]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_lib.c
Modify Sun copyright to follow OpenSSL style
[thirdparty/openssl.git] / ssl / ssl_lib.c
1 /*
2 * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 *
5 * Licensed under the OpenSSL license (the "License"). You may not use
6 * this file except in compliance with the License. You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 */
10
11 /* ====================================================================
12 * Copyright 2005 Nokia. All rights reserved.
13 *
14 * The portions of the attached software ("Contribution") is developed by
15 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
16 * license.
17 *
18 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
19 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
20 * support (see RFC 4279) to OpenSSL.
21 *
22 * No patent licenses or other rights except those expressly stated in
23 * the OpenSSL open source license shall be deemed granted or received
24 * expressly, by implication, estoppel, or otherwise.
25 *
26 * No assurances are provided by Nokia that the Contribution does not
27 * infringe the patent or other intellectual property rights of any third
28 * party or that the license provides you with all the necessary rights
29 * to make use of the Contribution.
30 *
31 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
32 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
33 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
34 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
35 * OTHERWISE.
36 */
37
38 #include <stdio.h>
39 #include "ssl_locl.h"
40 #include <openssl/objects.h>
41 #include <openssl/lhash.h>
42 #include <openssl/x509v3.h>
43 #include <openssl/rand.h>
44 #include <openssl/ocsp.h>
45 #include <openssl/dh.h>
46 #include <openssl/engine.h>
47 #include <openssl/async.h>
48 #include <openssl/ct.h>
49
50 const char SSL_version_str[] = OPENSSL_VERSION_TEXT;
51
52 SSL3_ENC_METHOD ssl3_undef_enc_method = {
53 /*
54 * evil casts, but these functions are only called if there's a library
55 * bug
56 */
57 (int (*)(SSL *, SSL3_RECORD *, size_t, int))ssl_undefined_function,
58 (int (*)(SSL *, SSL3_RECORD *, unsigned char *, int))ssl_undefined_function,
59 ssl_undefined_function,
60 (int (*)(SSL *, unsigned char *, unsigned char *, size_t, size_t *))
61 ssl_undefined_function,
62 (int (*)(SSL *, int))ssl_undefined_function,
63 (size_t (*)(SSL *, const char *, size_t, unsigned char *))
64 ssl_undefined_function,
65 NULL, /* client_finished_label */
66 0, /* client_finished_label_len */
67 NULL, /* server_finished_label */
68 0, /* server_finished_label_len */
69 (int (*)(int))ssl_undefined_function,
70 (int (*)(SSL *, unsigned char *, size_t, const char *,
71 size_t, const unsigned char *, size_t,
72 int use_context))ssl_undefined_function,
73 };
74
75 struct ssl_async_args {
76 SSL *s;
77 void *buf;
78 size_t num;
79 enum { READFUNC, WRITEFUNC, OTHERFUNC } type;
80 union {
81 int (*func_read) (SSL *, void *, size_t, size_t *);
82 int (*func_write) (SSL *, const void *, size_t, size_t *);
83 int (*func_other) (SSL *);
84 } f;
85 };
86
87 static const struct {
88 uint8_t mtype;
89 uint8_t ord;
90 int nid;
91 } dane_mds[] = {
92 {
93 DANETLS_MATCHING_FULL, 0, NID_undef
94 },
95 {
96 DANETLS_MATCHING_2256, 1, NID_sha256
97 },
98 {
99 DANETLS_MATCHING_2512, 2, NID_sha512
100 },
101 };
102
103 static int dane_ctx_enable(struct dane_ctx_st *dctx)
104 {
105 const EVP_MD **mdevp;
106 uint8_t *mdord;
107 uint8_t mdmax = DANETLS_MATCHING_LAST;
108 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */
109 size_t i;
110
111 if (dctx->mdevp != NULL)
112 return 1;
113
114 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp));
115 mdord = OPENSSL_zalloc(n * sizeof(*mdord));
116
117 if (mdord == NULL || mdevp == NULL) {
118 OPENSSL_free(mdord);
119 OPENSSL_free(mdevp);
120 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE);
121 return 0;
122 }
123
124 /* Install default entries */
125 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) {
126 const EVP_MD *md;
127
128 if (dane_mds[i].nid == NID_undef ||
129 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL)
130 continue;
131 mdevp[dane_mds[i].mtype] = md;
132 mdord[dane_mds[i].mtype] = dane_mds[i].ord;
133 }
134
135 dctx->mdevp = mdevp;
136 dctx->mdord = mdord;
137 dctx->mdmax = mdmax;
138
139 return 1;
140 }
141
142 static void dane_ctx_final(struct dane_ctx_st *dctx)
143 {
144 OPENSSL_free(dctx->mdevp);
145 dctx->mdevp = NULL;
146
147 OPENSSL_free(dctx->mdord);
148 dctx->mdord = NULL;
149 dctx->mdmax = 0;
150 }
151
152 static void tlsa_free(danetls_record *t)
153 {
154 if (t == NULL)
155 return;
156 OPENSSL_free(t->data);
157 EVP_PKEY_free(t->spki);
158 OPENSSL_free(t);
159 }
160
161 static void dane_final(SSL_DANE *dane)
162 {
163 sk_danetls_record_pop_free(dane->trecs, tlsa_free);
164 dane->trecs = NULL;
165
166 sk_X509_pop_free(dane->certs, X509_free);
167 dane->certs = NULL;
168
169 X509_free(dane->mcert);
170 dane->mcert = NULL;
171 dane->mtlsa = NULL;
172 dane->mdpth = -1;
173 dane->pdpth = -1;
174 }
175
176 /*
177 * dane_copy - Copy dane configuration, sans verification state.
178 */
179 static int ssl_dane_dup(SSL *to, SSL *from)
180 {
181 int num;
182 int i;
183
184 if (!DANETLS_ENABLED(&from->dane))
185 return 1;
186
187 dane_final(&to->dane);
188 to->dane.flags = from->dane.flags;
189 to->dane.dctx = &to->ctx->dane;
190 to->dane.trecs = sk_danetls_record_new_null();
191
192 if (to->dane.trecs == NULL) {
193 SSLerr(SSL_F_SSL_DANE_DUP, ERR_R_MALLOC_FAILURE);
194 return 0;
195 }
196
197 num = sk_danetls_record_num(from->dane.trecs);
198 for (i = 0; i < num; ++i) {
199 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i);
200
201 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype,
202 t->data, t->dlen) <= 0)
203 return 0;
204 }
205 return 1;
206 }
207
208 static int dane_mtype_set(struct dane_ctx_st *dctx,
209 const EVP_MD *md, uint8_t mtype, uint8_t ord)
210 {
211 int i;
212
213 if (mtype == DANETLS_MATCHING_FULL && md != NULL) {
214 SSLerr(SSL_F_DANE_MTYPE_SET, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL);
215 return 0;
216 }
217
218 if (mtype > dctx->mdmax) {
219 const EVP_MD **mdevp;
220 uint8_t *mdord;
221 int n = ((int)mtype) + 1;
222
223 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp));
224 if (mdevp == NULL) {
225 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
226 return -1;
227 }
228 dctx->mdevp = mdevp;
229
230 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord));
231 if (mdord == NULL) {
232 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
233 return -1;
234 }
235 dctx->mdord = mdord;
236
237 /* Zero-fill any gaps */
238 for (i = dctx->mdmax + 1; i < mtype; ++i) {
239 mdevp[i] = NULL;
240 mdord[i] = 0;
241 }
242
243 dctx->mdmax = mtype;
244 }
245
246 dctx->mdevp[mtype] = md;
247 /* Coerce ordinal of disabled matching types to 0 */
248 dctx->mdord[mtype] = (md == NULL) ? 0 : ord;
249
250 return 1;
251 }
252
253 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype)
254 {
255 if (mtype > dane->dctx->mdmax)
256 return NULL;
257 return dane->dctx->mdevp[mtype];
258 }
259
260 static int dane_tlsa_add(SSL_DANE *dane,
261 uint8_t usage,
262 uint8_t selector,
263 uint8_t mtype, unsigned char *data, size_t dlen)
264 {
265 danetls_record *t;
266 const EVP_MD *md = NULL;
267 int ilen = (int)dlen;
268 int i;
269 int num;
270
271 if (dane->trecs == NULL) {
272 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED);
273 return -1;
274 }
275
276 if (ilen < 0 || dlen != (size_t)ilen) {
277 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH);
278 return 0;
279 }
280
281 if (usage > DANETLS_USAGE_LAST) {
282 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE);
283 return 0;
284 }
285
286 if (selector > DANETLS_SELECTOR_LAST) {
287 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR);
288 return 0;
289 }
290
291 if (mtype != DANETLS_MATCHING_FULL) {
292 md = tlsa_md_get(dane, mtype);
293 if (md == NULL) {
294 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE);
295 return 0;
296 }
297 }
298
299 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) {
300 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH);
301 return 0;
302 }
303 if (!data) {
304 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA);
305 return 0;
306 }
307
308 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) {
309 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
310 return -1;
311 }
312
313 t->usage = usage;
314 t->selector = selector;
315 t->mtype = mtype;
316 t->data = OPENSSL_malloc(dlen);
317 if (t->data == NULL) {
318 tlsa_free(t);
319 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
320 return -1;
321 }
322 memcpy(t->data, data, dlen);
323 t->dlen = dlen;
324
325 /* Validate and cache full certificate or public key */
326 if (mtype == DANETLS_MATCHING_FULL) {
327 const unsigned char *p = data;
328 X509 *cert = NULL;
329 EVP_PKEY *pkey = NULL;
330
331 switch (selector) {
332 case DANETLS_SELECTOR_CERT:
333 if (!d2i_X509(&cert, &p, ilen) || p < data ||
334 dlen != (size_t)(p - data)) {
335 tlsa_free(t);
336 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
337 return 0;
338 }
339 if (X509_get0_pubkey(cert) == NULL) {
340 tlsa_free(t);
341 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
342 return 0;
343 }
344
345 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) {
346 X509_free(cert);
347 break;
348 }
349
350 /*
351 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA
352 * records that contain full certificates of trust-anchors that are
353 * not present in the wire chain. For usage PKIX-TA(0), we augment
354 * the chain with untrusted Full(0) certificates from DNS, in case
355 * they are missing from the chain.
356 */
357 if ((dane->certs == NULL &&
358 (dane->certs = sk_X509_new_null()) == NULL) ||
359 !sk_X509_push(dane->certs, cert)) {
360 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
361 X509_free(cert);
362 tlsa_free(t);
363 return -1;
364 }
365 break;
366
367 case DANETLS_SELECTOR_SPKI:
368 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data ||
369 dlen != (size_t)(p - data)) {
370 tlsa_free(t);
371 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY);
372 return 0;
373 }
374
375 /*
376 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA
377 * records that contain full bare keys of trust-anchors that are
378 * not present in the wire chain.
379 */
380 if (usage == DANETLS_USAGE_DANE_TA)
381 t->spki = pkey;
382 else
383 EVP_PKEY_free(pkey);
384 break;
385 }
386 }
387
388 /*-
389 * Find the right insertion point for the new record.
390 *
391 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that
392 * they can be processed first, as they require no chain building, and no
393 * expiration or hostname checks. Because DANE-EE(3) is numerically
394 * largest, this is accomplished via descending sort by "usage".
395 *
396 * We also sort in descending order by matching ordinal to simplify
397 * the implementation of digest agility in the verification code.
398 *
399 * The choice of order for the selector is not significant, so we
400 * use the same descending order for consistency.
401 */
402 num = sk_danetls_record_num(dane->trecs);
403 for (i = 0; i < num; ++i) {
404 danetls_record *rec = sk_danetls_record_value(dane->trecs, i);
405
406 if (rec->usage > usage)
407 continue;
408 if (rec->usage < usage)
409 break;
410 if (rec->selector > selector)
411 continue;
412 if (rec->selector < selector)
413 break;
414 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype])
415 continue;
416 break;
417 }
418
419 if (!sk_danetls_record_insert(dane->trecs, t, i)) {
420 tlsa_free(t);
421 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
422 return -1;
423 }
424 dane->umask |= DANETLS_USAGE_BIT(usage);
425
426 return 1;
427 }
428
429 static void clear_ciphers(SSL *s)
430 {
431 /* clear the current cipher */
432 ssl_clear_cipher_ctx(s);
433 ssl_clear_hash_ctx(&s->read_hash);
434 ssl_clear_hash_ctx(&s->write_hash);
435 }
436
437 int SSL_clear(SSL *s)
438 {
439 if (s->method == NULL) {
440 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED);
441 return 0;
442 }
443
444 if (ssl_clear_bad_session(s)) {
445 SSL_SESSION_free(s->session);
446 s->session = NULL;
447 }
448
449 s->error = 0;
450 s->hit = 0;
451 s->shutdown = 0;
452
453 if (s->renegotiate) {
454 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR);
455 return 0;
456 }
457
458 ossl_statem_clear(s);
459
460 s->version = s->method->version;
461 s->client_version = s->version;
462 s->rwstate = SSL_NOTHING;
463
464 BUF_MEM_free(s->init_buf);
465 s->init_buf = NULL;
466 clear_ciphers(s);
467 s->first_packet = 0;
468
469 s->key_update = SSL_KEY_UPDATE_NONE;
470
471 /* Reset DANE verification result state */
472 s->dane.mdpth = -1;
473 s->dane.pdpth = -1;
474 X509_free(s->dane.mcert);
475 s->dane.mcert = NULL;
476 s->dane.mtlsa = NULL;
477
478 /* Clear the verification result peername */
479 X509_VERIFY_PARAM_move_peername(s->param, NULL);
480
481 /*
482 * Check to see if we were changed into a different method, if so, revert
483 * back if we are not doing session-id reuse.
484 */
485 if (!ossl_statem_get_in_handshake(s) && (s->session == NULL)
486 && (s->method != s->ctx->method)) {
487 s->method->ssl_free(s);
488 s->method = s->ctx->method;
489 if (!s->method->ssl_new(s))
490 return 0;
491 } else {
492 if (!s->method->ssl_clear(s))
493 return 0;
494 }
495
496 RECORD_LAYER_clear(&s->rlayer);
497
498 return 1;
499 }
500
501 /** Used to change an SSL_CTXs default SSL method type */
502 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth)
503 {
504 STACK_OF(SSL_CIPHER) *sk;
505
506 ctx->method = meth;
507
508 sk = ssl_create_cipher_list(ctx->method, &(ctx->cipher_list),
509 &(ctx->cipher_list_by_id),
510 SSL_DEFAULT_CIPHER_LIST, ctx->cert);
511 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) {
512 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
513 return (0);
514 }
515 return (1);
516 }
517
518 SSL *SSL_new(SSL_CTX *ctx)
519 {
520 SSL *s;
521
522 if (ctx == NULL) {
523 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX);
524 return (NULL);
525 }
526 if (ctx->method == NULL) {
527 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
528 return (NULL);
529 }
530
531 s = OPENSSL_zalloc(sizeof(*s));
532 if (s == NULL)
533 goto err;
534
535 s->lock = CRYPTO_THREAD_lock_new();
536 if (s->lock == NULL) {
537 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
538 OPENSSL_free(s);
539 return NULL;
540 }
541
542 RECORD_LAYER_init(&s->rlayer, s);
543
544 s->options = ctx->options;
545 s->dane.flags = ctx->dane.flags;
546 s->min_proto_version = ctx->min_proto_version;
547 s->max_proto_version = ctx->max_proto_version;
548 s->mode = ctx->mode;
549 s->max_cert_list = ctx->max_cert_list;
550 s->references = 1;
551 s->max_early_data = ctx->max_early_data;
552
553 /*
554 * Earlier library versions used to copy the pointer to the CERT, not
555 * its contents; only when setting new parameters for the per-SSL
556 * copy, ssl_cert_new would be called (and the direct reference to
557 * the per-SSL_CTX settings would be lost, but those still were
558 * indirectly accessed for various purposes, and for that reason they
559 * used to be known as s->ctx->default_cert). Now we don't look at the
560 * SSL_CTX's CERT after having duplicated it once.
561 */
562 s->cert = ssl_cert_dup(ctx->cert);
563 if (s->cert == NULL)
564 goto err;
565
566 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead);
567 s->msg_callback = ctx->msg_callback;
568 s->msg_callback_arg = ctx->msg_callback_arg;
569 s->verify_mode = ctx->verify_mode;
570 s->not_resumable_session_cb = ctx->not_resumable_session_cb;
571 s->record_padding_cb = ctx->record_padding_cb;
572 s->record_padding_arg = ctx->record_padding_arg;
573 s->block_padding = ctx->block_padding;
574 s->sid_ctx_length = ctx->sid_ctx_length;
575 if (!ossl_assert(s->sid_ctx_length <= sizeof s->sid_ctx))
576 goto err;
577 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
578 s->verify_callback = ctx->default_verify_callback;
579 s->generate_session_id = ctx->generate_session_id;
580
581 s->param = X509_VERIFY_PARAM_new();
582 if (s->param == NULL)
583 goto err;
584 X509_VERIFY_PARAM_inherit(s->param, ctx->param);
585 s->quiet_shutdown = ctx->quiet_shutdown;
586 s->max_send_fragment = ctx->max_send_fragment;
587 s->split_send_fragment = ctx->split_send_fragment;
588 s->max_pipelines = ctx->max_pipelines;
589 if (s->max_pipelines > 1)
590 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
591 if (ctx->default_read_buf_len > 0)
592 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len);
593
594 SSL_CTX_up_ref(ctx);
595 s->ctx = ctx;
596 s->ext.debug_cb = 0;
597 s->ext.debug_arg = NULL;
598 s->ext.ticket_expected = 0;
599 s->ext.status_type = ctx->ext.status_type;
600 s->ext.status_expected = 0;
601 s->ext.ocsp.ids = NULL;
602 s->ext.ocsp.exts = NULL;
603 s->ext.ocsp.resp = NULL;
604 s->ext.ocsp.resp_len = 0;
605 SSL_CTX_up_ref(ctx);
606 s->session_ctx = ctx;
607 #ifndef OPENSSL_NO_EC
608 if (ctx->ext.ecpointformats) {
609 s->ext.ecpointformats =
610 OPENSSL_memdup(ctx->ext.ecpointformats,
611 ctx->ext.ecpointformats_len);
612 if (!s->ext.ecpointformats)
613 goto err;
614 s->ext.ecpointformats_len =
615 ctx->ext.ecpointformats_len;
616 }
617 if (ctx->ext.supportedgroups) {
618 s->ext.supportedgroups =
619 OPENSSL_memdup(ctx->ext.supportedgroups,
620 ctx->ext.supportedgroups_len);
621 if (!s->ext.supportedgroups)
622 goto err;
623 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len;
624 }
625 #endif
626 #ifndef OPENSSL_NO_NEXTPROTONEG
627 s->ext.npn = NULL;
628 #endif
629
630 if (s->ctx->ext.alpn) {
631 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len);
632 if (s->ext.alpn == NULL)
633 goto err;
634 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len);
635 s->ext.alpn_len = s->ctx->ext.alpn_len;
636 }
637
638 s->verified_chain = NULL;
639 s->verify_result = X509_V_OK;
640
641 s->default_passwd_callback = ctx->default_passwd_callback;
642 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata;
643
644 s->method = ctx->method;
645
646 s->key_update = SSL_KEY_UPDATE_NONE;
647
648 if (!s->method->ssl_new(s))
649 goto err;
650
651 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1;
652
653 if (!SSL_clear(s))
654 goto err;
655
656 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data))
657 goto err;
658
659 #ifndef OPENSSL_NO_PSK
660 s->psk_client_callback = ctx->psk_client_callback;
661 s->psk_server_callback = ctx->psk_server_callback;
662 #endif
663
664 s->job = NULL;
665
666 #ifndef OPENSSL_NO_CT
667 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback,
668 ctx->ct_validation_callback_arg))
669 goto err;
670 #endif
671
672 return s;
673 err:
674 SSL_free(s);
675 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
676 return NULL;
677 }
678
679 int SSL_is_dtls(const SSL *s)
680 {
681 return SSL_IS_DTLS(s) ? 1 : 0;
682 }
683
684 int SSL_up_ref(SSL *s)
685 {
686 int i;
687
688 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0)
689 return 0;
690
691 REF_PRINT_COUNT("SSL", s);
692 REF_ASSERT_ISNT(i < 2);
693 return ((i > 1) ? 1 : 0);
694 }
695
696 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
697 unsigned int sid_ctx_len)
698 {
699 if (sid_ctx_len > sizeof ctx->sid_ctx) {
700 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT,
701 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
702 return 0;
703 }
704 ctx->sid_ctx_length = sid_ctx_len;
705 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
706
707 return 1;
708 }
709
710 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
711 unsigned int sid_ctx_len)
712 {
713 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
714 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT,
715 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
716 return 0;
717 }
718 ssl->sid_ctx_length = sid_ctx_len;
719 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
720
721 return 1;
722 }
723
724 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb)
725 {
726 CRYPTO_THREAD_write_lock(ctx->lock);
727 ctx->generate_session_id = cb;
728 CRYPTO_THREAD_unlock(ctx->lock);
729 return 1;
730 }
731
732 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb)
733 {
734 CRYPTO_THREAD_write_lock(ssl->lock);
735 ssl->generate_session_id = cb;
736 CRYPTO_THREAD_unlock(ssl->lock);
737 return 1;
738 }
739
740 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
741 unsigned int id_len)
742 {
743 /*
744 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how
745 * we can "construct" a session to give us the desired check - i.e. to
746 * find if there's a session in the hash table that would conflict with
747 * any new session built out of this id/id_len and the ssl_version in use
748 * by this SSL.
749 */
750 SSL_SESSION r, *p;
751
752 if (id_len > sizeof r.session_id)
753 return 0;
754
755 r.ssl_version = ssl->version;
756 r.session_id_length = id_len;
757 memcpy(r.session_id, id, id_len);
758
759 CRYPTO_THREAD_read_lock(ssl->session_ctx->lock);
760 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r);
761 CRYPTO_THREAD_unlock(ssl->session_ctx->lock);
762 return (p != NULL);
763 }
764
765 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose)
766 {
767 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
768 }
769
770 int SSL_set_purpose(SSL *s, int purpose)
771 {
772 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
773 }
774
775 int SSL_CTX_set_trust(SSL_CTX *s, int trust)
776 {
777 return X509_VERIFY_PARAM_set_trust(s->param, trust);
778 }
779
780 int SSL_set_trust(SSL *s, int trust)
781 {
782 return X509_VERIFY_PARAM_set_trust(s->param, trust);
783 }
784
785 int SSL_set1_host(SSL *s, const char *hostname)
786 {
787 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0);
788 }
789
790 int SSL_add1_host(SSL *s, const char *hostname)
791 {
792 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0);
793 }
794
795 void SSL_set_hostflags(SSL *s, unsigned int flags)
796 {
797 X509_VERIFY_PARAM_set_hostflags(s->param, flags);
798 }
799
800 const char *SSL_get0_peername(SSL *s)
801 {
802 return X509_VERIFY_PARAM_get0_peername(s->param);
803 }
804
805 int SSL_CTX_dane_enable(SSL_CTX *ctx)
806 {
807 return dane_ctx_enable(&ctx->dane);
808 }
809
810 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags)
811 {
812 unsigned long orig = ctx->dane.flags;
813
814 ctx->dane.flags |= flags;
815 return orig;
816 }
817
818 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags)
819 {
820 unsigned long orig = ctx->dane.flags;
821
822 ctx->dane.flags &= ~flags;
823 return orig;
824 }
825
826 int SSL_dane_enable(SSL *s, const char *basedomain)
827 {
828 SSL_DANE *dane = &s->dane;
829
830 if (s->ctx->dane.mdmax == 0) {
831 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED);
832 return 0;
833 }
834 if (dane->trecs != NULL) {
835 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED);
836 return 0;
837 }
838
839 /*
840 * Default SNI name. This rejects empty names, while set1_host below
841 * accepts them and disables host name checks. To avoid side-effects with
842 * invalid input, set the SNI name first.
843 */
844 if (s->ext.hostname == NULL) {
845 if (!SSL_set_tlsext_host_name(s, basedomain)) {
846 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
847 return -1;
848 }
849 }
850
851 /* Primary RFC6125 reference identifier */
852 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) {
853 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
854 return -1;
855 }
856
857 dane->mdpth = -1;
858 dane->pdpth = -1;
859 dane->dctx = &s->ctx->dane;
860 dane->trecs = sk_danetls_record_new_null();
861
862 if (dane->trecs == NULL) {
863 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE);
864 return -1;
865 }
866 return 1;
867 }
868
869 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags)
870 {
871 unsigned long orig = ssl->dane.flags;
872
873 ssl->dane.flags |= flags;
874 return orig;
875 }
876
877 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags)
878 {
879 unsigned long orig = ssl->dane.flags;
880
881 ssl->dane.flags &= ~flags;
882 return orig;
883 }
884
885 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki)
886 {
887 SSL_DANE *dane = &s->dane;
888
889 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
890 return -1;
891 if (dane->mtlsa) {
892 if (mcert)
893 *mcert = dane->mcert;
894 if (mspki)
895 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL;
896 }
897 return dane->mdpth;
898 }
899
900 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector,
901 uint8_t *mtype, unsigned const char **data, size_t *dlen)
902 {
903 SSL_DANE *dane = &s->dane;
904
905 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
906 return -1;
907 if (dane->mtlsa) {
908 if (usage)
909 *usage = dane->mtlsa->usage;
910 if (selector)
911 *selector = dane->mtlsa->selector;
912 if (mtype)
913 *mtype = dane->mtlsa->mtype;
914 if (data)
915 *data = dane->mtlsa->data;
916 if (dlen)
917 *dlen = dane->mtlsa->dlen;
918 }
919 return dane->mdpth;
920 }
921
922 SSL_DANE *SSL_get0_dane(SSL *s)
923 {
924 return &s->dane;
925 }
926
927 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector,
928 uint8_t mtype, unsigned char *data, size_t dlen)
929 {
930 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen);
931 }
932
933 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype,
934 uint8_t ord)
935 {
936 return dane_mtype_set(&ctx->dane, md, mtype, ord);
937 }
938
939 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm)
940 {
941 return X509_VERIFY_PARAM_set1(ctx->param, vpm);
942 }
943
944 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm)
945 {
946 return X509_VERIFY_PARAM_set1(ssl->param, vpm);
947 }
948
949 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx)
950 {
951 return ctx->param;
952 }
953
954 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl)
955 {
956 return ssl->param;
957 }
958
959 void SSL_certs_clear(SSL *s)
960 {
961 ssl_cert_clear_certs(s->cert);
962 }
963
964 void SSL_free(SSL *s)
965 {
966 int i;
967
968 if (s == NULL)
969 return;
970
971 CRYPTO_DOWN_REF(&s->references, &i, s->lock);
972 REF_PRINT_COUNT("SSL", s);
973 if (i > 0)
974 return;
975 REF_ASSERT_ISNT(i < 0);
976
977 X509_VERIFY_PARAM_free(s->param);
978 dane_final(&s->dane);
979 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
980
981 /* Ignore return value */
982 ssl_free_wbio_buffer(s);
983
984 BIO_free_all(s->wbio);
985 BIO_free_all(s->rbio);
986
987 BUF_MEM_free(s->init_buf);
988
989 /* add extra stuff */
990 sk_SSL_CIPHER_free(s->cipher_list);
991 sk_SSL_CIPHER_free(s->cipher_list_by_id);
992
993 /* Make the next call work :-) */
994 if (s->session != NULL) {
995 ssl_clear_bad_session(s);
996 SSL_SESSION_free(s->session);
997 }
998
999 clear_ciphers(s);
1000
1001 ssl_cert_free(s->cert);
1002 /* Free up if allocated */
1003
1004 OPENSSL_free(s->ext.hostname);
1005 SSL_CTX_free(s->session_ctx);
1006 #ifndef OPENSSL_NO_EC
1007 OPENSSL_free(s->ext.ecpointformats);
1008 OPENSSL_free(s->ext.supportedgroups);
1009 #endif /* OPENSSL_NO_EC */
1010 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free);
1011 #ifndef OPENSSL_NO_OCSP
1012 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free);
1013 #endif
1014 #ifndef OPENSSL_NO_CT
1015 SCT_LIST_free(s->scts);
1016 OPENSSL_free(s->ext.scts);
1017 #endif
1018 OPENSSL_free(s->ext.ocsp.resp);
1019 OPENSSL_free(s->ext.alpn);
1020 OPENSSL_free(s->ext.tls13_cookie);
1021 OPENSSL_free(s->clienthello);
1022
1023 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free);
1024
1025 sk_X509_pop_free(s->verified_chain, X509_free);
1026
1027 if (s->method != NULL)
1028 s->method->ssl_free(s);
1029
1030 RECORD_LAYER_release(&s->rlayer);
1031
1032 SSL_CTX_free(s->ctx);
1033
1034 ASYNC_WAIT_CTX_free(s->waitctx);
1035
1036 #if !defined(OPENSSL_NO_NEXTPROTONEG)
1037 OPENSSL_free(s->ext.npn);
1038 #endif
1039
1040 #ifndef OPENSSL_NO_SRTP
1041 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles);
1042 #endif
1043
1044 CRYPTO_THREAD_lock_free(s->lock);
1045
1046 OPENSSL_free(s);
1047 }
1048
1049 void SSL_set0_rbio(SSL *s, BIO *rbio)
1050 {
1051 BIO_free_all(s->rbio);
1052 s->rbio = rbio;
1053 }
1054
1055 void SSL_set0_wbio(SSL *s, BIO *wbio)
1056 {
1057 /*
1058 * If the output buffering BIO is still in place, remove it
1059 */
1060 if (s->bbio != NULL)
1061 s->wbio = BIO_pop(s->wbio);
1062
1063 BIO_free_all(s->wbio);
1064 s->wbio = wbio;
1065
1066 /* Re-attach |bbio| to the new |wbio|. */
1067 if (s->bbio != NULL)
1068 s->wbio = BIO_push(s->bbio, s->wbio);
1069 }
1070
1071 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio)
1072 {
1073 /*
1074 * For historical reasons, this function has many different cases in
1075 * ownership handling.
1076 */
1077
1078 /* If nothing has changed, do nothing */
1079 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s))
1080 return;
1081
1082 /*
1083 * If the two arguments are equal then one fewer reference is granted by the
1084 * caller than we want to take
1085 */
1086 if (rbio != NULL && rbio == wbio)
1087 BIO_up_ref(rbio);
1088
1089 /*
1090 * If only the wbio is changed only adopt one reference.
1091 */
1092 if (rbio == SSL_get_rbio(s)) {
1093 SSL_set0_wbio(s, wbio);
1094 return;
1095 }
1096 /*
1097 * There is an asymmetry here for historical reasons. If only the rbio is
1098 * changed AND the rbio and wbio were originally different, then we only
1099 * adopt one reference.
1100 */
1101 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) {
1102 SSL_set0_rbio(s, rbio);
1103 return;
1104 }
1105
1106 /* Otherwise, adopt both references. */
1107 SSL_set0_rbio(s, rbio);
1108 SSL_set0_wbio(s, wbio);
1109 }
1110
1111 BIO *SSL_get_rbio(const SSL *s)
1112 {
1113 return s->rbio;
1114 }
1115
1116 BIO *SSL_get_wbio(const SSL *s)
1117 {
1118 if (s->bbio != NULL) {
1119 /*
1120 * If |bbio| is active, the true caller-configured BIO is its
1121 * |next_bio|.
1122 */
1123 return BIO_next(s->bbio);
1124 }
1125 return s->wbio;
1126 }
1127
1128 int SSL_get_fd(const SSL *s)
1129 {
1130 return SSL_get_rfd(s);
1131 }
1132
1133 int SSL_get_rfd(const SSL *s)
1134 {
1135 int ret = -1;
1136 BIO *b, *r;
1137
1138 b = SSL_get_rbio(s);
1139 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1140 if (r != NULL)
1141 BIO_get_fd(r, &ret);
1142 return (ret);
1143 }
1144
1145 int SSL_get_wfd(const SSL *s)
1146 {
1147 int ret = -1;
1148 BIO *b, *r;
1149
1150 b = SSL_get_wbio(s);
1151 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1152 if (r != NULL)
1153 BIO_get_fd(r, &ret);
1154 return (ret);
1155 }
1156
1157 #ifndef OPENSSL_NO_SOCK
1158 int SSL_set_fd(SSL *s, int fd)
1159 {
1160 int ret = 0;
1161 BIO *bio = NULL;
1162
1163 bio = BIO_new(BIO_s_socket());
1164
1165 if (bio == NULL) {
1166 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB);
1167 goto err;
1168 }
1169 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1170 SSL_set_bio(s, bio, bio);
1171 ret = 1;
1172 err:
1173 return (ret);
1174 }
1175
1176 int SSL_set_wfd(SSL *s, int fd)
1177 {
1178 BIO *rbio = SSL_get_rbio(s);
1179
1180 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET
1181 || (int)BIO_get_fd(rbio, NULL) != fd) {
1182 BIO *bio = BIO_new(BIO_s_socket());
1183
1184 if (bio == NULL) {
1185 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB);
1186 return 0;
1187 }
1188 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1189 SSL_set0_wbio(s, bio);
1190 } else {
1191 BIO_up_ref(rbio);
1192 SSL_set0_wbio(s, rbio);
1193 }
1194 return 1;
1195 }
1196
1197 int SSL_set_rfd(SSL *s, int fd)
1198 {
1199 BIO *wbio = SSL_get_wbio(s);
1200
1201 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET
1202 || ((int)BIO_get_fd(wbio, NULL) != fd)) {
1203 BIO *bio = BIO_new(BIO_s_socket());
1204
1205 if (bio == NULL) {
1206 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB);
1207 return 0;
1208 }
1209 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1210 SSL_set0_rbio(s, bio);
1211 } else {
1212 BIO_up_ref(wbio);
1213 SSL_set0_rbio(s, wbio);
1214 }
1215
1216 return 1;
1217 }
1218 #endif
1219
1220 /* return length of latest Finished message we sent, copy to 'buf' */
1221 size_t SSL_get_finished(const SSL *s, void *buf, size_t count)
1222 {
1223 size_t ret = 0;
1224
1225 if (s->s3 != NULL) {
1226 ret = s->s3->tmp.finish_md_len;
1227 if (count > ret)
1228 count = ret;
1229 memcpy(buf, s->s3->tmp.finish_md, count);
1230 }
1231 return ret;
1232 }
1233
1234 /* return length of latest Finished message we expected, copy to 'buf' */
1235 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count)
1236 {
1237 size_t ret = 0;
1238
1239 if (s->s3 != NULL) {
1240 ret = s->s3->tmp.peer_finish_md_len;
1241 if (count > ret)
1242 count = ret;
1243 memcpy(buf, s->s3->tmp.peer_finish_md, count);
1244 }
1245 return ret;
1246 }
1247
1248 int SSL_get_verify_mode(const SSL *s)
1249 {
1250 return (s->verify_mode);
1251 }
1252
1253 int SSL_get_verify_depth(const SSL *s)
1254 {
1255 return X509_VERIFY_PARAM_get_depth(s->param);
1256 }
1257
1258 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) {
1259 return (s->verify_callback);
1260 }
1261
1262 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx)
1263 {
1264 return (ctx->verify_mode);
1265 }
1266
1267 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx)
1268 {
1269 return X509_VERIFY_PARAM_get_depth(ctx->param);
1270 }
1271
1272 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) {
1273 return (ctx->default_verify_callback);
1274 }
1275
1276 void SSL_set_verify(SSL *s, int mode,
1277 int (*callback) (int ok, X509_STORE_CTX *ctx))
1278 {
1279 s->verify_mode = mode;
1280 if (callback != NULL)
1281 s->verify_callback = callback;
1282 }
1283
1284 void SSL_set_verify_depth(SSL *s, int depth)
1285 {
1286 X509_VERIFY_PARAM_set_depth(s->param, depth);
1287 }
1288
1289 void SSL_set_read_ahead(SSL *s, int yes)
1290 {
1291 RECORD_LAYER_set_read_ahead(&s->rlayer, yes);
1292 }
1293
1294 int SSL_get_read_ahead(const SSL *s)
1295 {
1296 return RECORD_LAYER_get_read_ahead(&s->rlayer);
1297 }
1298
1299 int SSL_pending(const SSL *s)
1300 {
1301 size_t pending = s->method->ssl_pending(s);
1302
1303 /*
1304 * SSL_pending cannot work properly if read-ahead is enabled
1305 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is
1306 * impossible to fix since SSL_pending cannot report errors that may be
1307 * observed while scanning the new data. (Note that SSL_pending() is
1308 * often used as a boolean value, so we'd better not return -1.)
1309 *
1310 * SSL_pending also cannot work properly if the value >INT_MAX. In that case
1311 * we just return INT_MAX.
1312 */
1313 return pending < INT_MAX ? (int)pending : INT_MAX;
1314 }
1315
1316 int SSL_has_pending(const SSL *s)
1317 {
1318 /*
1319 * Similar to SSL_pending() but returns a 1 to indicate that we have
1320 * unprocessed data available or 0 otherwise (as opposed to the number of
1321 * bytes available). Unlike SSL_pending() this will take into account
1322 * read_ahead data. A 1 return simply indicates that we have unprocessed
1323 * data. That data may not result in any application data, or we may fail
1324 * to parse the records for some reason.
1325 */
1326 if (RECORD_LAYER_processed_read_pending(&s->rlayer))
1327 return 1;
1328
1329 return RECORD_LAYER_read_pending(&s->rlayer);
1330 }
1331
1332 X509 *SSL_get_peer_certificate(const SSL *s)
1333 {
1334 X509 *r;
1335
1336 if ((s == NULL) || (s->session == NULL))
1337 r = NULL;
1338 else
1339 r = s->session->peer;
1340
1341 if (r == NULL)
1342 return (r);
1343
1344 X509_up_ref(r);
1345
1346 return (r);
1347 }
1348
1349 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s)
1350 {
1351 STACK_OF(X509) *r;
1352
1353 if ((s == NULL) || (s->session == NULL))
1354 r = NULL;
1355 else
1356 r = s->session->peer_chain;
1357
1358 /*
1359 * If we are a client, cert_chain includes the peer's own certificate; if
1360 * we are a server, it does not.
1361 */
1362
1363 return (r);
1364 }
1365
1366 /*
1367 * Now in theory, since the calling process own 't' it should be safe to
1368 * modify. We need to be able to read f without being hassled
1369 */
1370 int SSL_copy_session_id(SSL *t, const SSL *f)
1371 {
1372 int i;
1373 /* Do we need to to SSL locking? */
1374 if (!SSL_set_session(t, SSL_get_session(f))) {
1375 return 0;
1376 }
1377
1378 /*
1379 * what if we are setup for one protocol version but want to talk another
1380 */
1381 if (t->method != f->method) {
1382 t->method->ssl_free(t);
1383 t->method = f->method;
1384 if (t->method->ssl_new(t) == 0)
1385 return 0;
1386 }
1387
1388 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock);
1389 ssl_cert_free(t->cert);
1390 t->cert = f->cert;
1391 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) {
1392 return 0;
1393 }
1394
1395 return 1;
1396 }
1397
1398 /* Fix this so it checks all the valid key/cert options */
1399 int SSL_CTX_check_private_key(const SSL_CTX *ctx)
1400 {
1401 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) {
1402 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1403 return (0);
1404 }
1405 if (ctx->cert->key->privatekey == NULL) {
1406 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1407 return (0);
1408 }
1409 return (X509_check_private_key
1410 (ctx->cert->key->x509, ctx->cert->key->privatekey));
1411 }
1412
1413 /* Fix this function so that it takes an optional type parameter */
1414 int SSL_check_private_key(const SSL *ssl)
1415 {
1416 if (ssl == NULL) {
1417 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER);
1418 return (0);
1419 }
1420 if (ssl->cert->key->x509 == NULL) {
1421 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1422 return (0);
1423 }
1424 if (ssl->cert->key->privatekey == NULL) {
1425 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1426 return (0);
1427 }
1428 return (X509_check_private_key(ssl->cert->key->x509,
1429 ssl->cert->key->privatekey));
1430 }
1431
1432 int SSL_waiting_for_async(SSL *s)
1433 {
1434 if (s->job)
1435 return 1;
1436
1437 return 0;
1438 }
1439
1440 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds)
1441 {
1442 ASYNC_WAIT_CTX *ctx = s->waitctx;
1443
1444 if (ctx == NULL)
1445 return 0;
1446 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds);
1447 }
1448
1449 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds,
1450 OSSL_ASYNC_FD *delfd, size_t *numdelfds)
1451 {
1452 ASYNC_WAIT_CTX *ctx = s->waitctx;
1453
1454 if (ctx == NULL)
1455 return 0;
1456 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd,
1457 numdelfds);
1458 }
1459
1460 int SSL_accept(SSL *s)
1461 {
1462 if (s->handshake_func == NULL) {
1463 /* Not properly initialized yet */
1464 SSL_set_accept_state(s);
1465 }
1466
1467 return SSL_do_handshake(s);
1468 }
1469
1470 int SSL_connect(SSL *s)
1471 {
1472 if (s->handshake_func == NULL) {
1473 /* Not properly initialized yet */
1474 SSL_set_connect_state(s);
1475 }
1476
1477 return SSL_do_handshake(s);
1478 }
1479
1480 long SSL_get_default_timeout(const SSL *s)
1481 {
1482 return (s->method->get_timeout());
1483 }
1484
1485 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args,
1486 int (*func) (void *))
1487 {
1488 int ret;
1489 if (s->waitctx == NULL) {
1490 s->waitctx = ASYNC_WAIT_CTX_new();
1491 if (s->waitctx == NULL)
1492 return -1;
1493 }
1494 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args,
1495 sizeof(struct ssl_async_args))) {
1496 case ASYNC_ERR:
1497 s->rwstate = SSL_NOTHING;
1498 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC);
1499 return -1;
1500 case ASYNC_PAUSE:
1501 s->rwstate = SSL_ASYNC_PAUSED;
1502 return -1;
1503 case ASYNC_NO_JOBS:
1504 s->rwstate = SSL_ASYNC_NO_JOBS;
1505 return -1;
1506 case ASYNC_FINISH:
1507 s->job = NULL;
1508 return ret;
1509 default:
1510 s->rwstate = SSL_NOTHING;
1511 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR);
1512 /* Shouldn't happen */
1513 return -1;
1514 }
1515 }
1516
1517 static int ssl_io_intern(void *vargs)
1518 {
1519 struct ssl_async_args *args;
1520 SSL *s;
1521 void *buf;
1522 size_t num;
1523
1524 args = (struct ssl_async_args *)vargs;
1525 s = args->s;
1526 buf = args->buf;
1527 num = args->num;
1528 switch (args->type) {
1529 case READFUNC:
1530 return args->f.func_read(s, buf, num, &s->asyncrw);
1531 case WRITEFUNC:
1532 return args->f.func_write(s, buf, num, &s->asyncrw);
1533 case OTHERFUNC:
1534 return args->f.func_other(s);
1535 }
1536 return -1;
1537 }
1538
1539 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1540 {
1541 if (s->handshake_func == NULL) {
1542 SSLerr(SSL_F_SSL_READ_INTERNAL, SSL_R_UNINITIALIZED);
1543 return -1;
1544 }
1545
1546 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1547 s->rwstate = SSL_NOTHING;
1548 return 0;
1549 }
1550
1551 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1552 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) {
1553 SSLerr(SSL_F_SSL_READ_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1554 return 0;
1555 }
1556 /*
1557 * If we are a client and haven't received the ServerHello etc then we
1558 * better do that
1559 */
1560 ossl_statem_check_finish_init(s, 0);
1561
1562 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1563 struct ssl_async_args args;
1564 int ret;
1565
1566 args.s = s;
1567 args.buf = buf;
1568 args.num = num;
1569 args.type = READFUNC;
1570 args.f.func_read = s->method->ssl_read;
1571
1572 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1573 *readbytes = s->asyncrw;
1574 return ret;
1575 } else {
1576 return s->method->ssl_read(s, buf, num, readbytes);
1577 }
1578 }
1579
1580 int SSL_read(SSL *s, void *buf, int num)
1581 {
1582 int ret;
1583 size_t readbytes;
1584
1585 if (num < 0) {
1586 SSLerr(SSL_F_SSL_READ, SSL_R_BAD_LENGTH);
1587 return -1;
1588 }
1589
1590 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes);
1591
1592 /*
1593 * The cast is safe here because ret should be <= INT_MAX because num is
1594 * <= INT_MAX
1595 */
1596 if (ret > 0)
1597 ret = (int)readbytes;
1598
1599 return ret;
1600 }
1601
1602 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1603 {
1604 int ret = ssl_read_internal(s, buf, num, readbytes);
1605
1606 if (ret < 0)
1607 ret = 0;
1608 return ret;
1609 }
1610
1611 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes)
1612 {
1613 int ret;
1614
1615 if (!s->server) {
1616 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1617 return SSL_READ_EARLY_DATA_ERROR;
1618 }
1619
1620 switch (s->early_data_state) {
1621 case SSL_EARLY_DATA_NONE:
1622 if (!SSL_in_before(s)) {
1623 SSLerr(SSL_F_SSL_READ_EARLY_DATA,
1624 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1625 return SSL_READ_EARLY_DATA_ERROR;
1626 }
1627 /* fall through */
1628
1629 case SSL_EARLY_DATA_ACCEPT_RETRY:
1630 s->early_data_state = SSL_EARLY_DATA_ACCEPTING;
1631 ret = SSL_accept(s);
1632 if (ret <= 0) {
1633 /* NBIO or error */
1634 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY;
1635 return SSL_READ_EARLY_DATA_ERROR;
1636 }
1637 /* fall through */
1638
1639 case SSL_EARLY_DATA_READ_RETRY:
1640 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) {
1641 s->early_data_state = SSL_EARLY_DATA_READING;
1642 ret = SSL_read_ex(s, buf, num, readbytes);
1643 /*
1644 * State machine will update early_data_state to
1645 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData
1646 * message
1647 */
1648 if (ret > 0 || (ret <= 0 && s->early_data_state
1649 != SSL_EARLY_DATA_FINISHED_READING)) {
1650 s->early_data_state = SSL_EARLY_DATA_READ_RETRY;
1651 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS
1652 : SSL_READ_EARLY_DATA_ERROR;
1653 }
1654 } else {
1655 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING;
1656 }
1657 *readbytes = 0;
1658 return SSL_READ_EARLY_DATA_FINISH;
1659
1660 default:
1661 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1662 return SSL_READ_EARLY_DATA_ERROR;
1663 }
1664 }
1665
1666 int SSL_get_early_data_status(const SSL *s)
1667 {
1668 return s->ext.early_data;
1669 }
1670
1671 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1672 {
1673 if (s->handshake_func == NULL) {
1674 SSLerr(SSL_F_SSL_PEEK_INTERNAL, SSL_R_UNINITIALIZED);
1675 return -1;
1676 }
1677
1678 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1679 return 0;
1680 }
1681 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1682 struct ssl_async_args args;
1683 int ret;
1684
1685 args.s = s;
1686 args.buf = buf;
1687 args.num = num;
1688 args.type = READFUNC;
1689 args.f.func_read = s->method->ssl_peek;
1690
1691 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1692 *readbytes = s->asyncrw;
1693 return ret;
1694 } else {
1695 return s->method->ssl_peek(s, buf, num, readbytes);
1696 }
1697 }
1698
1699 int SSL_peek(SSL *s, void *buf, int num)
1700 {
1701 int ret;
1702 size_t readbytes;
1703
1704 if (num < 0) {
1705 SSLerr(SSL_F_SSL_PEEK, SSL_R_BAD_LENGTH);
1706 return -1;
1707 }
1708
1709 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes);
1710
1711 /*
1712 * The cast is safe here because ret should be <= INT_MAX because num is
1713 * <= INT_MAX
1714 */
1715 if (ret > 0)
1716 ret = (int)readbytes;
1717
1718 return ret;
1719 }
1720
1721
1722 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1723 {
1724 int ret = ssl_peek_internal(s, buf, num, readbytes);
1725
1726 if (ret < 0)
1727 ret = 0;
1728 return ret;
1729 }
1730
1731 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written)
1732 {
1733 if (s->handshake_func == NULL) {
1734 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_UNINITIALIZED);
1735 return -1;
1736 }
1737
1738 if (s->shutdown & SSL_SENT_SHUTDOWN) {
1739 s->rwstate = SSL_NOTHING;
1740 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_PROTOCOL_IS_SHUTDOWN);
1741 return -1;
1742 }
1743
1744 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1745 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY
1746 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) {
1747 SSLerr(SSL_F_SSL_WRITE_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1748 return 0;
1749 }
1750 /* If we are a client and haven't sent the Finished we better do that */
1751 ossl_statem_check_finish_init(s, 1);
1752
1753 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1754 int ret;
1755 struct ssl_async_args args;
1756
1757 args.s = s;
1758 args.buf = (void *)buf;
1759 args.num = num;
1760 args.type = WRITEFUNC;
1761 args.f.func_write = s->method->ssl_write;
1762
1763 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1764 *written = s->asyncrw;
1765 return ret;
1766 } else {
1767 return s->method->ssl_write(s, buf, num, written);
1768 }
1769 }
1770
1771 int SSL_write(SSL *s, const void *buf, int num)
1772 {
1773 int ret;
1774 size_t written;
1775
1776 if (num < 0) {
1777 SSLerr(SSL_F_SSL_WRITE, SSL_R_BAD_LENGTH);
1778 return -1;
1779 }
1780
1781 ret = ssl_write_internal(s, buf, (size_t)num, &written);
1782
1783 /*
1784 * The cast is safe here because ret should be <= INT_MAX because num is
1785 * <= INT_MAX
1786 */
1787 if (ret > 0)
1788 ret = (int)written;
1789
1790 return ret;
1791 }
1792
1793 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written)
1794 {
1795 int ret = ssl_write_internal(s, buf, num, written);
1796
1797 if (ret < 0)
1798 ret = 0;
1799 return ret;
1800 }
1801
1802 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written)
1803 {
1804 int ret, early_data_state;
1805
1806 switch (s->early_data_state) {
1807 case SSL_EARLY_DATA_NONE:
1808 if (s->server
1809 || !SSL_in_before(s)
1810 || s->session == NULL
1811 || s->session->ext.max_early_data == 0) {
1812 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA,
1813 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1814 return 0;
1815 }
1816 /* fall through */
1817
1818 case SSL_EARLY_DATA_CONNECT_RETRY:
1819 s->early_data_state = SSL_EARLY_DATA_CONNECTING;
1820 ret = SSL_connect(s);
1821 if (ret <= 0) {
1822 /* NBIO or error */
1823 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY;
1824 return 0;
1825 }
1826 /* fall through */
1827
1828 case SSL_EARLY_DATA_WRITE_RETRY:
1829 s->early_data_state = SSL_EARLY_DATA_WRITING;
1830 ret = SSL_write_ex(s, buf, num, written);
1831 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
1832 return ret;
1833
1834 case SSL_EARLY_DATA_FINISHED_READING:
1835 case SSL_EARLY_DATA_READ_RETRY:
1836 early_data_state = s->early_data_state;
1837 /* We are a server writing to an unauthenticated client */
1838 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING;
1839 ret = SSL_write_ex(s, buf, num, written);
1840 s->early_data_state = early_data_state;
1841 return ret;
1842
1843 default:
1844 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1845 return 0;
1846 }
1847 }
1848
1849 int SSL_shutdown(SSL *s)
1850 {
1851 /*
1852 * Note that this function behaves differently from what one might
1853 * expect. Return values are 0 for no success (yet), 1 for success; but
1854 * calling it once is usually not enough, even if blocking I/O is used
1855 * (see ssl3_shutdown).
1856 */
1857
1858 if (s->handshake_func == NULL) {
1859 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED);
1860 return -1;
1861 }
1862
1863 if (!SSL_in_init(s)) {
1864 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1865 struct ssl_async_args args;
1866
1867 args.s = s;
1868 args.type = OTHERFUNC;
1869 args.f.func_other = s->method->ssl_shutdown;
1870
1871 return ssl_start_async_job(s, &args, ssl_io_intern);
1872 } else {
1873 return s->method->ssl_shutdown(s);
1874 }
1875 } else {
1876 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT);
1877 return -1;
1878 }
1879 }
1880
1881 int SSL_key_update(SSL *s, int updatetype)
1882 {
1883 /*
1884 * TODO(TLS1.3): How will applications know whether TLSv1.3 has been
1885 * negotiated, and that it is appropriate to call SSL_key_update() instead
1886 * of SSL_renegotiate().
1887 */
1888 if (!SSL_IS_TLS13(s)) {
1889 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_WRONG_SSL_VERSION);
1890 return 0;
1891 }
1892
1893 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED
1894 && updatetype != SSL_KEY_UPDATE_REQUESTED) {
1895 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_INVALID_KEY_UPDATE_TYPE);
1896 return 0;
1897 }
1898
1899 if (!SSL_is_init_finished(s)) {
1900 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_STILL_IN_INIT);
1901 return 0;
1902 }
1903
1904 ossl_statem_set_in_init(s, 1);
1905 s->key_update = updatetype;
1906 return 1;
1907 }
1908
1909 int SSL_get_key_update_type(SSL *s)
1910 {
1911 return s->key_update;
1912 }
1913
1914 int SSL_renegotiate(SSL *s)
1915 {
1916 if (SSL_IS_TLS13(s)) {
1917 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_WRONG_SSL_VERSION);
1918 return 0;
1919 }
1920
1921 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
1922 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_NO_RENEGOTIATION);
1923 return 0;
1924 }
1925
1926 s->renegotiate = 1;
1927 s->new_session = 1;
1928
1929 return (s->method->ssl_renegotiate(s));
1930 }
1931
1932 int SSL_renegotiate_abbreviated(SSL *s)
1933 {
1934 if (SSL_IS_TLS13(s)) {
1935 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_WRONG_SSL_VERSION);
1936 return 0;
1937 }
1938
1939 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
1940 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_NO_RENEGOTIATION);
1941 return 0;
1942 }
1943
1944 s->renegotiate = 1;
1945 s->new_session = 0;
1946
1947 return (s->method->ssl_renegotiate(s));
1948 }
1949
1950 int SSL_renegotiate_pending(SSL *s)
1951 {
1952 /*
1953 * becomes true when negotiation is requested; false again once a
1954 * handshake has finished
1955 */
1956 return (s->renegotiate != 0);
1957 }
1958
1959 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg)
1960 {
1961 long l;
1962
1963 switch (cmd) {
1964 case SSL_CTRL_GET_READ_AHEAD:
1965 return (RECORD_LAYER_get_read_ahead(&s->rlayer));
1966 case SSL_CTRL_SET_READ_AHEAD:
1967 l = RECORD_LAYER_get_read_ahead(&s->rlayer);
1968 RECORD_LAYER_set_read_ahead(&s->rlayer, larg);
1969 return (l);
1970
1971 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
1972 s->msg_callback_arg = parg;
1973 return 1;
1974
1975 case SSL_CTRL_MODE:
1976 return (s->mode |= larg);
1977 case SSL_CTRL_CLEAR_MODE:
1978 return (s->mode &= ~larg);
1979 case SSL_CTRL_GET_MAX_CERT_LIST:
1980 return (long)(s->max_cert_list);
1981 case SSL_CTRL_SET_MAX_CERT_LIST:
1982 if (larg < 0)
1983 return 0;
1984 l = (long)s->max_cert_list;
1985 s->max_cert_list = (size_t)larg;
1986 return l;
1987 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
1988 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
1989 return 0;
1990 s->max_send_fragment = larg;
1991 if (s->max_send_fragment < s->split_send_fragment)
1992 s->split_send_fragment = s->max_send_fragment;
1993 return 1;
1994 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
1995 if ((size_t)larg > s->max_send_fragment || larg == 0)
1996 return 0;
1997 s->split_send_fragment = larg;
1998 return 1;
1999 case SSL_CTRL_SET_MAX_PIPELINES:
2000 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2001 return 0;
2002 s->max_pipelines = larg;
2003 if (larg > 1)
2004 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
2005 return 1;
2006 case SSL_CTRL_GET_RI_SUPPORT:
2007 if (s->s3)
2008 return s->s3->send_connection_binding;
2009 else
2010 return 0;
2011 case SSL_CTRL_CERT_FLAGS:
2012 return (s->cert->cert_flags |= larg);
2013 case SSL_CTRL_CLEAR_CERT_FLAGS:
2014 return (s->cert->cert_flags &= ~larg);
2015
2016 case SSL_CTRL_GET_RAW_CIPHERLIST:
2017 if (parg) {
2018 if (s->s3->tmp.ciphers_raw == NULL)
2019 return 0;
2020 *(unsigned char **)parg = s->s3->tmp.ciphers_raw;
2021 return (int)s->s3->tmp.ciphers_rawlen;
2022 } else {
2023 return TLS_CIPHER_LEN;
2024 }
2025 case SSL_CTRL_GET_EXTMS_SUPPORT:
2026 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s))
2027 return -1;
2028 if (s->session->flags & SSL_SESS_FLAG_EXTMS)
2029 return 1;
2030 else
2031 return 0;
2032 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2033 return ssl_set_version_bound(s->ctx->method->version, (int)larg,
2034 &s->min_proto_version);
2035 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2036 return ssl_set_version_bound(s->ctx->method->version, (int)larg,
2037 &s->max_proto_version);
2038 default:
2039 return (s->method->ssl_ctrl(s, cmd, larg, parg));
2040 }
2041 }
2042
2043 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
2044 {
2045 switch (cmd) {
2046 case SSL_CTRL_SET_MSG_CALLBACK:
2047 s->msg_callback = (void (*)
2048 (int write_p, int version, int content_type,
2049 const void *buf, size_t len, SSL *ssl,
2050 void *arg))(fp);
2051 return 1;
2052
2053 default:
2054 return (s->method->ssl_callback_ctrl(s, cmd, fp));
2055 }
2056 }
2057
2058 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx)
2059 {
2060 return ctx->sessions;
2061 }
2062
2063 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
2064 {
2065 long l;
2066 /* For some cases with ctx == NULL perform syntax checks */
2067 if (ctx == NULL) {
2068 switch (cmd) {
2069 #ifndef OPENSSL_NO_EC
2070 case SSL_CTRL_SET_GROUPS_LIST:
2071 return tls1_set_groups_list(NULL, NULL, parg);
2072 #endif
2073 case SSL_CTRL_SET_SIGALGS_LIST:
2074 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST:
2075 return tls1_set_sigalgs_list(NULL, parg, 0);
2076 default:
2077 return 0;
2078 }
2079 }
2080
2081 switch (cmd) {
2082 case SSL_CTRL_GET_READ_AHEAD:
2083 return (ctx->read_ahead);
2084 case SSL_CTRL_SET_READ_AHEAD:
2085 l = ctx->read_ahead;
2086 ctx->read_ahead = larg;
2087 return (l);
2088
2089 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2090 ctx->msg_callback_arg = parg;
2091 return 1;
2092
2093 case SSL_CTRL_GET_MAX_CERT_LIST:
2094 return (long)(ctx->max_cert_list);
2095 case SSL_CTRL_SET_MAX_CERT_LIST:
2096 if (larg < 0)
2097 return 0;
2098 l = (long)ctx->max_cert_list;
2099 ctx->max_cert_list = (size_t)larg;
2100 return l;
2101
2102 case SSL_CTRL_SET_SESS_CACHE_SIZE:
2103 if (larg < 0)
2104 return 0;
2105 l = (long)ctx->session_cache_size;
2106 ctx->session_cache_size = (size_t)larg;
2107 return l;
2108 case SSL_CTRL_GET_SESS_CACHE_SIZE:
2109 return (long)(ctx->session_cache_size);
2110 case SSL_CTRL_SET_SESS_CACHE_MODE:
2111 l = ctx->session_cache_mode;
2112 ctx->session_cache_mode = larg;
2113 return (l);
2114 case SSL_CTRL_GET_SESS_CACHE_MODE:
2115 return (ctx->session_cache_mode);
2116
2117 case SSL_CTRL_SESS_NUMBER:
2118 return (lh_SSL_SESSION_num_items(ctx->sessions));
2119 case SSL_CTRL_SESS_CONNECT:
2120 return (ctx->stats.sess_connect);
2121 case SSL_CTRL_SESS_CONNECT_GOOD:
2122 return (ctx->stats.sess_connect_good);
2123 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE:
2124 return (ctx->stats.sess_connect_renegotiate);
2125 case SSL_CTRL_SESS_ACCEPT:
2126 return (ctx->stats.sess_accept);
2127 case SSL_CTRL_SESS_ACCEPT_GOOD:
2128 return (ctx->stats.sess_accept_good);
2129 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE:
2130 return (ctx->stats.sess_accept_renegotiate);
2131 case SSL_CTRL_SESS_HIT:
2132 return (ctx->stats.sess_hit);
2133 case SSL_CTRL_SESS_CB_HIT:
2134 return (ctx->stats.sess_cb_hit);
2135 case SSL_CTRL_SESS_MISSES:
2136 return (ctx->stats.sess_miss);
2137 case SSL_CTRL_SESS_TIMEOUTS:
2138 return (ctx->stats.sess_timeout);
2139 case SSL_CTRL_SESS_CACHE_FULL:
2140 return (ctx->stats.sess_cache_full);
2141 case SSL_CTRL_MODE:
2142 return (ctx->mode |= larg);
2143 case SSL_CTRL_CLEAR_MODE:
2144 return (ctx->mode &= ~larg);
2145 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2146 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2147 return 0;
2148 ctx->max_send_fragment = larg;
2149 if (ctx->max_send_fragment < ctx->split_send_fragment)
2150 ctx->split_send_fragment = ctx->max_send_fragment;
2151 return 1;
2152 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2153 if ((size_t)larg > ctx->max_send_fragment || larg == 0)
2154 return 0;
2155 ctx->split_send_fragment = larg;
2156 return 1;
2157 case SSL_CTRL_SET_MAX_PIPELINES:
2158 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2159 return 0;
2160 ctx->max_pipelines = larg;
2161 return 1;
2162 case SSL_CTRL_CERT_FLAGS:
2163 return (ctx->cert->cert_flags |= larg);
2164 case SSL_CTRL_CLEAR_CERT_FLAGS:
2165 return (ctx->cert->cert_flags &= ~larg);
2166 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2167 return ssl_set_version_bound(ctx->method->version, (int)larg,
2168 &ctx->min_proto_version);
2169 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2170 return ssl_set_version_bound(ctx->method->version, (int)larg,
2171 &ctx->max_proto_version);
2172 default:
2173 return (ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg));
2174 }
2175 }
2176
2177 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
2178 {
2179 switch (cmd) {
2180 case SSL_CTRL_SET_MSG_CALLBACK:
2181 ctx->msg_callback = (void (*)
2182 (int write_p, int version, int content_type,
2183 const void *buf, size_t len, SSL *ssl,
2184 void *arg))(fp);
2185 return 1;
2186
2187 default:
2188 return (ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp));
2189 }
2190 }
2191
2192 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b)
2193 {
2194 if (a->id > b->id)
2195 return 1;
2196 if (a->id < b->id)
2197 return -1;
2198 return 0;
2199 }
2200
2201 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap,
2202 const SSL_CIPHER *const *bp)
2203 {
2204 if ((*ap)->id > (*bp)->id)
2205 return 1;
2206 if ((*ap)->id < (*bp)->id)
2207 return -1;
2208 return 0;
2209 }
2210
2211 /** return a STACK of the ciphers available for the SSL and in order of
2212 * preference */
2213 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s)
2214 {
2215 if (s != NULL) {
2216 if (s->cipher_list != NULL) {
2217 return (s->cipher_list);
2218 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) {
2219 return (s->ctx->cipher_list);
2220 }
2221 }
2222 return (NULL);
2223 }
2224
2225 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s)
2226 {
2227 if ((s == NULL) || (s->session == NULL) || !s->server)
2228 return NULL;
2229 return s->session->ciphers;
2230 }
2231
2232 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s)
2233 {
2234 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers;
2235 int i;
2236 ciphers = SSL_get_ciphers(s);
2237 if (!ciphers)
2238 return NULL;
2239 ssl_set_client_disabled(s);
2240 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
2241 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i);
2242 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) {
2243 if (!sk)
2244 sk = sk_SSL_CIPHER_new_null();
2245 if (!sk)
2246 return NULL;
2247 if (!sk_SSL_CIPHER_push(sk, c)) {
2248 sk_SSL_CIPHER_free(sk);
2249 return NULL;
2250 }
2251 }
2252 }
2253 return sk;
2254 }
2255
2256 /** return a STACK of the ciphers available for the SSL and in order of
2257 * algorithm id */
2258 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s)
2259 {
2260 if (s != NULL) {
2261 if (s->cipher_list_by_id != NULL) {
2262 return (s->cipher_list_by_id);
2263 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) {
2264 return (s->ctx->cipher_list_by_id);
2265 }
2266 }
2267 return (NULL);
2268 }
2269
2270 /** The old interface to get the same thing as SSL_get_ciphers() */
2271 const char *SSL_get_cipher_list(const SSL *s, int n)
2272 {
2273 const SSL_CIPHER *c;
2274 STACK_OF(SSL_CIPHER) *sk;
2275
2276 if (s == NULL)
2277 return (NULL);
2278 sk = SSL_get_ciphers(s);
2279 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n))
2280 return (NULL);
2281 c = sk_SSL_CIPHER_value(sk, n);
2282 if (c == NULL)
2283 return (NULL);
2284 return (c->name);
2285 }
2286
2287 /** return a STACK of the ciphers available for the SSL_CTX and in order of
2288 * preference */
2289 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx)
2290 {
2291 if (ctx != NULL)
2292 return ctx->cipher_list;
2293 return NULL;
2294 }
2295
2296 /** specify the ciphers to be used by default by the SSL_CTX */
2297 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)
2298 {
2299 STACK_OF(SSL_CIPHER) *sk;
2300
2301 sk = ssl_create_cipher_list(ctx->method, &ctx->cipher_list,
2302 &ctx->cipher_list_by_id, str, ctx->cert);
2303 /*
2304 * ssl_create_cipher_list may return an empty stack if it was unable to
2305 * find a cipher matching the given rule string (for example if the rule
2306 * string specifies a cipher which has been disabled). This is not an
2307 * error as far as ssl_create_cipher_list is concerned, and hence
2308 * ctx->cipher_list and ctx->cipher_list_by_id has been updated.
2309 */
2310 if (sk == NULL)
2311 return 0;
2312 else if (sk_SSL_CIPHER_num(sk) == 0) {
2313 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2314 return 0;
2315 }
2316 return 1;
2317 }
2318
2319 /** specify the ciphers to be used by the SSL */
2320 int SSL_set_cipher_list(SSL *s, const char *str)
2321 {
2322 STACK_OF(SSL_CIPHER) *sk;
2323
2324 sk = ssl_create_cipher_list(s->ctx->method, &s->cipher_list,
2325 &s->cipher_list_by_id, str, s->cert);
2326 /* see comment in SSL_CTX_set_cipher_list */
2327 if (sk == NULL)
2328 return 0;
2329 else if (sk_SSL_CIPHER_num(sk) == 0) {
2330 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2331 return 0;
2332 }
2333 return 1;
2334 }
2335
2336 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int len)
2337 {
2338 char *p;
2339 STACK_OF(SSL_CIPHER) *sk;
2340 const SSL_CIPHER *c;
2341 int i;
2342
2343 if ((s->session == NULL) || (s->session->ciphers == NULL) || (len < 2))
2344 return (NULL);
2345
2346 p = buf;
2347 sk = s->session->ciphers;
2348
2349 if (sk_SSL_CIPHER_num(sk) == 0)
2350 return NULL;
2351
2352 for (i = 0; i < sk_SSL_CIPHER_num(sk); i++) {
2353 int n;
2354
2355 c = sk_SSL_CIPHER_value(sk, i);
2356 n = strlen(c->name);
2357 if (n + 1 > len) {
2358 if (p != buf)
2359 --p;
2360 *p = '\0';
2361 return buf;
2362 }
2363 memcpy(p, c->name, n + 1);
2364 p += n;
2365 *(p++) = ':';
2366 len -= n + 1;
2367 }
2368 p[-1] = '\0';
2369 return (buf);
2370 }
2371
2372 /** return a servername extension value if provided in Client Hello, or NULL.
2373 * So far, only host_name types are defined (RFC 3546).
2374 */
2375
2376 const char *SSL_get_servername(const SSL *s, const int type)
2377 {
2378 if (type != TLSEXT_NAMETYPE_host_name)
2379 return NULL;
2380
2381 return s->session && !s->ext.hostname ?
2382 s->session->ext.hostname : s->ext.hostname;
2383 }
2384
2385 int SSL_get_servername_type(const SSL *s)
2386 {
2387 if (s->session
2388 && (!s->ext.hostname ? s->session->
2389 ext.hostname : s->ext.hostname))
2390 return TLSEXT_NAMETYPE_host_name;
2391 return -1;
2392 }
2393
2394 /*
2395 * SSL_select_next_proto implements the standard protocol selection. It is
2396 * expected that this function is called from the callback set by
2397 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a
2398 * vector of 8-bit, length prefixed byte strings. The length byte itself is
2399 * not included in the length. A byte string of length 0 is invalid. No byte
2400 * string may be truncated. The current, but experimental algorithm for
2401 * selecting the protocol is: 1) If the server doesn't support NPN then this
2402 * is indicated to the callback. In this case, the client application has to
2403 * abort the connection or have a default application level protocol. 2) If
2404 * the server supports NPN, but advertises an empty list then the client
2405 * selects the first protocol in its list, but indicates via the API that this
2406 * fallback case was enacted. 3) Otherwise, the client finds the first
2407 * protocol in the server's list that it supports and selects this protocol.
2408 * This is because it's assumed that the server has better information about
2409 * which protocol a client should use. 4) If the client doesn't support any
2410 * of the server's advertised protocols, then this is treated the same as
2411 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was
2412 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
2413 */
2414 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen,
2415 const unsigned char *server,
2416 unsigned int server_len,
2417 const unsigned char *client, unsigned int client_len)
2418 {
2419 unsigned int i, j;
2420 const unsigned char *result;
2421 int status = OPENSSL_NPN_UNSUPPORTED;
2422
2423 /*
2424 * For each protocol in server preference order, see if we support it.
2425 */
2426 for (i = 0; i < server_len;) {
2427 for (j = 0; j < client_len;) {
2428 if (server[i] == client[j] &&
2429 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
2430 /* We found a match */
2431 result = &server[i];
2432 status = OPENSSL_NPN_NEGOTIATED;
2433 goto found;
2434 }
2435 j += client[j];
2436 j++;
2437 }
2438 i += server[i];
2439 i++;
2440 }
2441
2442 /* There's no overlap between our protocols and the server's list. */
2443 result = client;
2444 status = OPENSSL_NPN_NO_OVERLAP;
2445
2446 found:
2447 *out = (unsigned char *)result + 1;
2448 *outlen = result[0];
2449 return status;
2450 }
2451
2452 #ifndef OPENSSL_NO_NEXTPROTONEG
2453 /*
2454 * SSL_get0_next_proto_negotiated sets *data and *len to point to the
2455 * client's requested protocol for this connection and returns 0. If the
2456 * client didn't request any protocol, then *data is set to NULL. Note that
2457 * the client can request any protocol it chooses. The value returned from
2458 * this function need not be a member of the list of supported protocols
2459 * provided by the callback.
2460 */
2461 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data,
2462 unsigned *len)
2463 {
2464 *data = s->ext.npn;
2465 if (!*data) {
2466 *len = 0;
2467 } else {
2468 *len = (unsigned int)s->ext.npn_len;
2469 }
2470 }
2471
2472 /*
2473 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when
2474 * a TLS server needs a list of supported protocols for Next Protocol
2475 * Negotiation. The returned list must be in wire format. The list is
2476 * returned by setting |out| to point to it and |outlen| to its length. This
2477 * memory will not be modified, but one should assume that the SSL* keeps a
2478 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it
2479 * wishes to advertise. Otherwise, no such extension will be included in the
2480 * ServerHello.
2481 */
2482 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx,
2483 SSL_CTX_npn_advertised_cb_func cb,
2484 void *arg)
2485 {
2486 ctx->ext.npn_advertised_cb = cb;
2487 ctx->ext.npn_advertised_cb_arg = arg;
2488 }
2489
2490 /*
2491 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
2492 * client needs to select a protocol from the server's provided list. |out|
2493 * must be set to point to the selected protocol (which may be within |in|).
2494 * The length of the protocol name must be written into |outlen|. The
2495 * server's advertised protocols are provided in |in| and |inlen|. The
2496 * callback can assume that |in| is syntactically valid. The client must
2497 * select a protocol. It is fatal to the connection if this callback returns
2498 * a value other than SSL_TLSEXT_ERR_OK.
2499 */
2500 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx,
2501 SSL_CTX_npn_select_cb_func cb,
2502 void *arg)
2503 {
2504 ctx->ext.npn_select_cb = cb;
2505 ctx->ext.npn_select_cb_arg = arg;
2506 }
2507 #endif
2508
2509 /*
2510 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|.
2511 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2512 * length-prefixed strings). Returns 0 on success.
2513 */
2514 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos,
2515 unsigned int protos_len)
2516 {
2517 OPENSSL_free(ctx->ext.alpn);
2518 ctx->ext.alpn = OPENSSL_memdup(protos, protos_len);
2519 if (ctx->ext.alpn == NULL) {
2520 SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2521 return 1;
2522 }
2523 ctx->ext.alpn_len = protos_len;
2524
2525 return 0;
2526 }
2527
2528 /*
2529 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|.
2530 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2531 * length-prefixed strings). Returns 0 on success.
2532 */
2533 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos,
2534 unsigned int protos_len)
2535 {
2536 OPENSSL_free(ssl->ext.alpn);
2537 ssl->ext.alpn = OPENSSL_memdup(protos, protos_len);
2538 if (ssl->ext.alpn == NULL) {
2539 SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2540 return 1;
2541 }
2542 ssl->ext.alpn_len = protos_len;
2543
2544 return 0;
2545 }
2546
2547 /*
2548 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is
2549 * called during ClientHello processing in order to select an ALPN protocol
2550 * from the client's list of offered protocols.
2551 */
2552 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
2553 SSL_CTX_alpn_select_cb_func cb,
2554 void *arg)
2555 {
2556 ctx->ext.alpn_select_cb = cb;
2557 ctx->ext.alpn_select_cb_arg = arg;
2558 }
2559
2560 /*
2561 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|.
2562 * On return it sets |*data| to point to |*len| bytes of protocol name
2563 * (not including the leading length-prefix byte). If the server didn't
2564 * respond with a negotiated protocol then |*len| will be zero.
2565 */
2566 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data,
2567 unsigned int *len)
2568 {
2569 *data = NULL;
2570 if (ssl->s3)
2571 *data = ssl->s3->alpn_selected;
2572 if (*data == NULL)
2573 *len = 0;
2574 else
2575 *len = (unsigned int)ssl->s3->alpn_selected_len;
2576 }
2577
2578 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
2579 const char *label, size_t llen,
2580 const unsigned char *p, size_t plen,
2581 int use_context)
2582 {
2583 if (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER)
2584 return -1;
2585
2586 return s->method->ssl3_enc->export_keying_material(s, out, olen, label,
2587 llen, p, plen,
2588 use_context);
2589 }
2590
2591 static unsigned long ssl_session_hash(const SSL_SESSION *a)
2592 {
2593 const unsigned char *session_id = a->session_id;
2594 unsigned long l;
2595 unsigned char tmp_storage[4];
2596
2597 if (a->session_id_length < sizeof(tmp_storage)) {
2598 memset(tmp_storage, 0, sizeof(tmp_storage));
2599 memcpy(tmp_storage, a->session_id, a->session_id_length);
2600 session_id = tmp_storage;
2601 }
2602
2603 l = (unsigned long)
2604 ((unsigned long)session_id[0]) |
2605 ((unsigned long)session_id[1] << 8L) |
2606 ((unsigned long)session_id[2] << 16L) |
2607 ((unsigned long)session_id[3] << 24L);
2608 return (l);
2609 }
2610
2611 /*
2612 * NB: If this function (or indeed the hash function which uses a sort of
2613 * coarser function than this one) is changed, ensure
2614 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on
2615 * being able to construct an SSL_SESSION that will collide with any existing
2616 * session with a matching session ID.
2617 */
2618 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b)
2619 {
2620 if (a->ssl_version != b->ssl_version)
2621 return (1);
2622 if (a->session_id_length != b->session_id_length)
2623 return (1);
2624 return (memcmp(a->session_id, b->session_id, a->session_id_length));
2625 }
2626
2627 /*
2628 * These wrapper functions should remain rather than redeclaring
2629 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each
2630 * variable. The reason is that the functions aren't static, they're exposed
2631 * via ssl.h.
2632 */
2633
2634 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth)
2635 {
2636 SSL_CTX *ret = NULL;
2637
2638 if (meth == NULL) {
2639 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED);
2640 return (NULL);
2641 }
2642
2643 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL))
2644 return NULL;
2645
2646 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
2647 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
2648 goto err;
2649 }
2650 ret = OPENSSL_zalloc(sizeof(*ret));
2651 if (ret == NULL)
2652 goto err;
2653
2654 ret->method = meth;
2655 ret->min_proto_version = 0;
2656 ret->max_proto_version = 0;
2657 ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
2658 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
2659 /* We take the system default. */
2660 ret->session_timeout = meth->get_timeout();
2661 ret->references = 1;
2662 ret->lock = CRYPTO_THREAD_lock_new();
2663 if (ret->lock == NULL) {
2664 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2665 OPENSSL_free(ret);
2666 return NULL;
2667 }
2668 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
2669 ret->verify_mode = SSL_VERIFY_NONE;
2670 if ((ret->cert = ssl_cert_new()) == NULL)
2671 goto err;
2672
2673 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
2674 if (ret->sessions == NULL)
2675 goto err;
2676 ret->cert_store = X509_STORE_new();
2677 if (ret->cert_store == NULL)
2678 goto err;
2679 #ifndef OPENSSL_NO_CT
2680 ret->ctlog_store = CTLOG_STORE_new();
2681 if (ret->ctlog_store == NULL)
2682 goto err;
2683 #endif
2684 if (!ssl_create_cipher_list(ret->method,
2685 &ret->cipher_list, &ret->cipher_list_by_id,
2686 SSL_DEFAULT_CIPHER_LIST, ret->cert)
2687 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) {
2688 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS);
2689 goto err2;
2690 }
2691
2692 ret->param = X509_VERIFY_PARAM_new();
2693 if (ret->param == NULL)
2694 goto err;
2695
2696 if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) {
2697 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES);
2698 goto err2;
2699 }
2700 if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) {
2701 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES);
2702 goto err2;
2703 }
2704
2705 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL)
2706 goto err;
2707
2708 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data))
2709 goto err;
2710
2711 /* No compression for DTLS */
2712 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS))
2713 ret->comp_methods = SSL_COMP_get_compression_methods();
2714
2715 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2716 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2717
2718 /* Setup RFC5077 ticket keys */
2719 if ((RAND_bytes(ret->ext.tick_key_name,
2720 sizeof(ret->ext.tick_key_name)) <= 0)
2721 || (RAND_bytes(ret->ext.tick_hmac_key,
2722 sizeof(ret->ext.tick_hmac_key)) <= 0)
2723 || (RAND_bytes(ret->ext.tick_aes_key,
2724 sizeof(ret->ext.tick_aes_key)) <= 0))
2725 ret->options |= SSL_OP_NO_TICKET;
2726
2727 #ifndef OPENSSL_NO_SRP
2728 if (!SSL_CTX_SRP_CTX_init(ret))
2729 goto err;
2730 #endif
2731 #ifndef OPENSSL_NO_ENGINE
2732 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO
2733 # define eng_strx(x) #x
2734 # define eng_str(x) eng_strx(x)
2735 /* Use specific client engine automatically... ignore errors */
2736 {
2737 ENGINE *eng;
2738 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2739 if (!eng) {
2740 ERR_clear_error();
2741 ENGINE_load_builtin_engines();
2742 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2743 }
2744 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng))
2745 ERR_clear_error();
2746 }
2747 # endif
2748 #endif
2749 /*
2750 * Default is to connect to non-RI servers. When RI is more widely
2751 * deployed might change this.
2752 */
2753 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT;
2754 /*
2755 * Disable compression by default to prevent CRIME. Applications can
2756 * re-enable compression by configuring
2757 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION);
2758 * or by using the SSL_CONF library.
2759 */
2760 ret->options |= SSL_OP_NO_COMPRESSION;
2761
2762 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing;
2763
2764 /*
2765 * Default max early data is a fully loaded single record. Could be split
2766 * across multiple records in practice
2767 */
2768 ret->max_early_data = SSL3_RT_MAX_PLAIN_LENGTH;
2769
2770 return ret;
2771 err:
2772 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2773 err2:
2774 SSL_CTX_free(ret);
2775 return NULL;
2776 }
2777
2778 int SSL_CTX_up_ref(SSL_CTX *ctx)
2779 {
2780 int i;
2781
2782 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0)
2783 return 0;
2784
2785 REF_PRINT_COUNT("SSL_CTX", ctx);
2786 REF_ASSERT_ISNT(i < 2);
2787 return ((i > 1) ? 1 : 0);
2788 }
2789
2790 void SSL_CTX_free(SSL_CTX *a)
2791 {
2792 int i;
2793
2794 if (a == NULL)
2795 return;
2796
2797 CRYPTO_DOWN_REF(&a->references, &i, a->lock);
2798 REF_PRINT_COUNT("SSL_CTX", a);
2799 if (i > 0)
2800 return;
2801 REF_ASSERT_ISNT(i < 0);
2802
2803 X509_VERIFY_PARAM_free(a->param);
2804 dane_ctx_final(&a->dane);
2805
2806 /*
2807 * Free internal session cache. However: the remove_cb() may reference
2808 * the ex_data of SSL_CTX, thus the ex_data store can only be removed
2809 * after the sessions were flushed.
2810 * As the ex_data handling routines might also touch the session cache,
2811 * the most secure solution seems to be: empty (flush) the cache, then
2812 * free ex_data, then finally free the cache.
2813 * (See ticket [openssl.org #212].)
2814 */
2815 if (a->sessions != NULL)
2816 SSL_CTX_flush_sessions(a, 0);
2817
2818 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data);
2819 lh_SSL_SESSION_free(a->sessions);
2820 X509_STORE_free(a->cert_store);
2821 #ifndef OPENSSL_NO_CT
2822 CTLOG_STORE_free(a->ctlog_store);
2823 #endif
2824 sk_SSL_CIPHER_free(a->cipher_list);
2825 sk_SSL_CIPHER_free(a->cipher_list_by_id);
2826 ssl_cert_free(a->cert);
2827 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free);
2828 sk_X509_pop_free(a->extra_certs, X509_free);
2829 a->comp_methods = NULL;
2830 #ifndef OPENSSL_NO_SRTP
2831 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles);
2832 #endif
2833 #ifndef OPENSSL_NO_SRP
2834 SSL_CTX_SRP_CTX_free(a);
2835 #endif
2836 #ifndef OPENSSL_NO_ENGINE
2837 ENGINE_finish(a->client_cert_engine);
2838 #endif
2839
2840 #ifndef OPENSSL_NO_EC
2841 OPENSSL_free(a->ext.ecpointformats);
2842 OPENSSL_free(a->ext.supportedgroups);
2843 #endif
2844 OPENSSL_free(a->ext.alpn);
2845
2846 CRYPTO_THREAD_lock_free(a->lock);
2847
2848 OPENSSL_free(a);
2849 }
2850
2851 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb)
2852 {
2853 ctx->default_passwd_callback = cb;
2854 }
2855
2856 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u)
2857 {
2858 ctx->default_passwd_callback_userdata = u;
2859 }
2860
2861 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx)
2862 {
2863 return ctx->default_passwd_callback;
2864 }
2865
2866 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx)
2867 {
2868 return ctx->default_passwd_callback_userdata;
2869 }
2870
2871 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb)
2872 {
2873 s->default_passwd_callback = cb;
2874 }
2875
2876 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u)
2877 {
2878 s->default_passwd_callback_userdata = u;
2879 }
2880
2881 pem_password_cb *SSL_get_default_passwd_cb(SSL *s)
2882 {
2883 return s->default_passwd_callback;
2884 }
2885
2886 void *SSL_get_default_passwd_cb_userdata(SSL *s)
2887 {
2888 return s->default_passwd_callback_userdata;
2889 }
2890
2891 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
2892 int (*cb) (X509_STORE_CTX *, void *),
2893 void *arg)
2894 {
2895 ctx->app_verify_callback = cb;
2896 ctx->app_verify_arg = arg;
2897 }
2898
2899 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
2900 int (*cb) (int, X509_STORE_CTX *))
2901 {
2902 ctx->verify_mode = mode;
2903 ctx->default_verify_callback = cb;
2904 }
2905
2906 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth)
2907 {
2908 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
2909 }
2910
2911 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg)
2912 {
2913 ssl_cert_set_cert_cb(c->cert, cb, arg);
2914 }
2915
2916 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg)
2917 {
2918 ssl_cert_set_cert_cb(s->cert, cb, arg);
2919 }
2920
2921 void ssl_set_masks(SSL *s)
2922 {
2923 CERT *c = s->cert;
2924 uint32_t *pvalid = s->s3->tmp.valid_flags;
2925 int rsa_enc, rsa_sign, dh_tmp, dsa_sign;
2926 unsigned long mask_k, mask_a;
2927 #ifndef OPENSSL_NO_EC
2928 int have_ecc_cert, ecdsa_ok;
2929 #endif
2930 if (c == NULL)
2931 return;
2932
2933 #ifndef OPENSSL_NO_DH
2934 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto);
2935 #else
2936 dh_tmp = 0;
2937 #endif
2938
2939 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
2940 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
2941 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID;
2942 #ifndef OPENSSL_NO_EC
2943 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID;
2944 #endif
2945 mask_k = 0;
2946 mask_a = 0;
2947
2948 #ifdef CIPHER_DEBUG
2949 fprintf(stderr, "dht=%d re=%d rs=%d ds=%d\n",
2950 dh_tmp, rsa_enc, rsa_sign, dsa_sign);
2951 #endif
2952
2953 #ifndef OPENSSL_NO_GOST
2954 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) {
2955 mask_k |= SSL_kGOST;
2956 mask_a |= SSL_aGOST12;
2957 }
2958 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) {
2959 mask_k |= SSL_kGOST;
2960 mask_a |= SSL_aGOST12;
2961 }
2962 if (ssl_has_cert(s, SSL_PKEY_GOST01)) {
2963 mask_k |= SSL_kGOST;
2964 mask_a |= SSL_aGOST01;
2965 }
2966 #endif
2967
2968 if (rsa_enc)
2969 mask_k |= SSL_kRSA;
2970
2971 if (dh_tmp)
2972 mask_k |= SSL_kDHE;
2973
2974 if (rsa_enc || rsa_sign) {
2975 mask_a |= SSL_aRSA;
2976 }
2977
2978 if (dsa_sign) {
2979 mask_a |= SSL_aDSS;
2980 }
2981
2982 mask_a |= SSL_aNULL;
2983
2984 /*
2985 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites
2986 * depending on the key usage extension.
2987 */
2988 #ifndef OPENSSL_NO_EC
2989 if (have_ecc_cert) {
2990 uint32_t ex_kusage;
2991 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509);
2992 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE;
2993 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN))
2994 ecdsa_ok = 0;
2995 if (ecdsa_ok)
2996 mask_a |= SSL_aECDSA;
2997 }
2998 #endif
2999
3000 #ifndef OPENSSL_NO_EC
3001 mask_k |= SSL_kECDHE;
3002 #endif
3003
3004 #ifndef OPENSSL_NO_PSK
3005 mask_k |= SSL_kPSK;
3006 mask_a |= SSL_aPSK;
3007 if (mask_k & SSL_kRSA)
3008 mask_k |= SSL_kRSAPSK;
3009 if (mask_k & SSL_kDHE)
3010 mask_k |= SSL_kDHEPSK;
3011 if (mask_k & SSL_kECDHE)
3012 mask_k |= SSL_kECDHEPSK;
3013 #endif
3014
3015 s->s3->tmp.mask_k = mask_k;
3016 s->s3->tmp.mask_a = mask_a;
3017 }
3018
3019 #ifndef OPENSSL_NO_EC
3020
3021 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s)
3022 {
3023 if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aECDSA) {
3024 /* key usage, if present, must allow signing */
3025 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) {
3026 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG,
3027 SSL_R_ECC_CERT_NOT_FOR_SIGNING);
3028 return 0;
3029 }
3030 }
3031 return 1; /* all checks are ok */
3032 }
3033
3034 #endif
3035
3036 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo,
3037 size_t *serverinfo_length)
3038 {
3039 CERT_PKEY *cpk = s->s3->tmp.cert;
3040 *serverinfo_length = 0;
3041
3042 if (cpk == NULL || cpk->serverinfo == NULL)
3043 return 0;
3044
3045 *serverinfo = cpk->serverinfo;
3046 *serverinfo_length = cpk->serverinfo_length;
3047 return 1;
3048 }
3049
3050 void ssl_update_cache(SSL *s, int mode)
3051 {
3052 int i;
3053
3054 /*
3055 * If the session_id_length is 0, we are not supposed to cache it, and it
3056 * would be rather hard to do anyway :-)
3057 */
3058 if (s->session->session_id_length == 0)
3059 return;
3060
3061 i = s->session_ctx->session_cache_mode;
3062 if ((i & mode) && (!s->hit)
3063 && ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE)
3064 || SSL_CTX_add_session(s->session_ctx, s->session))
3065 && (s->session_ctx->new_session_cb != NULL)) {
3066 SSL_SESSION_up_ref(s->session);
3067 if (!s->session_ctx->new_session_cb(s, s->session))
3068 SSL_SESSION_free(s->session);
3069 }
3070
3071 /* auto flush every 255 connections */
3072 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) {
3073 if ((((mode & SSL_SESS_CACHE_CLIENT)
3074 ? s->session_ctx->stats.sess_connect_good
3075 : s->session_ctx->stats.sess_accept_good) & 0xff) == 0xff) {
3076 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL));
3077 }
3078 }
3079 }
3080
3081 const SSL_METHOD *SSL_CTX_get_ssl_method(SSL_CTX *ctx)
3082 {
3083 return ctx->method;
3084 }
3085
3086 const SSL_METHOD *SSL_get_ssl_method(SSL *s)
3087 {
3088 return (s->method);
3089 }
3090
3091 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth)
3092 {
3093 int ret = 1;
3094
3095 if (s->method != meth) {
3096 const SSL_METHOD *sm = s->method;
3097 int (*hf) (SSL *) = s->handshake_func;
3098
3099 if (sm->version == meth->version)
3100 s->method = meth;
3101 else {
3102 sm->ssl_free(s);
3103 s->method = meth;
3104 ret = s->method->ssl_new(s);
3105 }
3106
3107 if (hf == sm->ssl_connect)
3108 s->handshake_func = meth->ssl_connect;
3109 else if (hf == sm->ssl_accept)
3110 s->handshake_func = meth->ssl_accept;
3111 }
3112 return (ret);
3113 }
3114
3115 int SSL_get_error(const SSL *s, int i)
3116 {
3117 int reason;
3118 unsigned long l;
3119 BIO *bio;
3120
3121 if (i > 0)
3122 return (SSL_ERROR_NONE);
3123
3124 /*
3125 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
3126 * where we do encode the error
3127 */
3128 if ((l = ERR_peek_error()) != 0) {
3129 if (ERR_GET_LIB(l) == ERR_LIB_SYS)
3130 return (SSL_ERROR_SYSCALL);
3131 else
3132 return (SSL_ERROR_SSL);
3133 }
3134
3135 if (SSL_want_read(s)) {
3136 bio = SSL_get_rbio(s);
3137 if (BIO_should_read(bio))
3138 return (SSL_ERROR_WANT_READ);
3139 else if (BIO_should_write(bio))
3140 /*
3141 * This one doesn't make too much sense ... We never try to write
3142 * to the rbio, and an application program where rbio and wbio
3143 * are separate couldn't even know what it should wait for.
3144 * However if we ever set s->rwstate incorrectly (so that we have
3145 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and
3146 * wbio *are* the same, this test works around that bug; so it
3147 * might be safer to keep it.
3148 */
3149 return (SSL_ERROR_WANT_WRITE);
3150 else if (BIO_should_io_special(bio)) {
3151 reason = BIO_get_retry_reason(bio);
3152 if (reason == BIO_RR_CONNECT)
3153 return (SSL_ERROR_WANT_CONNECT);
3154 else if (reason == BIO_RR_ACCEPT)
3155 return (SSL_ERROR_WANT_ACCEPT);
3156 else
3157 return (SSL_ERROR_SYSCALL); /* unknown */
3158 }
3159 }
3160
3161 if (SSL_want_write(s)) {
3162 /* Access wbio directly - in order to use the buffered bio if present */
3163 bio = s->wbio;
3164 if (BIO_should_write(bio))
3165 return (SSL_ERROR_WANT_WRITE);
3166 else if (BIO_should_read(bio))
3167 /*
3168 * See above (SSL_want_read(s) with BIO_should_write(bio))
3169 */
3170 return (SSL_ERROR_WANT_READ);
3171 else if (BIO_should_io_special(bio)) {
3172 reason = BIO_get_retry_reason(bio);
3173 if (reason == BIO_RR_CONNECT)
3174 return (SSL_ERROR_WANT_CONNECT);
3175 else if (reason == BIO_RR_ACCEPT)
3176 return (SSL_ERROR_WANT_ACCEPT);
3177 else
3178 return (SSL_ERROR_SYSCALL);
3179 }
3180 }
3181 if (SSL_want_x509_lookup(s))
3182 return (SSL_ERROR_WANT_X509_LOOKUP);
3183 if (SSL_want_async(s))
3184 return SSL_ERROR_WANT_ASYNC;
3185 if (SSL_want_async_job(s))
3186 return SSL_ERROR_WANT_ASYNC_JOB;
3187 if (SSL_want_early(s))
3188 return SSL_ERROR_WANT_EARLY;
3189
3190 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
3191 (s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY))
3192 return (SSL_ERROR_ZERO_RETURN);
3193
3194 return (SSL_ERROR_SYSCALL);
3195 }
3196
3197 static int ssl_do_handshake_intern(void *vargs)
3198 {
3199 struct ssl_async_args *args;
3200 SSL *s;
3201
3202 args = (struct ssl_async_args *)vargs;
3203 s = args->s;
3204
3205 return s->handshake_func(s);
3206 }
3207
3208 int SSL_do_handshake(SSL *s)
3209 {
3210 int ret = 1;
3211
3212 if (s->handshake_func == NULL) {
3213 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET);
3214 return -1;
3215 }
3216
3217 ossl_statem_check_finish_init(s, -1);
3218
3219 s->method->ssl_renegotiate_check(s, 0);
3220
3221 if (SSL_in_init(s) || SSL_in_before(s)) {
3222 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
3223 struct ssl_async_args args;
3224
3225 args.s = s;
3226
3227 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern);
3228 } else {
3229 ret = s->handshake_func(s);
3230 }
3231 }
3232 return ret;
3233 }
3234
3235 void SSL_set_accept_state(SSL *s)
3236 {
3237 s->server = 1;
3238 s->shutdown = 0;
3239 ossl_statem_clear(s);
3240 s->handshake_func = s->method->ssl_accept;
3241 clear_ciphers(s);
3242 }
3243
3244 void SSL_set_connect_state(SSL *s)
3245 {
3246 s->server = 0;
3247 s->shutdown = 0;
3248 ossl_statem_clear(s);
3249 s->handshake_func = s->method->ssl_connect;
3250 clear_ciphers(s);
3251 }
3252
3253 int ssl_undefined_function(SSL *s)
3254 {
3255 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3256 return (0);
3257 }
3258
3259 int ssl_undefined_void_function(void)
3260 {
3261 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION,
3262 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3263 return (0);
3264 }
3265
3266 int ssl_undefined_const_function(const SSL *s)
3267 {
3268 return (0);
3269 }
3270
3271 const SSL_METHOD *ssl_bad_method(int ver)
3272 {
3273 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3274 return (NULL);
3275 }
3276
3277 const char *ssl_protocol_to_string(int version)
3278 {
3279 switch(version)
3280 {
3281 case TLS1_3_VERSION:
3282 return "TLSv1.3";
3283
3284 case TLS1_2_VERSION:
3285 return "TLSv1.2";
3286
3287 case TLS1_1_VERSION:
3288 return "TLSv1.1";
3289
3290 case TLS1_VERSION:
3291 return "TLSv1";
3292
3293 case SSL3_VERSION:
3294 return "SSLv3";
3295
3296 case DTLS1_BAD_VER:
3297 return "DTLSv0.9";
3298
3299 case DTLS1_VERSION:
3300 return "DTLSv1";
3301
3302 case DTLS1_2_VERSION:
3303 return "DTLSv1.2";
3304
3305 default:
3306 return "unknown";
3307 }
3308 }
3309
3310 const char *SSL_get_version(const SSL *s)
3311 {
3312 return ssl_protocol_to_string(s->version);
3313 }
3314
3315 SSL *SSL_dup(SSL *s)
3316 {
3317 STACK_OF(X509_NAME) *sk;
3318 X509_NAME *xn;
3319 SSL *ret;
3320 int i;
3321
3322 /* If we're not quiescent, just up_ref! */
3323 if (!SSL_in_init(s) || !SSL_in_before(s)) {
3324 CRYPTO_UP_REF(&s->references, &i, s->lock);
3325 return s;
3326 }
3327
3328 /*
3329 * Otherwise, copy configuration state, and session if set.
3330 */
3331 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL)
3332 return (NULL);
3333
3334 if (s->session != NULL) {
3335 /*
3336 * Arranges to share the same session via up_ref. This "copies"
3337 * session-id, SSL_METHOD, sid_ctx, and 'cert'
3338 */
3339 if (!SSL_copy_session_id(ret, s))
3340 goto err;
3341 } else {
3342 /*
3343 * No session has been established yet, so we have to expect that
3344 * s->cert or ret->cert will be changed later -- they should not both
3345 * point to the same object, and thus we can't use
3346 * SSL_copy_session_id.
3347 */
3348 if (!SSL_set_ssl_method(ret, s->method))
3349 goto err;
3350
3351 if (s->cert != NULL) {
3352 ssl_cert_free(ret->cert);
3353 ret->cert = ssl_cert_dup(s->cert);
3354 if (ret->cert == NULL)
3355 goto err;
3356 }
3357
3358 if (!SSL_set_session_id_context(ret, s->sid_ctx,
3359 (int)s->sid_ctx_length))
3360 goto err;
3361 }
3362
3363 if (!ssl_dane_dup(ret, s))
3364 goto err;
3365 ret->version = s->version;
3366 ret->options = s->options;
3367 ret->mode = s->mode;
3368 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s));
3369 SSL_set_read_ahead(ret, SSL_get_read_ahead(s));
3370 ret->msg_callback = s->msg_callback;
3371 ret->msg_callback_arg = s->msg_callback_arg;
3372 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s));
3373 SSL_set_verify_depth(ret, SSL_get_verify_depth(s));
3374 ret->generate_session_id = s->generate_session_id;
3375
3376 SSL_set_info_callback(ret, SSL_get_info_callback(s));
3377
3378 /* copy app data, a little dangerous perhaps */
3379 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data))
3380 goto err;
3381
3382 /* setup rbio, and wbio */
3383 if (s->rbio != NULL) {
3384 if (!BIO_dup_state(s->rbio, (char *)&ret->rbio))
3385 goto err;
3386 }
3387 if (s->wbio != NULL) {
3388 if (s->wbio != s->rbio) {
3389 if (!BIO_dup_state(s->wbio, (char *)&ret->wbio))
3390 goto err;
3391 } else {
3392 BIO_up_ref(ret->rbio);
3393 ret->wbio = ret->rbio;
3394 }
3395 }
3396
3397 ret->server = s->server;
3398 if (s->handshake_func) {
3399 if (s->server)
3400 SSL_set_accept_state(ret);
3401 else
3402 SSL_set_connect_state(ret);
3403 }
3404 ret->shutdown = s->shutdown;
3405 ret->hit = s->hit;
3406
3407 ret->default_passwd_callback = s->default_passwd_callback;
3408 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata;
3409
3410 X509_VERIFY_PARAM_inherit(ret->param, s->param);
3411
3412 /* dup the cipher_list and cipher_list_by_id stacks */
3413 if (s->cipher_list != NULL) {
3414 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL)
3415 goto err;
3416 }
3417 if (s->cipher_list_by_id != NULL)
3418 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id))
3419 == NULL)
3420 goto err;
3421
3422 /* Dup the client_CA list */
3423 if (s->ca_names != NULL) {
3424 if ((sk = sk_X509_NAME_dup(s->ca_names)) == NULL)
3425 goto err;
3426 ret->ca_names = sk;
3427 for (i = 0; i < sk_X509_NAME_num(sk); i++) {
3428 xn = sk_X509_NAME_value(sk, i);
3429 if (sk_X509_NAME_set(sk, i, X509_NAME_dup(xn)) == NULL) {
3430 X509_NAME_free(xn);
3431 goto err;
3432 }
3433 }
3434 }
3435 return ret;
3436
3437 err:
3438 SSL_free(ret);
3439 return NULL;
3440 }
3441
3442 void ssl_clear_cipher_ctx(SSL *s)
3443 {
3444 if (s->enc_read_ctx != NULL) {
3445 EVP_CIPHER_CTX_free(s->enc_read_ctx);
3446 s->enc_read_ctx = NULL;
3447 }
3448 if (s->enc_write_ctx != NULL) {
3449 EVP_CIPHER_CTX_free(s->enc_write_ctx);
3450 s->enc_write_ctx = NULL;
3451 }
3452 #ifndef OPENSSL_NO_COMP
3453 COMP_CTX_free(s->expand);
3454 s->expand = NULL;
3455 COMP_CTX_free(s->compress);
3456 s->compress = NULL;
3457 #endif
3458 }
3459
3460 X509 *SSL_get_certificate(const SSL *s)
3461 {
3462 if (s->cert != NULL)
3463 return (s->cert->key->x509);
3464 else
3465 return (NULL);
3466 }
3467
3468 EVP_PKEY *SSL_get_privatekey(const SSL *s)
3469 {
3470 if (s->cert != NULL)
3471 return (s->cert->key->privatekey);
3472 else
3473 return (NULL);
3474 }
3475
3476 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx)
3477 {
3478 if (ctx->cert != NULL)
3479 return ctx->cert->key->x509;
3480 else
3481 return NULL;
3482 }
3483
3484 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx)
3485 {
3486 if (ctx->cert != NULL)
3487 return ctx->cert->key->privatekey;
3488 else
3489 return NULL;
3490 }
3491
3492 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s)
3493 {
3494 if ((s->session != NULL) && (s->session->cipher != NULL))
3495 return (s->session->cipher);
3496 return (NULL);
3497 }
3498
3499 const COMP_METHOD *SSL_get_current_compression(SSL *s)
3500 {
3501 #ifndef OPENSSL_NO_COMP
3502 return s->compress ? COMP_CTX_get_method(s->compress) : NULL;
3503 #else
3504 return NULL;
3505 #endif
3506 }
3507
3508 const COMP_METHOD *SSL_get_current_expansion(SSL *s)
3509 {
3510 #ifndef OPENSSL_NO_COMP
3511 return s->expand ? COMP_CTX_get_method(s->expand) : NULL;
3512 #else
3513 return NULL;
3514 #endif
3515 }
3516
3517 int ssl_init_wbio_buffer(SSL *s)
3518 {
3519 BIO *bbio;
3520
3521 if (s->bbio != NULL) {
3522 /* Already buffered. */
3523 return 1;
3524 }
3525
3526 bbio = BIO_new(BIO_f_buffer());
3527 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) {
3528 BIO_free(bbio);
3529 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB);
3530 return 0;
3531 }
3532 s->bbio = bbio;
3533 s->wbio = BIO_push(bbio, s->wbio);
3534
3535 return 1;
3536 }
3537
3538 int ssl_free_wbio_buffer(SSL *s)
3539 {
3540 /* callers ensure s is never null */
3541 if (s->bbio == NULL)
3542 return 1;
3543
3544 s->wbio = BIO_pop(s->wbio);
3545 if (!ossl_assert(s->wbio != NULL))
3546 return 0;
3547 BIO_free(s->bbio);
3548 s->bbio = NULL;
3549
3550 return 1;
3551 }
3552
3553 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode)
3554 {
3555 ctx->quiet_shutdown = mode;
3556 }
3557
3558 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx)
3559 {
3560 return (ctx->quiet_shutdown);
3561 }
3562
3563 void SSL_set_quiet_shutdown(SSL *s, int mode)
3564 {
3565 s->quiet_shutdown = mode;
3566 }
3567
3568 int SSL_get_quiet_shutdown(const SSL *s)
3569 {
3570 return (s->quiet_shutdown);
3571 }
3572
3573 void SSL_set_shutdown(SSL *s, int mode)
3574 {
3575 s->shutdown = mode;
3576 }
3577
3578 int SSL_get_shutdown(const SSL *s)
3579 {
3580 return s->shutdown;
3581 }
3582
3583 int SSL_version(const SSL *s)
3584 {
3585 return s->version;
3586 }
3587
3588 int SSL_client_version(const SSL *s)
3589 {
3590 return s->client_version;
3591 }
3592
3593 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl)
3594 {
3595 return ssl->ctx;
3596 }
3597
3598 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx)
3599 {
3600 CERT *new_cert;
3601 if (ssl->ctx == ctx)
3602 return ssl->ctx;
3603 if (ctx == NULL)
3604 ctx = ssl->session_ctx;
3605 new_cert = ssl_cert_dup(ctx->cert);
3606 if (new_cert == NULL) {
3607 return NULL;
3608 }
3609
3610 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) {
3611 ssl_cert_free(new_cert);
3612 return NULL;
3613 }
3614
3615 ssl_cert_free(ssl->cert);
3616 ssl->cert = new_cert;
3617
3618 /*
3619 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH),
3620 * so setter APIs must prevent invalid lengths from entering the system.
3621 */
3622 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx)))
3623 return NULL;
3624
3625 /*
3626 * If the session ID context matches that of the parent SSL_CTX,
3627 * inherit it from the new SSL_CTX as well. If however the context does
3628 * not match (i.e., it was set per-ssl with SSL_set_session_id_context),
3629 * leave it unchanged.
3630 */
3631 if ((ssl->ctx != NULL) &&
3632 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) &&
3633 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) {
3634 ssl->sid_ctx_length = ctx->sid_ctx_length;
3635 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx));
3636 }
3637
3638 SSL_CTX_up_ref(ctx);
3639 SSL_CTX_free(ssl->ctx); /* decrement reference count */
3640 ssl->ctx = ctx;
3641
3642 return ssl->ctx;
3643 }
3644
3645 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx)
3646 {
3647 return (X509_STORE_set_default_paths(ctx->cert_store));
3648 }
3649
3650 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx)
3651 {
3652 X509_LOOKUP *lookup;
3653
3654 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir());
3655 if (lookup == NULL)
3656 return 0;
3657 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
3658
3659 /* Clear any errors if the default directory does not exist */
3660 ERR_clear_error();
3661
3662 return 1;
3663 }
3664
3665 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx)
3666 {
3667 X509_LOOKUP *lookup;
3668
3669 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file());
3670 if (lookup == NULL)
3671 return 0;
3672
3673 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT);
3674
3675 /* Clear any errors if the default file does not exist */
3676 ERR_clear_error();
3677
3678 return 1;
3679 }
3680
3681 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
3682 const char *CApath)
3683 {
3684 return (X509_STORE_load_locations(ctx->cert_store, CAfile, CApath));
3685 }
3686
3687 void SSL_set_info_callback(SSL *ssl,
3688 void (*cb) (const SSL *ssl, int type, int val))
3689 {
3690 ssl->info_callback = cb;
3691 }
3692
3693 /*
3694 * One compiler (Diab DCC) doesn't like argument names in returned function
3695 * pointer.
3696 */
3697 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ ,
3698 int /* type */ ,
3699 int /* val */ ) {
3700 return ssl->info_callback;
3701 }
3702
3703 void SSL_set_verify_result(SSL *ssl, long arg)
3704 {
3705 ssl->verify_result = arg;
3706 }
3707
3708 long SSL_get_verify_result(const SSL *ssl)
3709 {
3710 return (ssl->verify_result);
3711 }
3712
3713 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen)
3714 {
3715 if (outlen == 0)
3716 return sizeof(ssl->s3->client_random);
3717 if (outlen > sizeof(ssl->s3->client_random))
3718 outlen = sizeof(ssl->s3->client_random);
3719 memcpy(out, ssl->s3->client_random, outlen);
3720 return outlen;
3721 }
3722
3723 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen)
3724 {
3725 if (outlen == 0)
3726 return sizeof(ssl->s3->server_random);
3727 if (outlen > sizeof(ssl->s3->server_random))
3728 outlen = sizeof(ssl->s3->server_random);
3729 memcpy(out, ssl->s3->server_random, outlen);
3730 return outlen;
3731 }
3732
3733 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session,
3734 unsigned char *out, size_t outlen)
3735 {
3736 if (outlen == 0)
3737 return session->master_key_length;
3738 if (outlen > session->master_key_length)
3739 outlen = session->master_key_length;
3740 memcpy(out, session->master_key, outlen);
3741 return outlen;
3742 }
3743
3744 int SSL_set_ex_data(SSL *s, int idx, void *arg)
3745 {
3746 return (CRYPTO_set_ex_data(&s->ex_data, idx, arg));
3747 }
3748
3749 void *SSL_get_ex_data(const SSL *s, int idx)
3750 {
3751 return (CRYPTO_get_ex_data(&s->ex_data, idx));
3752 }
3753
3754 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg)
3755 {
3756 return (CRYPTO_set_ex_data(&s->ex_data, idx, arg));
3757 }
3758
3759 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx)
3760 {
3761 return (CRYPTO_get_ex_data(&s->ex_data, idx));
3762 }
3763
3764 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx)
3765 {
3766 return (ctx->cert_store);
3767 }
3768
3769 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store)
3770 {
3771 X509_STORE_free(ctx->cert_store);
3772 ctx->cert_store = store;
3773 }
3774
3775 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store)
3776 {
3777 if (store != NULL)
3778 X509_STORE_up_ref(store);
3779 SSL_CTX_set_cert_store(ctx, store);
3780 }
3781
3782 int SSL_want(const SSL *s)
3783 {
3784 return (s->rwstate);
3785 }
3786
3787 /**
3788 * \brief Set the callback for generating temporary DH keys.
3789 * \param ctx the SSL context.
3790 * \param dh the callback
3791 */
3792
3793 #ifndef OPENSSL_NO_DH
3794 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
3795 DH *(*dh) (SSL *ssl, int is_export,
3796 int keylength))
3797 {
3798 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
3799 }
3800
3801 void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export,
3802 int keylength))
3803 {
3804 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
3805 }
3806 #endif
3807
3808 #ifndef OPENSSL_NO_PSK
3809 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint)
3810 {
3811 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
3812 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
3813 return 0;
3814 }
3815 OPENSSL_free(ctx->cert->psk_identity_hint);
3816 if (identity_hint != NULL) {
3817 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
3818 if (ctx->cert->psk_identity_hint == NULL)
3819 return 0;
3820 } else
3821 ctx->cert->psk_identity_hint = NULL;
3822 return 1;
3823 }
3824
3825 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint)
3826 {
3827 if (s == NULL)
3828 return 0;
3829
3830 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
3831 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
3832 return 0;
3833 }
3834 OPENSSL_free(s->cert->psk_identity_hint);
3835 if (identity_hint != NULL) {
3836 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
3837 if (s->cert->psk_identity_hint == NULL)
3838 return 0;
3839 } else
3840 s->cert->psk_identity_hint = NULL;
3841 return 1;
3842 }
3843
3844 const char *SSL_get_psk_identity_hint(const SSL *s)
3845 {
3846 if (s == NULL || s->session == NULL)
3847 return NULL;
3848 return (s->session->psk_identity_hint);
3849 }
3850
3851 const char *SSL_get_psk_identity(const SSL *s)
3852 {
3853 if (s == NULL || s->session == NULL)
3854 return NULL;
3855 return (s->session->psk_identity);
3856 }
3857
3858 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb)
3859 {
3860 s->psk_client_callback = cb;
3861 }
3862
3863 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb)
3864 {
3865 ctx->psk_client_callback = cb;
3866 }
3867
3868 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb)
3869 {
3870 s->psk_server_callback = cb;
3871 }
3872
3873 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb)
3874 {
3875 ctx->psk_server_callback = cb;
3876 }
3877 #endif
3878
3879 void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
3880 void (*cb) (int write_p, int version,
3881 int content_type, const void *buf,
3882 size_t len, SSL *ssl, void *arg))
3883 {
3884 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
3885 }
3886
3887 void SSL_set_msg_callback(SSL *ssl,
3888 void (*cb) (int write_p, int version,
3889 int content_type, const void *buf,
3890 size_t len, SSL *ssl, void *arg))
3891 {
3892 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
3893 }
3894
3895 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx,
3896 int (*cb) (SSL *ssl,
3897 int
3898 is_forward_secure))
3899 {
3900 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
3901 (void (*)(void))cb);
3902 }
3903
3904 void SSL_set_not_resumable_session_callback(SSL *ssl,
3905 int (*cb) (SSL *ssl,
3906 int is_forward_secure))
3907 {
3908 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
3909 (void (*)(void))cb);
3910 }
3911
3912 void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx,
3913 size_t (*cb) (SSL *ssl, int type,
3914 size_t len, void *arg))
3915 {
3916 ctx->record_padding_cb = cb;
3917 }
3918
3919 void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg)
3920 {
3921 ctx->record_padding_arg = arg;
3922 }
3923
3924 void *SSL_CTX_get_record_padding_callback_arg(SSL_CTX *ctx)
3925 {
3926 return ctx->record_padding_arg;
3927 }
3928
3929 int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size)
3930 {
3931 /* block size of 0 or 1 is basically no padding */
3932 if (block_size == 1)
3933 ctx->block_padding = 0;
3934 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
3935 ctx->block_padding = block_size;
3936 else
3937 return 0;
3938 return 1;
3939 }
3940
3941 void SSL_set_record_padding_callback(SSL *ssl,
3942 size_t (*cb) (SSL *ssl, int type,
3943 size_t len, void *arg))
3944 {
3945 ssl->record_padding_cb = cb;
3946 }
3947
3948 void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg)
3949 {
3950 ssl->record_padding_arg = arg;
3951 }
3952
3953 void *SSL_get_record_padding_callback_arg(SSL *ssl)
3954 {
3955 return ssl->record_padding_arg;
3956 }
3957
3958 int SSL_set_block_padding(SSL *ssl, size_t block_size)
3959 {
3960 /* block size of 0 or 1 is basically no padding */
3961 if (block_size == 1)
3962 ssl->block_padding = 0;
3963 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
3964 ssl->block_padding = block_size;
3965 else
3966 return 0;
3967 return 1;
3968 }
3969
3970 /*
3971 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer
3972 * variable, freeing EVP_MD_CTX previously stored in that variable, if any.
3973 * If EVP_MD pointer is passed, initializes ctx with this |md|.
3974 * Returns the newly allocated ctx;
3975 */
3976
3977 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md)
3978 {
3979 ssl_clear_hash_ctx(hash);
3980 *hash = EVP_MD_CTX_new();
3981 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) {
3982 EVP_MD_CTX_free(*hash);
3983 *hash = NULL;
3984 return NULL;
3985 }
3986 return *hash;
3987 }
3988
3989 void ssl_clear_hash_ctx(EVP_MD_CTX **hash)
3990 {
3991
3992 EVP_MD_CTX_free(*hash);
3993 *hash = NULL;
3994 }
3995
3996 /* Retrieve handshake hashes */
3997 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen,
3998 size_t *hashlen)
3999 {
4000 EVP_MD_CTX *ctx = NULL;
4001 EVP_MD_CTX *hdgst = s->s3->handshake_dgst;
4002 int hashleni = EVP_MD_CTX_size(hdgst);
4003 int ret = 0;
4004
4005 if (hashleni < 0 || (size_t)hashleni > outlen)
4006 goto err;
4007
4008 ctx = EVP_MD_CTX_new();
4009 if (ctx == NULL)
4010 goto err;
4011
4012 if (!EVP_MD_CTX_copy_ex(ctx, hdgst)
4013 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0)
4014 goto err;
4015
4016 *hashlen = hashleni;
4017
4018 ret = 1;
4019 err:
4020 EVP_MD_CTX_free(ctx);
4021 return ret;
4022 }
4023
4024 int SSL_session_reused(SSL *s)
4025 {
4026 return s->hit;
4027 }
4028
4029 int SSL_is_server(const SSL *s)
4030 {
4031 return s->server;
4032 }
4033
4034 #if OPENSSL_API_COMPAT < 0x10100000L
4035 void SSL_set_debug(SSL *s, int debug)
4036 {
4037 /* Old function was do-nothing anyway... */
4038 (void)s;
4039 (void)debug;
4040 }
4041 #endif
4042
4043 void SSL_set_security_level(SSL *s, int level)
4044 {
4045 s->cert->sec_level = level;
4046 }
4047
4048 int SSL_get_security_level(const SSL *s)
4049 {
4050 return s->cert->sec_level;
4051 }
4052
4053 void SSL_set_security_callback(SSL *s,
4054 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4055 int op, int bits, int nid,
4056 void *other, void *ex))
4057 {
4058 s->cert->sec_cb = cb;
4059 }
4060
4061 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s,
4062 const SSL_CTX *ctx, int op,
4063 int bits, int nid, void *other,
4064 void *ex) {
4065 return s->cert->sec_cb;
4066 }
4067
4068 void SSL_set0_security_ex_data(SSL *s, void *ex)
4069 {
4070 s->cert->sec_ex = ex;
4071 }
4072
4073 void *SSL_get0_security_ex_data(const SSL *s)
4074 {
4075 return s->cert->sec_ex;
4076 }
4077
4078 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level)
4079 {
4080 ctx->cert->sec_level = level;
4081 }
4082
4083 int SSL_CTX_get_security_level(const SSL_CTX *ctx)
4084 {
4085 return ctx->cert->sec_level;
4086 }
4087
4088 void SSL_CTX_set_security_callback(SSL_CTX *ctx,
4089 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4090 int op, int bits, int nid,
4091 void *other, void *ex))
4092 {
4093 ctx->cert->sec_cb = cb;
4094 }
4095
4096 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s,
4097 const SSL_CTX *ctx,
4098 int op, int bits,
4099 int nid,
4100 void *other,
4101 void *ex) {
4102 return ctx->cert->sec_cb;
4103 }
4104
4105 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex)
4106 {
4107 ctx->cert->sec_ex = ex;
4108 }
4109
4110 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx)
4111 {
4112 return ctx->cert->sec_ex;
4113 }
4114
4115 /*
4116 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that
4117 * can return unsigned long, instead of the generic long return value from the
4118 * control interface.
4119 */
4120 unsigned long SSL_CTX_get_options(const SSL_CTX *ctx)
4121 {
4122 return ctx->options;
4123 }
4124
4125 unsigned long SSL_get_options(const SSL *s)
4126 {
4127 return s->options;
4128 }
4129
4130 unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op)
4131 {
4132 return ctx->options |= op;
4133 }
4134
4135 unsigned long SSL_set_options(SSL *s, unsigned long op)
4136 {
4137 return s->options |= op;
4138 }
4139
4140 unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op)
4141 {
4142 return ctx->options &= ~op;
4143 }
4144
4145 unsigned long SSL_clear_options(SSL *s, unsigned long op)
4146 {
4147 return s->options &= ~op;
4148 }
4149
4150 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s)
4151 {
4152 return s->verified_chain;
4153 }
4154
4155 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id);
4156
4157 #ifndef OPENSSL_NO_CT
4158
4159 /*
4160 * Moves SCTs from the |src| stack to the |dst| stack.
4161 * The source of each SCT will be set to |origin|.
4162 * If |dst| points to a NULL pointer, a new stack will be created and owned by
4163 * the caller.
4164 * Returns the number of SCTs moved, or a negative integer if an error occurs.
4165 */
4166 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src,
4167 sct_source_t origin)
4168 {
4169 int scts_moved = 0;
4170 SCT *sct = NULL;
4171
4172 if (*dst == NULL) {
4173 *dst = sk_SCT_new_null();
4174 if (*dst == NULL) {
4175 SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE);
4176 goto err;
4177 }
4178 }
4179
4180 while ((sct = sk_SCT_pop(src)) != NULL) {
4181 if (SCT_set_source(sct, origin) != 1)
4182 goto err;
4183
4184 if (sk_SCT_push(*dst, sct) <= 0)
4185 goto err;
4186 scts_moved += 1;
4187 }
4188
4189 return scts_moved;
4190 err:
4191 if (sct != NULL)
4192 sk_SCT_push(src, sct); /* Put the SCT back */
4193 return -1;
4194 }
4195
4196 /*
4197 * Look for data collected during ServerHello and parse if found.
4198 * Returns the number of SCTs extracted.
4199 */
4200 static int ct_extract_tls_extension_scts(SSL *s)
4201 {
4202 int scts_extracted = 0;
4203
4204 if (s->ext.scts != NULL) {
4205 const unsigned char *p = s->ext.scts;
4206 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len);
4207
4208 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION);
4209
4210 SCT_LIST_free(scts);
4211 }
4212
4213 return scts_extracted;
4214 }
4215
4216 /*
4217 * Checks for an OCSP response and then attempts to extract any SCTs found if it
4218 * contains an SCT X509 extension. They will be stored in |s->scts|.
4219 * Returns:
4220 * - The number of SCTs extracted, assuming an OCSP response exists.
4221 * - 0 if no OCSP response exists or it contains no SCTs.
4222 * - A negative integer if an error occurs.
4223 */
4224 static int ct_extract_ocsp_response_scts(SSL *s)
4225 {
4226 # ifndef OPENSSL_NO_OCSP
4227 int scts_extracted = 0;
4228 const unsigned char *p;
4229 OCSP_BASICRESP *br = NULL;
4230 OCSP_RESPONSE *rsp = NULL;
4231 STACK_OF(SCT) *scts = NULL;
4232 int i;
4233
4234 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0)
4235 goto err;
4236
4237 p = s->ext.ocsp.resp;
4238 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len);
4239 if (rsp == NULL)
4240 goto err;
4241
4242 br = OCSP_response_get1_basic(rsp);
4243 if (br == NULL)
4244 goto err;
4245
4246 for (i = 0; i < OCSP_resp_count(br); ++i) {
4247 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i);
4248
4249 if (single == NULL)
4250 continue;
4251
4252 scts =
4253 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL);
4254 scts_extracted =
4255 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE);
4256 if (scts_extracted < 0)
4257 goto err;
4258 }
4259 err:
4260 SCT_LIST_free(scts);
4261 OCSP_BASICRESP_free(br);
4262 OCSP_RESPONSE_free(rsp);
4263 return scts_extracted;
4264 # else
4265 /* Behave as if no OCSP response exists */
4266 return 0;
4267 # endif
4268 }
4269
4270 /*
4271 * Attempts to extract SCTs from the peer certificate.
4272 * Return the number of SCTs extracted, or a negative integer if an error
4273 * occurs.
4274 */
4275 static int ct_extract_x509v3_extension_scts(SSL *s)
4276 {
4277 int scts_extracted = 0;
4278 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4279
4280 if (cert != NULL) {
4281 STACK_OF(SCT) *scts =
4282 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL);
4283
4284 scts_extracted =
4285 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION);
4286
4287 SCT_LIST_free(scts);
4288 }
4289
4290 return scts_extracted;
4291 }
4292
4293 /*
4294 * Attempts to find all received SCTs by checking TLS extensions, the OCSP
4295 * response (if it exists) and X509v3 extensions in the certificate.
4296 * Returns NULL if an error occurs.
4297 */
4298 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s)
4299 {
4300 if (!s->scts_parsed) {
4301 if (ct_extract_tls_extension_scts(s) < 0 ||
4302 ct_extract_ocsp_response_scts(s) < 0 ||
4303 ct_extract_x509v3_extension_scts(s) < 0)
4304 goto err;
4305
4306 s->scts_parsed = 1;
4307 }
4308 return s->scts;
4309 err:
4310 return NULL;
4311 }
4312
4313 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx,
4314 const STACK_OF(SCT) *scts, void *unused_arg)
4315 {
4316 return 1;
4317 }
4318
4319 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx,
4320 const STACK_OF(SCT) *scts, void *unused_arg)
4321 {
4322 int count = scts != NULL ? sk_SCT_num(scts) : 0;
4323 int i;
4324
4325 for (i = 0; i < count; ++i) {
4326 SCT *sct = sk_SCT_value(scts, i);
4327 int status = SCT_get_validation_status(sct);
4328
4329 if (status == SCT_VALIDATION_STATUS_VALID)
4330 return 1;
4331 }
4332 SSLerr(SSL_F_CT_STRICT, SSL_R_NO_VALID_SCTS);
4333 return 0;
4334 }
4335
4336 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback,
4337 void *arg)
4338 {
4339 /*
4340 * Since code exists that uses the custom extension handler for CT, look
4341 * for this and throw an error if they have already registered to use CT.
4342 */
4343 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx,
4344 TLSEXT_TYPE_signed_certificate_timestamp))
4345 {
4346 SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK,
4347 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4348 return 0;
4349 }
4350
4351 if (callback != NULL) {
4352 /*
4353 * If we are validating CT, then we MUST accept SCTs served via OCSP
4354 */
4355 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp))
4356 return 0;
4357 }
4358
4359 s->ct_validation_callback = callback;
4360 s->ct_validation_callback_arg = arg;
4361
4362 return 1;
4363 }
4364
4365 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx,
4366 ssl_ct_validation_cb callback, void *arg)
4367 {
4368 /*
4369 * Since code exists that uses the custom extension handler for CT, look for
4370 * this and throw an error if they have already registered to use CT.
4371 */
4372 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx,
4373 TLSEXT_TYPE_signed_certificate_timestamp))
4374 {
4375 SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK,
4376 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4377 return 0;
4378 }
4379
4380 ctx->ct_validation_callback = callback;
4381 ctx->ct_validation_callback_arg = arg;
4382 return 1;
4383 }
4384
4385 int SSL_ct_is_enabled(const SSL *s)
4386 {
4387 return s->ct_validation_callback != NULL;
4388 }
4389
4390 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx)
4391 {
4392 return ctx->ct_validation_callback != NULL;
4393 }
4394
4395 int ssl_validate_ct(SSL *s)
4396 {
4397 int ret = 0;
4398 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4399 X509 *issuer;
4400 SSL_DANE *dane = &s->dane;
4401 CT_POLICY_EVAL_CTX *ctx = NULL;
4402 const STACK_OF(SCT) *scts;
4403
4404 /*
4405 * If no callback is set, the peer is anonymous, or its chain is invalid,
4406 * skip SCT validation - just return success. Applications that continue
4407 * handshakes without certificates, with unverified chains, or pinned leaf
4408 * certificates are outside the scope of the WebPKI and CT.
4409 *
4410 * The above exclusions notwithstanding the vast majority of peers will
4411 * have rather ordinary certificate chains validated by typical
4412 * applications that perform certificate verification and therefore will
4413 * process SCTs when enabled.
4414 */
4415 if (s->ct_validation_callback == NULL || cert == NULL ||
4416 s->verify_result != X509_V_OK ||
4417 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1)
4418 return 1;
4419
4420 /*
4421 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3)
4422 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2
4423 */
4424 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) {
4425 switch (dane->mtlsa->usage) {
4426 case DANETLS_USAGE_DANE_TA:
4427 case DANETLS_USAGE_DANE_EE:
4428 return 1;
4429 }
4430 }
4431
4432 ctx = CT_POLICY_EVAL_CTX_new();
4433 if (ctx == NULL) {
4434 SSLerr(SSL_F_SSL_VALIDATE_CT, ERR_R_MALLOC_FAILURE);
4435 goto end;
4436 }
4437
4438 issuer = sk_X509_value(s->verified_chain, 1);
4439 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert);
4440 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer);
4441 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store);
4442 CT_POLICY_EVAL_CTX_set_time(
4443 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000);
4444
4445 scts = SSL_get0_peer_scts(s);
4446
4447 /*
4448 * This function returns success (> 0) only when all the SCTs are valid, 0
4449 * when some are invalid, and < 0 on various internal errors (out of
4450 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient
4451 * reason to abort the handshake, that decision is up to the callback.
4452 * Therefore, we error out only in the unexpected case that the return
4453 * value is negative.
4454 *
4455 * XXX: One might well argue that the return value of this function is an
4456 * unfortunate design choice. Its job is only to determine the validation
4457 * status of each of the provided SCTs. So long as it correctly separates
4458 * the wheat from the chaff it should return success. Failure in this case
4459 * ought to correspond to an inability to carry out its duties.
4460 */
4461 if (SCT_LIST_validate(scts, ctx) < 0) {
4462 SSLerr(SSL_F_SSL_VALIDATE_CT, SSL_R_SCT_VERIFICATION_FAILED);
4463 goto end;
4464 }
4465
4466 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg);
4467 if (ret < 0)
4468 ret = 0; /* This function returns 0 on failure */
4469
4470 end:
4471 CT_POLICY_EVAL_CTX_free(ctx);
4472 /*
4473 * With SSL_VERIFY_NONE the session may be cached and re-used despite a
4474 * failure return code here. Also the application may wish the complete
4475 * the handshake, and then disconnect cleanly at a higher layer, after
4476 * checking the verification status of the completed connection.
4477 *
4478 * We therefore force a certificate verification failure which will be
4479 * visible via SSL_get_verify_result() and cached as part of any resumed
4480 * session.
4481 *
4482 * Note: the permissive callback is for information gathering only, always
4483 * returns success, and does not affect verification status. Only the
4484 * strict callback or a custom application-specified callback can trigger
4485 * connection failure or record a verification error.
4486 */
4487 if (ret <= 0)
4488 s->verify_result = X509_V_ERR_NO_VALID_SCTS;
4489 return ret;
4490 }
4491
4492 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode)
4493 {
4494 switch (validation_mode) {
4495 default:
4496 SSLerr(SSL_F_SSL_CTX_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4497 return 0;
4498 case SSL_CT_VALIDATION_PERMISSIVE:
4499 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL);
4500 case SSL_CT_VALIDATION_STRICT:
4501 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL);
4502 }
4503 }
4504
4505 int SSL_enable_ct(SSL *s, int validation_mode)
4506 {
4507 switch (validation_mode) {
4508 default:
4509 SSLerr(SSL_F_SSL_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4510 return 0;
4511 case SSL_CT_VALIDATION_PERMISSIVE:
4512 return SSL_set_ct_validation_callback(s, ct_permissive, NULL);
4513 case SSL_CT_VALIDATION_STRICT:
4514 return SSL_set_ct_validation_callback(s, ct_strict, NULL);
4515 }
4516 }
4517
4518 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx)
4519 {
4520 return CTLOG_STORE_load_default_file(ctx->ctlog_store);
4521 }
4522
4523 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path)
4524 {
4525 return CTLOG_STORE_load_file(ctx->ctlog_store, path);
4526 }
4527
4528 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs)
4529 {
4530 CTLOG_STORE_free(ctx->ctlog_store);
4531 ctx->ctlog_store = logs;
4532 }
4533
4534 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx)
4535 {
4536 return ctx->ctlog_store;
4537 }
4538
4539 #endif /* OPENSSL_NO_CT */
4540
4541 void SSL_CTX_set_early_cb(SSL_CTX *c, SSL_early_cb_fn cb, void *arg)
4542 {
4543 c->early_cb = cb;
4544 c->early_cb_arg = arg;
4545 }
4546
4547 int SSL_early_isv2(SSL *s)
4548 {
4549 if (s->clienthello == NULL)
4550 return 0;
4551 return s->clienthello->isv2;
4552 }
4553
4554 unsigned int SSL_early_get0_legacy_version(SSL *s)
4555 {
4556 if (s->clienthello == NULL)
4557 return 0;
4558 return s->clienthello->legacy_version;
4559 }
4560
4561 size_t SSL_early_get0_random(SSL *s, const unsigned char **out)
4562 {
4563 if (s->clienthello == NULL)
4564 return 0;
4565 if (out != NULL)
4566 *out = s->clienthello->random;
4567 return SSL3_RANDOM_SIZE;
4568 }
4569
4570 size_t SSL_early_get0_session_id(SSL *s, const unsigned char **out)
4571 {
4572 if (s->clienthello == NULL)
4573 return 0;
4574 if (out != NULL)
4575 *out = s->clienthello->session_id;
4576 return s->clienthello->session_id_len;
4577 }
4578
4579 size_t SSL_early_get0_ciphers(SSL *s, const unsigned char **out)
4580 {
4581 if (s->clienthello == NULL)
4582 return 0;
4583 if (out != NULL)
4584 *out = PACKET_data(&s->clienthello->ciphersuites);
4585 return PACKET_remaining(&s->clienthello->ciphersuites);
4586 }
4587
4588 size_t SSL_early_get0_compression_methods(SSL *s, const unsigned char **out)
4589 {
4590 if (s->clienthello == NULL)
4591 return 0;
4592 if (out != NULL)
4593 *out = s->clienthello->compressions;
4594 return s->clienthello->compressions_len;
4595 }
4596
4597 int SSL_early_get1_extensions_present(SSL *s, int **out, size_t *outlen)
4598 {
4599 RAW_EXTENSION *ext;
4600 int *present;
4601 size_t num = 0, i;
4602
4603 if (s->clienthello == NULL || out == NULL || outlen == NULL)
4604 return 0;
4605 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
4606 ext = s->clienthello->pre_proc_exts + i;
4607 if (ext->present)
4608 num++;
4609 }
4610 present = OPENSSL_malloc(sizeof(*present) * num);
4611 if (present == NULL)
4612 return 0;
4613 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
4614 ext = s->clienthello->pre_proc_exts + i;
4615 if (ext->present) {
4616 if (ext->received_order >= num)
4617 goto err;
4618 present[ext->received_order] = ext->type;
4619 }
4620 }
4621 *out = present;
4622 *outlen = num;
4623 return 1;
4624 err:
4625 OPENSSL_free(present);
4626 return 0;
4627 }
4628
4629 int SSL_early_get0_ext(SSL *s, unsigned int type, const unsigned char **out,
4630 size_t *outlen)
4631 {
4632 size_t i;
4633 RAW_EXTENSION *r;
4634
4635 if (s->clienthello == NULL)
4636 return 0;
4637 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) {
4638 r = s->clienthello->pre_proc_exts + i;
4639 if (r->present && r->type == type) {
4640 if (out != NULL)
4641 *out = PACKET_data(&r->data);
4642 if (outlen != NULL)
4643 *outlen = PACKET_remaining(&r->data);
4644 return 1;
4645 }
4646 }
4647 return 0;
4648 }
4649
4650 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb)
4651 {
4652 ctx->keylog_callback = cb;
4653 }
4654
4655 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx)
4656 {
4657 return ctx->keylog_callback;
4658 }
4659
4660 static int nss_keylog_int(const char *prefix,
4661 SSL *ssl,
4662 const uint8_t *parameter_1,
4663 size_t parameter_1_len,
4664 const uint8_t *parameter_2,
4665 size_t parameter_2_len)
4666 {
4667 char *out = NULL;
4668 char *cursor = NULL;
4669 size_t out_len = 0;
4670 size_t i;
4671 size_t prefix_len;
4672
4673 if (ssl->ctx->keylog_callback == NULL) return 1;
4674
4675 /*
4676 * Our output buffer will contain the following strings, rendered with
4677 * space characters in between, terminated by a NULL character: first the
4678 * prefix, then the first parameter, then the second parameter. The
4679 * meaning of each parameter depends on the specific key material being
4680 * logged. Note that the first and second parameters are encoded in
4681 * hexadecimal, so we need a buffer that is twice their lengths.
4682 */
4683 prefix_len = strlen(prefix);
4684 out_len = prefix_len + (2*parameter_1_len) + (2*parameter_2_len) + 3;
4685 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) {
4686 SSLerr(SSL_F_NSS_KEYLOG_INT, ERR_R_MALLOC_FAILURE);
4687 return 0;
4688 }
4689
4690 strcpy(cursor, prefix);
4691 cursor += prefix_len;
4692 *cursor++ = ' ';
4693
4694 for (i = 0; i < parameter_1_len; i++) {
4695 sprintf(cursor, "%02x", parameter_1[i]);
4696 cursor += 2;
4697 }
4698 *cursor++ = ' ';
4699
4700 for (i = 0; i < parameter_2_len; i++) {
4701 sprintf(cursor, "%02x", parameter_2[i]);
4702 cursor += 2;
4703 }
4704 *cursor = '\0';
4705
4706 ssl->ctx->keylog_callback(ssl, (const char *)out);
4707 OPENSSL_free(out);
4708 return 1;
4709
4710 }
4711
4712 int ssl_log_rsa_client_key_exchange(SSL *ssl,
4713 const uint8_t *encrypted_premaster,
4714 size_t encrypted_premaster_len,
4715 const uint8_t *premaster,
4716 size_t premaster_len)
4717 {
4718 if (encrypted_premaster_len < 8) {
4719 SSLerr(SSL_F_SSL_LOG_RSA_CLIENT_KEY_EXCHANGE, ERR_R_INTERNAL_ERROR);
4720 return 0;
4721 }
4722
4723 /* We only want the first 8 bytes of the encrypted premaster as a tag. */
4724 return nss_keylog_int("RSA",
4725 ssl,
4726 encrypted_premaster,
4727 8,
4728 premaster,
4729 premaster_len);
4730 }
4731
4732 int ssl_log_secret(SSL *ssl,
4733 const char *label,
4734 const uint8_t *secret,
4735 size_t secret_len)
4736 {
4737 return nss_keylog_int(label,
4738 ssl,
4739 ssl->s3->client_random,
4740 SSL3_RANDOM_SIZE,
4741 secret,
4742 secret_len);
4743 }
4744
4745 #define SSLV2_CIPHER_LEN 3
4746
4747 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format,
4748 int *al)
4749 {
4750 int n;
4751
4752 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
4753
4754 if (PACKET_remaining(cipher_suites) == 0) {
4755 SSLerr(SSL_F_SSL_CACHE_CIPHERLIST, SSL_R_NO_CIPHERS_SPECIFIED);
4756 *al = SSL_AD_ILLEGAL_PARAMETER;
4757 return 0;
4758 }
4759
4760 if (PACKET_remaining(cipher_suites) % n != 0) {
4761 SSLerr(SSL_F_SSL_CACHE_CIPHERLIST,
4762 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
4763 *al = SSL_AD_DECODE_ERROR;
4764 return 0;
4765 }
4766
4767 OPENSSL_free(s->s3->tmp.ciphers_raw);
4768 s->s3->tmp.ciphers_raw = NULL;
4769 s->s3->tmp.ciphers_rawlen = 0;
4770
4771 if (sslv2format) {
4772 size_t numciphers = PACKET_remaining(cipher_suites) / n;
4773 PACKET sslv2ciphers = *cipher_suites;
4774 unsigned int leadbyte;
4775 unsigned char *raw;
4776
4777 /*
4778 * We store the raw ciphers list in SSLv3+ format so we need to do some
4779 * preprocessing to convert the list first. If there are any SSLv2 only
4780 * ciphersuites with a non-zero leading byte then we are going to
4781 * slightly over allocate because we won't store those. But that isn't a
4782 * problem.
4783 */
4784 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN);
4785 s->s3->tmp.ciphers_raw = raw;
4786 if (raw == NULL) {
4787 *al = SSL_AD_INTERNAL_ERROR;
4788 goto err;
4789 }
4790 for (s->s3->tmp.ciphers_rawlen = 0;
4791 PACKET_remaining(&sslv2ciphers) > 0;
4792 raw += TLS_CIPHER_LEN) {
4793 if (!PACKET_get_1(&sslv2ciphers, &leadbyte)
4794 || (leadbyte == 0
4795 && !PACKET_copy_bytes(&sslv2ciphers, raw,
4796 TLS_CIPHER_LEN))
4797 || (leadbyte != 0
4798 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) {
4799 *al = SSL_AD_DECODE_ERROR;
4800 OPENSSL_free(s->s3->tmp.ciphers_raw);
4801 s->s3->tmp.ciphers_raw = NULL;
4802 s->s3->tmp.ciphers_rawlen = 0;
4803 goto err;
4804 }
4805 if (leadbyte == 0)
4806 s->s3->tmp.ciphers_rawlen += TLS_CIPHER_LEN;
4807 }
4808 } else if (!PACKET_memdup(cipher_suites, &s->s3->tmp.ciphers_raw,
4809 &s->s3->tmp.ciphers_rawlen)) {
4810 *al = SSL_AD_INTERNAL_ERROR;
4811 goto err;
4812 }
4813 return 1;
4814 err:
4815 return 0;
4816 }
4817
4818 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len,
4819 int isv2format, STACK_OF(SSL_CIPHER) **sk,
4820 STACK_OF(SSL_CIPHER) **scsvs)
4821 {
4822 int alert;
4823 PACKET pkt;
4824
4825 if (!PACKET_buf_init(&pkt, bytes, len))
4826 return 0;
4827 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, &alert);
4828 }
4829
4830 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites,
4831 STACK_OF(SSL_CIPHER) **skp,
4832 STACK_OF(SSL_CIPHER) **scsvs_out,
4833 int sslv2format, int *al)
4834 {
4835 const SSL_CIPHER *c;
4836 STACK_OF(SSL_CIPHER) *sk = NULL;
4837 STACK_OF(SSL_CIPHER) *scsvs = NULL;
4838 int n;
4839 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */
4840 unsigned char cipher[SSLV2_CIPHER_LEN];
4841
4842 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
4843
4844 if (PACKET_remaining(cipher_suites) == 0) {
4845 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_NO_CIPHERS_SPECIFIED);
4846 *al = SSL_AD_ILLEGAL_PARAMETER;
4847 return 0;
4848 }
4849
4850 if (PACKET_remaining(cipher_suites) % n != 0) {
4851 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST,
4852 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
4853 *al = SSL_AD_DECODE_ERROR;
4854 return 0;
4855 }
4856
4857 sk = sk_SSL_CIPHER_new_null();
4858 scsvs = sk_SSL_CIPHER_new_null();
4859 if (sk == NULL || scsvs == NULL) {
4860 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
4861 *al = SSL_AD_INTERNAL_ERROR;
4862 goto err;
4863 }
4864
4865 while (PACKET_copy_bytes(cipher_suites, cipher, n)) {
4866 /*
4867 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the
4868 * first byte set to zero, while true SSLv2 ciphers have a non-zero
4869 * first byte. We don't support any true SSLv2 ciphers, so skip them.
4870 */
4871 if (sslv2format && cipher[0] != '\0')
4872 continue;
4873
4874 /* For SSLv2-compat, ignore leading 0-byte. */
4875 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1);
4876 if (c != NULL) {
4877 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) ||
4878 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) {
4879 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
4880 *al = SSL_AD_INTERNAL_ERROR;
4881 goto err;
4882 }
4883 }
4884 }
4885 if (PACKET_remaining(cipher_suites) > 0) {
4886 *al = SSL_AD_DECODE_ERROR;
4887 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_BAD_LENGTH);
4888 goto err;
4889 }
4890
4891 if (skp != NULL)
4892 *skp = sk;
4893 else
4894 sk_SSL_CIPHER_free(sk);
4895 if (scsvs_out != NULL)
4896 *scsvs_out = scsvs;
4897 else
4898 sk_SSL_CIPHER_free(scsvs);
4899 return 1;
4900 err:
4901 sk_SSL_CIPHER_free(sk);
4902 sk_SSL_CIPHER_free(scsvs);
4903 return 0;
4904 }
4905
4906 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data)
4907 {
4908 ctx->max_early_data = max_early_data;
4909
4910 return 1;
4911 }
4912
4913 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx)
4914 {
4915 return ctx->max_early_data;
4916 }
4917
4918 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data)
4919 {
4920 s->max_early_data = max_early_data;
4921
4922 return 1;
4923 }
4924
4925 uint32_t SSL_get_max_early_data(const SSL *s)
4926 {
4927 return s->max_early_data;
4928 }