 }
4173
4174 /* Retrieve handshake hashes */
4175 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen,
4176 size_t *hashlen)
4177 {
4178 EVP_MD_CTX *ctx = NULL;
4179 EVP_MD_CTX *hdgst = s->s3->handshake_dgst;
4180 int hashleni = EVP_MD_CTX_size(hdgst);
4181 int ret = 0;
4182
4183 if (hashleni < 0 || (size_t)hashleni > outlen)
4184 goto err;
4185
4186 ctx = EVP_MD_CTX_new();
4187 if (ctx == NULL)
4188 goto err;
4189
4190 if (!EVP_MD_CTX_copy_ex(ctx, hdgst)
4191 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0)
4192 goto err;
4193
4194 *hashlen = hashleni;
4195
4196 ret = 1;
4197 err:
4198 EVP_MD_CTX_free(ctx);
4199 return ret;
4200 }
4201
4202 int SSL_session_reused(SSL *s)
4203 {
4204 return s->hit;
4205 }
4206
4207 int SSL_is_server(const SSL *s)
4208 {
4209 return s->server;
4210 }
4211
4212 #if OPENSSL_API_COMPAT < 0x10100000L
4213 void SSL_set_debug(SSL *s, int debug)
4214 {
4215 /* Old function was do-nothing anyway... */
4216 (void)s;
4217 (void)debug;
4218 }
4219 #endif
4220
4221 void SSL_set_security_level(SSL *s, int level)
4222 {
4223 s->cert->sec_level = level;
4224 }
4225
4226 int SSL_get_security_level(const SSL *s)
4227 {
4228 return s->cert->sec_level;
4229 }
4230
4231 void SSL_set_security_callback(SSL *s,
4232 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4233 int op, int bits, int nid,
4234 void *other, void *ex))
4235 {
4236 s->cert->sec_cb = cb;
4237 }
4238
4239 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s,
4240 const SSL_CTX *ctx, int op,
4241 int bits, int nid, void *other,
4242 void *ex) {
4243 return s->cert->sec_cb;
4244 }
4245
4246 void SSL_set0_security_ex_data(SSL *s, void *ex)
4247 {
4248 s->cert->sec_ex = ex;
4249 }
4250
4251 void *SSL_get0_security_ex_data(const SSL *s)
4252 {
4253 return s->cert->sec_ex;
4254 }
4255
4256 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level)
4257 {
4258 ctx->cert->sec_level = level;
4259 }
4260
4261 int SSL_CTX_get_security_level(const SSL_CTX *ctx)
4262 {
4263 return ctx->cert->sec_level;
4264 }
4265
4266 void SSL_CTX_set_security_callback(SSL_CTX *ctx,
4267 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4268 int op, int bits, int nid,
4269 void *other, void *ex))
4270 {
4271 ctx->cert->sec_cb = cb;
4272 }
4273
4274 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s,
4275 const SSL_CTX *ctx,
4276 int op, int bits,
4277 int nid,
4278 void *other,
4279 void *ex) {
4280 return ctx->cert->sec_cb;
4281 }
4282
4283 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex)
4284 {
4285 ctx->cert->sec_ex = ex;
4286 }
4287
4288 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx)
4289 {
4290 return ctx->cert->sec_ex;
4291 }
4292
4293 /*
4294 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that
4295 * can return unsigned long, instead of the generic long return value from the
4296 * control interface.
4297 */
4298 unsigned long SSL_CTX_get_options(const SSL_CTX *ctx)
4299 {
4300 return ctx->options;
4301 }
4302
4303 unsigned long SSL_get_options(const SSL *s)
4304 {
4305 return s->options;
4306 }
4307
4308 unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op)
4309 {
4310 return ctx->options |= op;
4311 }
4312
4313 unsigned long SSL_set_options(SSL *s, unsigned long op)
4314 {
4315 return s->options |= op;
4316 }
4317
4318 unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op)
4319 {
4320 return ctx->options &= ~op;
4321 }
4322
4323 unsigned long SSL_clear_options(SSL *s, unsigned long op)
4324 {
4325 return s->options &= ~op;
4326 }
4327
4328 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s)
4329 {
4330 return s->verified_chain;
4331 }
4332
4333 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id);
4334
4335 #ifndef OPENSSL_NO_CT
4336
4337 /*
4338 * Moves SCTs from the |src| stack to the |dst| stack.
4339 * The source of each SCT will be set to |origin|.
4340 * If |dst| points to a NULL pointer, a new stack will be created and owned by
4341 * the caller.
4342 * Returns the number of SCTs moved, or a negative integer if an error occurs.
4343 */
4344 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src,
4345 sct_source_t origin)
4346 {
4347 int scts_moved = 0;
4348 SCT *sct = NULL;
4349
4350 if (*dst == NULL) {
4351 *dst = sk_SCT_new_null();
4352 if (*dst == NULL) {
4353 SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE);
4354 goto err;
4355 }
4356 }
4357
4358 while ((sct = sk_SCT_pop(src)) != NULL) {
4359 if (SCT_set_source(sct, origin) != 1)
4360 goto err;
4361
4362 if (sk_SCT_push(*dst, sct) <= 0)
4363 goto err;
4364 scts_moved += 1;
4365 }
4366
4367 return scts_moved;
4368 err:
4369 if (sct != NULL)
4370 sk_SCT_push(src, sct); /* Put the SCT back */
4371 return -1;
4372 }
4373
4374 /*
4375 * Look for data collected during ServerHello and parse if found.
4376 * Returns the number of SCTs extracted.
4377 */
4378 static int ct_extract_tls_extension_scts(SSL *s)
4379 {
4380 int scts_extracted = 0;
4381
4382 if (s->ext.scts != NULL) {
4383 const unsigned char *p = s->ext.scts;
4384 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len);
4385
4386 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION);
4387
4388 SCT_LIST_free(scts);
4389 }
4390
4391 return scts_extracted;
4392 }
4393
4394 /*
4395 * Checks for an OCSP response and then attempts to extract any SCTs found if it
4396 * contains an SCT X509 extension. They will be stored in |s->scts|.
4397 * Returns:
4398 * - The number of SCTs extracted, assuming an OCSP response exists.
4399 * - 0 if no OCSP response exists or it contains no SCTs.
4400 * - A negative integer if an error occurs.
4401 */
4402 static int ct_extract_ocsp_response_scts(SSL *s)
4403 {
4404 # ifndef OPENSSL_NO_OCSP
4405 int scts_extracted = 0;
4406 const unsigned char *p;
4407 OCSP_BASICRESP *br = NULL;
4408 OCSP_RESPONSE *rsp = NULL;
4409 STACK_OF(SCT) *scts = NULL;
4410 int i;
4411
4412 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0)
4413 goto err;
4414
4415 p = s->ext.ocsp.resp;
4416 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len);
4417 if (rsp == NULL)
4418 goto err;
4419
4420 br = OCSP_response_get1_basic(rsp);
4421 if (br == NULL)
4422 goto err;
4423
4424 for (i = 0; i < OCSP_resp_count(br); ++i) {
4425 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i);
4426
4427 if (single == NULL)
4428 continue;
4429
4430 scts =
4431 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL);
4432 scts_extracted =
4433 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE);
4434 if (scts_extracted < 0)
4435 goto err;
4436 }
4437 err:
4438 SCT_LIST_free(scts);
4439 OCSP_BASICRESP_free(br);
4440 OCSP_RESPONSE_free(rsp);
4441 return scts_extracted;
4442 # else
4443 /* Behave as if no OCSP response exists */
4444 return 0;
4445 # endif
4446 }
4447
4448 /*
4449 * Attempts to extract SCTs from the peer certificate.
4450 * Return the number of SCTs extracted, or a negative integer if an error
4451 * occurs.
4452 */
4453 static int ct_extract_x509v3_extension_scts(SSL *s)
4454 {
4455 int scts_extracted = 0;
4456 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4457
4458 if (cert != NULL) {
4459 STACK_OF(SCT) *scts =
4460 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL);
4461
4462 scts_extracted =
4463 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION);
4464
4465 SCT_LIST_free(scts);
4466 }
4467
4468 return scts_extracted;
4469 }
4470
4471 /*
4472 * Attempts to find all received SCTs by checking TLS extensions, the OCSP
4473 * response (if it exists) and X509v3 extensions in the certificate.
4474 * Returns NULL if an error occurs.
4475 */
4476 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s)
4477 {
4478 if (!s->scts_parsed) {
4479 if (ct_extract_tls_extension_scts(s) < 0 ||
4480 ct_extract_ocsp_response_scts(s) < 0 ||
4481 ct_extract_x509v3_extension_scts(s) < 0)
4482 goto err;
4483
4484 s->scts_parsed = 1;
4485 }
4486 return s->scts;
4487 err:
4488 return NULL;
4489 }
4490
4491 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx,
4492 const STACK_OF(SCT) *scts, void *unused_arg)
4493 {
4494 return 1;
4495 }
4496
4497 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx,
4498 const STACK_OF(SCT) *scts, void *unused_arg)
4499 {
4500 int count = scts != NULL ? sk_SCT_num(scts) : 0;
4501 int i;
4502
4503 for (i = 0; i < count; ++i) {
4504 SCT *sct = sk_SCT_value(scts, i);
4505 int status = SCT_get_validation_status(sct);
4506
4507 if (status == SCT_VALIDATION_STATUS_VALID)
4508 return 1;
4509 }
4510 SSLerr(SSL_F_CT_STRICT, SSL_R_NO_VALID_SCTS);
4511 return 0;
4512 }
4513
4514 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback,
4515 void *arg)
4516 {
4517 /*
4518 * Since code exists that uses the custom extension handler for CT, look
4519 * for this and throw an error if they have already registered to use CT.
4520 */
4521 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx,
4522 TLSEXT_TYPE_signed_certificate_timestamp))
4523 {
4524 SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK,
4525 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4526 return 0;
4527 }
4528
4529 if (callback != NULL) {
4530 /*
4531 * If we are validating CT, then we MUST accept SCTs served via OCSP
4532 */
4533 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp))
4534 return 0;
4535 }
4536
4537 s->ct_validation_callback = callback;
4538 s->ct_validation_callback_arg = arg;
4539
4540 return 1;
4541 }
4542
4543 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx,
4544 ssl_ct_validation_cb callback, void *arg)
4545 {
4546 /*
4547 * Since code exists that uses the custom extension handler for CT, look for
4548 * this and throw an error if they have already registered to use CT.
4549 */
4550 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx,
4551 TLSEXT_TYPE_signed_certificate_timestamp))
4552 {
4553 SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK,
4554 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4555 return 0;
4556 }
4557
4558 ctx->ct_validation_callback = callback;
4559 ctx->ct_validation_callback_arg = arg;
4560 return 1;
4561 }
4562
4563 int SSL_ct_is_enabled(const SSL *s)
4564 {
4565 return s->ct_validation_callback != NULL;
4566 }
4567
4568 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx)
4569 {
4570 return ctx->ct_validation_callback != NULL;
4571 }
4572
4573 int ssl_validate_ct(SSL *s)
4574 {
4575 int ret = 0;
4576 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4577 X509 *issuer;
4578 SSL_DANE *dane = &s->dane;
4579 CT_POLICY_EVAL_CTX *ctx = NULL;
4580 const STACK_OF(SCT) *scts;
4581
4582 /*
4583 * If no callback is set, the peer is anonymous, or its chain is invalid,
4584 * skip SCT validation - just return success. Applications that continue
4585 * handshakes without certificates, with unverified chains, or pinned leaf
4586 * certificates are outside the scope of the WebPKI and CT.
4587 *
4588 * The above exclusions notwithstanding the vast majority of peers will
4589 * have rather ordinary certificate chains validated by typical
4590 * applications that perform certificate verification and therefore will
4591 * process SCTs when enabled.
4592 */
4593 if (s->ct_validation_callback == NULL || cert == NULL ||
4594 s->verify_result != X509_V_OK ||
4595 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1)
4596 return 1;
4597
4598 /*
4599 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3)
4600 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2
4601 */
4602 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) {
4603 switch (dane->mtlsa->usage) {
4604 case DANETLS_USAGE_DANE_TA:
4605 case DANETLS_USAGE_DANE_EE:
4606 return 1;
4607 }
4608 }
4609
4610 ctx = CT_POLICY_EVAL_CTX_new();
4611 if (ctx == NULL) {
4612 SSLerr(SSL_F_SSL_VALIDATE_CT, ERR_R_MALLOC_FAILURE);
4613 goto end;
4614 }
4615
4616 issuer = sk_X509_value(s->verified_chain, 1);
4617 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert);
4618 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer);
4619 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store);
4620 CT_POLICY_EVAL_CTX_set_time(
4621 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000);
4622
4623 scts = SSL_get0_peer_scts(s);
4624
4625 /*
4626 * This function returns success (> 0) only when all the SCTs are valid, 0
4627 * when some are invalid, and < 0 on various internal errors (out of
4628 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient
4629 * reason to abort the handshake, that decision is up to the callback.
4630 * Therefore, we error out only in the unexpected case that the return
4631 * value is negative.
4632 *
4633 * XXX: One might well argue that the return value of this function is an
4634 * unfortunate design choice. Its job is only to determine the validation
4635 * status of each of the provided SCTs. So long as it correctly separates
4636 * the wheat from the chaff it should return success. Failure in this case
4637 * ought to correspond to an inability to carry out its duties.
4638 */
4639 if (SCT_LIST_validate(scts, ctx) < 0) {
4640 SSLerr(SSL_F_SSL_VALIDATE_CT, SSL_R_SCT_VERIFICATION_FAILED);
4641 goto end;
4642 }
4643
4644 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg);
4645 if (ret < 0)
4646 ret = 0; /* This function returns 0 on failure */
4647
4648 end:
4649 CT_POLICY_EVAL_CTX_free(ctx);
4650 /*
4651 * With SSL_VERIFY_NONE the session may be cached and re-used despite a
4652 * failure return code here. Also the application may wish the complete
4653 * the handshake, and then disconnect cleanly at a higher layer, after
4654 * checking the verification status of the completed connection.
4655 *
4656 * We therefore force a certificate verification failure which will be
4657 * visible via SSL_get_verify_result() and cached as part of any resumed
4658 * session.
4659 *
4660 * Note: the permissive callback is for information gathering only, always
4661 * returns success, and does not affect verification status. Only the
4662 * strict callback or a custom application-specified callback can trigger
4663 * connection failure or record a verification error.
4664 */
4665 if (ret <= 0)
4666 s->verify_result = X509_V_ERR_NO_VALID_SCTS;
4667 return ret;
4668 }
4669
4670 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode)
4671 {
4672 switch (validation_mode) {
4673 default:
4674 SSLerr(SSL_F_SSL_CTX_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4675 return 0;
4676 case SSL_CT_VALIDATION_PERMISSIVE:
4677 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL);
4678 case SSL_CT_VALIDATION_STRICT:
4679 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL);
4680 }
4681 }
4682
4683 int SSL_enable_ct(SSL *s, int validation_mode)
4684 {
4685 switch (validation_mode) {
4686 default:
4687 SSLerr(SSL_F_SSL_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4688 return 0;
4689 case SSL_CT_VALIDATION_PERMISSIVE:
4690 return SSL_set_ct_validation_callback(s, ct_permissive, NULL);
4691 case SSL_CT_VALIDATION_STRICT:
4692 return SSL_set_ct_validation_callback(s, ct_strict, NULL);
4693 }
4694 }
4695
4696 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx)
4697 {
4698 return CTLOG_STORE_load_default_file(ctx->ctlog_store);
4699 }
4700
4701 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path)
4702 {
4703 return CTLOG_STORE_load_file(ctx->ctlog_store, path);
4704 }
4705
4706 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs)
4707 {
4708 CTLOG_STORE_free(ctx->ctlog_store);
4709 ctx->ctlog_store = logs;
4710 }
4711
4712 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx)
4713 {
4714 return ctx->ctlog_store;
4715 }
4716
4717 #endif /* OPENSSL_NO_CT */
4718
4719 void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb,
4720 void *arg)
4721 {
4722 c->client_hello_cb = cb;
4723 c->client_hello_cb_arg = arg;
4724 }
4725
4726 int SSL_client_hello_isv2(SSL *s)
4727 {
4728 if (s->clienthello == NULL)
4729 return 0;
4730 return s->clienthello->isv2;
4731 }
4732
4733 unsigned int SSL_client_hello_get0_legacy_version(SSL *s)
4734 {
4735 if (s->clienthello == NULL)
4736 return 0;
4737 return s->clienthello->legacy_version;
4738 }
4739
4740 size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out)
4741 {
4742 if (s->clienthello == NULL)
4743 return 0;
4744 if (out != NULL)
4745 *out = s->clienthello->random;
4746 return SSL3_RANDOM_SIZE;
4747 }
4748
4749 size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out)
4750 {
4751 if (s->clienthello == NULL)
4752 return 0;
4753 if (out != NULL)
4754 *out = s->clienthello->session_id;
4755 return s->clienthello->session_id_len;
4756 }
4757
4758 size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out)
4759 {
4760 if (s->clienthello == NULL)
4761 return 0;
4762 if (out != NULL)
4763 *out = PACKET_data(&s->clienthello->ciphersuites);
4764 return PACKET_remaining(&s->clienthello->ciphersuites);
4765 }
4766
4767 size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out)
4768 {
4769 if (s->clienthello == NULL)
4770 return 0;
4771 if (out != NULL)
4772 *out = s->clienthello->compressions;
4773 return s->clienthello->compressions_len;
4774 }
4775
4776 int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen)
4777 {
4778 RAW_EXTENSION *ext;
4779 int *present;
4780 size_t num = 0, i;
4781
4782 if (s->clienthello == NULL || out == NULL || outlen == NULL)
4783 return 0;
4784 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
4785 ext = s->clienthello->pre_proc_exts + i;
4786 if (ext->present)
4787 num++;
4788 }
4789 present = OPENSSL_malloc(sizeof(*present) * num);
4790 if (present == NULL)
4791 return 0;
4792 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
4793 ext = s->clienthello->pre_proc_exts + i;
4794 if (ext->present) {
4795 if (ext->received_order >= num)
4796 goto err;
4797 present[ext->received_order] = ext->type;
4798 }
4799 }
4800 *out = present;
4801 *outlen = num;
4802 return 1;
4803 err:
4804 OPENSSL_free(present);
4805 return 0;
4806 }
4807
4808 int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out,
4809 size_t *outlen)
4810 {
4811 size_t i;
4812 RAW_EXTENSION *r;
4813
4814 if (s->clienthello == NULL)
4815 return 0;
4816 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) {
4817 r = s->clienthello->pre_proc_exts + i;
4818 if (r->present && r->type == type) {
4819 if (out != NULL)
4820 *out = PACKET_data(&r->data);
4821 if (outlen != NULL)
4822 *outlen = PACKET_remaining(&r->data);
4823 return 1;
4824 }
4825 }
4826 return 0;
4827 }
4828
4829 int SSL_free_buffers(SSL *ssl)
4830 {
4831 RECORD_LAYER *rl = &ssl->rlayer;
4832
4833 if (RECORD_LAYER_read_pending(rl) || RECORD_LAYER_write_pending(rl))
4834 return 0;
4835
4836 RECORD_LAYER_release(rl);
4837 return 1;
4838 }
4839
4840 int SSL_alloc_buffers(SSL *ssl)
4841 {
4842 return ssl3_setup_buffers(ssl);
4843 }
4844
4845 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb)
4846 {
4847 ctx->keylog_callback = cb;
4848 }
4849
4850 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx)
4851 {
4852 return ctx->keylog_callback;
4853 }
4854
4855 static int nss_keylog_int(const char *prefix,
4856 SSL *ssl,
4857 const uint8_t *parameter_1,
4858 size_t parameter_1_len,
4859 const uint8_t *parameter_2,
4860 size_t parameter_2_len)
4861 {
4862 char *out = NULL;
4863 char *cursor = NULL;
4864 size_t out_len = 0;
4865 size_t i;
4866 size_t prefix_len;
4867
4868 if (ssl->ctx->keylog_callback == NULL) return 1;
4869
4870 /*
4871 * Our output buffer will contain the following strings, rendered with
4872 * space characters in between, terminated by a NULL character: first the
4873 * prefix, then the first parameter, then the second parameter. The
4874 * meaning of each parameter depends on the specific key material being
4875 * logged. Note that the first and second parameters are encoded in
4876 * hexadecimal, so we need a buffer that is twice their lengths.
4877 */
4878 prefix_len = strlen(prefix);
4879 out_len = prefix_len + (2*parameter_1_len) + (2*parameter_2_len) + 3;
4880 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) {
4881 SSLerr(SSL_F_NSS_KEYLOG_INT, ERR_R_MALLOC_FAILURE);
4882 return 0;
4883 }
4884
4885 strcpy(cursor, prefix);
4886 cursor += prefix_len;
4887 *cursor++ = ' ';
4888
4889 for (i = 0; i < parameter_1_len; i++) {
4890 sprintf(cursor, "%02x", parameter_1[i]);
4891 cursor += 2;
4892 }
4893 *cursor++ = ' ';
4894
4895 for (i = 0; i < parameter_2_len; i++) {
4896 sprintf(cursor, "%02x", parameter_2[i]);
4897 cursor += 2;
4898 }
4899 *cursor = '\0';
4900
4901 ssl->ctx->keylog_callback(ssl, (const char *)out);
4902 OPENSSL_free(out);
4903 return 1;
4904
4905 }
4906
4907 int ssl_log_rsa_client_key_exchange(SSL *ssl,
4908 const uint8_t *encrypted_premaster,
4909 size_t encrypted_premaster_len,
4910 const uint8_t *premaster,
4911 size_t premaster_len)
4912 {
4913 if (encrypted_premaster_len < 8) {
4914 SSLerr(SSL_F_SSL_LOG_RSA_CLIENT_KEY_EXCHANGE, ERR_R_INTERNAL_ERROR);
4915 return 0;
4916 }
4917
4918 /* We only want the first 8 bytes of the encrypted premaster as a tag. */
4919 return nss_keylog_int("RSA",
4920 ssl,
4921 encrypted_premaster,
4922 8,
4923 premaster,
4924 premaster_len);
4925 }
4926
4927 int ssl_log_secret(SSL *ssl,
4928 const char *label,
4929 const uint8_t *secret,
4930 size_t secret_len)
4931 {
4932 return nss_keylog_int(label,
4933 ssl,
4934 ssl->s3->client_random,
4935 SSL3_RANDOM_SIZE,
4936 secret,
4937 secret_len);
4938 }
4939
4940 #define SSLV2_CIPHER_LEN 3
4941
4942 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format,
4943 int *al)
4944 {
4945 int n;
4946
4947 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
4948
4949 if (PACKET_remaining(cipher_suites) == 0) {
4950 SSLerr(SSL_F_SSL_CACHE_CIPHERLIST, SSL_R_NO_CIPHERS_SPECIFIED);
4951 *al = SSL_AD_ILLEGAL_PARAMETER;
4952 return 0;
4953 }
4954
4955 if (PACKET_remaining(cipher_suites) % n != 0) {
4956 SSLerr(SSL_F_SSL_CACHE_CIPHERLIST,
4957 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
4958 *al = SSL_AD_DECODE_ERROR;
4959 return 0;
4960 }
4961
4962 OPENSSL_free(s->s3->tmp.ciphers_raw);
4963 s->s3->tmp.ciphers_raw = NULL;
4964 s->s3->tmp.ciphers_rawlen = 0;
4965
4966 if (sslv2format) {
4967 size_t numciphers = PACKET_remaining(cipher_suites) / n;
4968 PACKET sslv2ciphers = *cipher_suites;
4969 unsigned int leadbyte;
4970 unsigned char *raw;
4971
4972 /*
4973 * We store the raw ciphers list in SSLv3+ format so we need to do some
4974 * preprocessing to convert the list first. If there are any SSLv2 only
4975 * ciphersuites with a non-zero leading byte then we are going to
4976 * slightly over allocate because we won't store those. But that isn't a
4977 * problem.
4978 */
4979 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN);
4980 s->s3->tmp.ciphers_raw = raw;
4981 if (raw == NULL) {
4982 *al = SSL_AD_INTERNAL_ERROR;
4983 goto err;
4984 }
4985 for (s->s3->tmp.ciphers_rawlen = 0;
4986 PACKET_remaining(&sslv2ciphers) > 0;
4987 raw += TLS_CIPHER_LEN) {
4988 if (!PACKET_get_1(&sslv2ciphers, &leadbyte)
4989 || (leadbyte == 0
4990 && !PACKET_copy_bytes(&sslv2ciphers, raw,
4991 TLS_CIPHER_LEN))
4992 || (leadbyte != 0
4993 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) {
4994 *al = SSL_AD_DECODE_ERROR;
4995 OPENSSL_free(s->s3->tmp.ciphers_raw);
4996 s->s3->tmp.ciphers_raw = NULL;
4997 s->s3->tmp.ciphers_rawlen = 0;
4998 goto err;
4999 }
5000 if (leadbyte == 0)
5001 s->s3->tmp.ciphers_rawlen += TLS_CIPHER_LEN;
5002 }
5003 } else if (!PACKET_memdup(cipher_suites, &s->s3->tmp.ciphers_raw,
5004 &s->s3->tmp.ciphers_rawlen)) {
5005 *al = SSL_AD_INTERNAL_ERROR;
5006 goto err;
5007 }
5008 return 1;
5009 err:
5010 return 0;
5011 }
5012
5013 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len,
5014 int isv2format, STACK_OF(SSL_CIPHER) **sk,
5015 STACK_OF(SSL_CIPHER) **scsvs)
5016 {
5017 int alert;
5018 PACKET pkt;
5019
5020 if (!PACKET_buf_init(&pkt, bytes, len))
5021 return 0;
5022 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, &alert);
5023 }
5024
5025 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites,
5026 STACK_OF(SSL_CIPHER) **skp,
5027 STACK_OF(SSL_CIPHER) **scsvs_out,
5028 int sslv2format, int *al)
5029 {
5030 const SSL_CIPHER *c;
5031 STACK_OF(SSL_CIPHER) *sk = NULL;
5032 STACK_OF(SSL_CIPHER) *scsvs = NULL;
5033 int n;
5034 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */
5035 unsigned char cipher[SSLV2_CIPHER_LEN];
5036
5037 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5038
5039 if (PACKET_remaining(cipher_suites) == 0) {
5040 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_NO_CIPHERS_SPECIFIED);
5041 *al = SSL_AD_ILLEGAL_PARAMETER;
5042 return 0;
5043 }
5044
5045 if (PACKET_remaining(cipher_suites) % n != 0) {
5046 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST,
5047 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5048 *al = SSL_AD_DECODE_ERROR;
5049 return 0;
5050 }
5051
5052 sk = sk_SSL_CIPHER_new_null();
5053 scsvs = sk_SSL_CIPHER_new_null();
5054 if (sk == NULL || scsvs == NULL) {
5055 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5056 *al = SSL_AD_INTERNAL_ERROR;
5057 goto err;
5058 }
5059
5060 while (PACKET_copy_bytes(cipher_suites, cipher, n)) {
5061 /*
5062 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the
5063 * first byte set to zero, while true SSLv2 ciphers have a non-zero
5064 * first byte. We don't support any true SSLv2 ciphers, so skip them.
5065 */
5066 if (sslv2format && cipher[0] != '\0')
5067 continue;
5068
5069 /* For SSLv2-compat, ignore leading 0-byte. */
5070 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1);
5071 if (c != NULL) {
5072 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) ||
5073 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) {
5074 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5075 *al = SSL_AD_INTERNAL_ERROR;
5076 goto err;
5077 }
5078 }
5079 }
5080 if (PACKET_remaining(cipher_suites) > 0) {
5081 *al = SSL_AD_DECODE_ERROR;
5082 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_BAD_LENGTH);
5083 goto err;
5084 }
5085
5086 if (skp != NULL)
5087 *skp = sk;
5088 else
5089 sk_SSL_CIPHER_free(sk);
5090 if (scsvs_out != NULL)
5091 *scsvs_out = scsvs;
5092 else
5093 sk_SSL_CIPHER_free(scsvs);
5094 return 1;
5095 err:
5096 sk_SSL_CIPHER_free(sk);
5097 sk_SSL_CIPHER_free(scsvs);
5098 return 0;
5099 }
5100
5101 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data)
5102 {
5103 ctx->max_early_data = max_early_data;
5104
5105 return 1;
5106 }
5107
5108 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx)
5109 {
5110 return ctx->max_early_data;
5111 }
5112
5113 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data)
5114 {
5115 s->max_early_data = max_early_data;
5116
5117 return 1;
5118 }
5119
5120 uint32_t SSL_get_max_early_data(const SSL *s)
5121 {
5122 return s->max_early_data;
5123 }
5124
5125 int ssl_randbytes(SSL *s, unsigned char *rnd, size_t size)
5126 {
5127 if (s->drbg != NULL)
5128 return RAND_DRBG_generate(s->drbg, rnd, size, 0, NULL, 0);
5129 return RAND_bytes(rnd, (int)size);
5130 }