]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_lib.c
Provide getters for min/max proto version
[thirdparty/openssl.git] / ssl / ssl_lib.c
1 /*
2 * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the OpenSSL license (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include "ssl_locl.h"
14 #include <openssl/objects.h>
15 #include <openssl/lhash.h>
16 #include <openssl/x509v3.h>
17 #include <openssl/rand.h>
18 #include <openssl/ocsp.h>
19 #include <openssl/dh.h>
20 #include <openssl/engine.h>
21 #include <openssl/async.h>
22 #include <openssl/ct.h>
23 #include "internal/cryptlib.h"
24 #include "internal/rand.h"
25 #include "internal/refcount.h"
26
27 const char SSL_version_str[] = OPENSSL_VERSION_TEXT;
28
29 SSL3_ENC_METHOD ssl3_undef_enc_method = {
30 /*
31 * evil casts, but these functions are only called if there's a library
32 * bug
33 */
34 (int (*)(SSL *, SSL3_RECORD *, size_t, int))ssl_undefined_function,
35 (int (*)(SSL *, SSL3_RECORD *, unsigned char *, int))ssl_undefined_function,
36 ssl_undefined_function,
37 (int (*)(SSL *, unsigned char *, unsigned char *, size_t, size_t *))
38 ssl_undefined_function,
39 (int (*)(SSL *, int))ssl_undefined_function,
40 (size_t (*)(SSL *, const char *, size_t, unsigned char *))
41 ssl_undefined_function,
42 NULL, /* client_finished_label */
43 0, /* client_finished_label_len */
44 NULL, /* server_finished_label */
45 0, /* server_finished_label_len */
46 (int (*)(int))ssl_undefined_function,
47 (int (*)(SSL *, unsigned char *, size_t, const char *,
48 size_t, const unsigned char *, size_t,
49 int use_context))ssl_undefined_function,
50 };
51
52 struct ssl_async_args {
53 SSL *s;
54 void *buf;
55 size_t num;
56 enum { READFUNC, WRITEFUNC, OTHERFUNC } type;
57 union {
58 int (*func_read) (SSL *, void *, size_t, size_t *);
59 int (*func_write) (SSL *, const void *, size_t, size_t *);
60 int (*func_other) (SSL *);
61 } f;
62 };
63
64 static const struct {
65 uint8_t mtype;
66 uint8_t ord;
67 int nid;
68 } dane_mds[] = {
69 {
70 DANETLS_MATCHING_FULL, 0, NID_undef
71 },
72 {
73 DANETLS_MATCHING_2256, 1, NID_sha256
74 },
75 {
76 DANETLS_MATCHING_2512, 2, NID_sha512
77 },
78 };
79
80 static int dane_ctx_enable(struct dane_ctx_st *dctx)
81 {
82 const EVP_MD **mdevp;
83 uint8_t *mdord;
84 uint8_t mdmax = DANETLS_MATCHING_LAST;
85 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */
86 size_t i;
87
88 if (dctx->mdevp != NULL)
89 return 1;
90
91 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp));
92 mdord = OPENSSL_zalloc(n * sizeof(*mdord));
93
94 if (mdord == NULL || mdevp == NULL) {
95 OPENSSL_free(mdord);
96 OPENSSL_free(mdevp);
97 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE);
98 return 0;
99 }
100
101 /* Install default entries */
102 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) {
103 const EVP_MD *md;
104
105 if (dane_mds[i].nid == NID_undef ||
106 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL)
107 continue;
108 mdevp[dane_mds[i].mtype] = md;
109 mdord[dane_mds[i].mtype] = dane_mds[i].ord;
110 }
111
112 dctx->mdevp = mdevp;
113 dctx->mdord = mdord;
114 dctx->mdmax = mdmax;
115
116 return 1;
117 }
118
119 static void dane_ctx_final(struct dane_ctx_st *dctx)
120 {
121 OPENSSL_free(dctx->mdevp);
122 dctx->mdevp = NULL;
123
124 OPENSSL_free(dctx->mdord);
125 dctx->mdord = NULL;
126 dctx->mdmax = 0;
127 }
128
129 static void tlsa_free(danetls_record *t)
130 {
131 if (t == NULL)
132 return;
133 OPENSSL_free(t->data);
134 EVP_PKEY_free(t->spki);
135 OPENSSL_free(t);
136 }
137
138 static void dane_final(SSL_DANE *dane)
139 {
140 sk_danetls_record_pop_free(dane->trecs, tlsa_free);
141 dane->trecs = NULL;
142
143 sk_X509_pop_free(dane->certs, X509_free);
144 dane->certs = NULL;
145
146 X509_free(dane->mcert);
147 dane->mcert = NULL;
148 dane->mtlsa = NULL;
149 dane->mdpth = -1;
150 dane->pdpth = -1;
151 }
152
153 /*
154 * dane_copy - Copy dane configuration, sans verification state.
155 */
156 static int ssl_dane_dup(SSL *to, SSL *from)
157 {
158 int num;
159 int i;
160
161 if (!DANETLS_ENABLED(&from->dane))
162 return 1;
163
164 dane_final(&to->dane);
165 to->dane.flags = from->dane.flags;
166 to->dane.dctx = &to->ctx->dane;
167 to->dane.trecs = sk_danetls_record_new_null();
168
169 if (to->dane.trecs == NULL) {
170 SSLerr(SSL_F_SSL_DANE_DUP, ERR_R_MALLOC_FAILURE);
171 return 0;
172 }
173
174 num = sk_danetls_record_num(from->dane.trecs);
175 for (i = 0; i < num; ++i) {
176 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i);
177
178 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype,
179 t->data, t->dlen) <= 0)
180 return 0;
181 }
182 return 1;
183 }
184
185 static int dane_mtype_set(struct dane_ctx_st *dctx,
186 const EVP_MD *md, uint8_t mtype, uint8_t ord)
187 {
188 int i;
189
190 if (mtype == DANETLS_MATCHING_FULL && md != NULL) {
191 SSLerr(SSL_F_DANE_MTYPE_SET, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL);
192 return 0;
193 }
194
195 if (mtype > dctx->mdmax) {
196 const EVP_MD **mdevp;
197 uint8_t *mdord;
198 int n = ((int)mtype) + 1;
199
200 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp));
201 if (mdevp == NULL) {
202 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
203 return -1;
204 }
205 dctx->mdevp = mdevp;
206
207 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord));
208 if (mdord == NULL) {
209 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
210 return -1;
211 }
212 dctx->mdord = mdord;
213
214 /* Zero-fill any gaps */
215 for (i = dctx->mdmax + 1; i < mtype; ++i) {
216 mdevp[i] = NULL;
217 mdord[i] = 0;
218 }
219
220 dctx->mdmax = mtype;
221 }
222
223 dctx->mdevp[mtype] = md;
224 /* Coerce ordinal of disabled matching types to 0 */
225 dctx->mdord[mtype] = (md == NULL) ? 0 : ord;
226
227 return 1;
228 }
229
230 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype)
231 {
232 if (mtype > dane->dctx->mdmax)
233 return NULL;
234 return dane->dctx->mdevp[mtype];
235 }
236
237 static int dane_tlsa_add(SSL_DANE *dane,
238 uint8_t usage,
239 uint8_t selector,
240 uint8_t mtype, unsigned char *data, size_t dlen)
241 {
242 danetls_record *t;
243 const EVP_MD *md = NULL;
244 int ilen = (int)dlen;
245 int i;
246 int num;
247
248 if (dane->trecs == NULL) {
249 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED);
250 return -1;
251 }
252
253 if (ilen < 0 || dlen != (size_t)ilen) {
254 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH);
255 return 0;
256 }
257
258 if (usage > DANETLS_USAGE_LAST) {
259 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE);
260 return 0;
261 }
262
263 if (selector > DANETLS_SELECTOR_LAST) {
264 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR);
265 return 0;
266 }
267
268 if (mtype != DANETLS_MATCHING_FULL) {
269 md = tlsa_md_get(dane, mtype);
270 if (md == NULL) {
271 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE);
272 return 0;
273 }
274 }
275
276 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) {
277 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH);
278 return 0;
279 }
280 if (!data) {
281 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA);
282 return 0;
283 }
284
285 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) {
286 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
287 return -1;
288 }
289
290 t->usage = usage;
291 t->selector = selector;
292 t->mtype = mtype;
293 t->data = OPENSSL_malloc(dlen);
294 if (t->data == NULL) {
295 tlsa_free(t);
296 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
297 return -1;
298 }
299 memcpy(t->data, data, dlen);
300 t->dlen = dlen;
301
302 /* Validate and cache full certificate or public key */
303 if (mtype == DANETLS_MATCHING_FULL) {
304 const unsigned char *p = data;
305 X509 *cert = NULL;
306 EVP_PKEY *pkey = NULL;
307
308 switch (selector) {
309 case DANETLS_SELECTOR_CERT:
310 if (!d2i_X509(&cert, &p, ilen) || p < data ||
311 dlen != (size_t)(p - data)) {
312 tlsa_free(t);
313 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
314 return 0;
315 }
316 if (X509_get0_pubkey(cert) == NULL) {
317 tlsa_free(t);
318 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
319 return 0;
320 }
321
322 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) {
323 X509_free(cert);
324 break;
325 }
326
327 /*
328 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA
329 * records that contain full certificates of trust-anchors that are
330 * not present in the wire chain. For usage PKIX-TA(0), we augment
331 * the chain with untrusted Full(0) certificates from DNS, in case
332 * they are missing from the chain.
333 */
334 if ((dane->certs == NULL &&
335 (dane->certs = sk_X509_new_null()) == NULL) ||
336 !sk_X509_push(dane->certs, cert)) {
337 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
338 X509_free(cert);
339 tlsa_free(t);
340 return -1;
341 }
342 break;
343
344 case DANETLS_SELECTOR_SPKI:
345 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data ||
346 dlen != (size_t)(p - data)) {
347 tlsa_free(t);
348 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY);
349 return 0;
350 }
351
352 /*
353 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA
354 * records that contain full bare keys of trust-anchors that are
355 * not present in the wire chain.
356 */
357 if (usage == DANETLS_USAGE_DANE_TA)
358 t->spki = pkey;
359 else
360 EVP_PKEY_free(pkey);
361 break;
362 }
363 }
364
365 /*-
366 * Find the right insertion point for the new record.
367 *
368 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that
369 * they can be processed first, as they require no chain building, and no
370 * expiration or hostname checks. Because DANE-EE(3) is numerically
371 * largest, this is accomplished via descending sort by "usage".
372 *
373 * We also sort in descending order by matching ordinal to simplify
374 * the implementation of digest agility in the verification code.
375 *
376 * The choice of order for the selector is not significant, so we
377 * use the same descending order for consistency.
378 */
379 num = sk_danetls_record_num(dane->trecs);
380 for (i = 0; i < num; ++i) {
381 danetls_record *rec = sk_danetls_record_value(dane->trecs, i);
382
383 if (rec->usage > usage)
384 continue;
385 if (rec->usage < usage)
386 break;
387 if (rec->selector > selector)
388 continue;
389 if (rec->selector < selector)
390 break;
391 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype])
392 continue;
393 break;
394 }
395
396 if (!sk_danetls_record_insert(dane->trecs, t, i)) {
397 tlsa_free(t);
398 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
399 return -1;
400 }
401 dane->umask |= DANETLS_USAGE_BIT(usage);
402
403 return 1;
404 }
405
406 /*
407 * Return 0 if there is only one version configured and it was disabled
408 * at configure time. Return 1 otherwise.
409 */
410 static int ssl_check_allowed_versions(int min_version, int max_version)
411 {
412 int minisdtls = 0, maxisdtls = 0;
413
414 /* Figure out if we're doing DTLS versions or TLS versions */
415 if (min_version == DTLS1_BAD_VER
416 || min_version >> 8 == DTLS1_VERSION_MAJOR)
417 minisdtls = 1;
418 if (max_version == DTLS1_BAD_VER
419 || max_version >> 8 == DTLS1_VERSION_MAJOR)
420 maxisdtls = 1;
421 /* A wildcard version of 0 could be DTLS or TLS. */
422 if ((minisdtls && !maxisdtls && max_version != 0)
423 || (maxisdtls && !minisdtls && min_version != 0)) {
424 /* Mixing DTLS and TLS versions will lead to sadness; deny it. */
425 return 0;
426 }
427
428 if (minisdtls || maxisdtls) {
429 /* Do DTLS version checks. */
430 if (min_version == 0)
431 /* Ignore DTLS1_BAD_VER */
432 min_version = DTLS1_VERSION;
433 if (max_version == 0)
434 max_version = DTLS1_2_VERSION;
435 #ifdef OPENSSL_NO_DTLS1_2
436 if (max_version == DTLS1_2_VERSION)
437 max_version = DTLS1_VERSION;
438 #endif
439 #ifdef OPENSSL_NO_DTLS1
440 if (min_version == DTLS1_VERSION)
441 min_version = DTLS1_2_VERSION;
442 #endif
443 /* Done massaging versions; do the check. */
444 if (0
445 #ifdef OPENSSL_NO_DTLS1
446 || (DTLS_VERSION_GE(min_version, DTLS1_VERSION)
447 && DTLS_VERSION_GE(DTLS1_VERSION, max_version))
448 #endif
449 #ifdef OPENSSL_NO_DTLS1_2
450 || (DTLS_VERSION_GE(min_version, DTLS1_2_VERSION)
451 && DTLS_VERSION_GE(DTLS1_2_VERSION, max_version))
452 #endif
453 )
454 return 0;
455 } else {
456 /* Regular TLS version checks. */
457 if (min_version == 0)
458 min_version = SSL3_VERSION;
459 if (max_version == 0)
460 max_version = TLS1_3_VERSION;
461 #ifdef OPENSSL_NO_TLS1_3
462 if (max_version == TLS1_3_VERSION)
463 max_version = TLS1_2_VERSION;
464 #endif
465 #ifdef OPENSSL_NO_TLS1_2
466 if (max_version == TLS1_2_VERSION)
467 max_version = TLS1_1_VERSION;
468 #endif
469 #ifdef OPENSSL_NO_TLS1_1
470 if (max_version == TLS1_1_VERSION)
471 max_version = TLS1_VERSION;
472 #endif
473 #ifdef OPENSSL_NO_TLS1
474 if (max_version == TLS1_VERSION)
475 max_version = SSL3_VERSION;
476 #endif
477 #ifdef OPENSSL_NO_SSL3
478 if (min_version == SSL3_VERSION)
479 min_version = TLS1_VERSION;
480 #endif
481 #ifdef OPENSSL_NO_TLS1
482 if (min_version == TLS1_VERSION)
483 min_version = TLS1_1_VERSION;
484 #endif
485 #ifdef OPENSSL_NO_TLS1_1
486 if (min_version == TLS1_1_VERSION)
487 min_version = TLS1_2_VERSION;
488 #endif
489 #ifdef OPENSSL_NO_TLS1_2
490 if (min_version == TLS1_2_VERSION)
491 min_version = TLS1_3_VERSION;
492 #endif
493 /* Done massaging versions; do the check. */
494 if (0
495 #ifdef OPENSSL_NO_SSL3
496 || (min_version <= SSL3_VERSION && SSL3_VERSION <= max_version)
497 #endif
498 #ifdef OPENSSL_NO_TLS1
499 || (min_version <= TLS1_VERSION && TLS1_VERSION <= max_version)
500 #endif
501 #ifdef OPENSSL_NO_TLS1_1
502 || (min_version <= TLS1_1_VERSION && TLS1_1_VERSION <= max_version)
503 #endif
504 #ifdef OPENSSL_NO_TLS1_2
505 || (min_version <= TLS1_2_VERSION && TLS1_2_VERSION <= max_version)
506 #endif
507 #ifdef OPENSSL_NO_TLS1_3
508 || (min_version <= TLS1_3_VERSION && TLS1_3_VERSION <= max_version)
509 #endif
510 )
511 return 0;
512 }
513 return 1;
514 }
515
516 static void clear_ciphers(SSL *s)
517 {
518 /* clear the current cipher */
519 ssl_clear_cipher_ctx(s);
520 ssl_clear_hash_ctx(&s->read_hash);
521 ssl_clear_hash_ctx(&s->write_hash);
522 }
523
524 int SSL_clear(SSL *s)
525 {
526 if (s->method == NULL) {
527 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED);
528 return 0;
529 }
530
531 if (ssl_clear_bad_session(s)) {
532 SSL_SESSION_free(s->session);
533 s->session = NULL;
534 }
535 SSL_SESSION_free(s->psksession);
536 s->psksession = NULL;
537 OPENSSL_free(s->psksession_id);
538 s->psksession_id = NULL;
539 s->psksession_id_len = 0;
540
541 s->error = 0;
542 s->hit = 0;
543 s->shutdown = 0;
544
545 if (s->renegotiate) {
546 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR);
547 return 0;
548 }
549
550 ossl_statem_clear(s);
551
552 s->version = s->method->version;
553 s->client_version = s->version;
554 s->rwstate = SSL_NOTHING;
555
556 BUF_MEM_free(s->init_buf);
557 s->init_buf = NULL;
558 clear_ciphers(s);
559 s->first_packet = 0;
560
561 s->key_update = SSL_KEY_UPDATE_NONE;
562
563 /* Reset DANE verification result state */
564 s->dane.mdpth = -1;
565 s->dane.pdpth = -1;
566 X509_free(s->dane.mcert);
567 s->dane.mcert = NULL;
568 s->dane.mtlsa = NULL;
569
570 /* Clear the verification result peername */
571 X509_VERIFY_PARAM_move_peername(s->param, NULL);
572
573 /*
574 * Check to see if we were changed into a different method, if so, revert
575 * back.
576 */
577 if (s->method != s->ctx->method) {
578 s->method->ssl_free(s);
579 s->method = s->ctx->method;
580 if (!s->method->ssl_new(s))
581 return 0;
582 } else {
583 if (!s->method->ssl_clear(s))
584 return 0;
585 }
586
587 RECORD_LAYER_clear(&s->rlayer);
588
589 return 1;
590 }
591
592 /** Used to change an SSL_CTXs default SSL method type */
593 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth)
594 {
595 STACK_OF(SSL_CIPHER) *sk;
596
597 ctx->method = meth;
598
599 sk = ssl_create_cipher_list(ctx->method, &(ctx->cipher_list),
600 &(ctx->cipher_list_by_id),
601 SSL_DEFAULT_CIPHER_LIST, ctx->cert);
602 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) {
603 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
604 return (0);
605 }
606 return (1);
607 }
608
609 SSL *SSL_new(SSL_CTX *ctx)
610 {
611 SSL *s;
612
613 if (ctx == NULL) {
614 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX);
615 return (NULL);
616 }
617 if (ctx->method == NULL) {
618 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
619 return (NULL);
620 }
621
622 s = OPENSSL_zalloc(sizeof(*s));
623 if (s == NULL)
624 goto err;
625
626 s->lock = CRYPTO_THREAD_lock_new();
627 if (s->lock == NULL)
628 goto err;
629
630 /*
631 * If not using the standard RAND (say for fuzzing), then don't use a
632 * chained DRBG.
633 */
634 if (RAND_get_rand_method() == RAND_OpenSSL()) {
635 s->drbg = RAND_DRBG_new(NID_aes_128_ctr, RAND_DRBG_FLAG_CTR_USE_DF,
636 RAND_DRBG_get0_global());
637 if (s->drbg == NULL
638 || RAND_DRBG_instantiate(s->drbg, NULL, 0) == 0) {
639 CRYPTO_THREAD_lock_free(s->lock);
640 goto err;
641 }
642 }
643
644 RECORD_LAYER_init(&s->rlayer, s);
645
646 s->options = ctx->options;
647 s->dane.flags = ctx->dane.flags;
648 s->min_proto_version = ctx->min_proto_version;
649 s->max_proto_version = ctx->max_proto_version;
650 s->mode = ctx->mode;
651 s->max_cert_list = ctx->max_cert_list;
652 s->references = 1;
653 s->max_early_data = ctx->max_early_data;
654
655 /*
656 * Earlier library versions used to copy the pointer to the CERT, not
657 * its contents; only when setting new parameters for the per-SSL
658 * copy, ssl_cert_new would be called (and the direct reference to
659 * the per-SSL_CTX settings would be lost, but those still were
660 * indirectly accessed for various purposes, and for that reason they
661 * used to be known as s->ctx->default_cert). Now we don't look at the
662 * SSL_CTX's CERT after having duplicated it once.
663 */
664 s->cert = ssl_cert_dup(ctx->cert);
665 if (s->cert == NULL)
666 goto err;
667
668 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead);
669 s->msg_callback = ctx->msg_callback;
670 s->msg_callback_arg = ctx->msg_callback_arg;
671 s->verify_mode = ctx->verify_mode;
672 s->not_resumable_session_cb = ctx->not_resumable_session_cb;
673 s->record_padding_cb = ctx->record_padding_cb;
674 s->record_padding_arg = ctx->record_padding_arg;
675 s->block_padding = ctx->block_padding;
676 s->sid_ctx_length = ctx->sid_ctx_length;
677 if (!ossl_assert(s->sid_ctx_length <= sizeof s->sid_ctx))
678 goto err;
679 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
680 s->verify_callback = ctx->default_verify_callback;
681 s->generate_session_id = ctx->generate_session_id;
682
683 s->param = X509_VERIFY_PARAM_new();
684 if (s->param == NULL)
685 goto err;
686 X509_VERIFY_PARAM_inherit(s->param, ctx->param);
687 s->quiet_shutdown = ctx->quiet_shutdown;
688 s->max_send_fragment = ctx->max_send_fragment;
689 s->split_send_fragment = ctx->split_send_fragment;
690 s->max_pipelines = ctx->max_pipelines;
691 if (s->max_pipelines > 1)
692 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
693 if (ctx->default_read_buf_len > 0)
694 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len);
695
696 SSL_CTX_up_ref(ctx);
697 s->ctx = ctx;
698 s->ext.debug_cb = 0;
699 s->ext.debug_arg = NULL;
700 s->ext.ticket_expected = 0;
701 s->ext.status_type = ctx->ext.status_type;
702 s->ext.status_expected = 0;
703 s->ext.ocsp.ids = NULL;
704 s->ext.ocsp.exts = NULL;
705 s->ext.ocsp.resp = NULL;
706 s->ext.ocsp.resp_len = 0;
707 SSL_CTX_up_ref(ctx);
708 s->session_ctx = ctx;
709 #ifndef OPENSSL_NO_EC
710 if (ctx->ext.ecpointformats) {
711 s->ext.ecpointformats =
712 OPENSSL_memdup(ctx->ext.ecpointformats,
713 ctx->ext.ecpointformats_len);
714 if (!s->ext.ecpointformats)
715 goto err;
716 s->ext.ecpointformats_len =
717 ctx->ext.ecpointformats_len;
718 }
719 if (ctx->ext.supportedgroups) {
720 s->ext.supportedgroups =
721 OPENSSL_memdup(ctx->ext.supportedgroups,
722 ctx->ext.supportedgroups_len);
723 if (!s->ext.supportedgroups)
724 goto err;
725 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len;
726 }
727 #endif
728 #ifndef OPENSSL_NO_NEXTPROTONEG
729 s->ext.npn = NULL;
730 #endif
731
732 if (s->ctx->ext.alpn) {
733 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len);
734 if (s->ext.alpn == NULL)
735 goto err;
736 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len);
737 s->ext.alpn_len = s->ctx->ext.alpn_len;
738 }
739
740 s->verified_chain = NULL;
741 s->verify_result = X509_V_OK;
742
743 s->default_passwd_callback = ctx->default_passwd_callback;
744 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata;
745
746 s->method = ctx->method;
747
748 s->key_update = SSL_KEY_UPDATE_NONE;
749
750 if (!s->method->ssl_new(s))
751 goto err;
752
753 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1;
754
755 if (!SSL_clear(s))
756 goto err;
757
758 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data))
759 goto err;
760
761 #ifndef OPENSSL_NO_PSK
762 s->psk_client_callback = ctx->psk_client_callback;
763 s->psk_server_callback = ctx->psk_server_callback;
764 #endif
765 s->psk_find_session_cb = ctx->psk_find_session_cb;
766 s->psk_use_session_cb = ctx->psk_use_session_cb;
767
768 s->job = NULL;
769
770 #ifndef OPENSSL_NO_CT
771 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback,
772 ctx->ct_validation_callback_arg))
773 goto err;
774 #endif
775
776 return s;
777 err:
778 SSL_free(s);
779 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
780 return NULL;
781 }
782
783 int SSL_is_dtls(const SSL *s)
784 {
785 return SSL_IS_DTLS(s) ? 1 : 0;
786 }
787
788 int SSL_up_ref(SSL *s)
789 {
790 int i;
791
792 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0)
793 return 0;
794
795 REF_PRINT_COUNT("SSL", s);
796 REF_ASSERT_ISNT(i < 2);
797 return ((i > 1) ? 1 : 0);
798 }
799
800 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
801 unsigned int sid_ctx_len)
802 {
803 if (sid_ctx_len > sizeof ctx->sid_ctx) {
804 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT,
805 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
806 return 0;
807 }
808 ctx->sid_ctx_length = sid_ctx_len;
809 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
810
811 return 1;
812 }
813
814 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
815 unsigned int sid_ctx_len)
816 {
817 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
818 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT,
819 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
820 return 0;
821 }
822 ssl->sid_ctx_length = sid_ctx_len;
823 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
824
825 return 1;
826 }
827
828 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb)
829 {
830 CRYPTO_THREAD_write_lock(ctx->lock);
831 ctx->generate_session_id = cb;
832 CRYPTO_THREAD_unlock(ctx->lock);
833 return 1;
834 }
835
836 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb)
837 {
838 CRYPTO_THREAD_write_lock(ssl->lock);
839 ssl->generate_session_id = cb;
840 CRYPTO_THREAD_unlock(ssl->lock);
841 return 1;
842 }
843
844 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
845 unsigned int id_len)
846 {
847 /*
848 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how
849 * we can "construct" a session to give us the desired check - i.e. to
850 * find if there's a session in the hash table that would conflict with
851 * any new session built out of this id/id_len and the ssl_version in use
852 * by this SSL.
853 */
854 SSL_SESSION r, *p;
855
856 if (id_len > sizeof r.session_id)
857 return 0;
858
859 r.ssl_version = ssl->version;
860 r.session_id_length = id_len;
861 memcpy(r.session_id, id, id_len);
862
863 CRYPTO_THREAD_read_lock(ssl->session_ctx->lock);
864 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r);
865 CRYPTO_THREAD_unlock(ssl->session_ctx->lock);
866 return (p != NULL);
867 }
868
869 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose)
870 {
871 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
872 }
873
874 int SSL_set_purpose(SSL *s, int purpose)
875 {
876 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
877 }
878
879 int SSL_CTX_set_trust(SSL_CTX *s, int trust)
880 {
881 return X509_VERIFY_PARAM_set_trust(s->param, trust);
882 }
883
884 int SSL_set_trust(SSL *s, int trust)
885 {
886 return X509_VERIFY_PARAM_set_trust(s->param, trust);
887 }
888
889 int SSL_set1_host(SSL *s, const char *hostname)
890 {
891 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0);
892 }
893
894 int SSL_add1_host(SSL *s, const char *hostname)
895 {
896 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0);
897 }
898
899 void SSL_set_hostflags(SSL *s, unsigned int flags)
900 {
901 X509_VERIFY_PARAM_set_hostflags(s->param, flags);
902 }
903
904 const char *SSL_get0_peername(SSL *s)
905 {
906 return X509_VERIFY_PARAM_get0_peername(s->param);
907 }
908
909 int SSL_CTX_dane_enable(SSL_CTX *ctx)
910 {
911 return dane_ctx_enable(&ctx->dane);
912 }
913
914 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags)
915 {
916 unsigned long orig = ctx->dane.flags;
917
918 ctx->dane.flags |= flags;
919 return orig;
920 }
921
922 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags)
923 {
924 unsigned long orig = ctx->dane.flags;
925
926 ctx->dane.flags &= ~flags;
927 return orig;
928 }
929
930 int SSL_dane_enable(SSL *s, const char *basedomain)
931 {
932 SSL_DANE *dane = &s->dane;
933
934 if (s->ctx->dane.mdmax == 0) {
935 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED);
936 return 0;
937 }
938 if (dane->trecs != NULL) {
939 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED);
940 return 0;
941 }
942
943 /*
944 * Default SNI name. This rejects empty names, while set1_host below
945 * accepts them and disables host name checks. To avoid side-effects with
946 * invalid input, set the SNI name first.
947 */
948 if (s->ext.hostname == NULL) {
949 if (!SSL_set_tlsext_host_name(s, basedomain)) {
950 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
951 return -1;
952 }
953 }
954
955 /* Primary RFC6125 reference identifier */
956 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) {
957 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
958 return -1;
959 }
960
961 dane->mdpth = -1;
962 dane->pdpth = -1;
963 dane->dctx = &s->ctx->dane;
964 dane->trecs = sk_danetls_record_new_null();
965
966 if (dane->trecs == NULL) {
967 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE);
968 return -1;
969 }
970 return 1;
971 }
972
973 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags)
974 {
975 unsigned long orig = ssl->dane.flags;
976
977 ssl->dane.flags |= flags;
978 return orig;
979 }
980
981 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags)
982 {
983 unsigned long orig = ssl->dane.flags;
984
985 ssl->dane.flags &= ~flags;
986 return orig;
987 }
988
989 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki)
990 {
991 SSL_DANE *dane = &s->dane;
992
993 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
994 return -1;
995 if (dane->mtlsa) {
996 if (mcert)
997 *mcert = dane->mcert;
998 if (mspki)
999 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL;
1000 }
1001 return dane->mdpth;
1002 }
1003
1004 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector,
1005 uint8_t *mtype, unsigned const char **data, size_t *dlen)
1006 {
1007 SSL_DANE *dane = &s->dane;
1008
1009 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1010 return -1;
1011 if (dane->mtlsa) {
1012 if (usage)
1013 *usage = dane->mtlsa->usage;
1014 if (selector)
1015 *selector = dane->mtlsa->selector;
1016 if (mtype)
1017 *mtype = dane->mtlsa->mtype;
1018 if (data)
1019 *data = dane->mtlsa->data;
1020 if (dlen)
1021 *dlen = dane->mtlsa->dlen;
1022 }
1023 return dane->mdpth;
1024 }
1025
1026 SSL_DANE *SSL_get0_dane(SSL *s)
1027 {
1028 return &s->dane;
1029 }
1030
1031 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector,
1032 uint8_t mtype, unsigned char *data, size_t dlen)
1033 {
1034 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen);
1035 }
1036
1037 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype,
1038 uint8_t ord)
1039 {
1040 return dane_mtype_set(&ctx->dane, md, mtype, ord);
1041 }
1042
1043 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm)
1044 {
1045 return X509_VERIFY_PARAM_set1(ctx->param, vpm);
1046 }
1047
1048 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm)
1049 {
1050 return X509_VERIFY_PARAM_set1(ssl->param, vpm);
1051 }
1052
1053 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx)
1054 {
1055 return ctx->param;
1056 }
1057
1058 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl)
1059 {
1060 return ssl->param;
1061 }
1062
1063 void SSL_certs_clear(SSL *s)
1064 {
1065 ssl_cert_clear_certs(s->cert);
1066 }
1067
1068 void SSL_free(SSL *s)
1069 {
1070 int i;
1071
1072 if (s == NULL)
1073 return;
1074
1075 CRYPTO_DOWN_REF(&s->references, &i, s->lock);
1076 REF_PRINT_COUNT("SSL", s);
1077 if (i > 0)
1078 return;
1079 REF_ASSERT_ISNT(i < 0);
1080
1081 X509_VERIFY_PARAM_free(s->param);
1082 dane_final(&s->dane);
1083 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
1084
1085 /* Ignore return value */
1086 ssl_free_wbio_buffer(s);
1087
1088 BIO_free_all(s->wbio);
1089 BIO_free_all(s->rbio);
1090
1091 BUF_MEM_free(s->init_buf);
1092
1093 /* add extra stuff */
1094 sk_SSL_CIPHER_free(s->cipher_list);
1095 sk_SSL_CIPHER_free(s->cipher_list_by_id);
1096
1097 /* Make the next call work :-) */
1098 if (s->session != NULL) {
1099 ssl_clear_bad_session(s);
1100 SSL_SESSION_free(s->session);
1101 }
1102 SSL_SESSION_free(s->psksession);
1103 OPENSSL_free(s->psksession_id);
1104
1105 clear_ciphers(s);
1106
1107 ssl_cert_free(s->cert);
1108 /* Free up if allocated */
1109
1110 OPENSSL_free(s->ext.hostname);
1111 SSL_CTX_free(s->session_ctx);
1112 #ifndef OPENSSL_NO_EC
1113 OPENSSL_free(s->ext.ecpointformats);
1114 OPENSSL_free(s->ext.supportedgroups);
1115 #endif /* OPENSSL_NO_EC */
1116 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free);
1117 #ifndef OPENSSL_NO_OCSP
1118 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free);
1119 #endif
1120 #ifndef OPENSSL_NO_CT
1121 SCT_LIST_free(s->scts);
1122 OPENSSL_free(s->ext.scts);
1123 #endif
1124 OPENSSL_free(s->ext.ocsp.resp);
1125 OPENSSL_free(s->ext.alpn);
1126 OPENSSL_free(s->ext.tls13_cookie);
1127 OPENSSL_free(s->clienthello);
1128
1129 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free);
1130
1131 sk_X509_pop_free(s->verified_chain, X509_free);
1132
1133 if (s->method != NULL)
1134 s->method->ssl_free(s);
1135
1136 RECORD_LAYER_release(&s->rlayer);
1137
1138 SSL_CTX_free(s->ctx);
1139
1140 ASYNC_WAIT_CTX_free(s->waitctx);
1141
1142 #if !defined(OPENSSL_NO_NEXTPROTONEG)
1143 OPENSSL_free(s->ext.npn);
1144 #endif
1145
1146 #ifndef OPENSSL_NO_SRTP
1147 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles);
1148 #endif
1149
1150 RAND_DRBG_free(s->drbg);
1151 CRYPTO_THREAD_lock_free(s->lock);
1152
1153 OPENSSL_free(s);
1154 }
1155
1156 void SSL_set0_rbio(SSL *s, BIO *rbio)
1157 {
1158 BIO_free_all(s->rbio);
1159 s->rbio = rbio;
1160 }
1161
1162 void SSL_set0_wbio(SSL *s, BIO *wbio)
1163 {
1164 /*
1165 * If the output buffering BIO is still in place, remove it
1166 */
1167 if (s->bbio != NULL)
1168 s->wbio = BIO_pop(s->wbio);
1169
1170 BIO_free_all(s->wbio);
1171 s->wbio = wbio;
1172
1173 /* Re-attach |bbio| to the new |wbio|. */
1174 if (s->bbio != NULL)
1175 s->wbio = BIO_push(s->bbio, s->wbio);
1176 }
1177
1178 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio)
1179 {
1180 /*
1181 * For historical reasons, this function has many different cases in
1182 * ownership handling.
1183 */
1184
1185 /* If nothing has changed, do nothing */
1186 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s))
1187 return;
1188
1189 /*
1190 * If the two arguments are equal then one fewer reference is granted by the
1191 * caller than we want to take
1192 */
1193 if (rbio != NULL && rbio == wbio)
1194 BIO_up_ref(rbio);
1195
1196 /*
1197 * If only the wbio is changed only adopt one reference.
1198 */
1199 if (rbio == SSL_get_rbio(s)) {
1200 SSL_set0_wbio(s, wbio);
1201 return;
1202 }
1203 /*
1204 * There is an asymmetry here for historical reasons. If only the rbio is
1205 * changed AND the rbio and wbio were originally different, then we only
1206 * adopt one reference.
1207 */
1208 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) {
1209 SSL_set0_rbio(s, rbio);
1210 return;
1211 }
1212
1213 /* Otherwise, adopt both references. */
1214 SSL_set0_rbio(s, rbio);
1215 SSL_set0_wbio(s, wbio);
1216 }
1217
1218 BIO *SSL_get_rbio(const SSL *s)
1219 {
1220 return s->rbio;
1221 }
1222
1223 BIO *SSL_get_wbio(const SSL *s)
1224 {
1225 if (s->bbio != NULL) {
1226 /*
1227 * If |bbio| is active, the true caller-configured BIO is its
1228 * |next_bio|.
1229 */
1230 return BIO_next(s->bbio);
1231 }
1232 return s->wbio;
1233 }
1234
1235 int SSL_get_fd(const SSL *s)
1236 {
1237 return SSL_get_rfd(s);
1238 }
1239
1240 int SSL_get_rfd(const SSL *s)
1241 {
1242 int ret = -1;
1243 BIO *b, *r;
1244
1245 b = SSL_get_rbio(s);
1246 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1247 if (r != NULL)
1248 BIO_get_fd(r, &ret);
1249 return (ret);
1250 }
1251
1252 int SSL_get_wfd(const SSL *s)
1253 {
1254 int ret = -1;
1255 BIO *b, *r;
1256
1257 b = SSL_get_wbio(s);
1258 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1259 if (r != NULL)
1260 BIO_get_fd(r, &ret);
1261 return (ret);
1262 }
1263
1264 #ifndef OPENSSL_NO_SOCK
1265 int SSL_set_fd(SSL *s, int fd)
1266 {
1267 int ret = 0;
1268 BIO *bio = NULL;
1269
1270 bio = BIO_new(BIO_s_socket());
1271
1272 if (bio == NULL) {
1273 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB);
1274 goto err;
1275 }
1276 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1277 SSL_set_bio(s, bio, bio);
1278 ret = 1;
1279 err:
1280 return (ret);
1281 }
1282
1283 int SSL_set_wfd(SSL *s, int fd)
1284 {
1285 BIO *rbio = SSL_get_rbio(s);
1286
1287 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET
1288 || (int)BIO_get_fd(rbio, NULL) != fd) {
1289 BIO *bio = BIO_new(BIO_s_socket());
1290
1291 if (bio == NULL) {
1292 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB);
1293 return 0;
1294 }
1295 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1296 SSL_set0_wbio(s, bio);
1297 } else {
1298 BIO_up_ref(rbio);
1299 SSL_set0_wbio(s, rbio);
1300 }
1301 return 1;
1302 }
1303
1304 int SSL_set_rfd(SSL *s, int fd)
1305 {
1306 BIO *wbio = SSL_get_wbio(s);
1307
1308 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET
1309 || ((int)BIO_get_fd(wbio, NULL) != fd)) {
1310 BIO *bio = BIO_new(BIO_s_socket());
1311
1312 if (bio == NULL) {
1313 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB);
1314 return 0;
1315 }
1316 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1317 SSL_set0_rbio(s, bio);
1318 } else {
1319 BIO_up_ref(wbio);
1320 SSL_set0_rbio(s, wbio);
1321 }
1322
1323 return 1;
1324 }
1325 #endif
1326
1327 /* return length of latest Finished message we sent, copy to 'buf' */
1328 size_t SSL_get_finished(const SSL *s, void *buf, size_t count)
1329 {
1330 size_t ret = 0;
1331
1332 if (s->s3 != NULL) {
1333 ret = s->s3->tmp.finish_md_len;
1334 if (count > ret)
1335 count = ret;
1336 memcpy(buf, s->s3->tmp.finish_md, count);
1337 }
1338 return ret;
1339 }
1340
1341 /* return length of latest Finished message we expected, copy to 'buf' */
1342 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count)
1343 {
1344 size_t ret = 0;
1345
1346 if (s->s3 != NULL) {
1347 ret = s->s3->tmp.peer_finish_md_len;
1348 if (count > ret)
1349 count = ret;
1350 memcpy(buf, s->s3->tmp.peer_finish_md, count);
1351 }
1352 return ret;
1353 }
1354
1355 int SSL_get_verify_mode(const SSL *s)
1356 {
1357 return (s->verify_mode);
1358 }
1359
1360 int SSL_get_verify_depth(const SSL *s)
1361 {
1362 return X509_VERIFY_PARAM_get_depth(s->param);
1363 }
1364
1365 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) {
1366 return (s->verify_callback);
1367 }
1368
1369 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx)
1370 {
1371 return (ctx->verify_mode);
1372 }
1373
1374 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx)
1375 {
1376 return X509_VERIFY_PARAM_get_depth(ctx->param);
1377 }
1378
1379 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) {
1380 return (ctx->default_verify_callback);
1381 }
1382
1383 void SSL_set_verify(SSL *s, int mode,
1384 int (*callback) (int ok, X509_STORE_CTX *ctx))
1385 {
1386 s->verify_mode = mode;
1387 if (callback != NULL)
1388 s->verify_callback = callback;
1389 }
1390
1391 void SSL_set_verify_depth(SSL *s, int depth)
1392 {
1393 X509_VERIFY_PARAM_set_depth(s->param, depth);
1394 }
1395
1396 void SSL_set_read_ahead(SSL *s, int yes)
1397 {
1398 RECORD_LAYER_set_read_ahead(&s->rlayer, yes);
1399 }
1400
1401 int SSL_get_read_ahead(const SSL *s)
1402 {
1403 return RECORD_LAYER_get_read_ahead(&s->rlayer);
1404 }
1405
1406 int SSL_pending(const SSL *s)
1407 {
1408 size_t pending = s->method->ssl_pending(s);
1409
1410 /*
1411 * SSL_pending cannot work properly if read-ahead is enabled
1412 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is
1413 * impossible to fix since SSL_pending cannot report errors that may be
1414 * observed while scanning the new data. (Note that SSL_pending() is
1415 * often used as a boolean value, so we'd better not return -1.)
1416 *
1417 * SSL_pending also cannot work properly if the value >INT_MAX. In that case
1418 * we just return INT_MAX.
1419 */
1420 return pending < INT_MAX ? (int)pending : INT_MAX;
1421 }
1422
1423 int SSL_has_pending(const SSL *s)
1424 {
1425 /*
1426 * Similar to SSL_pending() but returns a 1 to indicate that we have
1427 * unprocessed data available or 0 otherwise (as opposed to the number of
1428 * bytes available). Unlike SSL_pending() this will take into account
1429 * read_ahead data. A 1 return simply indicates that we have unprocessed
1430 * data. That data may not result in any application data, or we may fail
1431 * to parse the records for some reason.
1432 */
1433 if (RECORD_LAYER_processed_read_pending(&s->rlayer))
1434 return 1;
1435
1436 return RECORD_LAYER_read_pending(&s->rlayer);
1437 }
1438
1439 X509 *SSL_get_peer_certificate(const SSL *s)
1440 {
1441 X509 *r;
1442
1443 if ((s == NULL) || (s->session == NULL))
1444 r = NULL;
1445 else
1446 r = s->session->peer;
1447
1448 if (r == NULL)
1449 return (r);
1450
1451 X509_up_ref(r);
1452
1453 return (r);
1454 }
1455
1456 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s)
1457 {
1458 STACK_OF(X509) *r;
1459
1460 if ((s == NULL) || (s->session == NULL))
1461 r = NULL;
1462 else
1463 r = s->session->peer_chain;
1464
1465 /*
1466 * If we are a client, cert_chain includes the peer's own certificate; if
1467 * we are a server, it does not.
1468 */
1469
1470 return (r);
1471 }
1472
1473 /*
1474 * Now in theory, since the calling process own 't' it should be safe to
1475 * modify. We need to be able to read f without being hassled
1476 */
1477 int SSL_copy_session_id(SSL *t, const SSL *f)
1478 {
1479 int i;
1480 /* Do we need to to SSL locking? */
1481 if (!SSL_set_session(t, SSL_get_session(f))) {
1482 return 0;
1483 }
1484
1485 /*
1486 * what if we are setup for one protocol version but want to talk another
1487 */
1488 if (t->method != f->method) {
1489 t->method->ssl_free(t);
1490 t->method = f->method;
1491 if (t->method->ssl_new(t) == 0)
1492 return 0;
1493 }
1494
1495 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock);
1496 ssl_cert_free(t->cert);
1497 t->cert = f->cert;
1498 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) {
1499 return 0;
1500 }
1501
1502 return 1;
1503 }
1504
1505 /* Fix this so it checks all the valid key/cert options */
1506 int SSL_CTX_check_private_key(const SSL_CTX *ctx)
1507 {
1508 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) {
1509 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1510 return (0);
1511 }
1512 if (ctx->cert->key->privatekey == NULL) {
1513 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1514 return (0);
1515 }
1516 return (X509_check_private_key
1517 (ctx->cert->key->x509, ctx->cert->key->privatekey));
1518 }
1519
1520 /* Fix this function so that it takes an optional type parameter */
1521 int SSL_check_private_key(const SSL *ssl)
1522 {
1523 if (ssl == NULL) {
1524 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER);
1525 return (0);
1526 }
1527 if (ssl->cert->key->x509 == NULL) {
1528 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1529 return (0);
1530 }
1531 if (ssl->cert->key->privatekey == NULL) {
1532 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1533 return (0);
1534 }
1535 return (X509_check_private_key(ssl->cert->key->x509,
1536 ssl->cert->key->privatekey));
1537 }
1538
1539 int SSL_waiting_for_async(SSL *s)
1540 {
1541 if (s->job)
1542 return 1;
1543
1544 return 0;
1545 }
1546
1547 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds)
1548 {
1549 ASYNC_WAIT_CTX *ctx = s->waitctx;
1550
1551 if (ctx == NULL)
1552 return 0;
1553 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds);
1554 }
1555
1556 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds,
1557 OSSL_ASYNC_FD *delfd, size_t *numdelfds)
1558 {
1559 ASYNC_WAIT_CTX *ctx = s->waitctx;
1560
1561 if (ctx == NULL)
1562 return 0;
1563 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd,
1564 numdelfds);
1565 }
1566
1567 int SSL_accept(SSL *s)
1568 {
1569 if (s->handshake_func == NULL) {
1570 /* Not properly initialized yet */
1571 SSL_set_accept_state(s);
1572 }
1573
1574 return SSL_do_handshake(s);
1575 }
1576
1577 int SSL_connect(SSL *s)
1578 {
1579 if (s->handshake_func == NULL) {
1580 /* Not properly initialized yet */
1581 SSL_set_connect_state(s);
1582 }
1583
1584 return SSL_do_handshake(s);
1585 }
1586
1587 long SSL_get_default_timeout(const SSL *s)
1588 {
1589 return (s->method->get_timeout());
1590 }
1591
1592 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args,
1593 int (*func) (void *))
1594 {
1595 int ret;
1596 if (s->waitctx == NULL) {
1597 s->waitctx = ASYNC_WAIT_CTX_new();
1598 if (s->waitctx == NULL)
1599 return -1;
1600 }
1601 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args,
1602 sizeof(struct ssl_async_args))) {
1603 case ASYNC_ERR:
1604 s->rwstate = SSL_NOTHING;
1605 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC);
1606 return -1;
1607 case ASYNC_PAUSE:
1608 s->rwstate = SSL_ASYNC_PAUSED;
1609 return -1;
1610 case ASYNC_NO_JOBS:
1611 s->rwstate = SSL_ASYNC_NO_JOBS;
1612 return -1;
1613 case ASYNC_FINISH:
1614 s->job = NULL;
1615 return ret;
1616 default:
1617 s->rwstate = SSL_NOTHING;
1618 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR);
1619 /* Shouldn't happen */
1620 return -1;
1621 }
1622 }
1623
1624 static int ssl_io_intern(void *vargs)
1625 {
1626 struct ssl_async_args *args;
1627 SSL *s;
1628 void *buf;
1629 size_t num;
1630
1631 args = (struct ssl_async_args *)vargs;
1632 s = args->s;
1633 buf = args->buf;
1634 num = args->num;
1635 switch (args->type) {
1636 case READFUNC:
1637 return args->f.func_read(s, buf, num, &s->asyncrw);
1638 case WRITEFUNC:
1639 return args->f.func_write(s, buf, num, &s->asyncrw);
1640 case OTHERFUNC:
1641 return args->f.func_other(s);
1642 }
1643 return -1;
1644 }
1645
1646 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1647 {
1648 if (s->handshake_func == NULL) {
1649 SSLerr(SSL_F_SSL_READ_INTERNAL, SSL_R_UNINITIALIZED);
1650 return -1;
1651 }
1652
1653 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1654 s->rwstate = SSL_NOTHING;
1655 return 0;
1656 }
1657
1658 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1659 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) {
1660 SSLerr(SSL_F_SSL_READ_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1661 return 0;
1662 }
1663 /*
1664 * If we are a client and haven't received the ServerHello etc then we
1665 * better do that
1666 */
1667 ossl_statem_check_finish_init(s, 0);
1668
1669 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1670 struct ssl_async_args args;
1671 int ret;
1672
1673 args.s = s;
1674 args.buf = buf;
1675 args.num = num;
1676 args.type = READFUNC;
1677 args.f.func_read = s->method->ssl_read;
1678
1679 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1680 *readbytes = s->asyncrw;
1681 return ret;
1682 } else {
1683 return s->method->ssl_read(s, buf, num, readbytes);
1684 }
1685 }
1686
1687 int SSL_read(SSL *s, void *buf, int num)
1688 {
1689 int ret;
1690 size_t readbytes;
1691
1692 if (num < 0) {
1693 SSLerr(SSL_F_SSL_READ, SSL_R_BAD_LENGTH);
1694 return -1;
1695 }
1696
1697 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes);
1698
1699 /*
1700 * The cast is safe here because ret should be <= INT_MAX because num is
1701 * <= INT_MAX
1702 */
1703 if (ret > 0)
1704 ret = (int)readbytes;
1705
1706 return ret;
1707 }
1708
1709 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1710 {
1711 int ret = ssl_read_internal(s, buf, num, readbytes);
1712
1713 if (ret < 0)
1714 ret = 0;
1715 return ret;
1716 }
1717
1718 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes)
1719 {
1720 int ret;
1721
1722 if (!s->server) {
1723 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1724 return SSL_READ_EARLY_DATA_ERROR;
1725 }
1726
1727 switch (s->early_data_state) {
1728 case SSL_EARLY_DATA_NONE:
1729 if (!SSL_in_before(s)) {
1730 SSLerr(SSL_F_SSL_READ_EARLY_DATA,
1731 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1732 return SSL_READ_EARLY_DATA_ERROR;
1733 }
1734 /* fall through */
1735
1736 case SSL_EARLY_DATA_ACCEPT_RETRY:
1737 s->early_data_state = SSL_EARLY_DATA_ACCEPTING;
1738 ret = SSL_accept(s);
1739 if (ret <= 0) {
1740 /* NBIO or error */
1741 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY;
1742 return SSL_READ_EARLY_DATA_ERROR;
1743 }
1744 /* fall through */
1745
1746 case SSL_EARLY_DATA_READ_RETRY:
1747 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) {
1748 s->early_data_state = SSL_EARLY_DATA_READING;
1749 ret = SSL_read_ex(s, buf, num, readbytes);
1750 /*
1751 * State machine will update early_data_state to
1752 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData
1753 * message
1754 */
1755 if (ret > 0 || (ret <= 0 && s->early_data_state
1756 != SSL_EARLY_DATA_FINISHED_READING)) {
1757 s->early_data_state = SSL_EARLY_DATA_READ_RETRY;
1758 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS
1759 : SSL_READ_EARLY_DATA_ERROR;
1760 }
1761 } else {
1762 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING;
1763 }
1764 *readbytes = 0;
1765 return SSL_READ_EARLY_DATA_FINISH;
1766
1767 default:
1768 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1769 return SSL_READ_EARLY_DATA_ERROR;
1770 }
1771 }
1772
1773 int SSL_get_early_data_status(const SSL *s)
1774 {
1775 return s->ext.early_data;
1776 }
1777
1778 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1779 {
1780 if (s->handshake_func == NULL) {
1781 SSLerr(SSL_F_SSL_PEEK_INTERNAL, SSL_R_UNINITIALIZED);
1782 return -1;
1783 }
1784
1785 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1786 return 0;
1787 }
1788 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1789 struct ssl_async_args args;
1790 int ret;
1791
1792 args.s = s;
1793 args.buf = buf;
1794 args.num = num;
1795 args.type = READFUNC;
1796 args.f.func_read = s->method->ssl_peek;
1797
1798 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1799 *readbytes = s->asyncrw;
1800 return ret;
1801 } else {
1802 return s->method->ssl_peek(s, buf, num, readbytes);
1803 }
1804 }
1805
1806 int SSL_peek(SSL *s, void *buf, int num)
1807 {
1808 int ret;
1809 size_t readbytes;
1810
1811 if (num < 0) {
1812 SSLerr(SSL_F_SSL_PEEK, SSL_R_BAD_LENGTH);
1813 return -1;
1814 }
1815
1816 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes);
1817
1818 /*
1819 * The cast is safe here because ret should be <= INT_MAX because num is
1820 * <= INT_MAX
1821 */
1822 if (ret > 0)
1823 ret = (int)readbytes;
1824
1825 return ret;
1826 }
1827
1828
1829 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1830 {
1831 int ret = ssl_peek_internal(s, buf, num, readbytes);
1832
1833 if (ret < 0)
1834 ret = 0;
1835 return ret;
1836 }
1837
1838 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written)
1839 {
1840 if (s->handshake_func == NULL) {
1841 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_UNINITIALIZED);
1842 return -1;
1843 }
1844
1845 if (s->shutdown & SSL_SENT_SHUTDOWN) {
1846 s->rwstate = SSL_NOTHING;
1847 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_PROTOCOL_IS_SHUTDOWN);
1848 return -1;
1849 }
1850
1851 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1852 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY
1853 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) {
1854 SSLerr(SSL_F_SSL_WRITE_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1855 return 0;
1856 }
1857 /* If we are a client and haven't sent the Finished we better do that */
1858 ossl_statem_check_finish_init(s, 1);
1859
1860 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1861 int ret;
1862 struct ssl_async_args args;
1863
1864 args.s = s;
1865 args.buf = (void *)buf;
1866 args.num = num;
1867 args.type = WRITEFUNC;
1868 args.f.func_write = s->method->ssl_write;
1869
1870 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1871 *written = s->asyncrw;
1872 return ret;
1873 } else {
1874 return s->method->ssl_write(s, buf, num, written);
1875 }
1876 }
1877
1878 int SSL_write(SSL *s, const void *buf, int num)
1879 {
1880 int ret;
1881 size_t written;
1882
1883 if (num < 0) {
1884 SSLerr(SSL_F_SSL_WRITE, SSL_R_BAD_LENGTH);
1885 return -1;
1886 }
1887
1888 ret = ssl_write_internal(s, buf, (size_t)num, &written);
1889
1890 /*
1891 * The cast is safe here because ret should be <= INT_MAX because num is
1892 * <= INT_MAX
1893 */
1894 if (ret > 0)
1895 ret = (int)written;
1896
1897 return ret;
1898 }
1899
1900 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written)
1901 {
1902 int ret = ssl_write_internal(s, buf, num, written);
1903
1904 if (ret < 0)
1905 ret = 0;
1906 return ret;
1907 }
1908
1909 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written)
1910 {
1911 int ret, early_data_state;
1912
1913 switch (s->early_data_state) {
1914 case SSL_EARLY_DATA_NONE:
1915 if (s->server
1916 || !SSL_in_before(s)
1917 || ((s->session == NULL || s->session->ext.max_early_data == 0)
1918 && (s->psk_use_session_cb == NULL))) {
1919 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA,
1920 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1921 return 0;
1922 }
1923 /* fall through */
1924
1925 case SSL_EARLY_DATA_CONNECT_RETRY:
1926 s->early_data_state = SSL_EARLY_DATA_CONNECTING;
1927 ret = SSL_connect(s);
1928 if (ret <= 0) {
1929 /* NBIO or error */
1930 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY;
1931 return 0;
1932 }
1933 /* fall through */
1934
1935 case SSL_EARLY_DATA_WRITE_RETRY:
1936 s->early_data_state = SSL_EARLY_DATA_WRITING;
1937 ret = SSL_write_ex(s, buf, num, written);
1938 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
1939 return ret;
1940
1941 case SSL_EARLY_DATA_FINISHED_READING:
1942 case SSL_EARLY_DATA_READ_RETRY:
1943 early_data_state = s->early_data_state;
1944 /* We are a server writing to an unauthenticated client */
1945 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING;
1946 ret = SSL_write_ex(s, buf, num, written);
1947 s->early_data_state = early_data_state;
1948 return ret;
1949
1950 default:
1951 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1952 return 0;
1953 }
1954 }
1955
1956 int SSL_shutdown(SSL *s)
1957 {
1958 /*
1959 * Note that this function behaves differently from what one might
1960 * expect. Return values are 0 for no success (yet), 1 for success; but
1961 * calling it once is usually not enough, even if blocking I/O is used
1962 * (see ssl3_shutdown).
1963 */
1964
1965 if (s->handshake_func == NULL) {
1966 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED);
1967 return -1;
1968 }
1969
1970 if (!SSL_in_init(s)) {
1971 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1972 struct ssl_async_args args;
1973
1974 args.s = s;
1975 args.type = OTHERFUNC;
1976 args.f.func_other = s->method->ssl_shutdown;
1977
1978 return ssl_start_async_job(s, &args, ssl_io_intern);
1979 } else {
1980 return s->method->ssl_shutdown(s);
1981 }
1982 } else {
1983 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT);
1984 return -1;
1985 }
1986 }
1987
1988 int SSL_key_update(SSL *s, int updatetype)
1989 {
1990 /*
1991 * TODO(TLS1.3): How will applications know whether TLSv1.3 has been
1992 * negotiated, and that it is appropriate to call SSL_key_update() instead
1993 * of SSL_renegotiate().
1994 */
1995 if (!SSL_IS_TLS13(s)) {
1996 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_WRONG_SSL_VERSION);
1997 return 0;
1998 }
1999
2000 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED
2001 && updatetype != SSL_KEY_UPDATE_REQUESTED) {
2002 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_INVALID_KEY_UPDATE_TYPE);
2003 return 0;
2004 }
2005
2006 if (!SSL_is_init_finished(s)) {
2007 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_STILL_IN_INIT);
2008 return 0;
2009 }
2010
2011 ossl_statem_set_in_init(s, 1);
2012 s->key_update = updatetype;
2013 return 1;
2014 }
2015
2016 int SSL_get_key_update_type(SSL *s)
2017 {
2018 return s->key_update;
2019 }
2020
2021 int SSL_renegotiate(SSL *s)
2022 {
2023 if (SSL_IS_TLS13(s)) {
2024 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_WRONG_SSL_VERSION);
2025 return 0;
2026 }
2027
2028 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2029 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_NO_RENEGOTIATION);
2030 return 0;
2031 }
2032
2033 s->renegotiate = 1;
2034 s->new_session = 1;
2035
2036 return (s->method->ssl_renegotiate(s));
2037 }
2038
2039 int SSL_renegotiate_abbreviated(SSL *s)
2040 {
2041 if (SSL_IS_TLS13(s)) {
2042 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_WRONG_SSL_VERSION);
2043 return 0;
2044 }
2045
2046 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2047 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_NO_RENEGOTIATION);
2048 return 0;
2049 }
2050
2051 s->renegotiate = 1;
2052 s->new_session = 0;
2053
2054 return (s->method->ssl_renegotiate(s));
2055 }
2056
2057 int SSL_renegotiate_pending(SSL *s)
2058 {
2059 /*
2060 * becomes true when negotiation is requested; false again once a
2061 * handshake has finished
2062 */
2063 return (s->renegotiate != 0);
2064 }
2065
2066 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg)
2067 {
2068 long l;
2069
2070 switch (cmd) {
2071 case SSL_CTRL_GET_READ_AHEAD:
2072 return (RECORD_LAYER_get_read_ahead(&s->rlayer));
2073 case SSL_CTRL_SET_READ_AHEAD:
2074 l = RECORD_LAYER_get_read_ahead(&s->rlayer);
2075 RECORD_LAYER_set_read_ahead(&s->rlayer, larg);
2076 return (l);
2077
2078 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2079 s->msg_callback_arg = parg;
2080 return 1;
2081
2082 case SSL_CTRL_MODE:
2083 return (s->mode |= larg);
2084 case SSL_CTRL_CLEAR_MODE:
2085 return (s->mode &= ~larg);
2086 case SSL_CTRL_GET_MAX_CERT_LIST:
2087 return (long)(s->max_cert_list);
2088 case SSL_CTRL_SET_MAX_CERT_LIST:
2089 if (larg < 0)
2090 return 0;
2091 l = (long)s->max_cert_list;
2092 s->max_cert_list = (size_t)larg;
2093 return l;
2094 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2095 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2096 return 0;
2097 s->max_send_fragment = larg;
2098 if (s->max_send_fragment < s->split_send_fragment)
2099 s->split_send_fragment = s->max_send_fragment;
2100 return 1;
2101 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2102 if ((size_t)larg > s->max_send_fragment || larg == 0)
2103 return 0;
2104 s->split_send_fragment = larg;
2105 return 1;
2106 case SSL_CTRL_SET_MAX_PIPELINES:
2107 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2108 return 0;
2109 s->max_pipelines = larg;
2110 if (larg > 1)
2111 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
2112 return 1;
2113 case SSL_CTRL_GET_RI_SUPPORT:
2114 if (s->s3)
2115 return s->s3->send_connection_binding;
2116 else
2117 return 0;
2118 case SSL_CTRL_CERT_FLAGS:
2119 return (s->cert->cert_flags |= larg);
2120 case SSL_CTRL_CLEAR_CERT_FLAGS:
2121 return (s->cert->cert_flags &= ~larg);
2122
2123 case SSL_CTRL_GET_RAW_CIPHERLIST:
2124 if (parg) {
2125 if (s->s3->tmp.ciphers_raw == NULL)
2126 return 0;
2127 *(unsigned char **)parg = s->s3->tmp.ciphers_raw;
2128 return (int)s->s3->tmp.ciphers_rawlen;
2129 } else {
2130 return TLS_CIPHER_LEN;
2131 }
2132 case SSL_CTRL_GET_EXTMS_SUPPORT:
2133 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s))
2134 return -1;
2135 if (s->session->flags & SSL_SESS_FLAG_EXTMS)
2136 return 1;
2137 else
2138 return 0;
2139 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2140 return ssl_check_allowed_versions(larg, s->max_proto_version)
2141 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2142 &s->min_proto_version);
2143 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2144 return s->min_proto_version;
2145 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2146 return ssl_check_allowed_versions(s->min_proto_version, larg)
2147 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2148 &s->max_proto_version);
2149 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2150 return s->max_proto_version;
2151 default:
2152 return (s->method->ssl_ctrl(s, cmd, larg, parg));
2153 }
2154 }
2155
2156 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
2157 {
2158 switch (cmd) {
2159 case SSL_CTRL_SET_MSG_CALLBACK:
2160 s->msg_callback = (void (*)
2161 (int write_p, int version, int content_type,
2162 const void *buf, size_t len, SSL *ssl,
2163 void *arg))(fp);
2164 return 1;
2165
2166 default:
2167 return (s->method->ssl_callback_ctrl(s, cmd, fp));
2168 }
2169 }
2170
2171 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx)
2172 {
2173 return ctx->sessions;
2174 }
2175
2176 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
2177 {
2178 long l;
2179 /* For some cases with ctx == NULL perform syntax checks */
2180 if (ctx == NULL) {
2181 switch (cmd) {
2182 #ifndef OPENSSL_NO_EC
2183 case SSL_CTRL_SET_GROUPS_LIST:
2184 return tls1_set_groups_list(NULL, NULL, parg);
2185 #endif
2186 case SSL_CTRL_SET_SIGALGS_LIST:
2187 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST:
2188 return tls1_set_sigalgs_list(NULL, parg, 0);
2189 default:
2190 return 0;
2191 }
2192 }
2193
2194 switch (cmd) {
2195 case SSL_CTRL_GET_READ_AHEAD:
2196 return (ctx->read_ahead);
2197 case SSL_CTRL_SET_READ_AHEAD:
2198 l = ctx->read_ahead;
2199 ctx->read_ahead = larg;
2200 return (l);
2201
2202 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2203 ctx->msg_callback_arg = parg;
2204 return 1;
2205
2206 case SSL_CTRL_GET_MAX_CERT_LIST:
2207 return (long)(ctx->max_cert_list);
2208 case SSL_CTRL_SET_MAX_CERT_LIST:
2209 if (larg < 0)
2210 return 0;
2211 l = (long)ctx->max_cert_list;
2212 ctx->max_cert_list = (size_t)larg;
2213 return l;
2214
2215 case SSL_CTRL_SET_SESS_CACHE_SIZE:
2216 if (larg < 0)
2217 return 0;
2218 l = (long)ctx->session_cache_size;
2219 ctx->session_cache_size = (size_t)larg;
2220 return l;
2221 case SSL_CTRL_GET_SESS_CACHE_SIZE:
2222 return (long)(ctx->session_cache_size);
2223 case SSL_CTRL_SET_SESS_CACHE_MODE:
2224 l = ctx->session_cache_mode;
2225 ctx->session_cache_mode = larg;
2226 return (l);
2227 case SSL_CTRL_GET_SESS_CACHE_MODE:
2228 return (ctx->session_cache_mode);
2229
2230 case SSL_CTRL_SESS_NUMBER:
2231 return (lh_SSL_SESSION_num_items(ctx->sessions));
2232 case SSL_CTRL_SESS_CONNECT:
2233 return (ctx->stats.sess_connect);
2234 case SSL_CTRL_SESS_CONNECT_GOOD:
2235 return (ctx->stats.sess_connect_good);
2236 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE:
2237 return (ctx->stats.sess_connect_renegotiate);
2238 case SSL_CTRL_SESS_ACCEPT:
2239 return (ctx->stats.sess_accept);
2240 case SSL_CTRL_SESS_ACCEPT_GOOD:
2241 return (ctx->stats.sess_accept_good);
2242 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE:
2243 return (ctx->stats.sess_accept_renegotiate);
2244 case SSL_CTRL_SESS_HIT:
2245 return (ctx->stats.sess_hit);
2246 case SSL_CTRL_SESS_CB_HIT:
2247 return (ctx->stats.sess_cb_hit);
2248 case SSL_CTRL_SESS_MISSES:
2249 return (ctx->stats.sess_miss);
2250 case SSL_CTRL_SESS_TIMEOUTS:
2251 return (ctx->stats.sess_timeout);
2252 case SSL_CTRL_SESS_CACHE_FULL:
2253 return (ctx->stats.sess_cache_full);
2254 case SSL_CTRL_MODE:
2255 return (ctx->mode |= larg);
2256 case SSL_CTRL_CLEAR_MODE:
2257 return (ctx->mode &= ~larg);
2258 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2259 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2260 return 0;
2261 ctx->max_send_fragment = larg;
2262 if (ctx->max_send_fragment < ctx->split_send_fragment)
2263 ctx->split_send_fragment = ctx->max_send_fragment;
2264 return 1;
2265 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2266 if ((size_t)larg > ctx->max_send_fragment || larg == 0)
2267 return 0;
2268 ctx->split_send_fragment = larg;
2269 return 1;
2270 case SSL_CTRL_SET_MAX_PIPELINES:
2271 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2272 return 0;
2273 ctx->max_pipelines = larg;
2274 return 1;
2275 case SSL_CTRL_CERT_FLAGS:
2276 return (ctx->cert->cert_flags |= larg);
2277 case SSL_CTRL_CLEAR_CERT_FLAGS:
2278 return (ctx->cert->cert_flags &= ~larg);
2279 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2280 return ssl_check_allowed_versions(larg, ctx->max_proto_version)
2281 && ssl_set_version_bound(ctx->method->version, (int)larg,
2282 &ctx->min_proto_version);
2283 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2284 return ctx->min_proto_version;
2285 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2286 return ssl_check_allowed_versions(ctx->min_proto_version, larg)
2287 && ssl_set_version_bound(ctx->method->version, (int)larg,
2288 &ctx->max_proto_version);
2289 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2290 return ctx->max_proto_version;
2291 default:
2292 return (ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg));
2293 }
2294 }
2295
2296 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
2297 {
2298 switch (cmd) {
2299 case SSL_CTRL_SET_MSG_CALLBACK:
2300 ctx->msg_callback = (void (*)
2301 (int write_p, int version, int content_type,
2302 const void *buf, size_t len, SSL *ssl,
2303 void *arg))(fp);
2304 return 1;
2305
2306 default:
2307 return (ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp));
2308 }
2309 }
2310
2311 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b)
2312 {
2313 if (a->id > b->id)
2314 return 1;
2315 if (a->id < b->id)
2316 return -1;
2317 return 0;
2318 }
2319
2320 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap,
2321 const SSL_CIPHER *const *bp)
2322 {
2323 if ((*ap)->id > (*bp)->id)
2324 return 1;
2325 if ((*ap)->id < (*bp)->id)
2326 return -1;
2327 return 0;
2328 }
2329
2330 /** return a STACK of the ciphers available for the SSL and in order of
2331 * preference */
2332 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s)
2333 {
2334 if (s != NULL) {
2335 if (s->cipher_list != NULL) {
2336 return (s->cipher_list);
2337 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) {
2338 return (s->ctx->cipher_list);
2339 }
2340 }
2341 return (NULL);
2342 }
2343
2344 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s)
2345 {
2346 if ((s == NULL) || (s->session == NULL) || !s->server)
2347 return NULL;
2348 return s->session->ciphers;
2349 }
2350
2351 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s)
2352 {
2353 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers;
2354 int i;
2355 ciphers = SSL_get_ciphers(s);
2356 if (!ciphers)
2357 return NULL;
2358 ssl_set_client_disabled(s);
2359 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
2360 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i);
2361 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) {
2362 if (!sk)
2363 sk = sk_SSL_CIPHER_new_null();
2364 if (!sk)
2365 return NULL;
2366 if (!sk_SSL_CIPHER_push(sk, c)) {
2367 sk_SSL_CIPHER_free(sk);
2368 return NULL;
2369 }
2370 }
2371 }
2372 return sk;
2373 }
2374
2375 /** return a STACK of the ciphers available for the SSL and in order of
2376 * algorithm id */
2377 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s)
2378 {
2379 if (s != NULL) {
2380 if (s->cipher_list_by_id != NULL) {
2381 return (s->cipher_list_by_id);
2382 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) {
2383 return (s->ctx->cipher_list_by_id);
2384 }
2385 }
2386 return (NULL);
2387 }
2388
2389 /** The old interface to get the same thing as SSL_get_ciphers() */
2390 const char *SSL_get_cipher_list(const SSL *s, int n)
2391 {
2392 const SSL_CIPHER *c;
2393 STACK_OF(SSL_CIPHER) *sk;
2394
2395 if (s == NULL)
2396 return (NULL);
2397 sk = SSL_get_ciphers(s);
2398 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n))
2399 return (NULL);
2400 c = sk_SSL_CIPHER_value(sk, n);
2401 if (c == NULL)
2402 return (NULL);
2403 return (c->name);
2404 }
2405
2406 /** return a STACK of the ciphers available for the SSL_CTX and in order of
2407 * preference */
2408 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx)
2409 {
2410 if (ctx != NULL)
2411 return ctx->cipher_list;
2412 return NULL;
2413 }
2414
2415 /** specify the ciphers to be used by default by the SSL_CTX */
2416 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)
2417 {
2418 STACK_OF(SSL_CIPHER) *sk;
2419
2420 sk = ssl_create_cipher_list(ctx->method, &ctx->cipher_list,
2421 &ctx->cipher_list_by_id, str, ctx->cert);
2422 /*
2423 * ssl_create_cipher_list may return an empty stack if it was unable to
2424 * find a cipher matching the given rule string (for example if the rule
2425 * string specifies a cipher which has been disabled). This is not an
2426 * error as far as ssl_create_cipher_list is concerned, and hence
2427 * ctx->cipher_list and ctx->cipher_list_by_id has been updated.
2428 */
2429 if (sk == NULL)
2430 return 0;
2431 else if (sk_SSL_CIPHER_num(sk) == 0) {
2432 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2433 return 0;
2434 }
2435 return 1;
2436 }
2437
2438 /** specify the ciphers to be used by the SSL */
2439 int SSL_set_cipher_list(SSL *s, const char *str)
2440 {
2441 STACK_OF(SSL_CIPHER) *sk;
2442
2443 sk = ssl_create_cipher_list(s->ctx->method, &s->cipher_list,
2444 &s->cipher_list_by_id, str, s->cert);
2445 /* see comment in SSL_CTX_set_cipher_list */
2446 if (sk == NULL)
2447 return 0;
2448 else if (sk_SSL_CIPHER_num(sk) == 0) {
2449 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2450 return 0;
2451 }
2452 return 1;
2453 }
2454
2455 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int len)
2456 {
2457 char *p;
2458 STACK_OF(SSL_CIPHER) *sk;
2459 const SSL_CIPHER *c;
2460 int i;
2461
2462 if ((s->session == NULL) || (s->session->ciphers == NULL) || (len < 2))
2463 return (NULL);
2464
2465 p = buf;
2466 sk = s->session->ciphers;
2467
2468 if (sk_SSL_CIPHER_num(sk) == 0)
2469 return NULL;
2470
2471 for (i = 0; i < sk_SSL_CIPHER_num(sk); i++) {
2472 int n;
2473
2474 c = sk_SSL_CIPHER_value(sk, i);
2475 n = strlen(c->name);
2476 if (n + 1 > len) {
2477 if (p != buf)
2478 --p;
2479 *p = '\0';
2480 return buf;
2481 }
2482 strcpy(p, c->name);
2483 p += n;
2484 *(p++) = ':';
2485 len -= n + 1;
2486 }
2487 p[-1] = '\0';
2488 return (buf);
2489 }
2490
2491 /** return a servername extension value if provided in Client Hello, or NULL.
2492 * So far, only host_name types are defined (RFC 3546).
2493 */
2494
2495 const char *SSL_get_servername(const SSL *s, const int type)
2496 {
2497 if (type != TLSEXT_NAMETYPE_host_name)
2498 return NULL;
2499
2500 return s->session && !s->ext.hostname ?
2501 s->session->ext.hostname : s->ext.hostname;
2502 }
2503
2504 int SSL_get_servername_type(const SSL *s)
2505 {
2506 if (s->session
2507 && (!s->ext.hostname ? s->session->
2508 ext.hostname : s->ext.hostname))
2509 return TLSEXT_NAMETYPE_host_name;
2510 return -1;
2511 }
2512
2513 /*
2514 * SSL_select_next_proto implements the standard protocol selection. It is
2515 * expected that this function is called from the callback set by
2516 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a
2517 * vector of 8-bit, length prefixed byte strings. The length byte itself is
2518 * not included in the length. A byte string of length 0 is invalid. No byte
2519 * string may be truncated. The current, but experimental algorithm for
2520 * selecting the protocol is: 1) If the server doesn't support NPN then this
2521 * is indicated to the callback. In this case, the client application has to
2522 * abort the connection or have a default application level protocol. 2) If
2523 * the server supports NPN, but advertises an empty list then the client
2524 * selects the first protocol in its list, but indicates via the API that this
2525 * fallback case was enacted. 3) Otherwise, the client finds the first
2526 * protocol in the server's list that it supports and selects this protocol.
2527 * This is because it's assumed that the server has better information about
2528 * which protocol a client should use. 4) If the client doesn't support any
2529 * of the server's advertised protocols, then this is treated the same as
2530 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was
2531 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
2532 */
2533 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen,
2534 const unsigned char *server,
2535 unsigned int server_len,
2536 const unsigned char *client, unsigned int client_len)
2537 {
2538 unsigned int i, j;
2539 const unsigned char *result;
2540 int status = OPENSSL_NPN_UNSUPPORTED;
2541
2542 /*
2543 * For each protocol in server preference order, see if we support it.
2544 */
2545 for (i = 0; i < server_len;) {
2546 for (j = 0; j < client_len;) {
2547 if (server[i] == client[j] &&
2548 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
2549 /* We found a match */
2550 result = &server[i];
2551 status = OPENSSL_NPN_NEGOTIATED;
2552 goto found;
2553 }
2554 j += client[j];
2555 j++;
2556 }
2557 i += server[i];
2558 i++;
2559 }
2560
2561 /* There's no overlap between our protocols and the server's list. */
2562 result = client;
2563 status = OPENSSL_NPN_NO_OVERLAP;
2564
2565 found:
2566 *out = (unsigned char *)result + 1;
2567 *outlen = result[0];
2568 return status;
2569 }
2570
2571 #ifndef OPENSSL_NO_NEXTPROTONEG
2572 /*
2573 * SSL_get0_next_proto_negotiated sets *data and *len to point to the
2574 * client's requested protocol for this connection and returns 0. If the
2575 * client didn't request any protocol, then *data is set to NULL. Note that
2576 * the client can request any protocol it chooses. The value returned from
2577 * this function need not be a member of the list of supported protocols
2578 * provided by the callback.
2579 */
2580 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data,
2581 unsigned *len)
2582 {
2583 *data = s->ext.npn;
2584 if (!*data) {
2585 *len = 0;
2586 } else {
2587 *len = (unsigned int)s->ext.npn_len;
2588 }
2589 }
2590
2591 /*
2592 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when
2593 * a TLS server needs a list of supported protocols for Next Protocol
2594 * Negotiation. The returned list must be in wire format. The list is
2595 * returned by setting |out| to point to it and |outlen| to its length. This
2596 * memory will not be modified, but one should assume that the SSL* keeps a
2597 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it
2598 * wishes to advertise. Otherwise, no such extension will be included in the
2599 * ServerHello.
2600 */
2601 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx,
2602 SSL_CTX_npn_advertised_cb_func cb,
2603 void *arg)
2604 {
2605 ctx->ext.npn_advertised_cb = cb;
2606 ctx->ext.npn_advertised_cb_arg = arg;
2607 }
2608
2609 /*
2610 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
2611 * client needs to select a protocol from the server's provided list. |out|
2612 * must be set to point to the selected protocol (which may be within |in|).
2613 * The length of the protocol name must be written into |outlen|. The
2614 * server's advertised protocols are provided in |in| and |inlen|. The
2615 * callback can assume that |in| is syntactically valid. The client must
2616 * select a protocol. It is fatal to the connection if this callback returns
2617 * a value other than SSL_TLSEXT_ERR_OK.
2618 */
2619 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx,
2620 SSL_CTX_npn_select_cb_func cb,
2621 void *arg)
2622 {
2623 ctx->ext.npn_select_cb = cb;
2624 ctx->ext.npn_select_cb_arg = arg;
2625 }
2626 #endif
2627
2628 /*
2629 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|.
2630 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2631 * length-prefixed strings). Returns 0 on success.
2632 */
2633 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos,
2634 unsigned int protos_len)
2635 {
2636 OPENSSL_free(ctx->ext.alpn);
2637 ctx->ext.alpn = OPENSSL_memdup(protos, protos_len);
2638 if (ctx->ext.alpn == NULL) {
2639 SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2640 return 1;
2641 }
2642 ctx->ext.alpn_len = protos_len;
2643
2644 return 0;
2645 }
2646
2647 /*
2648 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|.
2649 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2650 * length-prefixed strings). Returns 0 on success.
2651 */
2652 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos,
2653 unsigned int protos_len)
2654 {
2655 OPENSSL_free(ssl->ext.alpn);
2656 ssl->ext.alpn = OPENSSL_memdup(protos, protos_len);
2657 if (ssl->ext.alpn == NULL) {
2658 SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2659 return 1;
2660 }
2661 ssl->ext.alpn_len = protos_len;
2662
2663 return 0;
2664 }
2665
2666 /*
2667 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is
2668 * called during ClientHello processing in order to select an ALPN protocol
2669 * from the client's list of offered protocols.
2670 */
2671 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
2672 SSL_CTX_alpn_select_cb_func cb,
2673 void *arg)
2674 {
2675 ctx->ext.alpn_select_cb = cb;
2676 ctx->ext.alpn_select_cb_arg = arg;
2677 }
2678
2679 /*
2680 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|.
2681 * On return it sets |*data| to point to |*len| bytes of protocol name
2682 * (not including the leading length-prefix byte). If the server didn't
2683 * respond with a negotiated protocol then |*len| will be zero.
2684 */
2685 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data,
2686 unsigned int *len)
2687 {
2688 *data = NULL;
2689 if (ssl->s3)
2690 *data = ssl->s3->alpn_selected;
2691 if (*data == NULL)
2692 *len = 0;
2693 else
2694 *len = (unsigned int)ssl->s3->alpn_selected_len;
2695 }
2696
2697 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
2698 const char *label, size_t llen,
2699 const unsigned char *context, size_t contextlen,
2700 int use_context)
2701 {
2702 if (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER)
2703 return -1;
2704
2705 return s->method->ssl3_enc->export_keying_material(s, out, olen, label,
2706 llen, context,
2707 contextlen, use_context);
2708 }
2709
2710 static unsigned long ssl_session_hash(const SSL_SESSION *a)
2711 {
2712 const unsigned char *session_id = a->session_id;
2713 unsigned long l;
2714 unsigned char tmp_storage[4];
2715
2716 if (a->session_id_length < sizeof(tmp_storage)) {
2717 memset(tmp_storage, 0, sizeof(tmp_storage));
2718 memcpy(tmp_storage, a->session_id, a->session_id_length);
2719 session_id = tmp_storage;
2720 }
2721
2722 l = (unsigned long)
2723 ((unsigned long)session_id[0]) |
2724 ((unsigned long)session_id[1] << 8L) |
2725 ((unsigned long)session_id[2] << 16L) |
2726 ((unsigned long)session_id[3] << 24L);
2727 return (l);
2728 }
2729
2730 /*
2731 * NB: If this function (or indeed the hash function which uses a sort of
2732 * coarser function than this one) is changed, ensure
2733 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on
2734 * being able to construct an SSL_SESSION that will collide with any existing
2735 * session with a matching session ID.
2736 */
2737 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b)
2738 {
2739 if (a->ssl_version != b->ssl_version)
2740 return (1);
2741 if (a->session_id_length != b->session_id_length)
2742 return (1);
2743 return (memcmp(a->session_id, b->session_id, a->session_id_length));
2744 }
2745
2746 /*
2747 * These wrapper functions should remain rather than redeclaring
2748 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each
2749 * variable. The reason is that the functions aren't static, they're exposed
2750 * via ssl.h.
2751 */
2752
2753 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth)
2754 {
2755 SSL_CTX *ret = NULL;
2756
2757 if (meth == NULL) {
2758 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED);
2759 return (NULL);
2760 }
2761
2762 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL))
2763 return NULL;
2764
2765 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
2766 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
2767 goto err;
2768 }
2769 ret = OPENSSL_zalloc(sizeof(*ret));
2770 if (ret == NULL)
2771 goto err;
2772
2773 ret->method = meth;
2774 ret->min_proto_version = 0;
2775 ret->max_proto_version = 0;
2776 ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
2777 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
2778 /* We take the system default. */
2779 ret->session_timeout = meth->get_timeout();
2780 ret->references = 1;
2781 ret->lock = CRYPTO_THREAD_lock_new();
2782 if (ret->lock == NULL) {
2783 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2784 OPENSSL_free(ret);
2785 return NULL;
2786 }
2787 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
2788 ret->verify_mode = SSL_VERIFY_NONE;
2789 if ((ret->cert = ssl_cert_new()) == NULL)
2790 goto err;
2791
2792 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
2793 if (ret->sessions == NULL)
2794 goto err;
2795 ret->cert_store = X509_STORE_new();
2796 if (ret->cert_store == NULL)
2797 goto err;
2798 #ifndef OPENSSL_NO_CT
2799 ret->ctlog_store = CTLOG_STORE_new();
2800 if (ret->ctlog_store == NULL)
2801 goto err;
2802 #endif
2803 if (!ssl_create_cipher_list(ret->method,
2804 &ret->cipher_list, &ret->cipher_list_by_id,
2805 SSL_DEFAULT_CIPHER_LIST, ret->cert)
2806 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) {
2807 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS);
2808 goto err2;
2809 }
2810
2811 ret->param = X509_VERIFY_PARAM_new();
2812 if (ret->param == NULL)
2813 goto err;
2814
2815 if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) {
2816 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES);
2817 goto err2;
2818 }
2819 if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) {
2820 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES);
2821 goto err2;
2822 }
2823
2824 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL)
2825 goto err;
2826
2827 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data))
2828 goto err;
2829
2830 /* No compression for DTLS */
2831 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS))
2832 ret->comp_methods = SSL_COMP_get_compression_methods();
2833
2834 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2835 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2836
2837 /* Setup RFC5077 ticket keys */
2838 if ((RAND_bytes(ret->ext.tick_key_name,
2839 sizeof(ret->ext.tick_key_name)) <= 0)
2840 || (RAND_bytes(ret->ext.tick_hmac_key,
2841 sizeof(ret->ext.tick_hmac_key)) <= 0)
2842 || (RAND_bytes(ret->ext.tick_aes_key,
2843 sizeof(ret->ext.tick_aes_key)) <= 0))
2844 ret->options |= SSL_OP_NO_TICKET;
2845
2846 #ifndef OPENSSL_NO_SRP
2847 if (!SSL_CTX_SRP_CTX_init(ret))
2848 goto err;
2849 #endif
2850 #ifndef OPENSSL_NO_ENGINE
2851 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO
2852 # define eng_strx(x) #x
2853 # define eng_str(x) eng_strx(x)
2854 /* Use specific client engine automatically... ignore errors */
2855 {
2856 ENGINE *eng;
2857 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2858 if (!eng) {
2859 ERR_clear_error();
2860 ENGINE_load_builtin_engines();
2861 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2862 }
2863 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng))
2864 ERR_clear_error();
2865 }
2866 # endif
2867 #endif
2868 /*
2869 * Default is to connect to non-RI servers. When RI is more widely
2870 * deployed might change this.
2871 */
2872 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT;
2873 /*
2874 * Disable compression by default to prevent CRIME. Applications can
2875 * re-enable compression by configuring
2876 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION);
2877 * or by using the SSL_CONF library.
2878 */
2879 ret->options |= SSL_OP_NO_COMPRESSION;
2880
2881 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing;
2882
2883 /*
2884 * Default max early data is a fully loaded single record. Could be split
2885 * across multiple records in practice
2886 */
2887 ret->max_early_data = SSL3_RT_MAX_PLAIN_LENGTH;
2888
2889 return ret;
2890 err:
2891 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2892 err2:
2893 SSL_CTX_free(ret);
2894 return NULL;
2895 }
2896
2897 int SSL_CTX_up_ref(SSL_CTX *ctx)
2898 {
2899 int i;
2900
2901 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0)
2902 return 0;
2903
2904 REF_PRINT_COUNT("SSL_CTX", ctx);
2905 REF_ASSERT_ISNT(i < 2);
2906 return ((i > 1) ? 1 : 0);
2907 }
2908
2909 void SSL_CTX_free(SSL_CTX *a)
2910 {
2911 int i;
2912
2913 if (a == NULL)
2914 return;
2915
2916 CRYPTO_DOWN_REF(&a->references, &i, a->lock);
2917 REF_PRINT_COUNT("SSL_CTX", a);
2918 if (i > 0)
2919 return;
2920 REF_ASSERT_ISNT(i < 0);
2921
2922 X509_VERIFY_PARAM_free(a->param);
2923 dane_ctx_final(&a->dane);
2924
2925 /*
2926 * Free internal session cache. However: the remove_cb() may reference
2927 * the ex_data of SSL_CTX, thus the ex_data store can only be removed
2928 * after the sessions were flushed.
2929 * As the ex_data handling routines might also touch the session cache,
2930 * the most secure solution seems to be: empty (flush) the cache, then
2931 * free ex_data, then finally free the cache.
2932 * (See ticket [openssl.org #212].)
2933 */
2934 if (a->sessions != NULL)
2935 SSL_CTX_flush_sessions(a, 0);
2936
2937 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data);
2938 lh_SSL_SESSION_free(a->sessions);
2939 X509_STORE_free(a->cert_store);
2940 #ifndef OPENSSL_NO_CT
2941 CTLOG_STORE_free(a->ctlog_store);
2942 #endif
2943 sk_SSL_CIPHER_free(a->cipher_list);
2944 sk_SSL_CIPHER_free(a->cipher_list_by_id);
2945 ssl_cert_free(a->cert);
2946 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free);
2947 sk_X509_pop_free(a->extra_certs, X509_free);
2948 a->comp_methods = NULL;
2949 #ifndef OPENSSL_NO_SRTP
2950 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles);
2951 #endif
2952 #ifndef OPENSSL_NO_SRP
2953 SSL_CTX_SRP_CTX_free(a);
2954 #endif
2955 #ifndef OPENSSL_NO_ENGINE
2956 ENGINE_finish(a->client_cert_engine);
2957 #endif
2958
2959 #ifndef OPENSSL_NO_EC
2960 OPENSSL_free(a->ext.ecpointformats);
2961 OPENSSL_free(a->ext.supportedgroups);
2962 #endif
2963 OPENSSL_free(a->ext.alpn);
2964
2965 CRYPTO_THREAD_lock_free(a->lock);
2966
2967 OPENSSL_free(a);
2968 }
2969
2970 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb)
2971 {
2972 ctx->default_passwd_callback = cb;
2973 }
2974
2975 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u)
2976 {
2977 ctx->default_passwd_callback_userdata = u;
2978 }
2979
2980 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx)
2981 {
2982 return ctx->default_passwd_callback;
2983 }
2984
2985 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx)
2986 {
2987 return ctx->default_passwd_callback_userdata;
2988 }
2989
2990 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb)
2991 {
2992 s->default_passwd_callback = cb;
2993 }
2994
2995 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u)
2996 {
2997 s->default_passwd_callback_userdata = u;
2998 }
2999
3000 pem_password_cb *SSL_get_default_passwd_cb(SSL *s)
3001 {
3002 return s->default_passwd_callback;
3003 }
3004
3005 void *SSL_get_default_passwd_cb_userdata(SSL *s)
3006 {
3007 return s->default_passwd_callback_userdata;
3008 }
3009
3010 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
3011 int (*cb) (X509_STORE_CTX *, void *),
3012 void *arg)
3013 {
3014 ctx->app_verify_callback = cb;
3015 ctx->app_verify_arg = arg;
3016 }
3017
3018 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
3019 int (*cb) (int, X509_STORE_CTX *))
3020 {
3021 ctx->verify_mode = mode;
3022 ctx->default_verify_callback = cb;
3023 }
3024
3025 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth)
3026 {
3027 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
3028 }
3029
3030 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg)
3031 {
3032 ssl_cert_set_cert_cb(c->cert, cb, arg);
3033 }
3034
3035 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg)
3036 {
3037 ssl_cert_set_cert_cb(s->cert, cb, arg);
3038 }
3039
3040 void ssl_set_masks(SSL *s)
3041 {
3042 CERT *c = s->cert;
3043 uint32_t *pvalid = s->s3->tmp.valid_flags;
3044 int rsa_enc, rsa_sign, dh_tmp, dsa_sign;
3045 unsigned long mask_k, mask_a;
3046 #ifndef OPENSSL_NO_EC
3047 int have_ecc_cert, ecdsa_ok;
3048 #endif
3049 if (c == NULL)
3050 return;
3051
3052 #ifndef OPENSSL_NO_DH
3053 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto);
3054 #else
3055 dh_tmp = 0;
3056 #endif
3057
3058 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3059 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3060 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID;
3061 #ifndef OPENSSL_NO_EC
3062 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID;
3063 #endif
3064 mask_k = 0;
3065 mask_a = 0;
3066
3067 #ifdef CIPHER_DEBUG
3068 fprintf(stderr, "dht=%d re=%d rs=%d ds=%d\n",
3069 dh_tmp, rsa_enc, rsa_sign, dsa_sign);
3070 #endif
3071
3072 #ifndef OPENSSL_NO_GOST
3073 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) {
3074 mask_k |= SSL_kGOST;
3075 mask_a |= SSL_aGOST12;
3076 }
3077 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) {
3078 mask_k |= SSL_kGOST;
3079 mask_a |= SSL_aGOST12;
3080 }
3081 if (ssl_has_cert(s, SSL_PKEY_GOST01)) {
3082 mask_k |= SSL_kGOST;
3083 mask_a |= SSL_aGOST01;
3084 }
3085 #endif
3086
3087 if (rsa_enc)
3088 mask_k |= SSL_kRSA;
3089
3090 if (dh_tmp)
3091 mask_k |= SSL_kDHE;
3092
3093 if (rsa_enc || rsa_sign) {
3094 mask_a |= SSL_aRSA;
3095 }
3096
3097 if (dsa_sign) {
3098 mask_a |= SSL_aDSS;
3099 }
3100
3101 mask_a |= SSL_aNULL;
3102
3103 /*
3104 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites
3105 * depending on the key usage extension.
3106 */
3107 #ifndef OPENSSL_NO_EC
3108 if (have_ecc_cert) {
3109 uint32_t ex_kusage;
3110 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509);
3111 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE;
3112 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN))
3113 ecdsa_ok = 0;
3114 if (ecdsa_ok)
3115 mask_a |= SSL_aECDSA;
3116 }
3117 /* Allow Ed25519 for TLS 1.2 if peer supports it */
3118 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED25519)
3119 && pvalid[SSL_PKEY_ED25519] & CERT_PKEY_EXPLICIT_SIGN
3120 && TLS1_get_version(s) == TLS1_2_VERSION)
3121 mask_a |= SSL_aECDSA;
3122 #endif
3123
3124 #ifndef OPENSSL_NO_EC
3125 mask_k |= SSL_kECDHE;
3126 #endif
3127
3128 #ifndef OPENSSL_NO_PSK
3129 mask_k |= SSL_kPSK;
3130 mask_a |= SSL_aPSK;
3131 if (mask_k & SSL_kRSA)
3132 mask_k |= SSL_kRSAPSK;
3133 if (mask_k & SSL_kDHE)
3134 mask_k |= SSL_kDHEPSK;
3135 if (mask_k & SSL_kECDHE)
3136 mask_k |= SSL_kECDHEPSK;
3137 #endif
3138
3139 s->s3->tmp.mask_k = mask_k;
3140 s->s3->tmp.mask_a = mask_a;
3141 }
3142
3143 #ifndef OPENSSL_NO_EC
3144
3145 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s)
3146 {
3147 if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aECDSA) {
3148 /* key usage, if present, must allow signing */
3149 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) {
3150 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG,
3151 SSL_R_ECC_CERT_NOT_FOR_SIGNING);
3152 return 0;
3153 }
3154 }
3155 return 1; /* all checks are ok */
3156 }
3157
3158 #endif
3159
3160 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo,
3161 size_t *serverinfo_length)
3162 {
3163 CERT_PKEY *cpk = s->s3->tmp.cert;
3164 *serverinfo_length = 0;
3165
3166 if (cpk == NULL || cpk->serverinfo == NULL)
3167 return 0;
3168
3169 *serverinfo = cpk->serverinfo;
3170 *serverinfo_length = cpk->serverinfo_length;
3171 return 1;
3172 }
3173
3174 void ssl_update_cache(SSL *s, int mode)
3175 {
3176 int i;
3177
3178 /*
3179 * If the session_id_length is 0, we are not supposed to cache it, and it
3180 * would be rather hard to do anyway :-)
3181 */
3182 if (s->session->session_id_length == 0)
3183 return;
3184
3185 i = s->session_ctx->session_cache_mode;
3186 if ((i & mode) != 0
3187 && (!s->hit || SSL_IS_TLS13(s))
3188 && ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) != 0
3189 || SSL_CTX_add_session(s->session_ctx, s->session))
3190 && s->session_ctx->new_session_cb != NULL) {
3191 SSL_SESSION_up_ref(s->session);
3192 if (!s->session_ctx->new_session_cb(s, s->session))
3193 SSL_SESSION_free(s->session);
3194 }
3195
3196 /* auto flush every 255 connections */
3197 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) {
3198 if ((((mode & SSL_SESS_CACHE_CLIENT)
3199 ? s->session_ctx->stats.sess_connect_good
3200 : s->session_ctx->stats.sess_accept_good) & 0xff) == 0xff) {
3201 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL));
3202 }
3203 }
3204 }
3205
3206 const SSL_METHOD *SSL_CTX_get_ssl_method(SSL_CTX *ctx)
3207 {
3208 return ctx->method;
3209 }
3210
3211 const SSL_METHOD *SSL_get_ssl_method(SSL *s)
3212 {
3213 return (s->method);
3214 }
3215
3216 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth)
3217 {
3218 int ret = 1;
3219
3220 if (s->method != meth) {
3221 const SSL_METHOD *sm = s->method;
3222 int (*hf) (SSL *) = s->handshake_func;
3223
3224 if (sm->version == meth->version)
3225 s->method = meth;
3226 else {
3227 sm->ssl_free(s);
3228 s->method = meth;
3229 ret = s->method->ssl_new(s);
3230 }
3231
3232 if (hf == sm->ssl_connect)
3233 s->handshake_func = meth->ssl_connect;
3234 else if (hf == sm->ssl_accept)
3235 s->handshake_func = meth->ssl_accept;
3236 }
3237 return (ret);
3238 }
3239
3240 int SSL_get_error(const SSL *s, int i)
3241 {
3242 int reason;
3243 unsigned long l;
3244 BIO *bio;
3245
3246 if (i > 0)
3247 return (SSL_ERROR_NONE);
3248
3249 /*
3250 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
3251 * where we do encode the error
3252 */
3253 if ((l = ERR_peek_error()) != 0) {
3254 if (ERR_GET_LIB(l) == ERR_LIB_SYS)
3255 return (SSL_ERROR_SYSCALL);
3256 else
3257 return (SSL_ERROR_SSL);
3258 }
3259
3260 if (SSL_want_read(s)) {
3261 bio = SSL_get_rbio(s);
3262 if (BIO_should_read(bio))
3263 return (SSL_ERROR_WANT_READ);
3264 else if (BIO_should_write(bio))
3265 /*
3266 * This one doesn't make too much sense ... We never try to write
3267 * to the rbio, and an application program where rbio and wbio
3268 * are separate couldn't even know what it should wait for.
3269 * However if we ever set s->rwstate incorrectly (so that we have
3270 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and
3271 * wbio *are* the same, this test works around that bug; so it
3272 * might be safer to keep it.
3273 */
3274 return (SSL_ERROR_WANT_WRITE);
3275 else if (BIO_should_io_special(bio)) {
3276 reason = BIO_get_retry_reason(bio);
3277 if (reason == BIO_RR_CONNECT)
3278 return (SSL_ERROR_WANT_CONNECT);
3279 else if (reason == BIO_RR_ACCEPT)
3280 return (SSL_ERROR_WANT_ACCEPT);
3281 else
3282 return (SSL_ERROR_SYSCALL); /* unknown */
3283 }
3284 }
3285
3286 if (SSL_want_write(s)) {
3287 /* Access wbio directly - in order to use the buffered bio if present */
3288 bio = s->wbio;
3289 if (BIO_should_write(bio))
3290 return (SSL_ERROR_WANT_WRITE);
3291 else if (BIO_should_read(bio))
3292 /*
3293 * See above (SSL_want_read(s) with BIO_should_write(bio))
3294 */
3295 return (SSL_ERROR_WANT_READ);
3296 else if (BIO_should_io_special(bio)) {
3297 reason = BIO_get_retry_reason(bio);
3298 if (reason == BIO_RR_CONNECT)
3299 return (SSL_ERROR_WANT_CONNECT);
3300 else if (reason == BIO_RR_ACCEPT)
3301 return (SSL_ERROR_WANT_ACCEPT);
3302 else
3303 return (SSL_ERROR_SYSCALL);
3304 }
3305 }
3306 if (SSL_want_x509_lookup(s))
3307 return (SSL_ERROR_WANT_X509_LOOKUP);
3308 if (SSL_want_async(s))
3309 return SSL_ERROR_WANT_ASYNC;
3310 if (SSL_want_async_job(s))
3311 return SSL_ERROR_WANT_ASYNC_JOB;
3312 if (SSL_want_client_hello_cb(s))
3313 return SSL_ERROR_WANT_CLIENT_HELLO_CB;
3314
3315 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
3316 (s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY))
3317 return (SSL_ERROR_ZERO_RETURN);
3318
3319 return (SSL_ERROR_SYSCALL);
3320 }
3321
3322 static int ssl_do_handshake_intern(void *vargs)
3323 {
3324 struct ssl_async_args *args;
3325 SSL *s;
3326
3327 args = (struct ssl_async_args *)vargs;
3328 s = args->s;
3329
3330 return s->handshake_func(s);
3331 }
3332
3333 int SSL_do_handshake(SSL *s)
3334 {
3335 int ret = 1;
3336
3337 if (s->handshake_func == NULL) {
3338 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET);
3339 return -1;
3340 }
3341
3342 ossl_statem_check_finish_init(s, -1);
3343
3344 s->method->ssl_renegotiate_check(s, 0);
3345
3346 if (SSL_is_server(s)) {
3347 /* clear SNI settings at server-side */
3348 OPENSSL_free(s->ext.hostname);
3349 s->ext.hostname = NULL;
3350 }
3351
3352 if (SSL_in_init(s) || SSL_in_before(s)) {
3353 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
3354 struct ssl_async_args args;
3355
3356 args.s = s;
3357
3358 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern);
3359 } else {
3360 ret = s->handshake_func(s);
3361 }
3362 }
3363 return ret;
3364 }
3365
3366 void SSL_set_accept_state(SSL *s)
3367 {
3368 s->server = 1;
3369 s->shutdown = 0;
3370 ossl_statem_clear(s);
3371 s->handshake_func = s->method->ssl_accept;
3372 clear_ciphers(s);
3373 }
3374
3375 void SSL_set_connect_state(SSL *s)
3376 {
3377 s->server = 0;
3378 s->shutdown = 0;
3379 ossl_statem_clear(s);
3380 s->handshake_func = s->method->ssl_connect;
3381 clear_ciphers(s);
3382 }
3383
3384 int ssl_undefined_function(SSL *s)
3385 {
3386 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3387 return (0);
3388 }
3389
3390 int ssl_undefined_void_function(void)
3391 {
3392 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION,
3393 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3394 return (0);
3395 }
3396
3397 int ssl_undefined_const_function(const SSL *s)
3398 {
3399 return (0);
3400 }
3401
3402 const SSL_METHOD *ssl_bad_method(int ver)
3403 {
3404 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3405 return (NULL);
3406 }
3407
3408 const char *ssl_protocol_to_string(int version)
3409 {
3410 switch(version)
3411 {
3412 case TLS1_3_VERSION:
3413 return "TLSv1.3";
3414
3415 case TLS1_2_VERSION:
3416 return "TLSv1.2";
3417
3418 case TLS1_1_VERSION:
3419 return "TLSv1.1";
3420
3421 case TLS1_VERSION:
3422 return "TLSv1";
3423
3424 case SSL3_VERSION:
3425 return "SSLv3";
3426
3427 case DTLS1_BAD_VER:
3428 return "DTLSv0.9";
3429
3430 case DTLS1_VERSION:
3431 return "DTLSv1";
3432
3433 case DTLS1_2_VERSION:
3434 return "DTLSv1.2";
3435
3436 default:
3437 return "unknown";
3438 }
3439 }
3440
3441 const char *SSL_get_version(const SSL *s)
3442 {
3443 return ssl_protocol_to_string(s->version);
3444 }
3445
3446 SSL *SSL_dup(SSL *s)
3447 {
3448 STACK_OF(X509_NAME) *sk;
3449 X509_NAME *xn;
3450 SSL *ret;
3451 int i;
3452
3453 /* If we're not quiescent, just up_ref! */
3454 if (!SSL_in_init(s) || !SSL_in_before(s)) {
3455 CRYPTO_UP_REF(&s->references, &i, s->lock);
3456 return s;
3457 }
3458
3459 /*
3460 * Otherwise, copy configuration state, and session if set.
3461 */
3462 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL)
3463 return (NULL);
3464
3465 if (s->session != NULL) {
3466 /*
3467 * Arranges to share the same session via up_ref. This "copies"
3468 * session-id, SSL_METHOD, sid_ctx, and 'cert'
3469 */
3470 if (!SSL_copy_session_id(ret, s))
3471 goto err;
3472 } else {
3473 /*
3474 * No session has been established yet, so we have to expect that
3475 * s->cert or ret->cert will be changed later -- they should not both
3476 * point to the same object, and thus we can't use
3477 * SSL_copy_session_id.
3478 */
3479 if (!SSL_set_ssl_method(ret, s->method))
3480 goto err;
3481
3482 if (s->cert != NULL) {
3483 ssl_cert_free(ret->cert);
3484 ret->cert = ssl_cert_dup(s->cert);
3485 if (ret->cert == NULL)
3486 goto err;
3487 }
3488
3489 if (!SSL_set_session_id_context(ret, s->sid_ctx,
3490 (int)s->sid_ctx_length))
3491 goto err;
3492 }
3493
3494 if (!ssl_dane_dup(ret, s))
3495 goto err;
3496 ret->version = s->version;
3497 ret->options = s->options;
3498 ret->mode = s->mode;
3499 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s));
3500 SSL_set_read_ahead(ret, SSL_get_read_ahead(s));
3501 ret->msg_callback = s->msg_callback;
3502 ret->msg_callback_arg = s->msg_callback_arg;
3503 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s));
3504 SSL_set_verify_depth(ret, SSL_get_verify_depth(s));
3505 ret->generate_session_id = s->generate_session_id;
3506
3507 SSL_set_info_callback(ret, SSL_get_info_callback(s));
3508
3509 /* copy app data, a little dangerous perhaps */
3510 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data))
3511 goto err;
3512
3513 /* setup rbio, and wbio */
3514 if (s->rbio != NULL) {
3515 if (!BIO_dup_state(s->rbio, (char *)&ret->rbio))
3516 goto err;
3517 }
3518 if (s->wbio != NULL) {
3519 if (s->wbio != s->rbio) {
3520 if (!BIO_dup_state(s->wbio, (char *)&ret->wbio))
3521 goto err;
3522 } else {
3523 BIO_up_ref(ret->rbio);
3524 ret->wbio = ret->rbio;
3525 }
3526 }
3527
3528 ret->server = s->server;
3529 if (s->handshake_func) {
3530 if (s->server)
3531 SSL_set_accept_state(ret);
3532 else
3533 SSL_set_connect_state(ret);
3534 }
3535 ret->shutdown = s->shutdown;
3536 ret->hit = s->hit;
3537
3538 ret->default_passwd_callback = s->default_passwd_callback;
3539 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata;
3540
3541 X509_VERIFY_PARAM_inherit(ret->param, s->param);
3542
3543 /* dup the cipher_list and cipher_list_by_id stacks */
3544 if (s->cipher_list != NULL) {
3545 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL)
3546 goto err;
3547 }
3548 if (s->cipher_list_by_id != NULL)
3549 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id))
3550 == NULL)
3551 goto err;
3552
3553 /* Dup the client_CA list */
3554 if (s->ca_names != NULL) {
3555 if ((sk = sk_X509_NAME_dup(s->ca_names)) == NULL)
3556 goto err;
3557 ret->ca_names = sk;
3558 for (i = 0; i < sk_X509_NAME_num(sk); i++) {
3559 xn = sk_X509_NAME_value(sk, i);
3560 if (sk_X509_NAME_set(sk, i, X509_NAME_dup(xn)) == NULL) {
3561 X509_NAME_free(xn);
3562 goto err;
3563 }
3564 }
3565 }
3566 return ret;
3567
3568 err:
3569 SSL_free(ret);
3570 return NULL;
3571 }
3572
3573 void ssl_clear_cipher_ctx(SSL *s)
3574 {
3575 if (s->enc_read_ctx != NULL) {
3576 EVP_CIPHER_CTX_free(s->enc_read_ctx);
3577 s->enc_read_ctx = NULL;
3578 }
3579 if (s->enc_write_ctx != NULL) {
3580 EVP_CIPHER_CTX_free(s->enc_write_ctx);
3581 s->enc_write_ctx = NULL;
3582 }
3583 #ifndef OPENSSL_NO_COMP
3584 COMP_CTX_free(s->expand);
3585 s->expand = NULL;
3586 COMP_CTX_free(s->compress);
3587 s->compress = NULL;
3588 #endif
3589 }
3590
3591 X509 *SSL_get_certificate(const SSL *s)
3592 {
3593 if (s->cert != NULL)
3594 return (s->cert->key->x509);
3595 else
3596 return (NULL);
3597 }
3598
3599 EVP_PKEY *SSL_get_privatekey(const SSL *s)
3600 {
3601 if (s->cert != NULL)
3602 return (s->cert->key->privatekey);
3603 else
3604 return (NULL);
3605 }
3606
3607 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx)
3608 {
3609 if (ctx->cert != NULL)
3610 return ctx->cert->key->x509;
3611 else
3612 return NULL;
3613 }
3614
3615 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx)
3616 {
3617 if (ctx->cert != NULL)
3618 return ctx->cert->key->privatekey;
3619 else
3620 return NULL;
3621 }
3622
3623 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s)
3624 {
3625 if ((s->session != NULL) && (s->session->cipher != NULL))
3626 return (s->session->cipher);
3627 return (NULL);
3628 }
3629
3630 const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s)
3631 {
3632 return s->s3->tmp.new_cipher;
3633 }
3634
3635 const COMP_METHOD *SSL_get_current_compression(SSL *s)
3636 {
3637 #ifndef OPENSSL_NO_COMP
3638 return s->compress ? COMP_CTX_get_method(s->compress) : NULL;
3639 #else
3640 return NULL;
3641 #endif
3642 }
3643
3644 const COMP_METHOD *SSL_get_current_expansion(SSL *s)
3645 {
3646 #ifndef OPENSSL_NO_COMP
3647 return s->expand ? COMP_CTX_get_method(s->expand) : NULL;
3648 #else
3649 return NULL;
3650 #endif
3651 }
3652
3653 int ssl_init_wbio_buffer(SSL *s)
3654 {
3655 BIO *bbio;
3656
3657 if (s->bbio != NULL) {
3658 /* Already buffered. */
3659 return 1;
3660 }
3661
3662 bbio = BIO_new(BIO_f_buffer());
3663 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) {
3664 BIO_free(bbio);
3665 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB);
3666 return 0;
3667 }
3668 s->bbio = bbio;
3669 s->wbio = BIO_push(bbio, s->wbio);
3670
3671 return 1;
3672 }
3673
3674 int ssl_free_wbio_buffer(SSL *s)
3675 {
3676 /* callers ensure s is never null */
3677 if (s->bbio == NULL)
3678 return 1;
3679
3680 s->wbio = BIO_pop(s->wbio);
3681 if (!ossl_assert(s->wbio != NULL))
3682 return 0;
3683 BIO_free(s->bbio);
3684 s->bbio = NULL;
3685
3686 return 1;
3687 }
3688
3689 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode)
3690 {
3691 ctx->quiet_shutdown = mode;
3692 }
3693
3694 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx)
3695 {
3696 return (ctx->quiet_shutdown);
3697 }
3698
3699 void SSL_set_quiet_shutdown(SSL *s, int mode)
3700 {
3701 s->quiet_shutdown = mode;
3702 }
3703
3704 int SSL_get_quiet_shutdown(const SSL *s)
3705 {
3706 return (s->quiet_shutdown);
3707 }
3708
3709 void SSL_set_shutdown(SSL *s, int mode)
3710 {
3711 s->shutdown = mode;
3712 }
3713
3714 int SSL_get_shutdown(const SSL *s)
3715 {
3716 return s->shutdown;
3717 }
3718
3719 int SSL_version(const SSL *s)
3720 {
3721 return s->version;
3722 }
3723
3724 int SSL_client_version(const SSL *s)
3725 {
3726 return s->client_version;
3727 }
3728
3729 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl)
3730 {
3731 return ssl->ctx;
3732 }
3733
3734 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx)
3735 {
3736 CERT *new_cert;
3737 if (ssl->ctx == ctx)
3738 return ssl->ctx;
3739 if (ctx == NULL)
3740 ctx = ssl->session_ctx;
3741 new_cert = ssl_cert_dup(ctx->cert);
3742 if (new_cert == NULL) {
3743 return NULL;
3744 }
3745
3746 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) {
3747 ssl_cert_free(new_cert);
3748 return NULL;
3749 }
3750
3751 ssl_cert_free(ssl->cert);
3752 ssl->cert = new_cert;
3753
3754 /*
3755 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH),
3756 * so setter APIs must prevent invalid lengths from entering the system.
3757 */
3758 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx)))
3759 return NULL;
3760
3761 /*
3762 * If the session ID context matches that of the parent SSL_CTX,
3763 * inherit it from the new SSL_CTX as well. If however the context does
3764 * not match (i.e., it was set per-ssl with SSL_set_session_id_context),
3765 * leave it unchanged.
3766 */
3767 if ((ssl->ctx != NULL) &&
3768 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) &&
3769 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) {
3770 ssl->sid_ctx_length = ctx->sid_ctx_length;
3771 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx));
3772 }
3773
3774 SSL_CTX_up_ref(ctx);
3775 SSL_CTX_free(ssl->ctx); /* decrement reference count */
3776 ssl->ctx = ctx;
3777
3778 return ssl->ctx;
3779 }
3780
3781 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx)
3782 {
3783 return (X509_STORE_set_default_paths(ctx->cert_store));
3784 }
3785
3786 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx)
3787 {
3788 X509_LOOKUP *lookup;
3789
3790 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir());
3791 if (lookup == NULL)
3792 return 0;
3793 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
3794
3795 /* Clear any errors if the default directory does not exist */
3796 ERR_clear_error();
3797
3798 return 1;
3799 }
3800
3801 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx)
3802 {
3803 X509_LOOKUP *lookup;
3804
3805 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file());
3806 if (lookup == NULL)
3807 return 0;
3808
3809 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT);
3810
3811 /* Clear any errors if the default file does not exist */
3812 ERR_clear_error();
3813
3814 return 1;
3815 }
3816
3817 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
3818 const char *CApath)
3819 {
3820 return (X509_STORE_load_locations(ctx->cert_store, CAfile, CApath));
3821 }
3822
3823 void SSL_set_info_callback(SSL *ssl,
3824 void (*cb) (const SSL *ssl, int type, int val))
3825 {
3826 ssl->info_callback = cb;
3827 }
3828
3829 /*
3830 * One compiler (Diab DCC) doesn't like argument names in returned function
3831 * pointer.
3832 */
3833 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ ,
3834 int /* type */ ,
3835 int /* val */ ) {
3836 return ssl->info_callback;
3837 }
3838
3839 void SSL_set_verify_result(SSL *ssl, long arg)
3840 {
3841 ssl->verify_result = arg;
3842 }
3843
3844 long SSL_get_verify_result(const SSL *ssl)
3845 {
3846 return (ssl->verify_result);
3847 }
3848
3849 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen)
3850 {
3851 if (outlen == 0)
3852 return sizeof(ssl->s3->client_random);
3853 if (outlen > sizeof(ssl->s3->client_random))
3854 outlen = sizeof(ssl->s3->client_random);
3855 memcpy(out, ssl->s3->client_random, outlen);
3856 return outlen;
3857 }
3858
3859 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen)
3860 {
3861 if (outlen == 0)
3862 return sizeof(ssl->s3->server_random);
3863 if (outlen > sizeof(ssl->s3->server_random))
3864 outlen = sizeof(ssl->s3->server_random);
3865 memcpy(out, ssl->s3->server_random, outlen);
3866 return outlen;
3867 }
3868
3869 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session,
3870 unsigned char *out, size_t outlen)
3871 {
3872 if (outlen == 0)
3873 return session->master_key_length;
3874 if (outlen > session->master_key_length)
3875 outlen = session->master_key_length;
3876 memcpy(out, session->master_key, outlen);
3877 return outlen;
3878 }
3879
3880 int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in,
3881 size_t len)
3882 {
3883 if (len > sizeof(sess->master_key))
3884 return 0;
3885
3886 memcpy(sess->master_key, in, len);
3887 sess->master_key_length = len;
3888 return 1;
3889 }
3890
3891
3892 int SSL_set_ex_data(SSL *s, int idx, void *arg)
3893 {
3894 return (CRYPTO_set_ex_data(&s->ex_data, idx, arg));
3895 }
3896
3897 void *SSL_get_ex_data(const SSL *s, int idx)
3898 {
3899 return (CRYPTO_get_ex_data(&s->ex_data, idx));
3900 }
3901
3902 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg)
3903 {
3904 return (CRYPTO_set_ex_data(&s->ex_data, idx, arg));
3905 }
3906
3907 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx)
3908 {
3909 return (CRYPTO_get_ex_data(&s->ex_data, idx));
3910 }
3911
3912 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx)
3913 {
3914 return (ctx->cert_store);
3915 }
3916
3917 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store)
3918 {
3919 X509_STORE_free(ctx->cert_store);
3920 ctx->cert_store = store;
3921 }
3922
3923 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store)
3924 {
3925 if (store != NULL)
3926 X509_STORE_up_ref(store);
3927 SSL_CTX_set_cert_store(ctx, store);
3928 }
3929
3930 int SSL_want(const SSL *s)
3931 {
3932 return (s->rwstate);
3933 }
3934
3935 /**
3936 * \brief Set the callback for generating temporary DH keys.
3937 * \param ctx the SSL context.
3938 * \param dh the callback
3939 */
3940
3941 #ifndef OPENSSL_NO_DH
3942 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
3943 DH *(*dh) (SSL *ssl, int is_export,
3944 int keylength))
3945 {
3946 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
3947 }
3948
3949 void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export,
3950 int keylength))
3951 {
3952 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
3953 }
3954 #endif
3955
3956 #ifndef OPENSSL_NO_PSK
3957 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint)
3958 {
3959 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
3960 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
3961 return 0;
3962 }
3963 OPENSSL_free(ctx->cert->psk_identity_hint);
3964 if (identity_hint != NULL) {
3965 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
3966 if (ctx->cert->psk_identity_hint == NULL)
3967 return 0;
3968 } else
3969 ctx->cert->psk_identity_hint = NULL;
3970 return 1;
3971 }
3972
3973 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint)
3974 {
3975 if (s == NULL)
3976 return 0;
3977
3978 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
3979 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
3980 return 0;
3981 }
3982 OPENSSL_free(s->cert->psk_identity_hint);
3983 if (identity_hint != NULL) {
3984 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
3985 if (s->cert->psk_identity_hint == NULL)
3986 return 0;
3987 } else
3988 s->cert->psk_identity_hint = NULL;
3989 return 1;
3990 }
3991
3992 const char *SSL_get_psk_identity_hint(const SSL *s)
3993 {
3994 if (s == NULL || s->session == NULL)
3995 return NULL;
3996 return (s->session->psk_identity_hint);
3997 }
3998
3999 const char *SSL_get_psk_identity(const SSL *s)
4000 {
4001 if (s == NULL || s->session == NULL)
4002 return NULL;
4003 return (s->session->psk_identity);
4004 }
4005
4006 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb)
4007 {
4008 s->psk_client_callback = cb;
4009 }
4010
4011 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb)
4012 {
4013 ctx->psk_client_callback = cb;
4014 }
4015
4016 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb)
4017 {
4018 s->psk_server_callback = cb;
4019 }
4020
4021 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb)
4022 {
4023 ctx->psk_server_callback = cb;
4024 }
4025 #endif
4026
4027 void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb)
4028 {
4029 s->psk_find_session_cb = cb;
4030 }
4031
4032 void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx,
4033 SSL_psk_find_session_cb_func cb)
4034 {
4035 ctx->psk_find_session_cb = cb;
4036 }
4037
4038 void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb)
4039 {
4040 s->psk_use_session_cb = cb;
4041 }
4042
4043 void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx,
4044 SSL_psk_use_session_cb_func cb)
4045 {
4046 ctx->psk_use_session_cb = cb;
4047 }
4048
4049 void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
4050 void (*cb) (int write_p, int version,
4051 int content_type, const void *buf,
4052 size_t len, SSL *ssl, void *arg))
4053 {
4054 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4055 }
4056
4057 void SSL_set_msg_callback(SSL *ssl,
4058 void (*cb) (int write_p, int version,
4059 int content_type, const void *buf,
4060 size_t len, SSL *ssl, void *arg))
4061 {
4062 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4063 }
4064
4065 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx,
4066 int (*cb) (SSL *ssl,
4067 int
4068 is_forward_secure))
4069 {
4070 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4071 (void (*)(void))cb);
4072 }
4073
4074 void SSL_set_not_resumable_session_callback(SSL *ssl,
4075 int (*cb) (SSL *ssl,
4076 int is_forward_secure))
4077 {
4078 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4079 (void (*)(void))cb);
4080 }
4081
4082 void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx,
4083 size_t (*cb) (SSL *ssl, int type,
4084 size_t len, void *arg))
4085 {
4086 ctx->record_padding_cb = cb;
4087 }
4088
4089 void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg)
4090 {
4091 ctx->record_padding_arg = arg;
4092 }
4093
4094 void *SSL_CTX_get_record_padding_callback_arg(SSL_CTX *ctx)
4095 {
4096 return ctx->record_padding_arg;
4097 }
4098
4099 int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size)
4100 {
4101 /* block size of 0 or 1 is basically no padding */
4102 if (block_size == 1)
4103 ctx->block_padding = 0;
4104 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4105 ctx->block_padding = block_size;
4106 else
4107 return 0;
4108 return 1;
4109 }
4110
4111 void SSL_set_record_padding_callback(SSL *ssl,
4112 size_t (*cb) (SSL *ssl, int type,
4113 size_t len, void *arg))
4114 {
4115 ssl->record_padding_cb = cb;
4116 }
4117
4118 void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg)
4119 {
4120 ssl->record_padding_arg = arg;
4121 }
4122
4123 void *SSL_get_record_padding_callback_arg(SSL *ssl)
4124 {
4125 return ssl->record_padding_arg;
4126 }
4127
4128 int SSL_set_block_padding(SSL *ssl, size_t block_size)
4129 {
4130 /* block size of 0 or 1 is basically no padding */
4131 if (block_size == 1)
4132 ssl->block_padding = 0;
4133 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4134 ssl->block_padding = block_size;
4135 else
4136 return 0;
4137 return 1;
4138 }
4139
4140 /*
4141 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer
4142 * variable, freeing EVP_MD_CTX previously stored in that variable, if any.
4143 * If EVP_MD pointer is passed, initializes ctx with this |md|.
4144 * Returns the newly allocated ctx;
4145 */
4146
4147 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md)
4148 {
4149 ssl_clear_hash_ctx(hash);
4150 *hash = EVP_MD_CTX_new();
4151 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) {
4152 EVP_MD_CTX_free(*hash);
4153 *hash = NULL;
4154 return NULL;
4155 }
4156 return *hash;
4157 }
4158
4159 void ssl_clear_hash_ctx(EVP_MD_CTX **hash)
4160 {
4161
4162 EVP_MD_CTX_free(*hash);
4163 *hash = NULL;
4164 }
4165
4166 /* Retrieve handshake hashes */
4167 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen,
4168 size_t *hashlen)
4169 {
4170 EVP_MD_CTX *ctx = NULL;
4171 EVP_MD_CTX *hdgst = s->s3->handshake_dgst;
4172 int hashleni = EVP_MD_CTX_size(hdgst);
4173 int ret = 0;
4174
4175 if (hashleni < 0 || (size_t)hashleni > outlen)
4176 goto err;
4177
4178 ctx = EVP_MD_CTX_new();
4179 if (ctx == NULL)
4180 goto err;
4181
4182 if (!EVP_MD_CTX_copy_ex(ctx, hdgst)
4183 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0)
4184 goto err;
4185
4186 *hashlen = hashleni;
4187
4188 ret = 1;
4189 err:
4190 EVP_MD_CTX_free(ctx);
4191 return ret;
4192 }
4193
4194 int SSL_session_reused(SSL *s)
4195 {
4196 return s->hit;
4197 }
4198
4199 int SSL_is_server(const SSL *s)
4200 {
4201 return s->server;
4202 }
4203
4204 #if OPENSSL_API_COMPAT < 0x10100000L
4205 void SSL_set_debug(SSL *s, int debug)
4206 {
4207 /* Old function was do-nothing anyway... */
4208 (void)s;
4209 (void)debug;
4210 }
4211 #endif
4212
4213 void SSL_set_security_level(SSL *s, int level)
4214 {
4215 s->cert->sec_level = level;
4216 }
4217
4218 int SSL_get_security_level(const SSL *s)
4219 {
4220 return s->cert->sec_level;
4221 }
4222
4223 void SSL_set_security_callback(SSL *s,
4224 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4225 int op, int bits, int nid,
4226 void *other, void *ex))
4227 {
4228 s->cert->sec_cb = cb;
4229 }
4230
4231 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s,
4232 const SSL_CTX *ctx, int op,
4233 int bits, int nid, void *other,
4234 void *ex) {
4235 return s->cert->sec_cb;
4236 }
4237
4238 void SSL_set0_security_ex_data(SSL *s, void *ex)
4239 {
4240 s->cert->sec_ex = ex;
4241 }
4242
4243 void *SSL_get0_security_ex_data(const SSL *s)
4244 {
4245 return s->cert->sec_ex;
4246 }
4247
4248 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level)
4249 {
4250 ctx->cert->sec_level = level;
4251 }
4252
4253 int SSL_CTX_get_security_level(const SSL_CTX *ctx)
4254 {
4255 return ctx->cert->sec_level;
4256 }
4257
4258 void SSL_CTX_set_security_callback(SSL_CTX *ctx,
4259 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4260 int op, int bits, int nid,
4261 void *other, void *ex))
4262 {
4263 ctx->cert->sec_cb = cb;
4264 }
4265
4266 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s,
4267 const SSL_CTX *ctx,
4268 int op, int bits,
4269 int nid,
4270 void *other,
4271 void *ex) {
4272 return ctx->cert->sec_cb;
4273 }
4274
4275 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex)
4276 {
4277 ctx->cert->sec_ex = ex;
4278 }
4279
4280 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx)
4281 {
4282 return ctx->cert->sec_ex;
4283 }
4284
4285 /*
4286 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that
4287 * can return unsigned long, instead of the generic long return value from the
4288 * control interface.
4289 */
4290 unsigned long SSL_CTX_get_options(const SSL_CTX *ctx)
4291 {
4292 return ctx->options;
4293 }
4294
4295 unsigned long SSL_get_options(const SSL *s)
4296 {
4297 return s->options;
4298 }
4299
4300 unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op)
4301 {
4302 return ctx->options |= op;
4303 }
4304
4305 unsigned long SSL_set_options(SSL *s, unsigned long op)
4306 {
4307 return s->options |= op;
4308 }
4309
4310 unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op)
4311 {
4312 return ctx->options &= ~op;
4313 }
4314
4315 unsigned long SSL_clear_options(SSL *s, unsigned long op)
4316 {
4317 return s->options &= ~op;
4318 }
4319
4320 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s)
4321 {
4322 return s->verified_chain;
4323 }
4324
4325 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id);
4326
4327 #ifndef OPENSSL_NO_CT
4328
4329 /*
4330 * Moves SCTs from the |src| stack to the |dst| stack.
4331 * The source of each SCT will be set to |origin|.
4332 * If |dst| points to a NULL pointer, a new stack will be created and owned by
4333 * the caller.
4334 * Returns the number of SCTs moved, or a negative integer if an error occurs.
4335 */
4336 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src,
4337 sct_source_t origin)
4338 {
4339 int scts_moved = 0;
4340 SCT *sct = NULL;
4341
4342 if (*dst == NULL) {
4343 *dst = sk_SCT_new_null();
4344 if (*dst == NULL) {
4345 SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE);
4346 goto err;
4347 }
4348 }
4349
4350 while ((sct = sk_SCT_pop(src)) != NULL) {
4351 if (SCT_set_source(sct, origin) != 1)
4352 goto err;
4353
4354 if (sk_SCT_push(*dst, sct) <= 0)
4355 goto err;
4356 scts_moved += 1;
4357 }
4358
4359 return scts_moved;
4360 err:
4361 if (sct != NULL)
4362 sk_SCT_push(src, sct); /* Put the SCT back */
4363 return -1;
4364 }
4365
4366 /*
4367 * Look for data collected during ServerHello and parse if found.
4368 * Returns the number of SCTs extracted.
4369 */
4370 static int ct_extract_tls_extension_scts(SSL *s)
4371 {
4372 int scts_extracted = 0;
4373
4374 if (s->ext.scts != NULL) {
4375 const unsigned char *p = s->ext.scts;
4376 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len);
4377
4378 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION);
4379
4380 SCT_LIST_free(scts);
4381 }
4382
4383 return scts_extracted;
4384 }
4385
4386 /*
4387 * Checks for an OCSP response and then attempts to extract any SCTs found if it
4388 * contains an SCT X509 extension. They will be stored in |s->scts|.
4389 * Returns:
4390 * - The number of SCTs extracted, assuming an OCSP response exists.
4391 * - 0 if no OCSP response exists or it contains no SCTs.
4392 * - A negative integer if an error occurs.
4393 */
4394 static int ct_extract_ocsp_response_scts(SSL *s)
4395 {
4396 # ifndef OPENSSL_NO_OCSP
4397 int scts_extracted = 0;
4398 const unsigned char *p;
4399 OCSP_BASICRESP *br = NULL;
4400 OCSP_RESPONSE *rsp = NULL;
4401 STACK_OF(SCT) *scts = NULL;
4402 int i;
4403
4404 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0)
4405 goto err;
4406
4407 p = s->ext.ocsp.resp;
4408 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len);
4409 if (rsp == NULL)
4410 goto err;
4411
4412 br = OCSP_response_get1_basic(rsp);
4413 if (br == NULL)
4414 goto err;
4415
4416 for (i = 0; i < OCSP_resp_count(br); ++i) {
4417 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i);
4418
4419 if (single == NULL)
4420 continue;
4421
4422 scts =
4423 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL);
4424 scts_extracted =
4425 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE);
4426 if (scts_extracted < 0)
4427 goto err;
4428 }
4429 err:
4430 SCT_LIST_free(scts);
4431 OCSP_BASICRESP_free(br);
4432 OCSP_RESPONSE_free(rsp);
4433 return scts_extracted;
4434 # else
4435 /* Behave as if no OCSP response exists */
4436 return 0;
4437 # endif
4438 }
4439
4440 /*
4441 * Attempts to extract SCTs from the peer certificate.
4442 * Return the number of SCTs extracted, or a negative integer if an error
4443 * occurs.
4444 */
4445 static int ct_extract_x509v3_extension_scts(SSL *s)
4446 {
4447 int scts_extracted = 0;
4448 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4449
4450 if (cert != NULL) {
4451 STACK_OF(SCT) *scts =
4452 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL);
4453
4454 scts_extracted =
4455 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION);
4456
4457 SCT_LIST_free(scts);
4458 }
4459
4460 return scts_extracted;
4461 }
4462
4463 /*
4464 * Attempts to find all received SCTs by checking TLS extensions, the OCSP
4465 * response (if it exists) and X509v3 extensions in the certificate.
4466 * Returns NULL if an error occurs.
4467 */
4468 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s)
4469 {
4470 if (!s->scts_parsed) {
4471 if (ct_extract_tls_extension_scts(s) < 0 ||
4472 ct_extract_ocsp_response_scts(s) < 0 ||
4473 ct_extract_x509v3_extension_scts(s) < 0)
4474 goto err;
4475
4476 s->scts_parsed = 1;
4477 }
4478 return s->scts;
4479 err:
4480 return NULL;
4481 }
4482
4483 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx,
4484 const STACK_OF(SCT) *scts, void *unused_arg)
4485 {
4486 return 1;
4487 }
4488
4489 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx,
4490 const STACK_OF(SCT) *scts, void *unused_arg)
4491 {
4492 int count = scts != NULL ? sk_SCT_num(scts) : 0;
4493 int i;
4494
4495 for (i = 0; i < count; ++i) {
4496 SCT *sct = sk_SCT_value(scts, i);
4497 int status = SCT_get_validation_status(sct);
4498
4499 if (status == SCT_VALIDATION_STATUS_VALID)
4500 return 1;
4501 }
4502 SSLerr(SSL_F_CT_STRICT, SSL_R_NO_VALID_SCTS);
4503 return 0;
4504 }
4505
4506 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback,
4507 void *arg)
4508 {
4509 /*
4510 * Since code exists that uses the custom extension handler for CT, look
4511 * for this and throw an error if they have already registered to use CT.
4512 */
4513 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx,
4514 TLSEXT_TYPE_signed_certificate_timestamp))
4515 {
4516 SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK,
4517 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4518 return 0;
4519 }
4520
4521 if (callback != NULL) {
4522 /*
4523 * If we are validating CT, then we MUST accept SCTs served via OCSP
4524 */
4525 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp))
4526 return 0;
4527 }
4528
4529 s->ct_validation_callback = callback;
4530 s->ct_validation_callback_arg = arg;
4531
4532 return 1;
4533 }
4534
4535 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx,
4536 ssl_ct_validation_cb callback, void *arg)
4537 {
4538 /*
4539 * Since code exists that uses the custom extension handler for CT, look for
4540 * this and throw an error if they have already registered to use CT.
4541 */
4542 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx,
4543 TLSEXT_TYPE_signed_certificate_timestamp))
4544 {
4545 SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK,
4546 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4547 return 0;
4548 }
4549
4550 ctx->ct_validation_callback = callback;
4551 ctx->ct_validation_callback_arg = arg;
4552 return 1;
4553 }
4554
4555 int SSL_ct_is_enabled(const SSL *s)
4556 {
4557 return s->ct_validation_callback != NULL;
4558 }
4559
4560 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx)
4561 {
4562 return ctx->ct_validation_callback != NULL;
4563 }
4564
4565 int ssl_validate_ct(SSL *s)
4566 {
4567 int ret = 0;
4568 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4569 X509 *issuer;
4570 SSL_DANE *dane = &s->dane;
4571 CT_POLICY_EVAL_CTX *ctx = NULL;
4572 const STACK_OF(SCT) *scts;
4573
4574 /*
4575 * If no callback is set, the peer is anonymous, or its chain is invalid,
4576 * skip SCT validation - just return success. Applications that continue
4577 * handshakes without certificates, with unverified chains, or pinned leaf
4578 * certificates are outside the scope of the WebPKI and CT.
4579 *
4580 * The above exclusions notwithstanding the vast majority of peers will
4581 * have rather ordinary certificate chains validated by typical
4582 * applications that perform certificate verification and therefore will
4583 * process SCTs when enabled.
4584 */
4585 if (s->ct_validation_callback == NULL || cert == NULL ||
4586 s->verify_result != X509_V_OK ||
4587 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1)
4588 return 1;
4589
4590 /*
4591 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3)
4592 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2
4593 */
4594 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) {
4595 switch (dane->mtlsa->usage) {
4596 case DANETLS_USAGE_DANE_TA:
4597 case DANETLS_USAGE_DANE_EE:
4598 return 1;
4599 }
4600 }
4601
4602 ctx = CT_POLICY_EVAL_CTX_new();
4603 if (ctx == NULL) {
4604 SSLerr(SSL_F_SSL_VALIDATE_CT, ERR_R_MALLOC_FAILURE);
4605 goto end;
4606 }
4607
4608 issuer = sk_X509_value(s->verified_chain, 1);
4609 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert);
4610 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer);
4611 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store);
4612 CT_POLICY_EVAL_CTX_set_time(
4613 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000);
4614
4615 scts = SSL_get0_peer_scts(s);
4616
4617 /*
4618 * This function returns success (> 0) only when all the SCTs are valid, 0
4619 * when some are invalid, and < 0 on various internal errors (out of
4620 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient
4621 * reason to abort the handshake, that decision is up to the callback.
4622 * Therefore, we error out only in the unexpected case that the return
4623 * value is negative.
4624 *
4625 * XXX: One might well argue that the return value of this function is an
4626 * unfortunate design choice. Its job is only to determine the validation
4627 * status of each of the provided SCTs. So long as it correctly separates
4628 * the wheat from the chaff it should return success. Failure in this case
4629 * ought to correspond to an inability to carry out its duties.
4630 */
4631 if (SCT_LIST_validate(scts, ctx) < 0) {
4632 SSLerr(SSL_F_SSL_VALIDATE_CT, SSL_R_SCT_VERIFICATION_FAILED);
4633 goto end;
4634 }
4635
4636 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg);
4637 if (ret < 0)
4638 ret = 0; /* This function returns 0 on failure */
4639
4640 end:
4641 CT_POLICY_EVAL_CTX_free(ctx);
4642 /*
4643 * With SSL_VERIFY_NONE the session may be cached and re-used despite a
4644 * failure return code here. Also the application may wish the complete
4645 * the handshake, and then disconnect cleanly at a higher layer, after
4646 * checking the verification status of the completed connection.
4647 *
4648 * We therefore force a certificate verification failure which will be
4649 * visible via SSL_get_verify_result() and cached as part of any resumed
4650 * session.
4651 *
4652 * Note: the permissive callback is for information gathering only, always
4653 * returns success, and does not affect verification status. Only the
4654 * strict callback or a custom application-specified callback can trigger
4655 * connection failure or record a verification error.
4656 */
4657 if (ret <= 0)
4658 s->verify_result = X509_V_ERR_NO_VALID_SCTS;
4659 return ret;
4660 }
4661
4662 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode)
4663 {
4664 switch (validation_mode) {
4665 default:
4666 SSLerr(SSL_F_SSL_CTX_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4667 return 0;
4668 case SSL_CT_VALIDATION_PERMISSIVE:
4669 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL);
4670 case SSL_CT_VALIDATION_STRICT:
4671 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL);
4672 }
4673 }
4674
4675 int SSL_enable_ct(SSL *s, int validation_mode)
4676 {
4677 switch (validation_mode) {
4678 default:
4679 SSLerr(SSL_F_SSL_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4680 return 0;
4681 case SSL_CT_VALIDATION_PERMISSIVE:
4682 return SSL_set_ct_validation_callback(s, ct_permissive, NULL);
4683 case SSL_CT_VALIDATION_STRICT:
4684 return SSL_set_ct_validation_callback(s, ct_strict, NULL);
4685 }
4686 }
4687
4688 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx)
4689 {
4690 return CTLOG_STORE_load_default_file(ctx->ctlog_store);
4691 }
4692
4693 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path)
4694 {
4695 return CTLOG_STORE_load_file(ctx->ctlog_store, path);
4696 }
4697
4698 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs)
4699 {
4700 CTLOG_STORE_free(ctx->ctlog_store);
4701 ctx->ctlog_store = logs;
4702 }
4703
4704 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx)
4705 {
4706 return ctx->ctlog_store;
4707 }
4708
4709 #endif /* OPENSSL_NO_CT */
4710
4711 void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb,
4712 void *arg)
4713 {
4714 c->client_hello_cb = cb;
4715 c->client_hello_cb_arg = arg;
4716 }
4717
4718 int SSL_client_hello_isv2(SSL *s)
4719 {
4720 if (s->clienthello == NULL)
4721 return 0;
4722 return s->clienthello->isv2;
4723 }
4724
4725 unsigned int SSL_client_hello_get0_legacy_version(SSL *s)
4726 {
4727 if (s->clienthello == NULL)
4728 return 0;
4729 return s->clienthello->legacy_version;
4730 }
4731
4732 size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out)
4733 {
4734 if (s->clienthello == NULL)
4735 return 0;
4736 if (out != NULL)
4737 *out = s->clienthello->random;
4738 return SSL3_RANDOM_SIZE;
4739 }
4740
4741 size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out)
4742 {
4743 if (s->clienthello == NULL)
4744 return 0;
4745 if (out != NULL)
4746 *out = s->clienthello->session_id;
4747 return s->clienthello->session_id_len;
4748 }
4749
4750 size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out)
4751 {
4752 if (s->clienthello == NULL)
4753 return 0;
4754 if (out != NULL)
4755 *out = PACKET_data(&s->clienthello->ciphersuites);
4756 return PACKET_remaining(&s->clienthello->ciphersuites);
4757 }
4758
4759 size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out)
4760 {
4761 if (s->clienthello == NULL)
4762 return 0;
4763 if (out != NULL)
4764 *out = s->clienthello->compressions;
4765 return s->clienthello->compressions_len;
4766 }
4767
4768 int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen)
4769 {
4770 RAW_EXTENSION *ext;
4771 int *present;
4772 size_t num = 0, i;
4773
4774 if (s->clienthello == NULL || out == NULL || outlen == NULL)
4775 return 0;
4776 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
4777 ext = s->clienthello->pre_proc_exts + i;
4778 if (ext->present)
4779 num++;
4780 }
4781 present = OPENSSL_malloc(sizeof(*present) * num);
4782 if (present == NULL)
4783 return 0;
4784 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
4785 ext = s->clienthello->pre_proc_exts + i;
4786 if (ext->present) {
4787 if (ext->received_order >= num)
4788 goto err;
4789 present[ext->received_order] = ext->type;
4790 }
4791 }
4792 *out = present;
4793 *outlen = num;
4794 return 1;
4795 err:
4796 OPENSSL_free(present);
4797 return 0;
4798 }
4799
4800 int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out,
4801 size_t *outlen)
4802 {
4803 size_t i;
4804 RAW_EXTENSION *r;
4805
4806 if (s->clienthello == NULL)
4807 return 0;
4808 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) {
4809 r = s->clienthello->pre_proc_exts + i;
4810 if (r->present && r->type == type) {
4811 if (out != NULL)
4812 *out = PACKET_data(&r->data);
4813 if (outlen != NULL)
4814 *outlen = PACKET_remaining(&r->data);
4815 return 1;
4816 }
4817 }
4818 return 0;
4819 }
4820
4821 int SSL_free_buffers(SSL *ssl)
4822 {
4823 RECORD_LAYER *rl = &ssl->rlayer;
4824
4825 if (RECORD_LAYER_read_pending(rl) || RECORD_LAYER_write_pending(rl))
4826 return 0;
4827
4828 RECORD_LAYER_release(rl);
4829 return 1;
4830 }
4831
4832 int SSL_alloc_buffers(SSL *ssl)
4833 {
4834 return ssl3_setup_buffers(ssl);
4835 }
4836
4837 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb)
4838 {
4839 ctx->keylog_callback = cb;
4840 }
4841
4842 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx)
4843 {
4844 return ctx->keylog_callback;
4845 }
4846
4847 static int nss_keylog_int(const char *prefix,
4848 SSL *ssl,
4849 const uint8_t *parameter_1,
4850 size_t parameter_1_len,
4851 const uint8_t *parameter_2,
4852 size_t parameter_2_len)
4853 {
4854 char *out = NULL;
4855 char *cursor = NULL;
4856 size_t out_len = 0;
4857 size_t i;
4858 size_t prefix_len;
4859
4860 if (ssl->ctx->keylog_callback == NULL) return 1;
4861
4862 /*
4863 * Our output buffer will contain the following strings, rendered with
4864 * space characters in between, terminated by a NULL character: first the
4865 * prefix, then the first parameter, then the second parameter. The
4866 * meaning of each parameter depends on the specific key material being
4867 * logged. Note that the first and second parameters are encoded in
4868 * hexadecimal, so we need a buffer that is twice their lengths.
4869 */
4870 prefix_len = strlen(prefix);
4871 out_len = prefix_len + (2*parameter_1_len) + (2*parameter_2_len) + 3;
4872 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) {
4873 SSLerr(SSL_F_NSS_KEYLOG_INT, ERR_R_MALLOC_FAILURE);
4874 return 0;
4875 }
4876
4877 strcpy(cursor, prefix);
4878 cursor += prefix_len;
4879 *cursor++ = ' ';
4880
4881 for (i = 0; i < parameter_1_len; i++) {
4882 sprintf(cursor, "%02x", parameter_1[i]);
4883 cursor += 2;
4884 }
4885 *cursor++ = ' ';
4886
4887 for (i = 0; i < parameter_2_len; i++) {
4888 sprintf(cursor, "%02x", parameter_2[i]);
4889 cursor += 2;
4890 }
4891 *cursor = '\0';
4892
4893 ssl->ctx->keylog_callback(ssl, (const char *)out);
4894 OPENSSL_free(out);
4895 return 1;
4896
4897 }
4898
4899 int ssl_log_rsa_client_key_exchange(SSL *ssl,
4900 const uint8_t *encrypted_premaster,
4901 size_t encrypted_premaster_len,
4902 const uint8_t *premaster,
4903 size_t premaster_len)
4904 {
4905 if (encrypted_premaster_len < 8) {
4906 SSLerr(SSL_F_SSL_LOG_RSA_CLIENT_KEY_EXCHANGE, ERR_R_INTERNAL_ERROR);
4907 return 0;
4908 }
4909
4910 /* We only want the first 8 bytes of the encrypted premaster as a tag. */
4911 return nss_keylog_int("RSA",
4912 ssl,
4913 encrypted_premaster,
4914 8,
4915 premaster,
4916 premaster_len);
4917 }
4918
4919 int ssl_log_secret(SSL *ssl,
4920 const char *label,
4921 const uint8_t *secret,
4922 size_t secret_len)
4923 {
4924 return nss_keylog_int(label,
4925 ssl,
4926 ssl->s3->client_random,
4927 SSL3_RANDOM_SIZE,
4928 secret,
4929 secret_len);
4930 }
4931
4932 #define SSLV2_CIPHER_LEN 3
4933
4934 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format,
4935 int *al)
4936 {
4937 int n;
4938
4939 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
4940
4941 if (PACKET_remaining(cipher_suites) == 0) {
4942 SSLerr(SSL_F_SSL_CACHE_CIPHERLIST, SSL_R_NO_CIPHERS_SPECIFIED);
4943 *al = SSL_AD_ILLEGAL_PARAMETER;
4944 return 0;
4945 }
4946
4947 if (PACKET_remaining(cipher_suites) % n != 0) {
4948 SSLerr(SSL_F_SSL_CACHE_CIPHERLIST,
4949 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
4950 *al = SSL_AD_DECODE_ERROR;
4951 return 0;
4952 }
4953
4954 OPENSSL_free(s->s3->tmp.ciphers_raw);
4955 s->s3->tmp.ciphers_raw = NULL;
4956 s->s3->tmp.ciphers_rawlen = 0;
4957
4958 if (sslv2format) {
4959 size_t numciphers = PACKET_remaining(cipher_suites) / n;
4960 PACKET sslv2ciphers = *cipher_suites;
4961 unsigned int leadbyte;
4962 unsigned char *raw;
4963
4964 /*
4965 * We store the raw ciphers list in SSLv3+ format so we need to do some
4966 * preprocessing to convert the list first. If there are any SSLv2 only
4967 * ciphersuites with a non-zero leading byte then we are going to
4968 * slightly over allocate because we won't store those. But that isn't a
4969 * problem.
4970 */
4971 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN);
4972 s->s3->tmp.ciphers_raw = raw;
4973 if (raw == NULL) {
4974 *al = SSL_AD_INTERNAL_ERROR;
4975 goto err;
4976 }
4977 for (s->s3->tmp.ciphers_rawlen = 0;
4978 PACKET_remaining(&sslv2ciphers) > 0;
4979 raw += TLS_CIPHER_LEN) {
4980 if (!PACKET_get_1(&sslv2ciphers, &leadbyte)
4981 || (leadbyte == 0
4982 && !PACKET_copy_bytes(&sslv2ciphers, raw,
4983 TLS_CIPHER_LEN))
4984 || (leadbyte != 0
4985 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) {
4986 *al = SSL_AD_DECODE_ERROR;
4987 OPENSSL_free(s->s3->tmp.ciphers_raw);
4988 s->s3->tmp.ciphers_raw = NULL;
4989 s->s3->tmp.ciphers_rawlen = 0;
4990 goto err;
4991 }
4992 if (leadbyte == 0)
4993 s->s3->tmp.ciphers_rawlen += TLS_CIPHER_LEN;
4994 }
4995 } else if (!PACKET_memdup(cipher_suites, &s->s3->tmp.ciphers_raw,
4996 &s->s3->tmp.ciphers_rawlen)) {
4997 *al = SSL_AD_INTERNAL_ERROR;
4998 goto err;
4999 }
5000 return 1;
5001 err:
5002 return 0;
5003 }
5004
5005 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len,
5006 int isv2format, STACK_OF(SSL_CIPHER) **sk,
5007 STACK_OF(SSL_CIPHER) **scsvs)
5008 {
5009 int alert;
5010 PACKET pkt;
5011
5012 if (!PACKET_buf_init(&pkt, bytes, len))
5013 return 0;
5014 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, &alert);
5015 }
5016
5017 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites,
5018 STACK_OF(SSL_CIPHER) **skp,
5019 STACK_OF(SSL_CIPHER) **scsvs_out,
5020 int sslv2format, int *al)
5021 {
5022 const SSL_CIPHER *c;
5023 STACK_OF(SSL_CIPHER) *sk = NULL;
5024 STACK_OF(SSL_CIPHER) *scsvs = NULL;
5025 int n;
5026 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */
5027 unsigned char cipher[SSLV2_CIPHER_LEN];
5028
5029 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5030
5031 if (PACKET_remaining(cipher_suites) == 0) {
5032 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_NO_CIPHERS_SPECIFIED);
5033 *al = SSL_AD_ILLEGAL_PARAMETER;
5034 return 0;
5035 }
5036
5037 if (PACKET_remaining(cipher_suites) % n != 0) {
5038 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST,
5039 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5040 *al = SSL_AD_DECODE_ERROR;
5041 return 0;
5042 }
5043
5044 sk = sk_SSL_CIPHER_new_null();
5045 scsvs = sk_SSL_CIPHER_new_null();
5046 if (sk == NULL || scsvs == NULL) {
5047 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5048 *al = SSL_AD_INTERNAL_ERROR;
5049 goto err;
5050 }
5051
5052 while (PACKET_copy_bytes(cipher_suites, cipher, n)) {
5053 /*
5054 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the
5055 * first byte set to zero, while true SSLv2 ciphers have a non-zero
5056 * first byte. We don't support any true SSLv2 ciphers, so skip them.
5057 */
5058 if (sslv2format && cipher[0] != '\0')
5059 continue;
5060
5061 /* For SSLv2-compat, ignore leading 0-byte. */
5062 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1);
5063 if (c != NULL) {
5064 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) ||
5065 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) {
5066 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5067 *al = SSL_AD_INTERNAL_ERROR;
5068 goto err;
5069 }
5070 }
5071 }
5072 if (PACKET_remaining(cipher_suites) > 0) {
5073 *al = SSL_AD_DECODE_ERROR;
5074 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_BAD_LENGTH);
5075 goto err;
5076 }
5077
5078 if (skp != NULL)
5079 *skp = sk;
5080 else
5081 sk_SSL_CIPHER_free(sk);
5082 if (scsvs_out != NULL)
5083 *scsvs_out = scsvs;
5084 else
5085 sk_SSL_CIPHER_free(scsvs);
5086 return 1;
5087 err:
5088 sk_SSL_CIPHER_free(sk);
5089 sk_SSL_CIPHER_free(scsvs);
5090 return 0;
5091 }
5092
5093 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data)
5094 {
5095 ctx->max_early_data = max_early_data;
5096
5097 return 1;
5098 }
5099
5100 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx)
5101 {
5102 return ctx->max_early_data;
5103 }
5104
5105 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data)
5106 {
5107 s->max_early_data = max_early_data;
5108
5109 return 1;
5110 }
5111
5112 uint32_t SSL_get_max_early_data(const SSL *s)
5113 {
5114 return s->max_early_data;
5115 }
5116
5117 int ssl_randbytes(SSL *s, unsigned char *rnd, size_t size)
5118 {
5119 if (s->drbg != NULL)
5120 return RAND_DRBG_generate(s->drbg, rnd, size, 0, NULL, 0);
5121 return RAND_bytes(rnd, (int)size);
5122 }