]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_lib.c
Cleanup whitespace in ssl_lib.c (tabs to spaces)
[thirdparty/openssl.git] / ssl / ssl_lib.c
1 /*
2 * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the OpenSSL license (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include "ssl_locl.h"
14 #include <openssl/objects.h>
15 #include <openssl/lhash.h>
16 #include <openssl/x509v3.h>
17 #include <openssl/rand.h>
18 #include <openssl/ocsp.h>
19 #include <openssl/dh.h>
20 #include <openssl/engine.h>
21 #include <openssl/async.h>
22 #include <openssl/ct.h>
23 #include "internal/cryptlib.h"
24 #include "internal/rand.h"
25 #include "internal/refcount.h"
26
27 const char SSL_version_str[] = OPENSSL_VERSION_TEXT;
28
29 SSL3_ENC_METHOD ssl3_undef_enc_method = {
30 /*
31 * evil casts, but these functions are only called if there's a library
32 * bug
33 */
34 (int (*)(SSL *, SSL3_RECORD *, size_t, int))ssl_undefined_function,
35 (int (*)(SSL *, SSL3_RECORD *, unsigned char *, int))ssl_undefined_function,
36 ssl_undefined_function,
37 (int (*)(SSL *, unsigned char *, unsigned char *, size_t, size_t *))
38 ssl_undefined_function,
39 (int (*)(SSL *, int))ssl_undefined_function,
40 (size_t (*)(SSL *, const char *, size_t, unsigned char *))
41 ssl_undefined_function,
42 NULL, /* client_finished_label */
43 0, /* client_finished_label_len */
44 NULL, /* server_finished_label */
45 0, /* server_finished_label_len */
46 (int (*)(int))ssl_undefined_function,
47 (int (*)(SSL *, unsigned char *, size_t, const char *,
48 size_t, const unsigned char *, size_t,
49 int use_context))ssl_undefined_function,
50 };
51
52 struct ssl_async_args {
53 SSL *s;
54 void *buf;
55 size_t num;
56 enum { READFUNC, WRITEFUNC, OTHERFUNC } type;
57 union {
58 int (*func_read) (SSL *, void *, size_t, size_t *);
59 int (*func_write) (SSL *, const void *, size_t, size_t *);
60 int (*func_other) (SSL *);
61 } f;
62 };
63
64 static const struct {
65 uint8_t mtype;
66 uint8_t ord;
67 int nid;
68 } dane_mds[] = {
69 {
70 DANETLS_MATCHING_FULL, 0, NID_undef
71 },
72 {
73 DANETLS_MATCHING_2256, 1, NID_sha256
74 },
75 {
76 DANETLS_MATCHING_2512, 2, NID_sha512
77 },
78 };
79
80 static int dane_ctx_enable(struct dane_ctx_st *dctx)
81 {
82 const EVP_MD **mdevp;
83 uint8_t *mdord;
84 uint8_t mdmax = DANETLS_MATCHING_LAST;
85 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */
86 size_t i;
87
88 if (dctx->mdevp != NULL)
89 return 1;
90
91 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp));
92 mdord = OPENSSL_zalloc(n * sizeof(*mdord));
93
94 if (mdord == NULL || mdevp == NULL) {
95 OPENSSL_free(mdord);
96 OPENSSL_free(mdevp);
97 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE);
98 return 0;
99 }
100
101 /* Install default entries */
102 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) {
103 const EVP_MD *md;
104
105 if (dane_mds[i].nid == NID_undef ||
106 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL)
107 continue;
108 mdevp[dane_mds[i].mtype] = md;
109 mdord[dane_mds[i].mtype] = dane_mds[i].ord;
110 }
111
112 dctx->mdevp = mdevp;
113 dctx->mdord = mdord;
114 dctx->mdmax = mdmax;
115
116 return 1;
117 }
118
119 static void dane_ctx_final(struct dane_ctx_st *dctx)
120 {
121 OPENSSL_free(dctx->mdevp);
122 dctx->mdevp = NULL;
123
124 OPENSSL_free(dctx->mdord);
125 dctx->mdord = NULL;
126 dctx->mdmax = 0;
127 }
128
129 static void tlsa_free(danetls_record *t)
130 {
131 if (t == NULL)
132 return;
133 OPENSSL_free(t->data);
134 EVP_PKEY_free(t->spki);
135 OPENSSL_free(t);
136 }
137
138 static void dane_final(SSL_DANE *dane)
139 {
140 sk_danetls_record_pop_free(dane->trecs, tlsa_free);
141 dane->trecs = NULL;
142
143 sk_X509_pop_free(dane->certs, X509_free);
144 dane->certs = NULL;
145
146 X509_free(dane->mcert);
147 dane->mcert = NULL;
148 dane->mtlsa = NULL;
149 dane->mdpth = -1;
150 dane->pdpth = -1;
151 }
152
153 /*
154 * dane_copy - Copy dane configuration, sans verification state.
155 */
156 static int ssl_dane_dup(SSL *to, SSL *from)
157 {
158 int num;
159 int i;
160
161 if (!DANETLS_ENABLED(&from->dane))
162 return 1;
163
164 dane_final(&to->dane);
165 to->dane.flags = from->dane.flags;
166 to->dane.dctx = &to->ctx->dane;
167 to->dane.trecs = sk_danetls_record_new_null();
168
169 if (to->dane.trecs == NULL) {
170 SSLerr(SSL_F_SSL_DANE_DUP, ERR_R_MALLOC_FAILURE);
171 return 0;
172 }
173
174 num = sk_danetls_record_num(from->dane.trecs);
175 for (i = 0; i < num; ++i) {
176 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i);
177
178 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype,
179 t->data, t->dlen) <= 0)
180 return 0;
181 }
182 return 1;
183 }
184
185 static int dane_mtype_set(struct dane_ctx_st *dctx,
186 const EVP_MD *md, uint8_t mtype, uint8_t ord)
187 {
188 int i;
189
190 if (mtype == DANETLS_MATCHING_FULL && md != NULL) {
191 SSLerr(SSL_F_DANE_MTYPE_SET, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL);
192 return 0;
193 }
194
195 if (mtype > dctx->mdmax) {
196 const EVP_MD **mdevp;
197 uint8_t *mdord;
198 int n = ((int)mtype) + 1;
199
200 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp));
201 if (mdevp == NULL) {
202 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
203 return -1;
204 }
205 dctx->mdevp = mdevp;
206
207 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord));
208 if (mdord == NULL) {
209 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
210 return -1;
211 }
212 dctx->mdord = mdord;
213
214 /* Zero-fill any gaps */
215 for (i = dctx->mdmax + 1; i < mtype; ++i) {
216 mdevp[i] = NULL;
217 mdord[i] = 0;
218 }
219
220 dctx->mdmax = mtype;
221 }
222
223 dctx->mdevp[mtype] = md;
224 /* Coerce ordinal of disabled matching types to 0 */
225 dctx->mdord[mtype] = (md == NULL) ? 0 : ord;
226
227 return 1;
228 }
229
230 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype)
231 {
232 if (mtype > dane->dctx->mdmax)
233 return NULL;
234 return dane->dctx->mdevp[mtype];
235 }
236
237 static int dane_tlsa_add(SSL_DANE *dane,
238 uint8_t usage,
239 uint8_t selector,
240 uint8_t mtype, unsigned char *data, size_t dlen)
241 {
242 danetls_record *t;
243 const EVP_MD *md = NULL;
244 int ilen = (int)dlen;
245 int i;
246 int num;
247
248 if (dane->trecs == NULL) {
249 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED);
250 return -1;
251 }
252
253 if (ilen < 0 || dlen != (size_t)ilen) {
254 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH);
255 return 0;
256 }
257
258 if (usage > DANETLS_USAGE_LAST) {
259 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE);
260 return 0;
261 }
262
263 if (selector > DANETLS_SELECTOR_LAST) {
264 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR);
265 return 0;
266 }
267
268 if (mtype != DANETLS_MATCHING_FULL) {
269 md = tlsa_md_get(dane, mtype);
270 if (md == NULL) {
271 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE);
272 return 0;
273 }
274 }
275
276 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) {
277 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH);
278 return 0;
279 }
280 if (!data) {
281 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA);
282 return 0;
283 }
284
285 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) {
286 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
287 return -1;
288 }
289
290 t->usage = usage;
291 t->selector = selector;
292 t->mtype = mtype;
293 t->data = OPENSSL_malloc(dlen);
294 if (t->data == NULL) {
295 tlsa_free(t);
296 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
297 return -1;
298 }
299 memcpy(t->data, data, dlen);
300 t->dlen = dlen;
301
302 /* Validate and cache full certificate or public key */
303 if (mtype == DANETLS_MATCHING_FULL) {
304 const unsigned char *p = data;
305 X509 *cert = NULL;
306 EVP_PKEY *pkey = NULL;
307
308 switch (selector) {
309 case DANETLS_SELECTOR_CERT:
310 if (!d2i_X509(&cert, &p, ilen) || p < data ||
311 dlen != (size_t)(p - data)) {
312 tlsa_free(t);
313 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
314 return 0;
315 }
316 if (X509_get0_pubkey(cert) == NULL) {
317 tlsa_free(t);
318 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
319 return 0;
320 }
321
322 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) {
323 X509_free(cert);
324 break;
325 }
326
327 /*
328 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA
329 * records that contain full certificates of trust-anchors that are
330 * not present in the wire chain. For usage PKIX-TA(0), we augment
331 * the chain with untrusted Full(0) certificates from DNS, in case
332 * they are missing from the chain.
333 */
334 if ((dane->certs == NULL &&
335 (dane->certs = sk_X509_new_null()) == NULL) ||
336 !sk_X509_push(dane->certs, cert)) {
337 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
338 X509_free(cert);
339 tlsa_free(t);
340 return -1;
341 }
342 break;
343
344 case DANETLS_SELECTOR_SPKI:
345 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data ||
346 dlen != (size_t)(p - data)) {
347 tlsa_free(t);
348 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY);
349 return 0;
350 }
351
352 /*
353 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA
354 * records that contain full bare keys of trust-anchors that are
355 * not present in the wire chain.
356 */
357 if (usage == DANETLS_USAGE_DANE_TA)
358 t->spki = pkey;
359 else
360 EVP_PKEY_free(pkey);
361 break;
362 }
363 }
364
365 /*-
366 * Find the right insertion point for the new record.
367 *
368 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that
369 * they can be processed first, as they require no chain building, and no
370 * expiration or hostname checks. Because DANE-EE(3) is numerically
371 * largest, this is accomplished via descending sort by "usage".
372 *
373 * We also sort in descending order by matching ordinal to simplify
374 * the implementation of digest agility in the verification code.
375 *
376 * The choice of order for the selector is not significant, so we
377 * use the same descending order for consistency.
378 */
379 num = sk_danetls_record_num(dane->trecs);
380 for (i = 0; i < num; ++i) {
381 danetls_record *rec = sk_danetls_record_value(dane->trecs, i);
382
383 if (rec->usage > usage)
384 continue;
385 if (rec->usage < usage)
386 break;
387 if (rec->selector > selector)
388 continue;
389 if (rec->selector < selector)
390 break;
391 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype])
392 continue;
393 break;
394 }
395
396 if (!sk_danetls_record_insert(dane->trecs, t, i)) {
397 tlsa_free(t);
398 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
399 return -1;
400 }
401 dane->umask |= DANETLS_USAGE_BIT(usage);
402
403 return 1;
404 }
405
406 /*
407 * Return 0 if there is only one version configured and it was disabled
408 * at configure time. Return 1 otherwise.
409 */
410 static int ssl_check_allowed_versions(int min_version, int max_version)
411 {
412 int minisdtls = 0, maxisdtls = 0;
413
414 /* Figure out if we're doing DTLS versions or TLS versions */
415 if (min_version == DTLS1_BAD_VER
416 || min_version >> 8 == DTLS1_VERSION_MAJOR)
417 minisdtls = 1;
418 if (max_version == DTLS1_BAD_VER
419 || max_version >> 8 == DTLS1_VERSION_MAJOR)
420 maxisdtls = 1;
421 /* A wildcard version of 0 could be DTLS or TLS. */
422 if ((minisdtls && !maxisdtls && max_version != 0)
423 || (maxisdtls && !minisdtls && min_version != 0)) {
424 /* Mixing DTLS and TLS versions will lead to sadness; deny it. */
425 return 0;
426 }
427
428 if (minisdtls || maxisdtls) {
429 /* Do DTLS version checks. */
430 if (min_version == 0)
431 /* Ignore DTLS1_BAD_VER */
432 min_version = DTLS1_VERSION;
433 if (max_version == 0)
434 max_version = DTLS1_2_VERSION;
435 #ifdef OPENSSL_NO_DTLS1_2
436 if (max_version == DTLS1_2_VERSION)
437 max_version = DTLS1_VERSION;
438 #endif
439 #ifdef OPENSSL_NO_DTLS1
440 if (min_version == DTLS1_VERSION)
441 min_version = DTLS1_2_VERSION;
442 #endif
443 /* Done massaging versions; do the check. */
444 if (0
445 #ifdef OPENSSL_NO_DTLS1
446 || (DTLS_VERSION_GE(min_version, DTLS1_VERSION)
447 && DTLS_VERSION_GE(DTLS1_VERSION, max_version))
448 #endif
449 #ifdef OPENSSL_NO_DTLS1_2
450 || (DTLS_VERSION_GE(min_version, DTLS1_2_VERSION)
451 && DTLS_VERSION_GE(DTLS1_2_VERSION, max_version))
452 #endif
453 )
454 return 0;
455 } else {
456 /* Regular TLS version checks. */
457 if (min_version == 0)
458 min_version = SSL3_VERSION;
459 if (max_version == 0)
460 max_version = TLS1_3_VERSION;
461 #ifdef OPENSSL_NO_TLS1_3
462 if (max_version == TLS1_3_VERSION)
463 max_version = TLS1_2_VERSION;
464 #endif
465 #ifdef OPENSSL_NO_TLS1_2
466 if (max_version == TLS1_2_VERSION)
467 max_version = TLS1_1_VERSION;
468 #endif
469 #ifdef OPENSSL_NO_TLS1_1
470 if (max_version == TLS1_1_VERSION)
471 max_version = TLS1_VERSION;
472 #endif
473 #ifdef OPENSSL_NO_TLS1
474 if (max_version == TLS1_VERSION)
475 max_version = SSL3_VERSION;
476 #endif
477 #ifdef OPENSSL_NO_SSL3
478 if (min_version == SSL3_VERSION)
479 min_version = TLS1_VERSION;
480 #endif
481 #ifdef OPENSSL_NO_TLS1
482 if (min_version == TLS1_VERSION)
483 min_version = TLS1_1_VERSION;
484 #endif
485 #ifdef OPENSSL_NO_TLS1_1
486 if (min_version == TLS1_1_VERSION)
487 min_version = TLS1_2_VERSION;
488 #endif
489 #ifdef OPENSSL_NO_TLS1_2
490 if (min_version == TLS1_2_VERSION)
491 min_version = TLS1_3_VERSION;
492 #endif
493 /* Done massaging versions; do the check. */
494 if (0
495 #ifdef OPENSSL_NO_SSL3
496 || (min_version <= SSL3_VERSION && SSL3_VERSION <= max_version)
497 #endif
498 #ifdef OPENSSL_NO_TLS1
499 || (min_version <= TLS1_VERSION && TLS1_VERSION <= max_version)
500 #endif
501 #ifdef OPENSSL_NO_TLS1_1
502 || (min_version <= TLS1_1_VERSION && TLS1_1_VERSION <= max_version)
503 #endif
504 #ifdef OPENSSL_NO_TLS1_2
505 || (min_version <= TLS1_2_VERSION && TLS1_2_VERSION <= max_version)
506 #endif
507 #ifdef OPENSSL_NO_TLS1_3
508 || (min_version <= TLS1_3_VERSION && TLS1_3_VERSION <= max_version)
509 #endif
510 )
511 return 0;
512 }
513 return 1;
514 }
515
516 static void clear_ciphers(SSL *s)
517 {
518 /* clear the current cipher */
519 ssl_clear_cipher_ctx(s);
520 ssl_clear_hash_ctx(&s->read_hash);
521 ssl_clear_hash_ctx(&s->write_hash);
522 }
523
524 int SSL_clear(SSL *s)
525 {
526 if (s->method == NULL) {
527 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED);
528 return 0;
529 }
530
531 if (ssl_clear_bad_session(s)) {
532 SSL_SESSION_free(s->session);
533 s->session = NULL;
534 }
535 SSL_SESSION_free(s->psksession);
536 s->psksession = NULL;
537 OPENSSL_free(s->psksession_id);
538 s->psksession_id = NULL;
539 s->psksession_id_len = 0;
540
541 s->error = 0;
542 s->hit = 0;
543 s->shutdown = 0;
544
545 if (s->renegotiate) {
546 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR);
547 return 0;
548 }
549
550 ossl_statem_clear(s);
551
552 s->version = s->method->version;
553 s->client_version = s->version;
554 s->rwstate = SSL_NOTHING;
555
556 BUF_MEM_free(s->init_buf);
557 s->init_buf = NULL;
558 clear_ciphers(s);
559 s->first_packet = 0;
560
561 s->key_update = SSL_KEY_UPDATE_NONE;
562
563 /* Reset DANE verification result state */
564 s->dane.mdpth = -1;
565 s->dane.pdpth = -1;
566 X509_free(s->dane.mcert);
567 s->dane.mcert = NULL;
568 s->dane.mtlsa = NULL;
569
570 /* Clear the verification result peername */
571 X509_VERIFY_PARAM_move_peername(s->param, NULL);
572
573 /*
574 * Check to see if we were changed into a different method, if so, revert
575 * back.
576 */
577 if (s->method != s->ctx->method) {
578 s->method->ssl_free(s);
579 s->method = s->ctx->method;
580 if (!s->method->ssl_new(s))
581 return 0;
582 } else {
583 if (!s->method->ssl_clear(s))
584 return 0;
585 }
586
587 RECORD_LAYER_clear(&s->rlayer);
588
589 return 1;
590 }
591
592 /** Used to change an SSL_CTXs default SSL method type */
593 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth)
594 {
595 STACK_OF(SSL_CIPHER) *sk;
596
597 ctx->method = meth;
598
599 sk = ssl_create_cipher_list(ctx->method, &(ctx->cipher_list),
600 &(ctx->cipher_list_by_id),
601 SSL_DEFAULT_CIPHER_LIST, ctx->cert);
602 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) {
603 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
604 return (0);
605 }
606 return (1);
607 }
608
609 SSL *SSL_new(SSL_CTX *ctx)
610 {
611 SSL *s;
612
613 if (ctx == NULL) {
614 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX);
615 return (NULL);
616 }
617 if (ctx->method == NULL) {
618 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
619 return (NULL);
620 }
621
622 s = OPENSSL_zalloc(sizeof(*s));
623 if (s == NULL)
624 goto err;
625
626 s->lock = CRYPTO_THREAD_lock_new();
627 if (s->lock == NULL)
628 goto err;
629
630 /*
631 * If not using the standard RAND (say for fuzzing), then don't use a
632 * chained DRBG.
633 */
634 if (RAND_get_rand_method() == RAND_OpenSSL()) {
635 s->drbg = RAND_DRBG_new(NID_aes_128_ctr, RAND_DRBG_FLAG_CTR_USE_DF,
636 RAND_DRBG_get0_global());
637 if (s->drbg == NULL
638 || RAND_DRBG_instantiate(s->drbg, NULL, 0) == 0) {
639 CRYPTO_THREAD_lock_free(s->lock);
640 goto err;
641 }
642 }
643
644 RECORD_LAYER_init(&s->rlayer, s);
645
646 s->options = ctx->options;
647 s->dane.flags = ctx->dane.flags;
648 s->min_proto_version = ctx->min_proto_version;
649 s->max_proto_version = ctx->max_proto_version;
650 s->mode = ctx->mode;
651 s->max_cert_list = ctx->max_cert_list;
652 s->references = 1;
653 s->max_early_data = ctx->max_early_data;
654
655 /*
656 * Earlier library versions used to copy the pointer to the CERT, not
657 * its contents; only when setting new parameters for the per-SSL
658 * copy, ssl_cert_new would be called (and the direct reference to
659 * the per-SSL_CTX settings would be lost, but those still were
660 * indirectly accessed for various purposes, and for that reason they
661 * used to be known as s->ctx->default_cert). Now we don't look at the
662 * SSL_CTX's CERT after having duplicated it once.
663 */
664 s->cert = ssl_cert_dup(ctx->cert);
665 if (s->cert == NULL)
666 goto err;
667
668 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead);
669 s->msg_callback = ctx->msg_callback;
670 s->msg_callback_arg = ctx->msg_callback_arg;
671 s->verify_mode = ctx->verify_mode;
672 s->not_resumable_session_cb = ctx->not_resumable_session_cb;
673 s->record_padding_cb = ctx->record_padding_cb;
674 s->record_padding_arg = ctx->record_padding_arg;
675 s->block_padding = ctx->block_padding;
676 s->sid_ctx_length = ctx->sid_ctx_length;
677 if (!ossl_assert(s->sid_ctx_length <= sizeof s->sid_ctx))
678 goto err;
679 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
680 s->verify_callback = ctx->default_verify_callback;
681 s->generate_session_id = ctx->generate_session_id;
682
683 s->param = X509_VERIFY_PARAM_new();
684 if (s->param == NULL)
685 goto err;
686 X509_VERIFY_PARAM_inherit(s->param, ctx->param);
687 s->quiet_shutdown = ctx->quiet_shutdown;
688 s->max_send_fragment = ctx->max_send_fragment;
689 s->split_send_fragment = ctx->split_send_fragment;
690 s->max_pipelines = ctx->max_pipelines;
691 if (s->max_pipelines > 1)
692 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
693 if (ctx->default_read_buf_len > 0)
694 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len);
695
696 SSL_CTX_up_ref(ctx);
697 s->ctx = ctx;
698 s->ext.debug_cb = 0;
699 s->ext.debug_arg = NULL;
700 s->ext.ticket_expected = 0;
701 s->ext.status_type = ctx->ext.status_type;
702 s->ext.status_expected = 0;
703 s->ext.ocsp.ids = NULL;
704 s->ext.ocsp.exts = NULL;
705 s->ext.ocsp.resp = NULL;
706 s->ext.ocsp.resp_len = 0;
707 SSL_CTX_up_ref(ctx);
708 s->session_ctx = ctx;
709 #ifndef OPENSSL_NO_EC
710 if (ctx->ext.ecpointformats) {
711 s->ext.ecpointformats =
712 OPENSSL_memdup(ctx->ext.ecpointformats,
713 ctx->ext.ecpointformats_len);
714 if (!s->ext.ecpointformats)
715 goto err;
716 s->ext.ecpointformats_len =
717 ctx->ext.ecpointformats_len;
718 }
719 if (ctx->ext.supportedgroups) {
720 s->ext.supportedgroups =
721 OPENSSL_memdup(ctx->ext.supportedgroups,
722 ctx->ext.supportedgroups_len);
723 if (!s->ext.supportedgroups)
724 goto err;
725 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len;
726 }
727 #endif
728 #ifndef OPENSSL_NO_NEXTPROTONEG
729 s->ext.npn = NULL;
730 #endif
731
732 if (s->ctx->ext.alpn) {
733 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len);
734 if (s->ext.alpn == NULL)
735 goto err;
736 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len);
737 s->ext.alpn_len = s->ctx->ext.alpn_len;
738 }
739
740 s->verified_chain = NULL;
741 s->verify_result = X509_V_OK;
742
743 s->default_passwd_callback = ctx->default_passwd_callback;
744 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata;
745
746 s->method = ctx->method;
747
748 s->key_update = SSL_KEY_UPDATE_NONE;
749
750 if (!s->method->ssl_new(s))
751 goto err;
752
753 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1;
754
755 if (!SSL_clear(s))
756 goto err;
757
758 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data))
759 goto err;
760
761 #ifndef OPENSSL_NO_PSK
762 s->psk_client_callback = ctx->psk_client_callback;
763 s->psk_server_callback = ctx->psk_server_callback;
764 #endif
765 s->psk_find_session_cb = ctx->psk_find_session_cb;
766 s->psk_use_session_cb = ctx->psk_use_session_cb;
767
768 s->job = NULL;
769
770 #ifndef OPENSSL_NO_CT
771 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback,
772 ctx->ct_validation_callback_arg))
773 goto err;
774 #endif
775
776 return s;
777 err:
778 SSL_free(s);
779 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
780 return NULL;
781 }
782
783 int SSL_is_dtls(const SSL *s)
784 {
785 return SSL_IS_DTLS(s) ? 1 : 0;
786 }
787
788 int SSL_up_ref(SSL *s)
789 {
790 int i;
791
792 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0)
793 return 0;
794
795 REF_PRINT_COUNT("SSL", s);
796 REF_ASSERT_ISNT(i < 2);
797 return ((i > 1) ? 1 : 0);
798 }
799
800 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
801 unsigned int sid_ctx_len)
802 {
803 if (sid_ctx_len > sizeof ctx->sid_ctx) {
804 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT,
805 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
806 return 0;
807 }
808 ctx->sid_ctx_length = sid_ctx_len;
809 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
810
811 return 1;
812 }
813
814 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
815 unsigned int sid_ctx_len)
816 {
817 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
818 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT,
819 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
820 return 0;
821 }
822 ssl->sid_ctx_length = sid_ctx_len;
823 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
824
825 return 1;
826 }
827
828 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb)
829 {
830 CRYPTO_THREAD_write_lock(ctx->lock);
831 ctx->generate_session_id = cb;
832 CRYPTO_THREAD_unlock(ctx->lock);
833 return 1;
834 }
835
836 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb)
837 {
838 CRYPTO_THREAD_write_lock(ssl->lock);
839 ssl->generate_session_id = cb;
840 CRYPTO_THREAD_unlock(ssl->lock);
841 return 1;
842 }
843
844 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
845 unsigned int id_len)
846 {
847 /*
848 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how
849 * we can "construct" a session to give us the desired check - i.e. to
850 * find if there's a session in the hash table that would conflict with
851 * any new session built out of this id/id_len and the ssl_version in use
852 * by this SSL.
853 */
854 SSL_SESSION r, *p;
855
856 if (id_len > sizeof r.session_id)
857 return 0;
858
859 r.ssl_version = ssl->version;
860 r.session_id_length = id_len;
861 memcpy(r.session_id, id, id_len);
862
863 CRYPTO_THREAD_read_lock(ssl->session_ctx->lock);
864 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r);
865 CRYPTO_THREAD_unlock(ssl->session_ctx->lock);
866 return (p != NULL);
867 }
868
869 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose)
870 {
871 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
872 }
873
874 int SSL_set_purpose(SSL *s, int purpose)
875 {
876 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
877 }
878
879 int SSL_CTX_set_trust(SSL_CTX *s, int trust)
880 {
881 return X509_VERIFY_PARAM_set_trust(s->param, trust);
882 }
883
884 int SSL_set_trust(SSL *s, int trust)
885 {
886 return X509_VERIFY_PARAM_set_trust(s->param, trust);
887 }
888
889 int SSL_set1_host(SSL *s, const char *hostname)
890 {
891 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0);
892 }
893
894 int SSL_add1_host(SSL *s, const char *hostname)
895 {
896 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0);
897 }
898
899 void SSL_set_hostflags(SSL *s, unsigned int flags)
900 {
901 X509_VERIFY_PARAM_set_hostflags(s->param, flags);
902 }
903
904 const char *SSL_get0_peername(SSL *s)
905 {
906 return X509_VERIFY_PARAM_get0_peername(s->param);
907 }
908
909 int SSL_CTX_dane_enable(SSL_CTX *ctx)
910 {
911 return dane_ctx_enable(&ctx->dane);
912 }
913
914 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags)
915 {
916 unsigned long orig = ctx->dane.flags;
917
918 ctx->dane.flags |= flags;
919 return orig;
920 }
921
922 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags)
923 {
924 unsigned long orig = ctx->dane.flags;
925
926 ctx->dane.flags &= ~flags;
927 return orig;
928 }
929
930 int SSL_dane_enable(SSL *s, const char *basedomain)
931 {
932 SSL_DANE *dane = &s->dane;
933
934 if (s->ctx->dane.mdmax == 0) {
935 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED);
936 return 0;
937 }
938 if (dane->trecs != NULL) {
939 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED);
940 return 0;
941 }
942
943 /*
944 * Default SNI name. This rejects empty names, while set1_host below
945 * accepts them and disables host name checks. To avoid side-effects with
946 * invalid input, set the SNI name first.
947 */
948 if (s->ext.hostname == NULL) {
949 if (!SSL_set_tlsext_host_name(s, basedomain)) {
950 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
951 return -1;
952 }
953 }
954
955 /* Primary RFC6125 reference identifier */
956 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) {
957 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
958 return -1;
959 }
960
961 dane->mdpth = -1;
962 dane->pdpth = -1;
963 dane->dctx = &s->ctx->dane;
964 dane->trecs = sk_danetls_record_new_null();
965
966 if (dane->trecs == NULL) {
967 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE);
968 return -1;
969 }
970 return 1;
971 }
972
973 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags)
974 {
975 unsigned long orig = ssl->dane.flags;
976
977 ssl->dane.flags |= flags;
978 return orig;
979 }
980
981 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags)
982 {
983 unsigned long orig = ssl->dane.flags;
984
985 ssl->dane.flags &= ~flags;
986 return orig;
987 }
988
989 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki)
990 {
991 SSL_DANE *dane = &s->dane;
992
993 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
994 return -1;
995 if (dane->mtlsa) {
996 if (mcert)
997 *mcert = dane->mcert;
998 if (mspki)
999 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL;
1000 }
1001 return dane->mdpth;
1002 }
1003
1004 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector,
1005 uint8_t *mtype, unsigned const char **data, size_t *dlen)
1006 {
1007 SSL_DANE *dane = &s->dane;
1008
1009 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1010 return -1;
1011 if (dane->mtlsa) {
1012 if (usage)
1013 *usage = dane->mtlsa->usage;
1014 if (selector)
1015 *selector = dane->mtlsa->selector;
1016 if (mtype)
1017 *mtype = dane->mtlsa->mtype;
1018 if (data)
1019 *data = dane->mtlsa->data;
1020 if (dlen)
1021 *dlen = dane->mtlsa->dlen;
1022 }
1023 return dane->mdpth;
1024 }
1025
1026 SSL_DANE *SSL_get0_dane(SSL *s)
1027 {
1028 return &s->dane;
1029 }
1030
1031 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector,
1032 uint8_t mtype, unsigned char *data, size_t dlen)
1033 {
1034 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen);
1035 }
1036
1037 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype,
1038 uint8_t ord)
1039 {
1040 return dane_mtype_set(&ctx->dane, md, mtype, ord);
1041 }
1042
1043 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm)
1044 {
1045 return X509_VERIFY_PARAM_set1(ctx->param, vpm);
1046 }
1047
1048 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm)
1049 {
1050 return X509_VERIFY_PARAM_set1(ssl->param, vpm);
1051 }
1052
1053 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx)
1054 {
1055 return ctx->param;
1056 }
1057
1058 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl)
1059 {
1060 return ssl->param;
1061 }
1062
1063 void SSL_certs_clear(SSL *s)
1064 {
1065 ssl_cert_clear_certs(s->cert);
1066 }
1067
1068 void SSL_free(SSL *s)
1069 {
1070 int i;
1071
1072 if (s == NULL)
1073 return;
1074
1075 CRYPTO_DOWN_REF(&s->references, &i, s->lock);
1076 REF_PRINT_COUNT("SSL", s);
1077 if (i > 0)
1078 return;
1079 REF_ASSERT_ISNT(i < 0);
1080
1081 X509_VERIFY_PARAM_free(s->param);
1082 dane_final(&s->dane);
1083 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
1084
1085 /* Ignore return value */
1086 ssl_free_wbio_buffer(s);
1087
1088 BIO_free_all(s->wbio);
1089 BIO_free_all(s->rbio);
1090
1091 BUF_MEM_free(s->init_buf);
1092
1093 /* add extra stuff */
1094 sk_SSL_CIPHER_free(s->cipher_list);
1095 sk_SSL_CIPHER_free(s->cipher_list_by_id);
1096
1097 /* Make the next call work :-) */
1098 if (s->session != NULL) {
1099 ssl_clear_bad_session(s);
1100 SSL_SESSION_free(s->session);
1101 }
1102 SSL_SESSION_free(s->psksession);
1103 OPENSSL_free(s->psksession_id);
1104
1105 clear_ciphers(s);
1106
1107 ssl_cert_free(s->cert);
1108 /* Free up if allocated */
1109
1110 OPENSSL_free(s->ext.hostname);
1111 SSL_CTX_free(s->session_ctx);
1112 #ifndef OPENSSL_NO_EC
1113 OPENSSL_free(s->ext.ecpointformats);
1114 OPENSSL_free(s->ext.supportedgroups);
1115 #endif /* OPENSSL_NO_EC */
1116 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free);
1117 #ifndef OPENSSL_NO_OCSP
1118 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free);
1119 #endif
1120 #ifndef OPENSSL_NO_CT
1121 SCT_LIST_free(s->scts);
1122 OPENSSL_free(s->ext.scts);
1123 #endif
1124 OPENSSL_free(s->ext.ocsp.resp);
1125 OPENSSL_free(s->ext.alpn);
1126 OPENSSL_free(s->ext.tls13_cookie);
1127 OPENSSL_free(s->clienthello);
1128
1129 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free);
1130
1131 sk_X509_pop_free(s->verified_chain, X509_free);
1132
1133 if (s->method != NULL)
1134 s->method->ssl_free(s);
1135
1136 RECORD_LAYER_release(&s->rlayer);
1137
1138 SSL_CTX_free(s->ctx);
1139
1140 ASYNC_WAIT_CTX_free(s->waitctx);
1141
1142 #if !defined(OPENSSL_NO_NEXTPROTONEG)
1143 OPENSSL_free(s->ext.npn);
1144 #endif
1145
1146 #ifndef OPENSSL_NO_SRTP
1147 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles);
1148 #endif
1149
1150 RAND_DRBG_free(s->drbg);
1151 CRYPTO_THREAD_lock_free(s->lock);
1152
1153 OPENSSL_free(s);
1154 }
1155
1156 void SSL_set0_rbio(SSL *s, BIO *rbio)
1157 {
1158 BIO_free_all(s->rbio);
1159 s->rbio = rbio;
1160 }
1161
1162 void SSL_set0_wbio(SSL *s, BIO *wbio)
1163 {
1164 /*
1165 * If the output buffering BIO is still in place, remove it
1166 */
1167 if (s->bbio != NULL)
1168 s->wbio = BIO_pop(s->wbio);
1169
1170 BIO_free_all(s->wbio);
1171 s->wbio = wbio;
1172
1173 /* Re-attach |bbio| to the new |wbio|. */
1174 if (s->bbio != NULL)
1175 s->wbio = BIO_push(s->bbio, s->wbio);
1176 }
1177
1178 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio)
1179 {
1180 /*
1181 * For historical reasons, this function has many different cases in
1182 * ownership handling.
1183 */
1184
1185 /* If nothing has changed, do nothing */
1186 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s))
1187 return;
1188
1189 /*
1190 * If the two arguments are equal then one fewer reference is granted by the
1191 * caller than we want to take
1192 */
1193 if (rbio != NULL && rbio == wbio)
1194 BIO_up_ref(rbio);
1195
1196 /*
1197 * If only the wbio is changed only adopt one reference.
1198 */
1199 if (rbio == SSL_get_rbio(s)) {
1200 SSL_set0_wbio(s, wbio);
1201 return;
1202 }
1203 /*
1204 * There is an asymmetry here for historical reasons. If only the rbio is
1205 * changed AND the rbio and wbio were originally different, then we only
1206 * adopt one reference.
1207 */
1208 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) {
1209 SSL_set0_rbio(s, rbio);
1210 return;
1211 }
1212
1213 /* Otherwise, adopt both references. */
1214 SSL_set0_rbio(s, rbio);
1215 SSL_set0_wbio(s, wbio);
1216 }
1217
1218 BIO *SSL_get_rbio(const SSL *s)
1219 {
1220 return s->rbio;
1221 }
1222
1223 BIO *SSL_get_wbio(const SSL *s)
1224 {
1225 if (s->bbio != NULL) {
1226 /*
1227 * If |bbio| is active, the true caller-configured BIO is its
1228 * |next_bio|.
1229 */
1230 return BIO_next(s->bbio);
1231 }
1232 return s->wbio;
1233 }
1234
1235 int SSL_get_fd(const SSL *s)
1236 {
1237 return SSL_get_rfd(s);
1238 }
1239
1240 int SSL_get_rfd(const SSL *s)
1241 {
1242 int ret = -1;
1243 BIO *b, *r;
1244
1245 b = SSL_get_rbio(s);
1246 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1247 if (r != NULL)
1248 BIO_get_fd(r, &ret);
1249 return (ret);
1250 }
1251
1252 int SSL_get_wfd(const SSL *s)
1253 {
1254 int ret = -1;
1255 BIO *b, *r;
1256
1257 b = SSL_get_wbio(s);
1258 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1259 if (r != NULL)
1260 BIO_get_fd(r, &ret);
1261 return (ret);
1262 }
1263
1264 #ifndef OPENSSL_NO_SOCK
1265 int SSL_set_fd(SSL *s, int fd)
1266 {
1267 int ret = 0;
1268 BIO *bio = NULL;
1269
1270 bio = BIO_new(BIO_s_socket());
1271
1272 if (bio == NULL) {
1273 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB);
1274 goto err;
1275 }
1276 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1277 SSL_set_bio(s, bio, bio);
1278 ret = 1;
1279 err:
1280 return (ret);
1281 }
1282
1283 int SSL_set_wfd(SSL *s, int fd)
1284 {
1285 BIO *rbio = SSL_get_rbio(s);
1286
1287 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET
1288 || (int)BIO_get_fd(rbio, NULL) != fd) {
1289 BIO *bio = BIO_new(BIO_s_socket());
1290
1291 if (bio == NULL) {
1292 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB);
1293 return 0;
1294 }
1295 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1296 SSL_set0_wbio(s, bio);
1297 } else {
1298 BIO_up_ref(rbio);
1299 SSL_set0_wbio(s, rbio);
1300 }
1301 return 1;
1302 }
1303
1304 int SSL_set_rfd(SSL *s, int fd)
1305 {
1306 BIO *wbio = SSL_get_wbio(s);
1307
1308 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET
1309 || ((int)BIO_get_fd(wbio, NULL) != fd)) {
1310 BIO *bio = BIO_new(BIO_s_socket());
1311
1312 if (bio == NULL) {
1313 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB);
1314 return 0;
1315 }
1316 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1317 SSL_set0_rbio(s, bio);
1318 } else {
1319 BIO_up_ref(wbio);
1320 SSL_set0_rbio(s, wbio);
1321 }
1322
1323 return 1;
1324 }
1325 #endif
1326
1327 /* return length of latest Finished message we sent, copy to 'buf' */
1328 size_t SSL_get_finished(const SSL *s, void *buf, size_t count)
1329 {
1330 size_t ret = 0;
1331
1332 if (s->s3 != NULL) {
1333 ret = s->s3->tmp.finish_md_len;
1334 if (count > ret)
1335 count = ret;
1336 memcpy(buf, s->s3->tmp.finish_md, count);
1337 }
1338 return ret;
1339 }
1340
1341 /* return length of latest Finished message we expected, copy to 'buf' */
1342 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count)
1343 {
1344 size_t ret = 0;
1345
1346 if (s->s3 != NULL) {
1347 ret = s->s3->tmp.peer_finish_md_len;
1348 if (count > ret)
1349 count = ret;
1350 memcpy(buf, s->s3->tmp.peer_finish_md, count);
1351 }
1352 return ret;
1353 }
1354
1355 int SSL_get_verify_mode(const SSL *s)
1356 {
1357 return (s->verify_mode);
1358 }
1359
1360 int SSL_get_verify_depth(const SSL *s)
1361 {
1362 return X509_VERIFY_PARAM_get_depth(s->param);
1363 }
1364
1365 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) {
1366 return (s->verify_callback);
1367 }
1368
1369 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx)
1370 {
1371 return (ctx->verify_mode);
1372 }
1373
1374 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx)
1375 {
1376 return X509_VERIFY_PARAM_get_depth(ctx->param);
1377 }
1378
1379 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) {
1380 return (ctx->default_verify_callback);
1381 }
1382
1383 void SSL_set_verify(SSL *s, int mode,
1384 int (*callback) (int ok, X509_STORE_CTX *ctx))
1385 {
1386 s->verify_mode = mode;
1387 if (callback != NULL)
1388 s->verify_callback = callback;
1389 }
1390
1391 void SSL_set_verify_depth(SSL *s, int depth)
1392 {
1393 X509_VERIFY_PARAM_set_depth(s->param, depth);
1394 }
1395
1396 void SSL_set_read_ahead(SSL *s, int yes)
1397 {
1398 RECORD_LAYER_set_read_ahead(&s->rlayer, yes);
1399 }
1400
1401 int SSL_get_read_ahead(const SSL *s)
1402 {
1403 return RECORD_LAYER_get_read_ahead(&s->rlayer);
1404 }
1405
1406 int SSL_pending(const SSL *s)
1407 {
1408 size_t pending = s->method->ssl_pending(s);
1409
1410 /*
1411 * SSL_pending cannot work properly if read-ahead is enabled
1412 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is
1413 * impossible to fix since SSL_pending cannot report errors that may be
1414 * observed while scanning the new data. (Note that SSL_pending() is
1415 * often used as a boolean value, so we'd better not return -1.)
1416 *
1417 * SSL_pending also cannot work properly if the value >INT_MAX. In that case
1418 * we just return INT_MAX.
1419 */
1420 return pending < INT_MAX ? (int)pending : INT_MAX;
1421 }
1422
1423 int SSL_has_pending(const SSL *s)
1424 {
1425 /*
1426 * Similar to SSL_pending() but returns a 1 to indicate that we have
1427 * unprocessed data available or 0 otherwise (as opposed to the number of
1428 * bytes available). Unlike SSL_pending() this will take into account
1429 * read_ahead data. A 1 return simply indicates that we have unprocessed
1430 * data. That data may not result in any application data, or we may fail
1431 * to parse the records for some reason.
1432 */
1433 if (RECORD_LAYER_processed_read_pending(&s->rlayer))
1434 return 1;
1435
1436 return RECORD_LAYER_read_pending(&s->rlayer);
1437 }
1438
1439 X509 *SSL_get_peer_certificate(const SSL *s)
1440 {
1441 X509 *r;
1442
1443 if ((s == NULL) || (s->session == NULL))
1444 r = NULL;
1445 else
1446 r = s->session->peer;
1447
1448 if (r == NULL)
1449 return (r);
1450
1451 X509_up_ref(r);
1452
1453 return (r);
1454 }
1455
1456 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s)
1457 {
1458 STACK_OF(X509) *r;
1459
1460 if ((s == NULL) || (s->session == NULL))
1461 r = NULL;
1462 else
1463 r = s->session->peer_chain;
1464
1465 /*
1466 * If we are a client, cert_chain includes the peer's own certificate; if
1467 * we are a server, it does not.
1468 */
1469
1470 return (r);
1471 }
1472
1473 /*
1474 * Now in theory, since the calling process own 't' it should be safe to
1475 * modify. We need to be able to read f without being hassled
1476 */
1477 int SSL_copy_session_id(SSL *t, const SSL *f)
1478 {
1479 int i;
1480 /* Do we need to to SSL locking? */
1481 if (!SSL_set_session(t, SSL_get_session(f))) {
1482 return 0;
1483 }
1484
1485 /*
1486 * what if we are setup for one protocol version but want to talk another
1487 */
1488 if (t->method != f->method) {
1489 t->method->ssl_free(t);
1490 t->method = f->method;
1491 if (t->method->ssl_new(t) == 0)
1492 return 0;
1493 }
1494
1495 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock);
1496 ssl_cert_free(t->cert);
1497 t->cert = f->cert;
1498 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) {
1499 return 0;
1500 }
1501
1502 return 1;
1503 }
1504
1505 /* Fix this so it checks all the valid key/cert options */
1506 int SSL_CTX_check_private_key(const SSL_CTX *ctx)
1507 {
1508 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) {
1509 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1510 return (0);
1511 }
1512 if (ctx->cert->key->privatekey == NULL) {
1513 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1514 return (0);
1515 }
1516 return (X509_check_private_key
1517 (ctx->cert->key->x509, ctx->cert->key->privatekey));
1518 }
1519
1520 /* Fix this function so that it takes an optional type parameter */
1521 int SSL_check_private_key(const SSL *ssl)
1522 {
1523 if (ssl == NULL) {
1524 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER);
1525 return (0);
1526 }
1527 if (ssl->cert->key->x509 == NULL) {
1528 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1529 return (0);
1530 }
1531 if (ssl->cert->key->privatekey == NULL) {
1532 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1533 return (0);
1534 }
1535 return (X509_check_private_key(ssl->cert->key->x509,
1536 ssl->cert->key->privatekey));
1537 }
1538
1539 int SSL_waiting_for_async(SSL *s)
1540 {
1541 if (s->job)
1542 return 1;
1543
1544 return 0;
1545 }
1546
1547 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds)
1548 {
1549 ASYNC_WAIT_CTX *ctx = s->waitctx;
1550
1551 if (ctx == NULL)
1552 return 0;
1553 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds);
1554 }
1555
1556 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds,
1557 OSSL_ASYNC_FD *delfd, size_t *numdelfds)
1558 {
1559 ASYNC_WAIT_CTX *ctx = s->waitctx;
1560
1561 if (ctx == NULL)
1562 return 0;
1563 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd,
1564 numdelfds);
1565 }
1566
1567 int SSL_accept(SSL *s)
1568 {
1569 if (s->handshake_func == NULL) {
1570 /* Not properly initialized yet */
1571 SSL_set_accept_state(s);
1572 }
1573
1574 return SSL_do_handshake(s);
1575 }
1576
1577 int SSL_connect(SSL *s)
1578 {
1579 if (s->handshake_func == NULL) {
1580 /* Not properly initialized yet */
1581 SSL_set_connect_state(s);
1582 }
1583
1584 return SSL_do_handshake(s);
1585 }
1586
1587 long SSL_get_default_timeout(const SSL *s)
1588 {
1589 return (s->method->get_timeout());
1590 }
1591
1592 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args,
1593 int (*func) (void *))
1594 {
1595 int ret;
1596 if (s->waitctx == NULL) {
1597 s->waitctx = ASYNC_WAIT_CTX_new();
1598 if (s->waitctx == NULL)
1599 return -1;
1600 }
1601 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args,
1602 sizeof(struct ssl_async_args))) {
1603 case ASYNC_ERR:
1604 s->rwstate = SSL_NOTHING;
1605 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC);
1606 return -1;
1607 case ASYNC_PAUSE:
1608 s->rwstate = SSL_ASYNC_PAUSED;
1609 return -1;
1610 case ASYNC_NO_JOBS:
1611 s->rwstate = SSL_ASYNC_NO_JOBS;
1612 return -1;
1613 case ASYNC_FINISH:
1614 s->job = NULL;
1615 return ret;
1616 default:
1617 s->rwstate = SSL_NOTHING;
1618 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR);
1619 /* Shouldn't happen */
1620 return -1;
1621 }
1622 }
1623
1624 static int ssl_io_intern(void *vargs)
1625 {
1626 struct ssl_async_args *args;
1627 SSL *s;
1628 void *buf;
1629 size_t num;
1630
1631 args = (struct ssl_async_args *)vargs;
1632 s = args->s;
1633 buf = args->buf;
1634 num = args->num;
1635 switch (args->type) {
1636 case READFUNC:
1637 return args->f.func_read(s, buf, num, &s->asyncrw);
1638 case WRITEFUNC:
1639 return args->f.func_write(s, buf, num, &s->asyncrw);
1640 case OTHERFUNC:
1641 return args->f.func_other(s);
1642 }
1643 return -1;
1644 }
1645
1646 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1647 {
1648 if (s->handshake_func == NULL) {
1649 SSLerr(SSL_F_SSL_READ_INTERNAL, SSL_R_UNINITIALIZED);
1650 return -1;
1651 }
1652
1653 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1654 s->rwstate = SSL_NOTHING;
1655 return 0;
1656 }
1657
1658 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1659 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) {
1660 SSLerr(SSL_F_SSL_READ_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1661 return 0;
1662 }
1663 /*
1664 * If we are a client and haven't received the ServerHello etc then we
1665 * better do that
1666 */
1667 ossl_statem_check_finish_init(s, 0);
1668
1669 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1670 struct ssl_async_args args;
1671 int ret;
1672
1673 args.s = s;
1674 args.buf = buf;
1675 args.num = num;
1676 args.type = READFUNC;
1677 args.f.func_read = s->method->ssl_read;
1678
1679 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1680 *readbytes = s->asyncrw;
1681 return ret;
1682 } else {
1683 return s->method->ssl_read(s, buf, num, readbytes);
1684 }
1685 }
1686
1687 int SSL_read(SSL *s, void *buf, int num)
1688 {
1689 int ret;
1690 size_t readbytes;
1691
1692 if (num < 0) {
1693 SSLerr(SSL_F_SSL_READ, SSL_R_BAD_LENGTH);
1694 return -1;
1695 }
1696
1697 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes);
1698
1699 /*
1700 * The cast is safe here because ret should be <= INT_MAX because num is
1701 * <= INT_MAX
1702 */
1703 if (ret > 0)
1704 ret = (int)readbytes;
1705
1706 return ret;
1707 }
1708
1709 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1710 {
1711 int ret = ssl_read_internal(s, buf, num, readbytes);
1712
1713 if (ret < 0)
1714 ret = 0;
1715 return ret;
1716 }
1717
1718 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes)
1719 {
1720 int ret;
1721
1722 if (!s->server) {
1723 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1724 return SSL_READ_EARLY_DATA_ERROR;
1725 }
1726
1727 switch (s->early_data_state) {
1728 case SSL_EARLY_DATA_NONE:
1729 if (!SSL_in_before(s)) {
1730 SSLerr(SSL_F_SSL_READ_EARLY_DATA,
1731 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1732 return SSL_READ_EARLY_DATA_ERROR;
1733 }
1734 /* fall through */
1735
1736 case SSL_EARLY_DATA_ACCEPT_RETRY:
1737 s->early_data_state = SSL_EARLY_DATA_ACCEPTING;
1738 ret = SSL_accept(s);
1739 if (ret <= 0) {
1740 /* NBIO or error */
1741 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY;
1742 return SSL_READ_EARLY_DATA_ERROR;
1743 }
1744 /* fall through */
1745
1746 case SSL_EARLY_DATA_READ_RETRY:
1747 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) {
1748 s->early_data_state = SSL_EARLY_DATA_READING;
1749 ret = SSL_read_ex(s, buf, num, readbytes);
1750 /*
1751 * State machine will update early_data_state to
1752 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData
1753 * message
1754 */
1755 if (ret > 0 || (ret <= 0 && s->early_data_state
1756 != SSL_EARLY_DATA_FINISHED_READING)) {
1757 s->early_data_state = SSL_EARLY_DATA_READ_RETRY;
1758 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS
1759 : SSL_READ_EARLY_DATA_ERROR;
1760 }
1761 } else {
1762 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING;
1763 }
1764 *readbytes = 0;
1765 return SSL_READ_EARLY_DATA_FINISH;
1766
1767 default:
1768 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1769 return SSL_READ_EARLY_DATA_ERROR;
1770 }
1771 }
1772
1773 int SSL_get_early_data_status(const SSL *s)
1774 {
1775 return s->ext.early_data;
1776 }
1777
1778 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1779 {
1780 if (s->handshake_func == NULL) {
1781 SSLerr(SSL_F_SSL_PEEK_INTERNAL, SSL_R_UNINITIALIZED);
1782 return -1;
1783 }
1784
1785 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1786 return 0;
1787 }
1788 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1789 struct ssl_async_args args;
1790 int ret;
1791
1792 args.s = s;
1793 args.buf = buf;
1794 args.num = num;
1795 args.type = READFUNC;
1796 args.f.func_read = s->method->ssl_peek;
1797
1798 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1799 *readbytes = s->asyncrw;
1800 return ret;
1801 } else {
1802 return s->method->ssl_peek(s, buf, num, readbytes);
1803 }
1804 }
1805
1806 int SSL_peek(SSL *s, void *buf, int num)
1807 {
1808 int ret;
1809 size_t readbytes;
1810
1811 if (num < 0) {
1812 SSLerr(SSL_F_SSL_PEEK, SSL_R_BAD_LENGTH);
1813 return -1;
1814 }
1815
1816 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes);
1817
1818 /*
1819 * The cast is safe here because ret should be <= INT_MAX because num is
1820 * <= INT_MAX
1821 */
1822 if (ret > 0)
1823 ret = (int)readbytes;
1824
1825 return ret;
1826 }
1827
1828
1829 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1830 {
1831 int ret = ssl_peek_internal(s, buf, num, readbytes);
1832
1833 if (ret < 0)
1834 ret = 0;
1835 return ret;
1836 }
1837
1838 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written)
1839 {
1840 if (s->handshake_func == NULL) {
1841 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_UNINITIALIZED);
1842 return -1;
1843 }
1844
1845 if (s->shutdown & SSL_SENT_SHUTDOWN) {
1846 s->rwstate = SSL_NOTHING;
1847 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_PROTOCOL_IS_SHUTDOWN);
1848 return -1;
1849 }
1850
1851 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1852 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY
1853 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) {
1854 SSLerr(SSL_F_SSL_WRITE_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1855 return 0;
1856 }
1857 /* If we are a client and haven't sent the Finished we better do that */
1858 ossl_statem_check_finish_init(s, 1);
1859
1860 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1861 int ret;
1862 struct ssl_async_args args;
1863
1864 args.s = s;
1865 args.buf = (void *)buf;
1866 args.num = num;
1867 args.type = WRITEFUNC;
1868 args.f.func_write = s->method->ssl_write;
1869
1870 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1871 *written = s->asyncrw;
1872 return ret;
1873 } else {
1874 return s->method->ssl_write(s, buf, num, written);
1875 }
1876 }
1877
1878 int SSL_write(SSL *s, const void *buf, int num)
1879 {
1880 int ret;
1881 size_t written;
1882
1883 if (num < 0) {
1884 SSLerr(SSL_F_SSL_WRITE, SSL_R_BAD_LENGTH);
1885 return -1;
1886 }
1887
1888 ret = ssl_write_internal(s, buf, (size_t)num, &written);
1889
1890 /*
1891 * The cast is safe here because ret should be <= INT_MAX because num is
1892 * <= INT_MAX
1893 */
1894 if (ret > 0)
1895 ret = (int)written;
1896
1897 return ret;
1898 }
1899
1900 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written)
1901 {
1902 int ret = ssl_write_internal(s, buf, num, written);
1903
1904 if (ret < 0)
1905 ret = 0;
1906 return ret;
1907 }
1908
1909 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written)
1910 {
1911 int ret, early_data_state;
1912
1913 switch (s->early_data_state) {
1914 case SSL_EARLY_DATA_NONE:
1915 if (s->server
1916 || !SSL_in_before(s)
1917 || ((s->session == NULL || s->session->ext.max_early_data == 0)
1918 && (s->psk_use_session_cb == NULL))) {
1919 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA,
1920 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1921 return 0;
1922 }
1923 /* fall through */
1924
1925 case SSL_EARLY_DATA_CONNECT_RETRY:
1926 s->early_data_state = SSL_EARLY_DATA_CONNECTING;
1927 ret = SSL_connect(s);
1928 if (ret <= 0) {
1929 /* NBIO or error */
1930 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY;
1931 return 0;
1932 }
1933 /* fall through */
1934
1935 case SSL_EARLY_DATA_WRITE_RETRY:
1936 s->early_data_state = SSL_EARLY_DATA_WRITING;
1937 ret = SSL_write_ex(s, buf, num, written);
1938 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
1939 return ret;
1940
1941 case SSL_EARLY_DATA_FINISHED_READING:
1942 case SSL_EARLY_DATA_READ_RETRY:
1943 early_data_state = s->early_data_state;
1944 /* We are a server writing to an unauthenticated client */
1945 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING;
1946 ret = SSL_write_ex(s, buf, num, written);
1947 s->early_data_state = early_data_state;
1948 return ret;
1949
1950 default:
1951 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1952 return 0;
1953 }
1954 }
1955
1956 int SSL_shutdown(SSL *s)
1957 {
1958 /*
1959 * Note that this function behaves differently from what one might
1960 * expect. Return values are 0 for no success (yet), 1 for success; but
1961 * calling it once is usually not enough, even if blocking I/O is used
1962 * (see ssl3_shutdown).
1963 */
1964
1965 if (s->handshake_func == NULL) {
1966 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED);
1967 return -1;
1968 }
1969
1970 if (!SSL_in_init(s)) {
1971 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1972 struct ssl_async_args args;
1973
1974 args.s = s;
1975 args.type = OTHERFUNC;
1976 args.f.func_other = s->method->ssl_shutdown;
1977
1978 return ssl_start_async_job(s, &args, ssl_io_intern);
1979 } else {
1980 return s->method->ssl_shutdown(s);
1981 }
1982 } else {
1983 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT);
1984 return -1;
1985 }
1986 }
1987
1988 int SSL_key_update(SSL *s, int updatetype)
1989 {
1990 /*
1991 * TODO(TLS1.3): How will applications know whether TLSv1.3 has been
1992 * negotiated, and that it is appropriate to call SSL_key_update() instead
1993 * of SSL_renegotiate().
1994 */
1995 if (!SSL_IS_TLS13(s)) {
1996 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_WRONG_SSL_VERSION);
1997 return 0;
1998 }
1999
2000 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED
2001 && updatetype != SSL_KEY_UPDATE_REQUESTED) {
2002 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_INVALID_KEY_UPDATE_TYPE);
2003 return 0;
2004 }
2005
2006 if (!SSL_is_init_finished(s)) {
2007 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_STILL_IN_INIT);
2008 return 0;
2009 }
2010
2011 ossl_statem_set_in_init(s, 1);
2012 s->key_update = updatetype;
2013 return 1;
2014 }
2015
2016 int SSL_get_key_update_type(SSL *s)
2017 {
2018 return s->key_update;
2019 }
2020
2021 int SSL_renegotiate(SSL *s)
2022 {
2023 if (SSL_IS_TLS13(s)) {
2024 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_WRONG_SSL_VERSION);
2025 return 0;
2026 }
2027
2028 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2029 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_NO_RENEGOTIATION);
2030 return 0;
2031 }
2032
2033 s->renegotiate = 1;
2034 s->new_session = 1;
2035
2036 return (s->method->ssl_renegotiate(s));
2037 }
2038
2039 int SSL_renegotiate_abbreviated(SSL *s)
2040 {
2041 if (SSL_IS_TLS13(s)) {
2042 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_WRONG_SSL_VERSION);
2043 return 0;
2044 }
2045
2046 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2047 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_NO_RENEGOTIATION);
2048 return 0;
2049 }
2050
2051 s->renegotiate = 1;
2052 s->new_session = 0;
2053
2054 return (s->method->ssl_renegotiate(s));
2055 }
2056
2057 int SSL_renegotiate_pending(SSL *s)
2058 {
2059 /*
2060 * becomes true when negotiation is requested; false again once a
2061 * handshake has finished
2062 */
2063 return (s->renegotiate != 0);
2064 }
2065
2066 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg)
2067 {
2068 long l;
2069
2070 switch (cmd) {
2071 case SSL_CTRL_GET_READ_AHEAD:
2072 return (RECORD_LAYER_get_read_ahead(&s->rlayer));
2073 case SSL_CTRL_SET_READ_AHEAD:
2074 l = RECORD_LAYER_get_read_ahead(&s->rlayer);
2075 RECORD_LAYER_set_read_ahead(&s->rlayer, larg);
2076 return (l);
2077
2078 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2079 s->msg_callback_arg = parg;
2080 return 1;
2081
2082 case SSL_CTRL_MODE:
2083 return (s->mode |= larg);
2084 case SSL_CTRL_CLEAR_MODE:
2085 return (s->mode &= ~larg);
2086 case SSL_CTRL_GET_MAX_CERT_LIST:
2087 return (long)(s->max_cert_list);
2088 case SSL_CTRL_SET_MAX_CERT_LIST:
2089 if (larg < 0)
2090 return 0;
2091 l = (long)s->max_cert_list;
2092 s->max_cert_list = (size_t)larg;
2093 return l;
2094 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2095 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2096 return 0;
2097 s->max_send_fragment = larg;
2098 if (s->max_send_fragment < s->split_send_fragment)
2099 s->split_send_fragment = s->max_send_fragment;
2100 return 1;
2101 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2102 if ((size_t)larg > s->max_send_fragment || larg == 0)
2103 return 0;
2104 s->split_send_fragment = larg;
2105 return 1;
2106 case SSL_CTRL_SET_MAX_PIPELINES:
2107 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2108 return 0;
2109 s->max_pipelines = larg;
2110 if (larg > 1)
2111 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
2112 return 1;
2113 case SSL_CTRL_GET_RI_SUPPORT:
2114 if (s->s3)
2115 return s->s3->send_connection_binding;
2116 else
2117 return 0;
2118 case SSL_CTRL_CERT_FLAGS:
2119 return (s->cert->cert_flags |= larg);
2120 case SSL_CTRL_CLEAR_CERT_FLAGS:
2121 return (s->cert->cert_flags &= ~larg);
2122
2123 case SSL_CTRL_GET_RAW_CIPHERLIST:
2124 if (parg) {
2125 if (s->s3->tmp.ciphers_raw == NULL)
2126 return 0;
2127 *(unsigned char **)parg = s->s3->tmp.ciphers_raw;
2128 return (int)s->s3->tmp.ciphers_rawlen;
2129 } else {
2130 return TLS_CIPHER_LEN;
2131 }
2132 case SSL_CTRL_GET_EXTMS_SUPPORT:
2133 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s))
2134 return -1;
2135 if (s->session->flags & SSL_SESS_FLAG_EXTMS)
2136 return 1;
2137 else
2138 return 0;
2139 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2140 return ssl_check_allowed_versions(larg, s->max_proto_version)
2141 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2142 &s->min_proto_version);
2143 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2144 return s->min_proto_version;
2145 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2146 return ssl_check_allowed_versions(s->min_proto_version, larg)
2147 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2148 &s->max_proto_version);
2149 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2150 return s->max_proto_version;
2151 default:
2152 return (s->method->ssl_ctrl(s, cmd, larg, parg));
2153 }
2154 }
2155
2156 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
2157 {
2158 switch (cmd) {
2159 case SSL_CTRL_SET_MSG_CALLBACK:
2160 s->msg_callback = (void (*)
2161 (int write_p, int version, int content_type,
2162 const void *buf, size_t len, SSL *ssl,
2163 void *arg))(fp);
2164 return 1;
2165
2166 default:
2167 return (s->method->ssl_callback_ctrl(s, cmd, fp));
2168 }
2169 }
2170
2171 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx)
2172 {
2173 return ctx->sessions;
2174 }
2175
2176 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
2177 {
2178 long l;
2179 /* For some cases with ctx == NULL perform syntax checks */
2180 if (ctx == NULL) {
2181 switch (cmd) {
2182 #ifndef OPENSSL_NO_EC
2183 case SSL_CTRL_SET_GROUPS_LIST:
2184 return tls1_set_groups_list(NULL, NULL, parg);
2185 #endif
2186 case SSL_CTRL_SET_SIGALGS_LIST:
2187 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST:
2188 return tls1_set_sigalgs_list(NULL, parg, 0);
2189 default:
2190 return 0;
2191 }
2192 }
2193
2194 switch (cmd) {
2195 case SSL_CTRL_GET_READ_AHEAD:
2196 return (ctx->read_ahead);
2197 case SSL_CTRL_SET_READ_AHEAD:
2198 l = ctx->read_ahead;
2199 ctx->read_ahead = larg;
2200 return (l);
2201
2202 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2203 ctx->msg_callback_arg = parg;
2204 return 1;
2205
2206 case SSL_CTRL_GET_MAX_CERT_LIST:
2207 return (long)(ctx->max_cert_list);
2208 case SSL_CTRL_SET_MAX_CERT_LIST:
2209 if (larg < 0)
2210 return 0;
2211 l = (long)ctx->max_cert_list;
2212 ctx->max_cert_list = (size_t)larg;
2213 return l;
2214
2215 case SSL_CTRL_SET_SESS_CACHE_SIZE:
2216 if (larg < 0)
2217 return 0;
2218 l = (long)ctx->session_cache_size;
2219 ctx->session_cache_size = (size_t)larg;
2220 return l;
2221 case SSL_CTRL_GET_SESS_CACHE_SIZE:
2222 return (long)(ctx->session_cache_size);
2223 case SSL_CTRL_SET_SESS_CACHE_MODE:
2224 l = ctx->session_cache_mode;
2225 ctx->session_cache_mode = larg;
2226 return (l);
2227 case SSL_CTRL_GET_SESS_CACHE_MODE:
2228 return (ctx->session_cache_mode);
2229
2230 case SSL_CTRL_SESS_NUMBER:
2231 return (lh_SSL_SESSION_num_items(ctx->sessions));
2232 case SSL_CTRL_SESS_CONNECT:
2233 return (ctx->stats.sess_connect);
2234 case SSL_CTRL_SESS_CONNECT_GOOD:
2235 return (ctx->stats.sess_connect_good);
2236 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE:
2237 return (ctx->stats.sess_connect_renegotiate);
2238 case SSL_CTRL_SESS_ACCEPT:
2239 return (ctx->stats.sess_accept);
2240 case SSL_CTRL_SESS_ACCEPT_GOOD:
2241 return (ctx->stats.sess_accept_good);
2242 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE:
2243 return (ctx->stats.sess_accept_renegotiate);
2244 case SSL_CTRL_SESS_HIT:
2245 return (ctx->stats.sess_hit);
2246 case SSL_CTRL_SESS_CB_HIT:
2247 return (ctx->stats.sess_cb_hit);
2248 case SSL_CTRL_SESS_MISSES:
2249 return (ctx->stats.sess_miss);
2250 case SSL_CTRL_SESS_TIMEOUTS:
2251 return (ctx->stats.sess_timeout);
2252 case SSL_CTRL_SESS_CACHE_FULL:
2253 return (ctx->stats.sess_cache_full);
2254 case SSL_CTRL_MODE:
2255 return (ctx->mode |= larg);
2256 case SSL_CTRL_CLEAR_MODE:
2257 return (ctx->mode &= ~larg);
2258 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2259 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2260 return 0;
2261 ctx->max_send_fragment = larg;
2262 if (ctx->max_send_fragment < ctx->split_send_fragment)
2263 ctx->split_send_fragment = ctx->max_send_fragment;
2264 return 1;
2265 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2266 if ((size_t)larg > ctx->max_send_fragment || larg == 0)
2267 return 0;
2268 ctx->split_send_fragment = larg;
2269 return 1;
2270 case SSL_CTRL_SET_MAX_PIPELINES:
2271 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2272 return 0;
2273 ctx->max_pipelines = larg;
2274 return 1;
2275 case SSL_CTRL_CERT_FLAGS:
2276 return (ctx->cert->cert_flags |= larg);
2277 case SSL_CTRL_CLEAR_CERT_FLAGS:
2278 return (ctx->cert->cert_flags &= ~larg);
2279 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2280 return ssl_check_allowed_versions(larg, ctx->max_proto_version)
2281 && ssl_set_version_bound(ctx->method->version, (int)larg,
2282 &ctx->min_proto_version);
2283 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2284 return ctx->min_proto_version;
2285 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2286 return ssl_check_allowed_versions(ctx->min_proto_version, larg)
2287 && ssl_set_version_bound(ctx->method->version, (int)larg,
2288 &ctx->max_proto_version);
2289 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2290 return ctx->max_proto_version;
2291 default:
2292 return (ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg));
2293 }
2294 }
2295
2296 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
2297 {
2298 switch (cmd) {
2299 case SSL_CTRL_SET_MSG_CALLBACK:
2300 ctx->msg_callback = (void (*)
2301 (int write_p, int version, int content_type,
2302 const void *buf, size_t len, SSL *ssl,
2303 void *arg))(fp);
2304 return 1;
2305
2306 default:
2307 return (ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp));
2308 }
2309 }
2310
2311 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b)
2312 {
2313 if (a->id > b->id)
2314 return 1;
2315 if (a->id < b->id)
2316 return -1;
2317 return 0;
2318 }
2319
2320 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap,
2321 const SSL_CIPHER *const *bp)
2322 {
2323 if ((*ap)->id > (*bp)->id)
2324 return 1;
2325 if ((*ap)->id < (*bp)->id)
2326 return -1;
2327 return 0;
2328 }
2329
2330 /** return a STACK of the ciphers available for the SSL and in order of
2331 * preference */
2332 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s)
2333 {
2334 if (s != NULL) {
2335 if (s->cipher_list != NULL) {
2336 return (s->cipher_list);
2337 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) {
2338 return (s->ctx->cipher_list);
2339 }
2340 }
2341 return (NULL);
2342 }
2343
2344 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s)
2345 {
2346 if ((s == NULL) || (s->session == NULL) || !s->server)
2347 return NULL;
2348 return s->session->ciphers;
2349 }
2350
2351 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s)
2352 {
2353 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers;
2354 int i;
2355 ciphers = SSL_get_ciphers(s);
2356 if (!ciphers)
2357 return NULL;
2358 ssl_set_client_disabled(s);
2359 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
2360 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i);
2361 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) {
2362 if (!sk)
2363 sk = sk_SSL_CIPHER_new_null();
2364 if (!sk)
2365 return NULL;
2366 if (!sk_SSL_CIPHER_push(sk, c)) {
2367 sk_SSL_CIPHER_free(sk);
2368 return NULL;
2369 }
2370 }
2371 }
2372 return sk;
2373 }
2374
2375 /** return a STACK of the ciphers available for the SSL and in order of
2376 * algorithm id */
2377 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s)
2378 {
2379 if (s != NULL) {
2380 if (s->cipher_list_by_id != NULL) {
2381 return (s->cipher_list_by_id);
2382 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) {
2383 return (s->ctx->cipher_list_by_id);
2384 }
2385 }
2386 return (NULL);
2387 }
2388
2389 /** The old interface to get the same thing as SSL_get_ciphers() */
2390 const char *SSL_get_cipher_list(const SSL *s, int n)
2391 {
2392 const SSL_CIPHER *c;
2393 STACK_OF(SSL_CIPHER) *sk;
2394
2395 if (s == NULL)
2396 return (NULL);
2397 sk = SSL_get_ciphers(s);
2398 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n))
2399 return (NULL);
2400 c = sk_SSL_CIPHER_value(sk, n);
2401 if (c == NULL)
2402 return (NULL);
2403 return (c->name);
2404 }
2405
2406 /** return a STACK of the ciphers available for the SSL_CTX and in order of
2407 * preference */
2408 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx)
2409 {
2410 if (ctx != NULL)
2411 return ctx->cipher_list;
2412 return NULL;
2413 }
2414
2415 /** specify the ciphers to be used by default by the SSL_CTX */
2416 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)
2417 {
2418 STACK_OF(SSL_CIPHER) *sk;
2419
2420 sk = ssl_create_cipher_list(ctx->method, &ctx->cipher_list,
2421 &ctx->cipher_list_by_id, str, ctx->cert);
2422 /*
2423 * ssl_create_cipher_list may return an empty stack if it was unable to
2424 * find a cipher matching the given rule string (for example if the rule
2425 * string specifies a cipher which has been disabled). This is not an
2426 * error as far as ssl_create_cipher_list is concerned, and hence
2427 * ctx->cipher_list and ctx->cipher_list_by_id has been updated.
2428 */
2429 if (sk == NULL)
2430 return 0;
2431 else if (sk_SSL_CIPHER_num(sk) == 0) {
2432 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2433 return 0;
2434 }
2435 return 1;
2436 }
2437
2438 /** specify the ciphers to be used by the SSL */
2439 int SSL_set_cipher_list(SSL *s, const char *str)
2440 {
2441 STACK_OF(SSL_CIPHER) *sk;
2442
2443 sk = ssl_create_cipher_list(s->ctx->method, &s->cipher_list,
2444 &s->cipher_list_by_id, str, s->cert);
2445 /* see comment in SSL_CTX_set_cipher_list */
2446 if (sk == NULL)
2447 return 0;
2448 else if (sk_SSL_CIPHER_num(sk) == 0) {
2449 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2450 return 0;
2451 }
2452 return 1;
2453 }
2454
2455 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int len)
2456 {
2457 char *p;
2458 STACK_OF(SSL_CIPHER) *sk;
2459 const SSL_CIPHER *c;
2460 int i;
2461
2462 if ((s->session == NULL) || (s->session->ciphers == NULL) || (len < 2))
2463 return (NULL);
2464
2465 p = buf;
2466 sk = s->session->ciphers;
2467
2468 if (sk_SSL_CIPHER_num(sk) == 0)
2469 return NULL;
2470
2471 for (i = 0; i < sk_SSL_CIPHER_num(sk); i++) {
2472 int n;
2473
2474 c = sk_SSL_CIPHER_value(sk, i);
2475 n = strlen(c->name);
2476 if (n + 1 > len) {
2477 if (p != buf)
2478 --p;
2479 *p = '\0';
2480 return buf;
2481 }
2482 strcpy(p, c->name);
2483 p += n;
2484 *(p++) = ':';
2485 len -= n + 1;
2486 }
2487 p[-1] = '\0';
2488 return (buf);
2489 }
2490
2491 /** return a servername extension value if provided in Client Hello, or NULL.
2492 * So far, only host_name types are defined (RFC 3546).
2493 */
2494
2495 const char *SSL_get_servername(const SSL *s, const int type)
2496 {
2497 if (type != TLSEXT_NAMETYPE_host_name)
2498 return NULL;
2499
2500 return s->session && !s->ext.hostname ?
2501 s->session->ext.hostname : s->ext.hostname;
2502 }
2503
2504 int SSL_get_servername_type(const SSL *s)
2505 {
2506 if (s->session
2507 && (!s->ext.hostname ? s->session->
2508 ext.hostname : s->ext.hostname))
2509 return TLSEXT_NAMETYPE_host_name;
2510 return -1;
2511 }
2512
2513 /*
2514 * SSL_select_next_proto implements the standard protocol selection. It is
2515 * expected that this function is called from the callback set by
2516 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a
2517 * vector of 8-bit, length prefixed byte strings. The length byte itself is
2518 * not included in the length. A byte string of length 0 is invalid. No byte
2519 * string may be truncated. The current, but experimental algorithm for
2520 * selecting the protocol is: 1) If the server doesn't support NPN then this
2521 * is indicated to the callback. In this case, the client application has to
2522 * abort the connection or have a default application level protocol. 2) If
2523 * the server supports NPN, but advertises an empty list then the client
2524 * selects the first protocol in its list, but indicates via the API that this
2525 * fallback case was enacted. 3) Otherwise, the client finds the first
2526 * protocol in the server's list that it supports and selects this protocol.
2527 * This is because it's assumed that the server has better information about
2528 * which protocol a client should use. 4) If the client doesn't support any
2529 * of the server's advertised protocols, then this is treated the same as
2530 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was
2531 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
2532 */
2533 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen,
2534 const unsigned char *server,
2535 unsigned int server_len,
2536 const unsigned char *client, unsigned int client_len)
2537 {
2538 unsigned int i, j;
2539 const unsigned char *result;
2540 int status = OPENSSL_NPN_UNSUPPORTED;
2541
2542 /*
2543 * For each protocol in server preference order, see if we support it.
2544 */
2545 for (i = 0; i < server_len;) {
2546 for (j = 0; j < client_len;) {
2547 if (server[i] == client[j] &&
2548 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
2549 /* We found a match */
2550 result = &server[i];
2551 status = OPENSSL_NPN_NEGOTIATED;
2552 goto found;
2553 }
2554 j += client[j];
2555 j++;
2556 }
2557 i += server[i];
2558 i++;
2559 }
2560
2561 /* There's no overlap between our protocols and the server's list. */
2562 result = client;
2563 status = OPENSSL_NPN_NO_OVERLAP;
2564
2565 found:
2566 *out = (unsigned char *)result + 1;
2567 *outlen = result[0];
2568 return status;
2569 }
2570
2571 #ifndef OPENSSL_NO_NEXTPROTONEG
2572 /*
2573 * SSL_get0_next_proto_negotiated sets *data and *len to point to the
2574 * client's requested protocol for this connection and returns 0. If the
2575 * client didn't request any protocol, then *data is set to NULL. Note that
2576 * the client can request any protocol it chooses. The value returned from
2577 * this function need not be a member of the list of supported protocols
2578 * provided by the callback.
2579 */
2580 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data,
2581 unsigned *len)
2582 {
2583 *data = s->ext.npn;
2584 if (!*data) {
2585 *len = 0;
2586 } else {
2587 *len = (unsigned int)s->ext.npn_len;
2588 }
2589 }
2590
2591 /*
2592 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when
2593 * a TLS server needs a list of supported protocols for Next Protocol
2594 * Negotiation. The returned list must be in wire format. The list is
2595 * returned by setting |out| to point to it and |outlen| to its length. This
2596 * memory will not be modified, but one should assume that the SSL* keeps a
2597 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it
2598 * wishes to advertise. Otherwise, no such extension will be included in the
2599 * ServerHello.
2600 */
2601 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx,
2602 SSL_CTX_npn_advertised_cb_func cb,
2603 void *arg)
2604 {
2605 ctx->ext.npn_advertised_cb = cb;
2606 ctx->ext.npn_advertised_cb_arg = arg;
2607 }
2608
2609 /*
2610 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
2611 * client needs to select a protocol from the server's provided list. |out|
2612 * must be set to point to the selected protocol (which may be within |in|).
2613 * The length of the protocol name must be written into |outlen|. The
2614 * server's advertised protocols are provided in |in| and |inlen|. The
2615 * callback can assume that |in| is syntactically valid. The client must
2616 * select a protocol. It is fatal to the connection if this callback returns
2617 * a value other than SSL_TLSEXT_ERR_OK.
2618 */
2619 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx,
2620 SSL_CTX_npn_select_cb_func cb,
2621 void *arg)
2622 {
2623 ctx->ext.npn_select_cb = cb;
2624 ctx->ext.npn_select_cb_arg = arg;
2625 }
2626 #endif
2627
2628 /*
2629 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|.
2630 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2631 * length-prefixed strings). Returns 0 on success.
2632 */
2633 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos,
2634 unsigned int protos_len)
2635 {
2636 OPENSSL_free(ctx->ext.alpn);
2637 ctx->ext.alpn = OPENSSL_memdup(protos, protos_len);
2638 if (ctx->ext.alpn == NULL) {
2639 SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2640 return 1;
2641 }
2642 ctx->ext.alpn_len = protos_len;
2643
2644 return 0;
2645 }
2646
2647 /*
2648 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|.
2649 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2650 * length-prefixed strings). Returns 0 on success.
2651 */
2652 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos,
2653 unsigned int protos_len)
2654 {
2655 OPENSSL_free(ssl->ext.alpn);
2656 ssl->ext.alpn = OPENSSL_memdup(protos, protos_len);
2657 if (ssl->ext.alpn == NULL) {
2658 SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2659 return 1;
2660 }
2661 ssl->ext.alpn_len = protos_len;
2662
2663 return 0;
2664 }
2665
2666 /*
2667 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is
2668 * called during ClientHello processing in order to select an ALPN protocol
2669 * from the client's list of offered protocols.
2670 */
2671 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
2672 SSL_CTX_alpn_select_cb_func cb,
2673 void *arg)
2674 {
2675 ctx->ext.alpn_select_cb = cb;
2676 ctx->ext.alpn_select_cb_arg = arg;
2677 }
2678
2679 /*
2680 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|.
2681 * On return it sets |*data| to point to |*len| bytes of protocol name
2682 * (not including the leading length-prefix byte). If the server didn't
2683 * respond with a negotiated protocol then |*len| will be zero.
2684 */
2685 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data,
2686 unsigned int *len)
2687 {
2688 *data = NULL;
2689 if (ssl->s3)
2690 *data = ssl->s3->alpn_selected;
2691 if (*data == NULL)
2692 *len = 0;
2693 else
2694 *len = (unsigned int)ssl->s3->alpn_selected_len;
2695 }
2696
2697 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
2698 const char *label, size_t llen,
2699 const unsigned char *context, size_t contextlen,
2700 int use_context)
2701 {
2702 if (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER)
2703 return -1;
2704
2705 return s->method->ssl3_enc->export_keying_material(s, out, olen, label,
2706 llen, context,
2707 contextlen, use_context);
2708 }
2709
2710 static unsigned long ssl_session_hash(const SSL_SESSION *a)
2711 {
2712 const unsigned char *session_id = a->session_id;
2713 unsigned long l;
2714 unsigned char tmp_storage[4];
2715
2716 if (a->session_id_length < sizeof(tmp_storage)) {
2717 memset(tmp_storage, 0, sizeof(tmp_storage));
2718 memcpy(tmp_storage, a->session_id, a->session_id_length);
2719 session_id = tmp_storage;
2720 }
2721
2722 l = (unsigned long)
2723 ((unsigned long)session_id[0]) |
2724 ((unsigned long)session_id[1] << 8L) |
2725 ((unsigned long)session_id[2] << 16L) |
2726 ((unsigned long)session_id[3] << 24L);
2727 return (l);
2728 }
2729
2730 /*
2731 * NB: If this function (or indeed the hash function which uses a sort of
2732 * coarser function than this one) is changed, ensure
2733 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on
2734 * being able to construct an SSL_SESSION that will collide with any existing
2735 * session with a matching session ID.
2736 */
2737 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b)
2738 {
2739 if (a->ssl_version != b->ssl_version)
2740 return (1);
2741 if (a->session_id_length != b->session_id_length)
2742 return (1);
2743 return (memcmp(a->session_id, b->session_id, a->session_id_length));
2744 }
2745
2746 /*
2747 * These wrapper functions should remain rather than redeclaring
2748 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each
2749 * variable. The reason is that the functions aren't static, they're exposed
2750 * via ssl.h.
2751 */
2752
2753 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth)
2754 {
2755 SSL_CTX *ret = NULL;
2756
2757 if (meth == NULL) {
2758 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED);
2759 return (NULL);
2760 }
2761
2762 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL))
2763 return NULL;
2764
2765 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
2766 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
2767 goto err;
2768 }
2769 ret = OPENSSL_zalloc(sizeof(*ret));
2770 if (ret == NULL)
2771 goto err;
2772
2773 ret->method = meth;
2774 ret->min_proto_version = 0;
2775 ret->max_proto_version = 0;
2776 ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
2777 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
2778 /* We take the system default. */
2779 ret->session_timeout = meth->get_timeout();
2780 ret->references = 1;
2781 ret->lock = CRYPTO_THREAD_lock_new();
2782 if (ret->lock == NULL) {
2783 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2784 OPENSSL_free(ret);
2785 return NULL;
2786 }
2787 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
2788 ret->verify_mode = SSL_VERIFY_NONE;
2789 if ((ret->cert = ssl_cert_new()) == NULL)
2790 goto err;
2791
2792 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
2793 if (ret->sessions == NULL)
2794 goto err;
2795 ret->cert_store = X509_STORE_new();
2796 if (ret->cert_store == NULL)
2797 goto err;
2798 #ifndef OPENSSL_NO_CT
2799 ret->ctlog_store = CTLOG_STORE_new();
2800 if (ret->ctlog_store == NULL)
2801 goto err;
2802 #endif
2803 if (!ssl_create_cipher_list(ret->method,
2804 &ret->cipher_list, &ret->cipher_list_by_id,
2805 SSL_DEFAULT_CIPHER_LIST, ret->cert)
2806 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) {
2807 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS);
2808 goto err2;
2809 }
2810
2811 ret->param = X509_VERIFY_PARAM_new();
2812 if (ret->param == NULL)
2813 goto err;
2814
2815 if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) {
2816 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES);
2817 goto err2;
2818 }
2819 if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) {
2820 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES);
2821 goto err2;
2822 }
2823
2824 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL)
2825 goto err;
2826
2827 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data))
2828 goto err;
2829
2830 /* No compression for DTLS */
2831 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS))
2832 ret->comp_methods = SSL_COMP_get_compression_methods();
2833
2834 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2835 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2836
2837 /* Setup RFC5077 ticket keys */
2838 if ((RAND_bytes(ret->ext.tick_key_name,
2839 sizeof(ret->ext.tick_key_name)) <= 0)
2840 || (RAND_bytes(ret->ext.tick_hmac_key,
2841 sizeof(ret->ext.tick_hmac_key)) <= 0)
2842 || (RAND_bytes(ret->ext.tick_aes_key,
2843 sizeof(ret->ext.tick_aes_key)) <= 0))
2844 ret->options |= SSL_OP_NO_TICKET;
2845
2846 #ifndef OPENSSL_NO_SRP
2847 if (!SSL_CTX_SRP_CTX_init(ret))
2848 goto err;
2849 #endif
2850 #ifndef OPENSSL_NO_ENGINE
2851 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO
2852 # define eng_strx(x) #x
2853 # define eng_str(x) eng_strx(x)
2854 /* Use specific client engine automatically... ignore errors */
2855 {
2856 ENGINE *eng;
2857 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2858 if (!eng) {
2859 ERR_clear_error();
2860 ENGINE_load_builtin_engines();
2861 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2862 }
2863 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng))
2864 ERR_clear_error();
2865 }
2866 # endif
2867 #endif
2868 /*
2869 * Default is to connect to non-RI servers. When RI is more widely
2870 * deployed might change this.
2871 */
2872 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT;
2873 /*
2874 * Disable compression by default to prevent CRIME. Applications can
2875 * re-enable compression by configuring
2876 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION);
2877 * or by using the SSL_CONF library.
2878 */
2879 ret->options |= SSL_OP_NO_COMPRESSION;
2880
2881 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing;
2882
2883 /*
2884 * Default max early data is a fully loaded single record. Could be split
2885 * across multiple records in practice
2886 */
2887 ret->max_early_data = SSL3_RT_MAX_PLAIN_LENGTH;
2888
2889 return ret;
2890 err:
2891 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2892 err2:
2893 SSL_CTX_free(ret);
2894 return NULL;
2895 }
2896
2897 int SSL_CTX_up_ref(SSL_CTX *ctx)
2898 {
2899 int i;
2900
2901 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0)
2902 return 0;
2903
2904 REF_PRINT_COUNT("SSL_CTX", ctx);
2905 REF_ASSERT_ISNT(i < 2);
2906 return ((i > 1) ? 1 : 0);
2907 }
2908
2909 void SSL_CTX_free(SSL_CTX *a)
2910 {
2911 int i;
2912
2913 if (a == NULL)
2914 return;
2915
2916 CRYPTO_DOWN_REF(&a->references, &i, a->lock);
2917 REF_PRINT_COUNT("SSL_CTX", a);
2918 if (i > 0)
2919 return;
2920 REF_ASSERT_ISNT(i < 0);
2921
2922 X509_VERIFY_PARAM_free(a->param);
2923 dane_ctx_final(&a->dane);
2924
2925 /*
2926 * Free internal session cache. However: the remove_cb() may reference
2927 * the ex_data of SSL_CTX, thus the ex_data store can only be removed
2928 * after the sessions were flushed.
2929 * As the ex_data handling routines might also touch the session cache,
2930 * the most secure solution seems to be: empty (flush) the cache, then
2931 * free ex_data, then finally free the cache.
2932 * (See ticket [openssl.org #212].)
2933 */
2934 if (a->sessions != NULL)
2935 SSL_CTX_flush_sessions(a, 0);
2936
2937 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data);
2938 lh_SSL_SESSION_free(a->sessions);
2939 X509_STORE_free(a->cert_store);
2940 #ifndef OPENSSL_NO_CT
2941 CTLOG_STORE_free(a->ctlog_store);
2942 #endif
2943 sk_SSL_CIPHER_free(a->cipher_list);
2944 sk_SSL_CIPHER_free(a->cipher_list_by_id);
2945 ssl_cert_free(a->cert);
2946 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free);
2947 sk_X509_pop_free(a->extra_certs, X509_free);
2948 a->comp_methods = NULL;
2949 #ifndef OPENSSL_NO_SRTP
2950 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles);
2951 #endif
2952 #ifndef OPENSSL_NO_SRP
2953 SSL_CTX_SRP_CTX_free(a);
2954 #endif
2955 #ifndef OPENSSL_NO_ENGINE
2956 ENGINE_finish(a->client_cert_engine);
2957 #endif
2958
2959 #ifndef OPENSSL_NO_EC
2960 OPENSSL_free(a->ext.ecpointformats);
2961 OPENSSL_free(a->ext.supportedgroups);
2962 #endif
2963 OPENSSL_free(a->ext.alpn);
2964
2965 CRYPTO_THREAD_lock_free(a->lock);
2966
2967 OPENSSL_free(a);
2968 }
2969
2970 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb)
2971 {
2972 ctx->default_passwd_callback = cb;
2973 }
2974
2975 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u)
2976 {
2977 ctx->default_passwd_callback_userdata = u;
2978 }
2979
2980 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx)
2981 {
2982 return ctx->default_passwd_callback;
2983 }
2984
2985 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx)
2986 {
2987 return ctx->default_passwd_callback_userdata;
2988 }
2989
2990 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb)
2991 {
2992 s->default_passwd_callback = cb;
2993 }
2994
2995 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u)
2996 {
2997 s->default_passwd_callback_userdata = u;
2998 }
2999
3000 pem_password_cb *SSL_get_default_passwd_cb(SSL *s)
3001 {
3002 return s->default_passwd_callback;
3003 }
3004
3005 void *SSL_get_default_passwd_cb_userdata(SSL *s)
3006 {
3007 return s->default_passwd_callback_userdata;
3008 }
3009
3010 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
3011 int (*cb) (X509_STORE_CTX *, void *),
3012 void *arg)
3013 {
3014 ctx->app_verify_callback = cb;
3015 ctx->app_verify_arg = arg;
3016 }
3017
3018 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
3019 int (*cb) (int, X509_STORE_CTX *))
3020 {
3021 ctx->verify_mode = mode;
3022 ctx->default_verify_callback = cb;
3023 }
3024
3025 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth)
3026 {
3027 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
3028 }
3029
3030 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg)
3031 {
3032 ssl_cert_set_cert_cb(c->cert, cb, arg);
3033 }
3034
3035 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg)
3036 {
3037 ssl_cert_set_cert_cb(s->cert, cb, arg);
3038 }
3039
3040 void ssl_set_masks(SSL *s)
3041 {
3042 CERT *c = s->cert;
3043 uint32_t *pvalid = s->s3->tmp.valid_flags;
3044 int rsa_enc, rsa_sign, dh_tmp, dsa_sign;
3045 unsigned long mask_k, mask_a;
3046 #ifndef OPENSSL_NO_EC
3047 int have_ecc_cert, ecdsa_ok;
3048 #endif
3049 if (c == NULL)
3050 return;
3051
3052 #ifndef OPENSSL_NO_DH
3053 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto);
3054 #else
3055 dh_tmp = 0;
3056 #endif
3057
3058 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3059 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3060 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID;
3061 #ifndef OPENSSL_NO_EC
3062 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID;
3063 #endif
3064 mask_k = 0;
3065 mask_a = 0;
3066
3067 #ifdef CIPHER_DEBUG
3068 fprintf(stderr, "dht=%d re=%d rs=%d ds=%d\n",
3069 dh_tmp, rsa_enc, rsa_sign, dsa_sign);
3070 #endif
3071
3072 #ifndef OPENSSL_NO_GOST
3073 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) {
3074 mask_k |= SSL_kGOST;
3075 mask_a |= SSL_aGOST12;
3076 }
3077 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) {
3078 mask_k |= SSL_kGOST;
3079 mask_a |= SSL_aGOST12;
3080 }
3081 if (ssl_has_cert(s, SSL_PKEY_GOST01)) {
3082 mask_k |= SSL_kGOST;
3083 mask_a |= SSL_aGOST01;
3084 }
3085 #endif
3086
3087 if (rsa_enc)
3088 mask_k |= SSL_kRSA;
3089
3090 if (dh_tmp)
3091 mask_k |= SSL_kDHE;
3092
3093 /*
3094 * If we only have an RSA-PSS certificate allow RSA authentication
3095 * if TLS 1.2 and peer supports it.
3096 */
3097
3098 if (rsa_enc || rsa_sign || (ssl_has_cert(s, SSL_PKEY_RSA_PSS_SIGN)
3099 && pvalid[SSL_PKEY_RSA_PSS_SIGN] & CERT_PKEY_EXPLICIT_SIGN
3100 && TLS1_get_version(s) == TLS1_2_VERSION))
3101 mask_a |= SSL_aRSA;
3102
3103 if (dsa_sign) {
3104 mask_a |= SSL_aDSS;
3105 }
3106
3107 mask_a |= SSL_aNULL;
3108
3109 /*
3110 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites
3111 * depending on the key usage extension.
3112 */
3113 #ifndef OPENSSL_NO_EC
3114 if (have_ecc_cert) {
3115 uint32_t ex_kusage;
3116 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509);
3117 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE;
3118 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN))
3119 ecdsa_ok = 0;
3120 if (ecdsa_ok)
3121 mask_a |= SSL_aECDSA;
3122 }
3123 /* Allow Ed25519 for TLS 1.2 if peer supports it */
3124 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED25519)
3125 && pvalid[SSL_PKEY_ED25519] & CERT_PKEY_EXPLICIT_SIGN
3126 && TLS1_get_version(s) == TLS1_2_VERSION)
3127 mask_a |= SSL_aECDSA;
3128 #endif
3129
3130 #ifndef OPENSSL_NO_EC
3131 mask_k |= SSL_kECDHE;
3132 #endif
3133
3134 #ifndef OPENSSL_NO_PSK
3135 mask_k |= SSL_kPSK;
3136 mask_a |= SSL_aPSK;
3137 if (mask_k & SSL_kRSA)
3138 mask_k |= SSL_kRSAPSK;
3139 if (mask_k & SSL_kDHE)
3140 mask_k |= SSL_kDHEPSK;
3141 if (mask_k & SSL_kECDHE)
3142 mask_k |= SSL_kECDHEPSK;
3143 #endif
3144
3145 s->s3->tmp.mask_k = mask_k;
3146 s->s3->tmp.mask_a = mask_a;
3147 }
3148
3149 #ifndef OPENSSL_NO_EC
3150
3151 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s)
3152 {
3153 if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aECDSA) {
3154 /* key usage, if present, must allow signing */
3155 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) {
3156 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG,
3157 SSL_R_ECC_CERT_NOT_FOR_SIGNING);
3158 return 0;
3159 }
3160 }
3161 return 1; /* all checks are ok */
3162 }
3163
3164 #endif
3165
3166 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo,
3167 size_t *serverinfo_length)
3168 {
3169 CERT_PKEY *cpk = s->s3->tmp.cert;
3170 *serverinfo_length = 0;
3171
3172 if (cpk == NULL || cpk->serverinfo == NULL)
3173 return 0;
3174
3175 *serverinfo = cpk->serverinfo;
3176 *serverinfo_length = cpk->serverinfo_length;
3177 return 1;
3178 }
3179
3180 void ssl_update_cache(SSL *s, int mode)
3181 {
3182 int i;
3183
3184 /*
3185 * If the session_id_length is 0, we are not supposed to cache it, and it
3186 * would be rather hard to do anyway :-)
3187 */
3188 if (s->session->session_id_length == 0)
3189 return;
3190
3191 i = s->session_ctx->session_cache_mode;
3192 if ((i & mode) != 0
3193 && (!s->hit || SSL_IS_TLS13(s))
3194 && ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) != 0
3195 || SSL_CTX_add_session(s->session_ctx, s->session))
3196 && s->session_ctx->new_session_cb != NULL) {
3197 SSL_SESSION_up_ref(s->session);
3198 if (!s->session_ctx->new_session_cb(s, s->session))
3199 SSL_SESSION_free(s->session);
3200 }
3201
3202 /* auto flush every 255 connections */
3203 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) {
3204 if ((((mode & SSL_SESS_CACHE_CLIENT)
3205 ? s->session_ctx->stats.sess_connect_good
3206 : s->session_ctx->stats.sess_accept_good) & 0xff) == 0xff) {
3207 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL));
3208 }
3209 }
3210 }
3211
3212 const SSL_METHOD *SSL_CTX_get_ssl_method(SSL_CTX *ctx)
3213 {
3214 return ctx->method;
3215 }
3216
3217 const SSL_METHOD *SSL_get_ssl_method(SSL *s)
3218 {
3219 return (s->method);
3220 }
3221
3222 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth)
3223 {
3224 int ret = 1;
3225
3226 if (s->method != meth) {
3227 const SSL_METHOD *sm = s->method;
3228 int (*hf) (SSL *) = s->handshake_func;
3229
3230 if (sm->version == meth->version)
3231 s->method = meth;
3232 else {
3233 sm->ssl_free(s);
3234 s->method = meth;
3235 ret = s->method->ssl_new(s);
3236 }
3237
3238 if (hf == sm->ssl_connect)
3239 s->handshake_func = meth->ssl_connect;
3240 else if (hf == sm->ssl_accept)
3241 s->handshake_func = meth->ssl_accept;
3242 }
3243 return (ret);
3244 }
3245
3246 int SSL_get_error(const SSL *s, int i)
3247 {
3248 int reason;
3249 unsigned long l;
3250 BIO *bio;
3251
3252 if (i > 0)
3253 return (SSL_ERROR_NONE);
3254
3255 /*
3256 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
3257 * where we do encode the error
3258 */
3259 if ((l = ERR_peek_error()) != 0) {
3260 if (ERR_GET_LIB(l) == ERR_LIB_SYS)
3261 return (SSL_ERROR_SYSCALL);
3262 else
3263 return (SSL_ERROR_SSL);
3264 }
3265
3266 if (SSL_want_read(s)) {
3267 bio = SSL_get_rbio(s);
3268 if (BIO_should_read(bio))
3269 return (SSL_ERROR_WANT_READ);
3270 else if (BIO_should_write(bio))
3271 /*
3272 * This one doesn't make too much sense ... We never try to write
3273 * to the rbio, and an application program where rbio and wbio
3274 * are separate couldn't even know what it should wait for.
3275 * However if we ever set s->rwstate incorrectly (so that we have
3276 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and
3277 * wbio *are* the same, this test works around that bug; so it
3278 * might be safer to keep it.
3279 */
3280 return (SSL_ERROR_WANT_WRITE);
3281 else if (BIO_should_io_special(bio)) {
3282 reason = BIO_get_retry_reason(bio);
3283 if (reason == BIO_RR_CONNECT)
3284 return (SSL_ERROR_WANT_CONNECT);
3285 else if (reason == BIO_RR_ACCEPT)
3286 return (SSL_ERROR_WANT_ACCEPT);
3287 else
3288 return (SSL_ERROR_SYSCALL); /* unknown */
3289 }
3290 }
3291
3292 if (SSL_want_write(s)) {
3293 /* Access wbio directly - in order to use the buffered bio if present */
3294 bio = s->wbio;
3295 if (BIO_should_write(bio))
3296 return (SSL_ERROR_WANT_WRITE);
3297 else if (BIO_should_read(bio))
3298 /*
3299 * See above (SSL_want_read(s) with BIO_should_write(bio))
3300 */
3301 return (SSL_ERROR_WANT_READ);
3302 else if (BIO_should_io_special(bio)) {
3303 reason = BIO_get_retry_reason(bio);
3304 if (reason == BIO_RR_CONNECT)
3305 return (SSL_ERROR_WANT_CONNECT);
3306 else if (reason == BIO_RR_ACCEPT)
3307 return (SSL_ERROR_WANT_ACCEPT);
3308 else
3309 return (SSL_ERROR_SYSCALL);
3310 }
3311 }
3312 if (SSL_want_x509_lookup(s))
3313 return (SSL_ERROR_WANT_X509_LOOKUP);
3314 if (SSL_want_async(s))
3315 return SSL_ERROR_WANT_ASYNC;
3316 if (SSL_want_async_job(s))
3317 return SSL_ERROR_WANT_ASYNC_JOB;
3318 if (SSL_want_client_hello_cb(s))
3319 return SSL_ERROR_WANT_CLIENT_HELLO_CB;
3320
3321 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
3322 (s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY))
3323 return (SSL_ERROR_ZERO_RETURN);
3324
3325 return (SSL_ERROR_SYSCALL);
3326 }
3327
3328 static int ssl_do_handshake_intern(void *vargs)
3329 {
3330 struct ssl_async_args *args;
3331 SSL *s;
3332
3333 args = (struct ssl_async_args *)vargs;
3334 s = args->s;
3335
3336 return s->handshake_func(s);
3337 }
3338
3339 int SSL_do_handshake(SSL *s)
3340 {
3341 int ret = 1;
3342
3343 if (s->handshake_func == NULL) {
3344 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET);
3345 return -1;
3346 }
3347
3348 ossl_statem_check_finish_init(s, -1);
3349
3350 s->method->ssl_renegotiate_check(s, 0);
3351
3352 if (SSL_is_server(s)) {
3353 /* clear SNI settings at server-side */
3354 OPENSSL_free(s->ext.hostname);
3355 s->ext.hostname = NULL;
3356 }
3357
3358 if (SSL_in_init(s) || SSL_in_before(s)) {
3359 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
3360 struct ssl_async_args args;
3361
3362 args.s = s;
3363
3364 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern);
3365 } else {
3366 ret = s->handshake_func(s);
3367 }
3368 }
3369 return ret;
3370 }
3371
3372 void SSL_set_accept_state(SSL *s)
3373 {
3374 s->server = 1;
3375 s->shutdown = 0;
3376 ossl_statem_clear(s);
3377 s->handshake_func = s->method->ssl_accept;
3378 clear_ciphers(s);
3379 }
3380
3381 void SSL_set_connect_state(SSL *s)
3382 {
3383 s->server = 0;
3384 s->shutdown = 0;
3385 ossl_statem_clear(s);
3386 s->handshake_func = s->method->ssl_connect;
3387 clear_ciphers(s);
3388 }
3389
3390 int ssl_undefined_function(SSL *s)
3391 {
3392 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3393 return (0);
3394 }
3395
3396 int ssl_undefined_void_function(void)
3397 {
3398 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION,
3399 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3400 return (0);
3401 }
3402
3403 int ssl_undefined_const_function(const SSL *s)
3404 {
3405 return (0);
3406 }
3407
3408 const SSL_METHOD *ssl_bad_method(int ver)
3409 {
3410 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3411 return (NULL);
3412 }
3413
3414 const char *ssl_protocol_to_string(int version)
3415 {
3416 switch(version)
3417 {
3418 case TLS1_3_VERSION:
3419 return "TLSv1.3";
3420
3421 case TLS1_2_VERSION:
3422 return "TLSv1.2";
3423
3424 case TLS1_1_VERSION:
3425 return "TLSv1.1";
3426
3427 case TLS1_VERSION:
3428 return "TLSv1";
3429
3430 case SSL3_VERSION:
3431 return "SSLv3";
3432
3433 case DTLS1_BAD_VER:
3434 return "DTLSv0.9";
3435
3436 case DTLS1_VERSION:
3437 return "DTLSv1";
3438
3439 case DTLS1_2_VERSION:
3440 return "DTLSv1.2";
3441
3442 default:
3443 return "unknown";
3444 }
3445 }
3446
3447 const char *SSL_get_version(const SSL *s)
3448 {
3449 return ssl_protocol_to_string(s->version);
3450 }
3451
3452 SSL *SSL_dup(SSL *s)
3453 {
3454 STACK_OF(X509_NAME) *sk;
3455 X509_NAME *xn;
3456 SSL *ret;
3457 int i;
3458
3459 /* If we're not quiescent, just up_ref! */
3460 if (!SSL_in_init(s) || !SSL_in_before(s)) {
3461 CRYPTO_UP_REF(&s->references, &i, s->lock);
3462 return s;
3463 }
3464
3465 /*
3466 * Otherwise, copy configuration state, and session if set.
3467 */
3468 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL)
3469 return (NULL);
3470
3471 if (s->session != NULL) {
3472 /*
3473 * Arranges to share the same session via up_ref. This "copies"
3474 * session-id, SSL_METHOD, sid_ctx, and 'cert'
3475 */
3476 if (!SSL_copy_session_id(ret, s))
3477 goto err;
3478 } else {
3479 /*
3480 * No session has been established yet, so we have to expect that
3481 * s->cert or ret->cert will be changed later -- they should not both
3482 * point to the same object, and thus we can't use
3483 * SSL_copy_session_id.
3484 */
3485 if (!SSL_set_ssl_method(ret, s->method))
3486 goto err;
3487
3488 if (s->cert != NULL) {
3489 ssl_cert_free(ret->cert);
3490 ret->cert = ssl_cert_dup(s->cert);
3491 if (ret->cert == NULL)
3492 goto err;
3493 }
3494
3495 if (!SSL_set_session_id_context(ret, s->sid_ctx,
3496 (int)s->sid_ctx_length))
3497 goto err;
3498 }
3499
3500 if (!ssl_dane_dup(ret, s))
3501 goto err;
3502 ret->version = s->version;
3503 ret->options = s->options;
3504 ret->mode = s->mode;
3505 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s));
3506 SSL_set_read_ahead(ret, SSL_get_read_ahead(s));
3507 ret->msg_callback = s->msg_callback;
3508 ret->msg_callback_arg = s->msg_callback_arg;
3509 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s));
3510 SSL_set_verify_depth(ret, SSL_get_verify_depth(s));
3511 ret->generate_session_id = s->generate_session_id;
3512
3513 SSL_set_info_callback(ret, SSL_get_info_callback(s));
3514
3515 /* copy app data, a little dangerous perhaps */
3516 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data))
3517 goto err;
3518
3519 /* setup rbio, and wbio */
3520 if (s->rbio != NULL) {
3521 if (!BIO_dup_state(s->rbio, (char *)&ret->rbio))
3522 goto err;
3523 }
3524 if (s->wbio != NULL) {
3525 if (s->wbio != s->rbio) {
3526 if (!BIO_dup_state(s->wbio, (char *)&ret->wbio))
3527 goto err;
3528 } else {
3529 BIO_up_ref(ret->rbio);
3530 ret->wbio = ret->rbio;
3531 }
3532 }
3533
3534 ret->server = s->server;
3535 if (s->handshake_func) {
3536 if (s->server)
3537 SSL_set_accept_state(ret);
3538 else
3539 SSL_set_connect_state(ret);
3540 }
3541 ret->shutdown = s->shutdown;
3542 ret->hit = s->hit;
3543
3544 ret->default_passwd_callback = s->default_passwd_callback;
3545 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata;
3546
3547 X509_VERIFY_PARAM_inherit(ret->param, s->param);
3548
3549 /* dup the cipher_list and cipher_list_by_id stacks */
3550 if (s->cipher_list != NULL) {
3551 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL)
3552 goto err;
3553 }
3554 if (s->cipher_list_by_id != NULL)
3555 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id))
3556 == NULL)
3557 goto err;
3558
3559 /* Dup the client_CA list */
3560 if (s->ca_names != NULL) {
3561 if ((sk = sk_X509_NAME_dup(s->ca_names)) == NULL)
3562 goto err;
3563 ret->ca_names = sk;
3564 for (i = 0; i < sk_X509_NAME_num(sk); i++) {
3565 xn = sk_X509_NAME_value(sk, i);
3566 if (sk_X509_NAME_set(sk, i, X509_NAME_dup(xn)) == NULL) {
3567 X509_NAME_free(xn);
3568 goto err;
3569 }
3570 }
3571 }
3572 return ret;
3573
3574 err:
3575 SSL_free(ret);
3576 return NULL;
3577 }
3578
3579 void ssl_clear_cipher_ctx(SSL *s)
3580 {
3581 if (s->enc_read_ctx != NULL) {
3582 EVP_CIPHER_CTX_free(s->enc_read_ctx);
3583 s->enc_read_ctx = NULL;
3584 }
3585 if (s->enc_write_ctx != NULL) {
3586 EVP_CIPHER_CTX_free(s->enc_write_ctx);
3587 s->enc_write_ctx = NULL;
3588 }
3589 #ifndef OPENSSL_NO_COMP
3590 COMP_CTX_free(s->expand);
3591 s->expand = NULL;
3592 COMP_CTX_free(s->compress);
3593 s->compress = NULL;
3594 #endif
3595 }
3596
3597 X509 *SSL_get_certificate(const SSL *s)
3598 {
3599 if (s->cert != NULL)
3600 return (s->cert->key->x509);
3601 else
3602 return (NULL);
3603 }
3604
3605 EVP_PKEY *SSL_get_privatekey(const SSL *s)
3606 {
3607 if (s->cert != NULL)
3608 return (s->cert->key->privatekey);
3609 else
3610 return (NULL);
3611 }
3612
3613 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx)
3614 {
3615 if (ctx->cert != NULL)
3616 return ctx->cert->key->x509;
3617 else
3618 return NULL;
3619 }
3620
3621 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx)
3622 {
3623 if (ctx->cert != NULL)
3624 return ctx->cert->key->privatekey;
3625 else
3626 return NULL;
3627 }
3628
3629 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s)
3630 {
3631 if ((s->session != NULL) && (s->session->cipher != NULL))
3632 return (s->session->cipher);
3633 return (NULL);
3634 }
3635
3636 const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s)
3637 {
3638 return s->s3->tmp.new_cipher;
3639 }
3640
3641 const COMP_METHOD *SSL_get_current_compression(SSL *s)
3642 {
3643 #ifndef OPENSSL_NO_COMP
3644 return s->compress ? COMP_CTX_get_method(s->compress) : NULL;
3645 #else
3646 return NULL;
3647 #endif
3648 }
3649
3650 const COMP_METHOD *SSL_get_current_expansion(SSL *s)
3651 {
3652 #ifndef OPENSSL_NO_COMP
3653 return s->expand ? COMP_CTX_get_method(s->expand) : NULL;
3654 #else
3655 return NULL;
3656 #endif
3657 }
3658
3659 int ssl_init_wbio_buffer(SSL *s)
3660 {
3661 BIO *bbio;
3662
3663 if (s->bbio != NULL) {
3664 /* Already buffered. */
3665 return 1;
3666 }
3667
3668 bbio = BIO_new(BIO_f_buffer());
3669 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) {
3670 BIO_free(bbio);
3671 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB);
3672 return 0;
3673 }
3674 s->bbio = bbio;
3675 s->wbio = BIO_push(bbio, s->wbio);
3676
3677 return 1;
3678 }
3679
3680 int ssl_free_wbio_buffer(SSL *s)
3681 {
3682 /* callers ensure s is never null */
3683 if (s->bbio == NULL)
3684 return 1;
3685
3686 s->wbio = BIO_pop(s->wbio);
3687 if (!ossl_assert(s->wbio != NULL))
3688 return 0;
3689 BIO_free(s->bbio);
3690 s->bbio = NULL;
3691
3692 return 1;
3693 }
3694
3695 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode)
3696 {
3697 ctx->quiet_shutdown = mode;
3698 }
3699
3700 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx)
3701 {
3702 return (ctx->quiet_shutdown);
3703 }
3704
3705 void SSL_set_quiet_shutdown(SSL *s, int mode)
3706 {
3707 s->quiet_shutdown = mode;
3708 }
3709
3710 int SSL_get_quiet_shutdown(const SSL *s)
3711 {
3712 return (s->quiet_shutdown);
3713 }
3714
3715 void SSL_set_shutdown(SSL *s, int mode)
3716 {
3717 s->shutdown = mode;
3718 }
3719
3720 int SSL_get_shutdown(const SSL *s)
3721 {
3722 return s->shutdown;
3723 }
3724
3725 int SSL_version(const SSL *s)
3726 {
3727 return s->version;
3728 }
3729
3730 int SSL_client_version(const SSL *s)
3731 {
3732 return s->client_version;
3733 }
3734
3735 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl)
3736 {
3737 return ssl->ctx;
3738 }
3739
3740 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx)
3741 {
3742 CERT *new_cert;
3743 if (ssl->ctx == ctx)
3744 return ssl->ctx;
3745 if (ctx == NULL)
3746 ctx = ssl->session_ctx;
3747 new_cert = ssl_cert_dup(ctx->cert);
3748 if (new_cert == NULL) {
3749 return NULL;
3750 }
3751
3752 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) {
3753 ssl_cert_free(new_cert);
3754 return NULL;
3755 }
3756
3757 ssl_cert_free(ssl->cert);
3758 ssl->cert = new_cert;
3759
3760 /*
3761 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH),
3762 * so setter APIs must prevent invalid lengths from entering the system.
3763 */
3764 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx)))
3765 return NULL;
3766
3767 /*
3768 * If the session ID context matches that of the parent SSL_CTX,
3769 * inherit it from the new SSL_CTX as well. If however the context does
3770 * not match (i.e., it was set per-ssl with SSL_set_session_id_context),
3771 * leave it unchanged.
3772 */
3773 if ((ssl->ctx != NULL) &&
3774 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) &&
3775 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) {
3776 ssl->sid_ctx_length = ctx->sid_ctx_length;
3777 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx));
3778 }
3779
3780 SSL_CTX_up_ref(ctx);
3781 SSL_CTX_free(ssl->ctx); /* decrement reference count */
3782 ssl->ctx = ctx;
3783
3784 return ssl->ctx;
3785 }
3786
3787 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx)
3788 {
3789 return (X509_STORE_set_default_paths(ctx->cert_store));
3790 }
3791
3792 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx)
3793 {
3794 X509_LOOKUP *lookup;
3795
3796 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir());
3797 if (lookup == NULL)
3798 return 0;
3799 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
3800
3801 /* Clear any errors if the default directory does not exist */
3802 ERR_clear_error();
3803
3804 return 1;
3805 }
3806
3807 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx)
3808 {
3809 X509_LOOKUP *lookup;
3810
3811 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file());
3812 if (lookup == NULL)
3813 return 0;
3814
3815 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT);
3816
3817 /* Clear any errors if the default file does not exist */
3818 ERR_clear_error();
3819
3820 return 1;
3821 }
3822
3823 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
3824 const char *CApath)
3825 {
3826 return (X509_STORE_load_locations(ctx->cert_store, CAfile, CApath));
3827 }
3828
3829 void SSL_set_info_callback(SSL *ssl,
3830 void (*cb) (const SSL *ssl, int type, int val))
3831 {
3832 ssl->info_callback = cb;
3833 }
3834
3835 /*
3836 * One compiler (Diab DCC) doesn't like argument names in returned function
3837 * pointer.
3838 */
3839 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ ,
3840 int /* type */ ,
3841 int /* val */ ) {
3842 return ssl->info_callback;
3843 }
3844
3845 void SSL_set_verify_result(SSL *ssl, long arg)
3846 {
3847 ssl->verify_result = arg;
3848 }
3849
3850 long SSL_get_verify_result(const SSL *ssl)
3851 {
3852 return (ssl->verify_result);
3853 }
3854
3855 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen)
3856 {
3857 if (outlen == 0)
3858 return sizeof(ssl->s3->client_random);
3859 if (outlen > sizeof(ssl->s3->client_random))
3860 outlen = sizeof(ssl->s3->client_random);
3861 memcpy(out, ssl->s3->client_random, outlen);
3862 return outlen;
3863 }
3864
3865 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen)
3866 {
3867 if (outlen == 0)
3868 return sizeof(ssl->s3->server_random);
3869 if (outlen > sizeof(ssl->s3->server_random))
3870 outlen = sizeof(ssl->s3->server_random);
3871 memcpy(out, ssl->s3->server_random, outlen);
3872 return outlen;
3873 }
3874
3875 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session,
3876 unsigned char *out, size_t outlen)
3877 {
3878 if (outlen == 0)
3879 return session->master_key_length;
3880 if (outlen > session->master_key_length)
3881 outlen = session->master_key_length;
3882 memcpy(out, session->master_key, outlen);
3883 return outlen;
3884 }
3885
3886 int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in,
3887 size_t len)
3888 {
3889 if (len > sizeof(sess->master_key))
3890 return 0;
3891
3892 memcpy(sess->master_key, in, len);
3893 sess->master_key_length = len;
3894 return 1;
3895 }
3896
3897
3898 int SSL_set_ex_data(SSL *s, int idx, void *arg)
3899 {
3900 return (CRYPTO_set_ex_data(&s->ex_data, idx, arg));
3901 }
3902
3903 void *SSL_get_ex_data(const SSL *s, int idx)
3904 {
3905 return (CRYPTO_get_ex_data(&s->ex_data, idx));
3906 }
3907
3908 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg)
3909 {
3910 return (CRYPTO_set_ex_data(&s->ex_data, idx, arg));
3911 }
3912
3913 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx)
3914 {
3915 return (CRYPTO_get_ex_data(&s->ex_data, idx));
3916 }
3917
3918 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx)
3919 {
3920 return (ctx->cert_store);
3921 }
3922
3923 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store)
3924 {
3925 X509_STORE_free(ctx->cert_store);
3926 ctx->cert_store = store;
3927 }
3928
3929 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store)
3930 {
3931 if (store != NULL)
3932 X509_STORE_up_ref(store);
3933 SSL_CTX_set_cert_store(ctx, store);
3934 }
3935
3936 int SSL_want(const SSL *s)
3937 {
3938 return (s->rwstate);
3939 }
3940
3941 /**
3942 * \brief Set the callback for generating temporary DH keys.
3943 * \param ctx the SSL context.
3944 * \param dh the callback
3945 */
3946
3947 #ifndef OPENSSL_NO_DH
3948 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
3949 DH *(*dh) (SSL *ssl, int is_export,
3950 int keylength))
3951 {
3952 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
3953 }
3954
3955 void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export,
3956 int keylength))
3957 {
3958 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
3959 }
3960 #endif
3961
3962 #ifndef OPENSSL_NO_PSK
3963 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint)
3964 {
3965 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
3966 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
3967 return 0;
3968 }
3969 OPENSSL_free(ctx->cert->psk_identity_hint);
3970 if (identity_hint != NULL) {
3971 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
3972 if (ctx->cert->psk_identity_hint == NULL)
3973 return 0;
3974 } else
3975 ctx->cert->psk_identity_hint = NULL;
3976 return 1;
3977 }
3978
3979 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint)
3980 {
3981 if (s == NULL)
3982 return 0;
3983
3984 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
3985 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
3986 return 0;
3987 }
3988 OPENSSL_free(s->cert->psk_identity_hint);
3989 if (identity_hint != NULL) {
3990 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
3991 if (s->cert->psk_identity_hint == NULL)
3992 return 0;
3993 } else
3994 s->cert->psk_identity_hint = NULL;
3995 return 1;
3996 }
3997
3998 const char *SSL_get_psk_identity_hint(const SSL *s)
3999 {
4000 if (s == NULL || s->session == NULL)
4001 return NULL;
4002 return (s->session->psk_identity_hint);
4003 }
4004
4005 const char *SSL_get_psk_identity(const SSL *s)
4006 {
4007 if (s == NULL || s->session == NULL)
4008 return NULL;
4009 return (s->session->psk_identity);
4010 }
4011
4012 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb)
4013 {
4014 s->psk_client_callback = cb;
4015 }
4016
4017 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb)
4018 {
4019 ctx->psk_client_callback = cb;
4020 }
4021
4022 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb)
4023 {
4024 s->psk_server_callback = cb;
4025 }
4026
4027 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb)
4028 {
4029 ctx->psk_server_callback = cb;
4030 }
4031 #endif
4032
4033 void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb)
4034 {
4035 s->psk_find_session_cb = cb;
4036 }
4037
4038 void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx,
4039 SSL_psk_find_session_cb_func cb)
4040 {
4041 ctx->psk_find_session_cb = cb;
4042 }
4043
4044 void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb)
4045 {
4046 s->psk_use_session_cb = cb;
4047 }
4048
4049 void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx,
4050 SSL_psk_use_session_cb_func cb)
4051 {
4052 ctx->psk_use_session_cb = cb;
4053 }
4054
4055 void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
4056 void (*cb) (int write_p, int version,
4057 int content_type, const void *buf,
4058 size_t len, SSL *ssl, void *arg))
4059 {
4060 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4061 }
4062
4063 void SSL_set_msg_callback(SSL *ssl,
4064 void (*cb) (int write_p, int version,
4065 int content_type, const void *buf,
4066 size_t len, SSL *ssl, void *arg))
4067 {
4068 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4069 }
4070
4071 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx,
4072 int (*cb) (SSL *ssl,
4073 int
4074 is_forward_secure))
4075 {
4076 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4077 (void (*)(void))cb);
4078 }
4079
4080 void SSL_set_not_resumable_session_callback(SSL *ssl,
4081 int (*cb) (SSL *ssl,
4082 int is_forward_secure))
4083 {
4084 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4085 (void (*)(void))cb);
4086 }
4087
4088 void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx,
4089 size_t (*cb) (SSL *ssl, int type,
4090 size_t len, void *arg))
4091 {
4092 ctx->record_padding_cb = cb;
4093 }
4094
4095 void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg)
4096 {
4097 ctx->record_padding_arg = arg;
4098 }
4099
4100 void *SSL_CTX_get_record_padding_callback_arg(SSL_CTX *ctx)
4101 {
4102 return ctx->record_padding_arg;
4103 }
4104
4105 int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size)
4106 {
4107 /* block size of 0 or 1 is basically no padding */
4108 if (block_size == 1)
4109 ctx->block_padding = 0;
4110 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4111 ctx->block_padding = block_size;
4112 else
4113 return 0;
4114 return 1;
4115 }
4116
4117 void SSL_set_record_padding_callback(SSL *ssl,
4118 size_t (*cb) (SSL *ssl, int type,
4119 size_t len, void *arg))
4120 {
4121 ssl->record_padding_cb = cb;
4122 }
4123
4124 void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg)
4125 {
4126 ssl->record_padding_arg = arg;
4127 }
4128
4129 void *SSL_get_record_padding_callback_arg(SSL *ssl)
4130 {
4131 return ssl->record_padding_arg;
4132 }
4133
4134 int SSL_set_block_padding(SSL *ssl, size_t block_size)
4135 {
4136 /* block size of 0 or 1 is basically no padding */
4137 if (block_size == 1)
4138 ssl->block_padding = 0;
4139 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4140 ssl->block_padding = block_size;
4141 else
4142 return 0;
4143 return 1;
4144 }
4145
4146 /*
4147 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer
4148 * variable, freeing EVP_MD_CTX previously stored in that variable, if any.
4149 * If EVP_MD pointer is passed, initializes ctx with this |md|.
4150 * Returns the newly allocated ctx;
4151 */
4152
4153 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md)
4154 {
4155 ssl_clear_hash_ctx(hash);
4156 *hash = EVP_MD_CTX_new();
4157 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) {
4158 EVP_MD_CTX_free(*hash);
4159 *hash = NULL;
4160 return NULL;
4161 }
4162 return *hash;
4163 }
4164
4165 void ssl_clear_hash_ctx(EVP_MD_CTX **hash)
4166 {
4167
4168 EVP_MD_CTX_free(*hash);
4169 *hash = NULL;
4170 }
4171
4172 /* Retrieve handshake hashes */
4173 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen,
4174 size_t *hashlen)
4175 {
4176 EVP_MD_CTX *ctx = NULL;
4177 EVP_MD_CTX *hdgst = s->s3->handshake_dgst;
4178 int hashleni = EVP_MD_CTX_size(hdgst);
4179 int ret = 0;
4180
4181 if (hashleni < 0 || (size_t)hashleni > outlen)
4182 goto err;
4183
4184 ctx = EVP_MD_CTX_new();
4185 if (ctx == NULL)
4186 goto err;
4187
4188 if (!EVP_MD_CTX_copy_ex(ctx, hdgst)
4189 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0)
4190 goto err;
4191
4192 *hashlen = hashleni;
4193
4194 ret = 1;
4195 err:
4196 EVP_MD_CTX_free(ctx);
4197 return ret;
4198 }
4199
4200 int SSL_session_reused(SSL *s)
4201 {
4202 return s->hit;
4203 }
4204
4205 int SSL_is_server(const SSL *s)
4206 {
4207 return s->server;
4208 }
4209
4210 #if OPENSSL_API_COMPAT < 0x10100000L
4211 void SSL_set_debug(SSL *s, int debug)
4212 {
4213 /* Old function was do-nothing anyway... */
4214 (void)s;
4215 (void)debug;
4216 }
4217 #endif
4218
4219 void SSL_set_security_level(SSL *s, int level)
4220 {
4221 s->cert->sec_level = level;
4222 }
4223
4224 int SSL_get_security_level(const SSL *s)
4225 {
4226 return s->cert->sec_level;
4227 }
4228
4229 void SSL_set_security_callback(SSL *s,
4230 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4231 int op, int bits, int nid,
4232 void *other, void *ex))
4233 {
4234 s->cert->sec_cb = cb;
4235 }
4236
4237 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s,
4238 const SSL_CTX *ctx, int op,
4239 int bits, int nid, void *other,
4240 void *ex) {
4241 return s->cert->sec_cb;
4242 }
4243
4244 void SSL_set0_security_ex_data(SSL *s, void *ex)
4245 {
4246 s->cert->sec_ex = ex;
4247 }
4248
4249 void *SSL_get0_security_ex_data(const SSL *s)
4250 {
4251 return s->cert->sec_ex;
4252 }
4253
4254 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level)
4255 {
4256 ctx->cert->sec_level = level;
4257 }
4258
4259 int SSL_CTX_get_security_level(const SSL_CTX *ctx)
4260 {
4261 return ctx->cert->sec_level;
4262 }
4263
4264 void SSL_CTX_set_security_callback(SSL_CTX *ctx,
4265 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4266 int op, int bits, int nid,
4267 void *other, void *ex))
4268 {
4269 ctx->cert->sec_cb = cb;
4270 }
4271
4272 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s,
4273 const SSL_CTX *ctx,
4274 int op, int bits,
4275 int nid,
4276 void *other,
4277 void *ex) {
4278 return ctx->cert->sec_cb;
4279 }
4280
4281 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex)
4282 {
4283 ctx->cert->sec_ex = ex;
4284 }
4285
4286 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx)
4287 {
4288 return ctx->cert->sec_ex;
4289 }
4290
4291 /*
4292 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that
4293 * can return unsigned long, instead of the generic long return value from the
4294 * control interface.
4295 */
4296 unsigned long SSL_CTX_get_options(const SSL_CTX *ctx)
4297 {
4298 return ctx->options;
4299 }
4300
4301 unsigned long SSL_get_options(const SSL *s)
4302 {
4303 return s->options;
4304 }
4305
4306 unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op)
4307 {
4308 return ctx->options |= op;
4309 }
4310
4311 unsigned long SSL_set_options(SSL *s, unsigned long op)
4312 {
4313 return s->options |= op;
4314 }
4315
4316 unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op)
4317 {
4318 return ctx->options &= ~op;
4319 }
4320
4321 unsigned long SSL_clear_options(SSL *s, unsigned long op)
4322 {
4323 return s->options &= ~op;
4324 }
4325
4326 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s)
4327 {
4328 return s->verified_chain;
4329 }
4330
4331 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id);
4332
4333 #ifndef OPENSSL_NO_CT
4334
4335 /*
4336 * Moves SCTs from the |src| stack to the |dst| stack.
4337 * The source of each SCT will be set to |origin|.
4338 * If |dst| points to a NULL pointer, a new stack will be created and owned by
4339 * the caller.
4340 * Returns the number of SCTs moved, or a negative integer if an error occurs.
4341 */
4342 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src,
4343 sct_source_t origin)
4344 {
4345 int scts_moved = 0;
4346 SCT *sct = NULL;
4347
4348 if (*dst == NULL) {
4349 *dst = sk_SCT_new_null();
4350 if (*dst == NULL) {
4351 SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE);
4352 goto err;
4353 }
4354 }
4355
4356 while ((sct = sk_SCT_pop(src)) != NULL) {
4357 if (SCT_set_source(sct, origin) != 1)
4358 goto err;
4359
4360 if (sk_SCT_push(*dst, sct) <= 0)
4361 goto err;
4362 scts_moved += 1;
4363 }
4364
4365 return scts_moved;
4366 err:
4367 if (sct != NULL)
4368 sk_SCT_push(src, sct); /* Put the SCT back */
4369 return -1;
4370 }
4371
4372 /*
4373 * Look for data collected during ServerHello and parse if found.
4374 * Returns the number of SCTs extracted.
4375 */
4376 static int ct_extract_tls_extension_scts(SSL *s)
4377 {
4378 int scts_extracted = 0;
4379
4380 if (s->ext.scts != NULL) {
4381 const unsigned char *p = s->ext.scts;
4382 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len);
4383
4384 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION);
4385
4386 SCT_LIST_free(scts);
4387 }
4388
4389 return scts_extracted;
4390 }
4391
4392 /*
4393 * Checks for an OCSP response and then attempts to extract any SCTs found if it
4394 * contains an SCT X509 extension. They will be stored in |s->scts|.
4395 * Returns:
4396 * - The number of SCTs extracted, assuming an OCSP response exists.
4397 * - 0 if no OCSP response exists or it contains no SCTs.
4398 * - A negative integer if an error occurs.
4399 */
4400 static int ct_extract_ocsp_response_scts(SSL *s)
4401 {
4402 # ifndef OPENSSL_NO_OCSP
4403 int scts_extracted = 0;
4404 const unsigned char *p;
4405 OCSP_BASICRESP *br = NULL;
4406 OCSP_RESPONSE *rsp = NULL;
4407 STACK_OF(SCT) *scts = NULL;
4408 int i;
4409
4410 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0)
4411 goto err;
4412
4413 p = s->ext.ocsp.resp;
4414 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len);
4415 if (rsp == NULL)
4416 goto err;
4417
4418 br = OCSP_response_get1_basic(rsp);
4419 if (br == NULL)
4420 goto err;
4421
4422 for (i = 0; i < OCSP_resp_count(br); ++i) {
4423 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i);
4424
4425 if (single == NULL)
4426 continue;
4427
4428 scts =
4429 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL);
4430 scts_extracted =
4431 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE);
4432 if (scts_extracted < 0)
4433 goto err;
4434 }
4435 err:
4436 SCT_LIST_free(scts);
4437 OCSP_BASICRESP_free(br);
4438 OCSP_RESPONSE_free(rsp);
4439 return scts_extracted;
4440 # else
4441 /* Behave as if no OCSP response exists */
4442 return 0;
4443 # endif
4444 }
4445
4446 /*
4447 * Attempts to extract SCTs from the peer certificate.
4448 * Return the number of SCTs extracted, or a negative integer if an error
4449 * occurs.
4450 */
4451 static int ct_extract_x509v3_extension_scts(SSL *s)
4452 {
4453 int scts_extracted = 0;
4454 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4455
4456 if (cert != NULL) {
4457 STACK_OF(SCT) *scts =
4458 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL);
4459
4460 scts_extracted =
4461 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION);
4462
4463 SCT_LIST_free(scts);
4464 }
4465
4466 return scts_extracted;
4467 }
4468
4469 /*
4470 * Attempts to find all received SCTs by checking TLS extensions, the OCSP
4471 * response (if it exists) and X509v3 extensions in the certificate.
4472 * Returns NULL if an error occurs.
4473 */
4474 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s)
4475 {
4476 if (!s->scts_parsed) {
4477 if (ct_extract_tls_extension_scts(s) < 0 ||
4478 ct_extract_ocsp_response_scts(s) < 0 ||
4479 ct_extract_x509v3_extension_scts(s) < 0)
4480 goto err;
4481
4482 s->scts_parsed = 1;
4483 }
4484 return s->scts;
4485 err:
4486 return NULL;
4487 }
4488
4489 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx,
4490 const STACK_OF(SCT) *scts, void *unused_arg)
4491 {
4492 return 1;
4493 }
4494
4495 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx,
4496 const STACK_OF(SCT) *scts, void *unused_arg)
4497 {
4498 int count = scts != NULL ? sk_SCT_num(scts) : 0;
4499 int i;
4500
4501 for (i = 0; i < count; ++i) {
4502 SCT *sct = sk_SCT_value(scts, i);
4503 int status = SCT_get_validation_status(sct);
4504
4505 if (status == SCT_VALIDATION_STATUS_VALID)
4506 return 1;
4507 }
4508 SSLerr(SSL_F_CT_STRICT, SSL_R_NO_VALID_SCTS);
4509 return 0;
4510 }
4511
4512 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback,
4513 void *arg)
4514 {
4515 /*
4516 * Since code exists that uses the custom extension handler for CT, look
4517 * for this and throw an error if they have already registered to use CT.
4518 */
4519 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx,
4520 TLSEXT_TYPE_signed_certificate_timestamp))
4521 {
4522 SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK,
4523 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4524 return 0;
4525 }
4526
4527 if (callback != NULL) {
4528 /*
4529 * If we are validating CT, then we MUST accept SCTs served via OCSP
4530 */
4531 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp))
4532 return 0;
4533 }
4534
4535 s->ct_validation_callback = callback;
4536 s->ct_validation_callback_arg = arg;
4537
4538 return 1;
4539 }
4540
4541 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx,
4542 ssl_ct_validation_cb callback, void *arg)
4543 {
4544 /*
4545 * Since code exists that uses the custom extension handler for CT, look for
4546 * this and throw an error if they have already registered to use CT.
4547 */
4548 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx,
4549 TLSEXT_TYPE_signed_certificate_timestamp))
4550 {
4551 SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK,
4552 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4553 return 0;
4554 }
4555
4556 ctx->ct_validation_callback = callback;
4557 ctx->ct_validation_callback_arg = arg;
4558 return 1;
4559 }
4560
4561 int SSL_ct_is_enabled(const SSL *s)
4562 {
4563 return s->ct_validation_callback != NULL;
4564 }
4565
4566 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx)
4567 {
4568 return ctx->ct_validation_callback != NULL;
4569 }
4570
4571 int ssl_validate_ct(SSL *s)
4572 {
4573 int ret = 0;
4574 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4575 X509 *issuer;
4576 SSL_DANE *dane = &s->dane;
4577 CT_POLICY_EVAL_CTX *ctx = NULL;
4578 const STACK_OF(SCT) *scts;
4579
4580 /*
4581 * If no callback is set, the peer is anonymous, or its chain is invalid,
4582 * skip SCT validation - just return success. Applications that continue
4583 * handshakes without certificates, with unverified chains, or pinned leaf
4584 * certificates are outside the scope of the WebPKI and CT.
4585 *
4586 * The above exclusions notwithstanding the vast majority of peers will
4587 * have rather ordinary certificate chains validated by typical
4588 * applications that perform certificate verification and therefore will
4589 * process SCTs when enabled.
4590 */
4591 if (s->ct_validation_callback == NULL || cert == NULL ||
4592 s->verify_result != X509_V_OK ||
4593 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1)
4594 return 1;
4595
4596 /*
4597 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3)
4598 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2
4599 */
4600 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) {
4601 switch (dane->mtlsa->usage) {
4602 case DANETLS_USAGE_DANE_TA:
4603 case DANETLS_USAGE_DANE_EE:
4604 return 1;
4605 }
4606 }
4607
4608 ctx = CT_POLICY_EVAL_CTX_new();
4609 if (ctx == NULL) {
4610 SSLerr(SSL_F_SSL_VALIDATE_CT, ERR_R_MALLOC_FAILURE);
4611 goto end;
4612 }
4613
4614 issuer = sk_X509_value(s->verified_chain, 1);
4615 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert);
4616 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer);
4617 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store);
4618 CT_POLICY_EVAL_CTX_set_time(
4619 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000);
4620
4621 scts = SSL_get0_peer_scts(s);
4622
4623 /*
4624 * This function returns success (> 0) only when all the SCTs are valid, 0
4625 * when some are invalid, and < 0 on various internal errors (out of
4626 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient
4627 * reason to abort the handshake, that decision is up to the callback.
4628 * Therefore, we error out only in the unexpected case that the return
4629 * value is negative.
4630 *
4631 * XXX: One might well argue that the return value of this function is an
4632 * unfortunate design choice. Its job is only to determine the validation
4633 * status of each of the provided SCTs. So long as it correctly separates
4634 * the wheat from the chaff it should return success. Failure in this case
4635 * ought to correspond to an inability to carry out its duties.
4636 */
4637 if (SCT_LIST_validate(scts, ctx) < 0) {
4638 SSLerr(SSL_F_SSL_VALIDATE_CT, SSL_R_SCT_VERIFICATION_FAILED);
4639 goto end;
4640 }
4641
4642 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg);
4643 if (ret < 0)
4644 ret = 0; /* This function returns 0 on failure */
4645
4646 end:
4647 CT_POLICY_EVAL_CTX_free(ctx);
4648 /*
4649 * With SSL_VERIFY_NONE the session may be cached and re-used despite a
4650 * failure return code here. Also the application may wish the complete
4651 * the handshake, and then disconnect cleanly at a higher layer, after
4652 * checking the verification status of the completed connection.
4653 *
4654 * We therefore force a certificate verification failure which will be
4655 * visible via SSL_get_verify_result() and cached as part of any resumed
4656 * session.
4657 *
4658 * Note: the permissive callback is for information gathering only, always
4659 * returns success, and does not affect verification status. Only the
4660 * strict callback or a custom application-specified callback can trigger
4661 * connection failure or record a verification error.
4662 */
4663 if (ret <= 0)
4664 s->verify_result = X509_V_ERR_NO_VALID_SCTS;
4665 return ret;
4666 }
4667
4668 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode)
4669 {
4670 switch (validation_mode) {
4671 default:
4672 SSLerr(SSL_F_SSL_CTX_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4673 return 0;
4674 case SSL_CT_VALIDATION_PERMISSIVE:
4675 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL);
4676 case SSL_CT_VALIDATION_STRICT:
4677 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL);
4678 }
4679 }
4680
4681 int SSL_enable_ct(SSL *s, int validation_mode)
4682 {
4683 switch (validation_mode) {
4684 default:
4685 SSLerr(SSL_F_SSL_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4686 return 0;
4687 case SSL_CT_VALIDATION_PERMISSIVE:
4688 return SSL_set_ct_validation_callback(s, ct_permissive, NULL);
4689 case SSL_CT_VALIDATION_STRICT:
4690 return SSL_set_ct_validation_callback(s, ct_strict, NULL);
4691 }
4692 }
4693
4694 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx)
4695 {
4696 return CTLOG_STORE_load_default_file(ctx->ctlog_store);
4697 }
4698
4699 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path)
4700 {
4701 return CTLOG_STORE_load_file(ctx->ctlog_store, path);
4702 }
4703
4704 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs)
4705 {
4706 CTLOG_STORE_free(ctx->ctlog_store);
4707 ctx->ctlog_store = logs;
4708 }
4709
4710 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx)
4711 {
4712 return ctx->ctlog_store;
4713 }
4714
4715 #endif /* OPENSSL_NO_CT */
4716
4717 void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb,
4718 void *arg)
4719 {
4720 c->client_hello_cb = cb;
4721 c->client_hello_cb_arg = arg;
4722 }
4723
4724 int SSL_client_hello_isv2(SSL *s)
4725 {
4726 if (s->clienthello == NULL)
4727 return 0;
4728 return s->clienthello->isv2;
4729 }
4730
4731 unsigned int SSL_client_hello_get0_legacy_version(SSL *s)
4732 {
4733 if (s->clienthello == NULL)
4734 return 0;
4735 return s->clienthello->legacy_version;
4736 }
4737
4738 size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out)
4739 {
4740 if (s->clienthello == NULL)
4741 return 0;
4742 if (out != NULL)
4743 *out = s->clienthello->random;
4744 return SSL3_RANDOM_SIZE;
4745 }
4746
4747 size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out)
4748 {
4749 if (s->clienthello == NULL)
4750 return 0;
4751 if (out != NULL)
4752 *out = s->clienthello->session_id;
4753 return s->clienthello->session_id_len;
4754 }
4755
4756 size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out)
4757 {
4758 if (s->clienthello == NULL)
4759 return 0;
4760 if (out != NULL)
4761 *out = PACKET_data(&s->clienthello->ciphersuites);
4762 return PACKET_remaining(&s->clienthello->ciphersuites);
4763 }
4764
4765 size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out)
4766 {
4767 if (s->clienthello == NULL)
4768 return 0;
4769 if (out != NULL)
4770 *out = s->clienthello->compressions;
4771 return s->clienthello->compressions_len;
4772 }
4773
4774 int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen)
4775 {
4776 RAW_EXTENSION *ext;
4777 int *present;
4778 size_t num = 0, i;
4779
4780 if (s->clienthello == NULL || out == NULL || outlen == NULL)
4781 return 0;
4782 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
4783 ext = s->clienthello->pre_proc_exts + i;
4784 if (ext->present)
4785 num++;
4786 }
4787 present = OPENSSL_malloc(sizeof(*present) * num);
4788 if (present == NULL)
4789 return 0;
4790 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
4791 ext = s->clienthello->pre_proc_exts + i;
4792 if (ext->present) {
4793 if (ext->received_order >= num)
4794 goto err;
4795 present[ext->received_order] = ext->type;
4796 }
4797 }
4798 *out = present;
4799 *outlen = num;
4800 return 1;
4801 err:
4802 OPENSSL_free(present);
4803 return 0;
4804 }
4805
4806 int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out,
4807 size_t *outlen)
4808 {
4809 size_t i;
4810 RAW_EXTENSION *r;
4811
4812 if (s->clienthello == NULL)
4813 return 0;
4814 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) {
4815 r = s->clienthello->pre_proc_exts + i;
4816 if (r->present && r->type == type) {
4817 if (out != NULL)
4818 *out = PACKET_data(&r->data);
4819 if (outlen != NULL)
4820 *outlen = PACKET_remaining(&r->data);
4821 return 1;
4822 }
4823 }
4824 return 0;
4825 }
4826
4827 int SSL_free_buffers(SSL *ssl)
4828 {
4829 RECORD_LAYER *rl = &ssl->rlayer;
4830
4831 if (RECORD_LAYER_read_pending(rl) || RECORD_LAYER_write_pending(rl))
4832 return 0;
4833
4834 RECORD_LAYER_release(rl);
4835 return 1;
4836 }
4837
4838 int SSL_alloc_buffers(SSL *ssl)
4839 {
4840 return ssl3_setup_buffers(ssl);
4841 }
4842
4843 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb)
4844 {
4845 ctx->keylog_callback = cb;
4846 }
4847
4848 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx)
4849 {
4850 return ctx->keylog_callback;
4851 }
4852
4853 static int nss_keylog_int(const char *prefix,
4854 SSL *ssl,
4855 const uint8_t *parameter_1,
4856 size_t parameter_1_len,
4857 const uint8_t *parameter_2,
4858 size_t parameter_2_len)
4859 {
4860 char *out = NULL;
4861 char *cursor = NULL;
4862 size_t out_len = 0;
4863 size_t i;
4864 size_t prefix_len;
4865
4866 if (ssl->ctx->keylog_callback == NULL) return 1;
4867
4868 /*
4869 * Our output buffer will contain the following strings, rendered with
4870 * space characters in between, terminated by a NULL character: first the
4871 * prefix, then the first parameter, then the second parameter. The
4872 * meaning of each parameter depends on the specific key material being
4873 * logged. Note that the first and second parameters are encoded in
4874 * hexadecimal, so we need a buffer that is twice their lengths.
4875 */
4876 prefix_len = strlen(prefix);
4877 out_len = prefix_len + (2*parameter_1_len) + (2*parameter_2_len) + 3;
4878 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) {
4879 SSLerr(SSL_F_NSS_KEYLOG_INT, ERR_R_MALLOC_FAILURE);
4880 return 0;
4881 }
4882
4883 strcpy(cursor, prefix);
4884 cursor += prefix_len;
4885 *cursor++ = ' ';
4886
4887 for (i = 0; i < parameter_1_len; i++) {
4888 sprintf(cursor, "%02x", parameter_1[i]);
4889 cursor += 2;
4890 }
4891 *cursor++ = ' ';
4892
4893 for (i = 0; i < parameter_2_len; i++) {
4894 sprintf(cursor, "%02x", parameter_2[i]);
4895 cursor += 2;
4896 }
4897 *cursor = '\0';
4898
4899 ssl->ctx->keylog_callback(ssl, (const char *)out);
4900 OPENSSL_free(out);
4901 return 1;
4902
4903 }
4904
4905 int ssl_log_rsa_client_key_exchange(SSL *ssl,
4906 const uint8_t *encrypted_premaster,
4907 size_t encrypted_premaster_len,
4908 const uint8_t *premaster,
4909 size_t premaster_len)
4910 {
4911 if (encrypted_premaster_len < 8) {
4912 SSLerr(SSL_F_SSL_LOG_RSA_CLIENT_KEY_EXCHANGE, ERR_R_INTERNAL_ERROR);
4913 return 0;
4914 }
4915
4916 /* We only want the first 8 bytes of the encrypted premaster as a tag. */
4917 return nss_keylog_int("RSA",
4918 ssl,
4919 encrypted_premaster,
4920 8,
4921 premaster,
4922 premaster_len);
4923 }
4924
4925 int ssl_log_secret(SSL *ssl,
4926 const char *label,
4927 const uint8_t *secret,
4928 size_t secret_len)
4929 {
4930 return nss_keylog_int(label,
4931 ssl,
4932 ssl->s3->client_random,
4933 SSL3_RANDOM_SIZE,
4934 secret,
4935 secret_len);
4936 }
4937
4938 #define SSLV2_CIPHER_LEN 3
4939
4940 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format,
4941 int *al)
4942 {
4943 int n;
4944
4945 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
4946
4947 if (PACKET_remaining(cipher_suites) == 0) {
4948 SSLerr(SSL_F_SSL_CACHE_CIPHERLIST, SSL_R_NO_CIPHERS_SPECIFIED);
4949 *al = SSL_AD_ILLEGAL_PARAMETER;
4950 return 0;
4951 }
4952
4953 if (PACKET_remaining(cipher_suites) % n != 0) {
4954 SSLerr(SSL_F_SSL_CACHE_CIPHERLIST,
4955 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
4956 *al = SSL_AD_DECODE_ERROR;
4957 return 0;
4958 }
4959
4960 OPENSSL_free(s->s3->tmp.ciphers_raw);
4961 s->s3->tmp.ciphers_raw = NULL;
4962 s->s3->tmp.ciphers_rawlen = 0;
4963
4964 if (sslv2format) {
4965 size_t numciphers = PACKET_remaining(cipher_suites) / n;
4966 PACKET sslv2ciphers = *cipher_suites;
4967 unsigned int leadbyte;
4968 unsigned char *raw;
4969
4970 /*
4971 * We store the raw ciphers list in SSLv3+ format so we need to do some
4972 * preprocessing to convert the list first. If there are any SSLv2 only
4973 * ciphersuites with a non-zero leading byte then we are going to
4974 * slightly over allocate because we won't store those. But that isn't a
4975 * problem.
4976 */
4977 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN);
4978 s->s3->tmp.ciphers_raw = raw;
4979 if (raw == NULL) {
4980 *al = SSL_AD_INTERNAL_ERROR;
4981 goto err;
4982 }
4983 for (s->s3->tmp.ciphers_rawlen = 0;
4984 PACKET_remaining(&sslv2ciphers) > 0;
4985 raw += TLS_CIPHER_LEN) {
4986 if (!PACKET_get_1(&sslv2ciphers, &leadbyte)
4987 || (leadbyte == 0
4988 && !PACKET_copy_bytes(&sslv2ciphers, raw,
4989 TLS_CIPHER_LEN))
4990 || (leadbyte != 0
4991 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) {
4992 *al = SSL_AD_DECODE_ERROR;
4993 OPENSSL_free(s->s3->tmp.ciphers_raw);
4994 s->s3->tmp.ciphers_raw = NULL;
4995 s->s3->tmp.ciphers_rawlen = 0;
4996 goto err;
4997 }
4998 if (leadbyte == 0)
4999 s->s3->tmp.ciphers_rawlen += TLS_CIPHER_LEN;
5000 }
5001 } else if (!PACKET_memdup(cipher_suites, &s->s3->tmp.ciphers_raw,
5002 &s->s3->tmp.ciphers_rawlen)) {
5003 *al = SSL_AD_INTERNAL_ERROR;
5004 goto err;
5005 }
5006 return 1;
5007 err:
5008 return 0;
5009 }
5010
5011 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len,
5012 int isv2format, STACK_OF(SSL_CIPHER) **sk,
5013 STACK_OF(SSL_CIPHER) **scsvs)
5014 {
5015 int alert;
5016 PACKET pkt;
5017
5018 if (!PACKET_buf_init(&pkt, bytes, len))
5019 return 0;
5020 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, &alert);
5021 }
5022
5023 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites,
5024 STACK_OF(SSL_CIPHER) **skp,
5025 STACK_OF(SSL_CIPHER) **scsvs_out,
5026 int sslv2format, int *al)
5027 {
5028 const SSL_CIPHER *c;
5029 STACK_OF(SSL_CIPHER) *sk = NULL;
5030 STACK_OF(SSL_CIPHER) *scsvs = NULL;
5031 int n;
5032 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */
5033 unsigned char cipher[SSLV2_CIPHER_LEN];
5034
5035 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5036
5037 if (PACKET_remaining(cipher_suites) == 0) {
5038 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_NO_CIPHERS_SPECIFIED);
5039 *al = SSL_AD_ILLEGAL_PARAMETER;
5040 return 0;
5041 }
5042
5043 if (PACKET_remaining(cipher_suites) % n != 0) {
5044 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST,
5045 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5046 *al = SSL_AD_DECODE_ERROR;
5047 return 0;
5048 }
5049
5050 sk = sk_SSL_CIPHER_new_null();
5051 scsvs = sk_SSL_CIPHER_new_null();
5052 if (sk == NULL || scsvs == NULL) {
5053 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5054 *al = SSL_AD_INTERNAL_ERROR;
5055 goto err;
5056 }
5057
5058 while (PACKET_copy_bytes(cipher_suites, cipher, n)) {
5059 /*
5060 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the
5061 * first byte set to zero, while true SSLv2 ciphers have a non-zero
5062 * first byte. We don't support any true SSLv2 ciphers, so skip them.
5063 */
5064 if (sslv2format && cipher[0] != '\0')
5065 continue;
5066
5067 /* For SSLv2-compat, ignore leading 0-byte. */
5068 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1);
5069 if (c != NULL) {
5070 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) ||
5071 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) {
5072 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5073 *al = SSL_AD_INTERNAL_ERROR;
5074 goto err;
5075 }
5076 }
5077 }
5078 if (PACKET_remaining(cipher_suites) > 0) {
5079 *al = SSL_AD_DECODE_ERROR;
5080 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_BAD_LENGTH);
5081 goto err;
5082 }
5083
5084 if (skp != NULL)
5085 *skp = sk;
5086 else
5087 sk_SSL_CIPHER_free(sk);
5088 if (scsvs_out != NULL)
5089 *scsvs_out = scsvs;
5090 else
5091 sk_SSL_CIPHER_free(scsvs);
5092 return 1;
5093 err:
5094 sk_SSL_CIPHER_free(sk);
5095 sk_SSL_CIPHER_free(scsvs);
5096 return 0;
5097 }
5098
5099 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data)
5100 {
5101 ctx->max_early_data = max_early_data;
5102
5103 return 1;
5104 }
5105
5106 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx)
5107 {
5108 return ctx->max_early_data;
5109 }
5110
5111 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data)
5112 {
5113 s->max_early_data = max_early_data;
5114
5115 return 1;
5116 }
5117
5118 uint32_t SSL_get_max_early_data(const SSL *s)
5119 {
5120 return s->max_early_data;
5121 }
5122
5123 int ssl_randbytes(SSL *s, unsigned char *rnd, size_t size)
5124 {
5125 if (s->drbg != NULL)
5126 return RAND_DRBG_generate(s->drbg, rnd, size, 0, NULL, 0);
5127 return RAND_bytes(rnd, (int)size);
5128 }