]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_lib.c
Use size of entries, not size of the pointer.
[thirdparty/openssl.git] / ssl / ssl_lib.c
1 /*
2 * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the OpenSSL license (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include "ssl_locl.h"
14 #include <openssl/objects.h>
15 #include <openssl/lhash.h>
16 #include <openssl/x509v3.h>
17 #include <openssl/rand.h>
18 #include <openssl/ocsp.h>
19 #include <openssl/dh.h>
20 #include <openssl/engine.h>
21 #include <openssl/async.h>
22 #include <openssl/ct.h>
23 #include "internal/cryptlib.h"
24 #include "internal/rand.h"
25 #include "internal/refcount.h"
26
27 const char SSL_version_str[] = OPENSSL_VERSION_TEXT;
28
29 SSL3_ENC_METHOD ssl3_undef_enc_method = {
30 /*
31 * evil casts, but these functions are only called if there's a library
32 * bug
33 */
34 (int (*)(SSL *, SSL3_RECORD *, size_t, int))ssl_undefined_function,
35 (int (*)(SSL *, SSL3_RECORD *, unsigned char *, int))ssl_undefined_function,
36 ssl_undefined_function,
37 (int (*)(SSL *, unsigned char *, unsigned char *, size_t, size_t *))
38 ssl_undefined_function,
39 (int (*)(SSL *, int))ssl_undefined_function,
40 (size_t (*)(SSL *, const char *, size_t, unsigned char *))
41 ssl_undefined_function,
42 NULL, /* client_finished_label */
43 0, /* client_finished_label_len */
44 NULL, /* server_finished_label */
45 0, /* server_finished_label_len */
46 (int (*)(int))ssl_undefined_function,
47 (int (*)(SSL *, unsigned char *, size_t, const char *,
48 size_t, const unsigned char *, size_t,
49 int use_context))ssl_undefined_function,
50 };
51
52 struct ssl_async_args {
53 SSL *s;
54 void *buf;
55 size_t num;
56 enum { READFUNC, WRITEFUNC, OTHERFUNC } type;
57 union {
58 int (*func_read) (SSL *, void *, size_t, size_t *);
59 int (*func_write) (SSL *, const void *, size_t, size_t *);
60 int (*func_other) (SSL *);
61 } f;
62 };
63
64 static const struct {
65 uint8_t mtype;
66 uint8_t ord;
67 int nid;
68 } dane_mds[] = {
69 {
70 DANETLS_MATCHING_FULL, 0, NID_undef
71 },
72 {
73 DANETLS_MATCHING_2256, 1, NID_sha256
74 },
75 {
76 DANETLS_MATCHING_2512, 2, NID_sha512
77 },
78 };
79
80 static int dane_ctx_enable(struct dane_ctx_st *dctx)
81 {
82 const EVP_MD **mdevp;
83 uint8_t *mdord;
84 uint8_t mdmax = DANETLS_MATCHING_LAST;
85 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */
86 size_t i;
87
88 if (dctx->mdevp != NULL)
89 return 1;
90
91 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp));
92 mdord = OPENSSL_zalloc(n * sizeof(*mdord));
93
94 if (mdord == NULL || mdevp == NULL) {
95 OPENSSL_free(mdord);
96 OPENSSL_free(mdevp);
97 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE);
98 return 0;
99 }
100
101 /* Install default entries */
102 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) {
103 const EVP_MD *md;
104
105 if (dane_mds[i].nid == NID_undef ||
106 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL)
107 continue;
108 mdevp[dane_mds[i].mtype] = md;
109 mdord[dane_mds[i].mtype] = dane_mds[i].ord;
110 }
111
112 dctx->mdevp = mdevp;
113 dctx->mdord = mdord;
114 dctx->mdmax = mdmax;
115
116 return 1;
117 }
118
119 static void dane_ctx_final(struct dane_ctx_st *dctx)
120 {
121 OPENSSL_free(dctx->mdevp);
122 dctx->mdevp = NULL;
123
124 OPENSSL_free(dctx->mdord);
125 dctx->mdord = NULL;
126 dctx->mdmax = 0;
127 }
128
129 static void tlsa_free(danetls_record *t)
130 {
131 if (t == NULL)
132 return;
133 OPENSSL_free(t->data);
134 EVP_PKEY_free(t->spki);
135 OPENSSL_free(t);
136 }
137
138 static void dane_final(SSL_DANE *dane)
139 {
140 sk_danetls_record_pop_free(dane->trecs, tlsa_free);
141 dane->trecs = NULL;
142
143 sk_X509_pop_free(dane->certs, X509_free);
144 dane->certs = NULL;
145
146 X509_free(dane->mcert);
147 dane->mcert = NULL;
148 dane->mtlsa = NULL;
149 dane->mdpth = -1;
150 dane->pdpth = -1;
151 }
152
153 /*
154 * dane_copy - Copy dane configuration, sans verification state.
155 */
156 static int ssl_dane_dup(SSL *to, SSL *from)
157 {
158 int num;
159 int i;
160
161 if (!DANETLS_ENABLED(&from->dane))
162 return 1;
163
164 dane_final(&to->dane);
165 to->dane.flags = from->dane.flags;
166 to->dane.dctx = &to->ctx->dane;
167 to->dane.trecs = sk_danetls_record_new_null();
168
169 if (to->dane.trecs == NULL) {
170 SSLerr(SSL_F_SSL_DANE_DUP, ERR_R_MALLOC_FAILURE);
171 return 0;
172 }
173
174 num = sk_danetls_record_num(from->dane.trecs);
175 for (i = 0; i < num; ++i) {
176 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i);
177
178 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype,
179 t->data, t->dlen) <= 0)
180 return 0;
181 }
182 return 1;
183 }
184
185 static int dane_mtype_set(struct dane_ctx_st *dctx,
186 const EVP_MD *md, uint8_t mtype, uint8_t ord)
187 {
188 int i;
189
190 if (mtype == DANETLS_MATCHING_FULL && md != NULL) {
191 SSLerr(SSL_F_DANE_MTYPE_SET, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL);
192 return 0;
193 }
194
195 if (mtype > dctx->mdmax) {
196 const EVP_MD **mdevp;
197 uint8_t *mdord;
198 int n = ((int)mtype) + 1;
199
200 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp));
201 if (mdevp == NULL) {
202 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
203 return -1;
204 }
205 dctx->mdevp = mdevp;
206
207 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord));
208 if (mdord == NULL) {
209 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
210 return -1;
211 }
212 dctx->mdord = mdord;
213
214 /* Zero-fill any gaps */
215 for (i = dctx->mdmax + 1; i < mtype; ++i) {
216 mdevp[i] = NULL;
217 mdord[i] = 0;
218 }
219
220 dctx->mdmax = mtype;
221 }
222
223 dctx->mdevp[mtype] = md;
224 /* Coerce ordinal of disabled matching types to 0 */
225 dctx->mdord[mtype] = (md == NULL) ? 0 : ord;
226
227 return 1;
228 }
229
230 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype)
231 {
232 if (mtype > dane->dctx->mdmax)
233 return NULL;
234 return dane->dctx->mdevp[mtype];
235 }
236
237 static int dane_tlsa_add(SSL_DANE *dane,
238 uint8_t usage,
239 uint8_t selector,
240 uint8_t mtype, unsigned char *data, size_t dlen)
241 {
242 danetls_record *t;
243 const EVP_MD *md = NULL;
244 int ilen = (int)dlen;
245 int i;
246 int num;
247
248 if (dane->trecs == NULL) {
249 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED);
250 return -1;
251 }
252
253 if (ilen < 0 || dlen != (size_t)ilen) {
254 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH);
255 return 0;
256 }
257
258 if (usage > DANETLS_USAGE_LAST) {
259 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE);
260 return 0;
261 }
262
263 if (selector > DANETLS_SELECTOR_LAST) {
264 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR);
265 return 0;
266 }
267
268 if (mtype != DANETLS_MATCHING_FULL) {
269 md = tlsa_md_get(dane, mtype);
270 if (md == NULL) {
271 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE);
272 return 0;
273 }
274 }
275
276 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) {
277 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH);
278 return 0;
279 }
280 if (!data) {
281 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA);
282 return 0;
283 }
284
285 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) {
286 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
287 return -1;
288 }
289
290 t->usage = usage;
291 t->selector = selector;
292 t->mtype = mtype;
293 t->data = OPENSSL_malloc(dlen);
294 if (t->data == NULL) {
295 tlsa_free(t);
296 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
297 return -1;
298 }
299 memcpy(t->data, data, dlen);
300 t->dlen = dlen;
301
302 /* Validate and cache full certificate or public key */
303 if (mtype == DANETLS_MATCHING_FULL) {
304 const unsigned char *p = data;
305 X509 *cert = NULL;
306 EVP_PKEY *pkey = NULL;
307
308 switch (selector) {
309 case DANETLS_SELECTOR_CERT:
310 if (!d2i_X509(&cert, &p, ilen) || p < data ||
311 dlen != (size_t)(p - data)) {
312 tlsa_free(t);
313 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
314 return 0;
315 }
316 if (X509_get0_pubkey(cert) == NULL) {
317 tlsa_free(t);
318 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
319 return 0;
320 }
321
322 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) {
323 X509_free(cert);
324 break;
325 }
326
327 /*
328 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA
329 * records that contain full certificates of trust-anchors that are
330 * not present in the wire chain. For usage PKIX-TA(0), we augment
331 * the chain with untrusted Full(0) certificates from DNS, in case
332 * they are missing from the chain.
333 */
334 if ((dane->certs == NULL &&
335 (dane->certs = sk_X509_new_null()) == NULL) ||
336 !sk_X509_push(dane->certs, cert)) {
337 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
338 X509_free(cert);
339 tlsa_free(t);
340 return -1;
341 }
342 break;
343
344 case DANETLS_SELECTOR_SPKI:
345 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data ||
346 dlen != (size_t)(p - data)) {
347 tlsa_free(t);
348 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY);
349 return 0;
350 }
351
352 /*
353 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA
354 * records that contain full bare keys of trust-anchors that are
355 * not present in the wire chain.
356 */
357 if (usage == DANETLS_USAGE_DANE_TA)
358 t->spki = pkey;
359 else
360 EVP_PKEY_free(pkey);
361 break;
362 }
363 }
364
365 /*-
366 * Find the right insertion point for the new record.
367 *
368 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that
369 * they can be processed first, as they require no chain building, and no
370 * expiration or hostname checks. Because DANE-EE(3) is numerically
371 * largest, this is accomplished via descending sort by "usage".
372 *
373 * We also sort in descending order by matching ordinal to simplify
374 * the implementation of digest agility in the verification code.
375 *
376 * The choice of order for the selector is not significant, so we
377 * use the same descending order for consistency.
378 */
379 num = sk_danetls_record_num(dane->trecs);
380 for (i = 0; i < num; ++i) {
381 danetls_record *rec = sk_danetls_record_value(dane->trecs, i);
382
383 if (rec->usage > usage)
384 continue;
385 if (rec->usage < usage)
386 break;
387 if (rec->selector > selector)
388 continue;
389 if (rec->selector < selector)
390 break;
391 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype])
392 continue;
393 break;
394 }
395
396 if (!sk_danetls_record_insert(dane->trecs, t, i)) {
397 tlsa_free(t);
398 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
399 return -1;
400 }
401 dane->umask |= DANETLS_USAGE_BIT(usage);
402
403 return 1;
404 }
405
406 /*
407 * Return 0 if there is only one version configured and it was disabled
408 * at configure time. Return 1 otherwise.
409 */
410 static int ssl_check_allowed_versions(int min_version, int max_version)
411 {
412 int minisdtls = 0, maxisdtls = 0;
413
414 /* Figure out if we're doing DTLS versions or TLS versions */
415 if (min_version == DTLS1_BAD_VER
416 || min_version >> 8 == DTLS1_VERSION_MAJOR)
417 minisdtls = 1;
418 if (max_version == DTLS1_BAD_VER
419 || max_version >> 8 == DTLS1_VERSION_MAJOR)
420 maxisdtls = 1;
421 /* A wildcard version of 0 could be DTLS or TLS. */
422 if ((minisdtls && !maxisdtls && max_version != 0)
423 || (maxisdtls && !minisdtls && min_version != 0)) {
424 /* Mixing DTLS and TLS versions will lead to sadness; deny it. */
425 return 0;
426 }
427
428 if (minisdtls || maxisdtls) {
429 /* Do DTLS version checks. */
430 if (min_version == 0)
431 /* Ignore DTLS1_BAD_VER */
432 min_version = DTLS1_VERSION;
433 if (max_version == 0)
434 max_version = DTLS1_2_VERSION;
435 #ifdef OPENSSL_NO_DTLS1_2
436 if (max_version == DTLS1_2_VERSION)
437 max_version = DTLS1_VERSION;
438 #endif
439 #ifdef OPENSSL_NO_DTLS1
440 if (min_version == DTLS1_VERSION)
441 min_version = DTLS1_2_VERSION;
442 #endif
443 /* Done massaging versions; do the check. */
444 if (0
445 #ifdef OPENSSL_NO_DTLS1
446 || (DTLS_VERSION_GE(min_version, DTLS1_VERSION)
447 && DTLS_VERSION_GE(DTLS1_VERSION, max_version))
448 #endif
449 #ifdef OPENSSL_NO_DTLS1_2
450 || (DTLS_VERSION_GE(min_version, DTLS1_2_VERSION)
451 && DTLS_VERSION_GE(DTLS1_2_VERSION, max_version))
452 #endif
453 )
454 return 0;
455 } else {
456 /* Regular TLS version checks. */
457 if (min_version == 0)
458 min_version = SSL3_VERSION;
459 if (max_version == 0)
460 max_version = TLS1_3_VERSION;
461 #ifdef OPENSSL_NO_TLS1_3
462 if (max_version == TLS1_3_VERSION)
463 max_version = TLS1_2_VERSION;
464 #endif
465 #ifdef OPENSSL_NO_TLS1_2
466 if (max_version == TLS1_2_VERSION)
467 max_version = TLS1_1_VERSION;
468 #endif
469 #ifdef OPENSSL_NO_TLS1_1
470 if (max_version == TLS1_1_VERSION)
471 max_version = TLS1_VERSION;
472 #endif
473 #ifdef OPENSSL_NO_TLS1
474 if (max_version == TLS1_VERSION)
475 max_version = SSL3_VERSION;
476 #endif
477 #ifdef OPENSSL_NO_SSL3
478 if (min_version == SSL3_VERSION)
479 min_version = TLS1_VERSION;
480 #endif
481 #ifdef OPENSSL_NO_TLS1
482 if (min_version == TLS1_VERSION)
483 min_version = TLS1_1_VERSION;
484 #endif
485 #ifdef OPENSSL_NO_TLS1_1
486 if (min_version == TLS1_1_VERSION)
487 min_version = TLS1_2_VERSION;
488 #endif
489 #ifdef OPENSSL_NO_TLS1_2
490 if (min_version == TLS1_2_VERSION)
491 min_version = TLS1_3_VERSION;
492 #endif
493 /* Done massaging versions; do the check. */
494 if (0
495 #ifdef OPENSSL_NO_SSL3
496 || (min_version <= SSL3_VERSION && SSL3_VERSION <= max_version)
497 #endif
498 #ifdef OPENSSL_NO_TLS1
499 || (min_version <= TLS1_VERSION && TLS1_VERSION <= max_version)
500 #endif
501 #ifdef OPENSSL_NO_TLS1_1
502 || (min_version <= TLS1_1_VERSION && TLS1_1_VERSION <= max_version)
503 #endif
504 #ifdef OPENSSL_NO_TLS1_2
505 || (min_version <= TLS1_2_VERSION && TLS1_2_VERSION <= max_version)
506 #endif
507 #ifdef OPENSSL_NO_TLS1_3
508 || (min_version <= TLS1_3_VERSION && TLS1_3_VERSION <= max_version)
509 #endif
510 )
511 return 0;
512 }
513 return 1;
514 }
515
516 static void clear_ciphers(SSL *s)
517 {
518 /* clear the current cipher */
519 ssl_clear_cipher_ctx(s);
520 ssl_clear_hash_ctx(&s->read_hash);
521 ssl_clear_hash_ctx(&s->write_hash);
522 }
523
524 int SSL_clear(SSL *s)
525 {
526 if (s->method == NULL) {
527 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED);
528 return 0;
529 }
530
531 if (ssl_clear_bad_session(s)) {
532 SSL_SESSION_free(s->session);
533 s->session = NULL;
534 }
535 SSL_SESSION_free(s->psksession);
536 s->psksession = NULL;
537 OPENSSL_free(s->psksession_id);
538 s->psksession_id = NULL;
539 s->psksession_id_len = 0;
540
541 s->error = 0;
542 s->hit = 0;
543 s->shutdown = 0;
544
545 if (s->renegotiate) {
546 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR);
547 return 0;
548 }
549
550 ossl_statem_clear(s);
551
552 s->version = s->method->version;
553 s->client_version = s->version;
554 s->rwstate = SSL_NOTHING;
555
556 BUF_MEM_free(s->init_buf);
557 s->init_buf = NULL;
558 clear_ciphers(s);
559 s->first_packet = 0;
560
561 s->key_update = SSL_KEY_UPDATE_NONE;
562
563 /* Reset DANE verification result state */
564 s->dane.mdpth = -1;
565 s->dane.pdpth = -1;
566 X509_free(s->dane.mcert);
567 s->dane.mcert = NULL;
568 s->dane.mtlsa = NULL;
569
570 /* Clear the verification result peername */
571 X509_VERIFY_PARAM_move_peername(s->param, NULL);
572
573 /*
574 * Check to see if we were changed into a different method, if so, revert
575 * back.
576 */
577 if (s->method != s->ctx->method) {
578 s->method->ssl_free(s);
579 s->method = s->ctx->method;
580 if (!s->method->ssl_new(s))
581 return 0;
582 } else {
583 if (!s->method->ssl_clear(s))
584 return 0;
585 }
586
587 RECORD_LAYER_clear(&s->rlayer);
588
589 return 1;
590 }
591
592 /** Used to change an SSL_CTXs default SSL method type */
593 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth)
594 {
595 STACK_OF(SSL_CIPHER) *sk;
596
597 ctx->method = meth;
598
599 sk = ssl_create_cipher_list(ctx->method, &(ctx->cipher_list),
600 &(ctx->cipher_list_by_id),
601 SSL_DEFAULT_CIPHER_LIST, ctx->cert);
602 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) {
603 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
604 return (0);
605 }
606 return (1);
607 }
608
609 SSL *SSL_new(SSL_CTX *ctx)
610 {
611 SSL *s;
612
613 if (ctx == NULL) {
614 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX);
615 return (NULL);
616 }
617 if (ctx->method == NULL) {
618 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
619 return (NULL);
620 }
621
622 s = OPENSSL_zalloc(sizeof(*s));
623 if (s == NULL)
624 goto err;
625
626 s->lock = CRYPTO_THREAD_lock_new();
627 if (s->lock == NULL)
628 goto err;
629
630 /*
631 * If not using the standard RAND (say for fuzzing), then don't use a
632 * chained DRBG.
633 */
634 if (RAND_get_rand_method() == RAND_OpenSSL()) {
635 s->drbg = RAND_DRBG_new(NID_aes_128_ctr, RAND_DRBG_FLAG_CTR_USE_DF,
636 RAND_DRBG_get0_global());
637 if (s->drbg == NULL
638 || RAND_DRBG_instantiate(s->drbg, NULL, 0) == 0) {
639 CRYPTO_THREAD_lock_free(s->lock);
640 goto err;
641 }
642 }
643
644 RECORD_LAYER_init(&s->rlayer, s);
645
646 s->options = ctx->options;
647 s->dane.flags = ctx->dane.flags;
648 s->min_proto_version = ctx->min_proto_version;
649 s->max_proto_version = ctx->max_proto_version;
650 s->mode = ctx->mode;
651 s->max_cert_list = ctx->max_cert_list;
652 s->references = 1;
653 s->max_early_data = ctx->max_early_data;
654
655 /*
656 * Earlier library versions used to copy the pointer to the CERT, not
657 * its contents; only when setting new parameters for the per-SSL
658 * copy, ssl_cert_new would be called (and the direct reference to
659 * the per-SSL_CTX settings would be lost, but those still were
660 * indirectly accessed for various purposes, and for that reason they
661 * used to be known as s->ctx->default_cert). Now we don't look at the
662 * SSL_CTX's CERT after having duplicated it once.
663 */
664 s->cert = ssl_cert_dup(ctx->cert);
665 if (s->cert == NULL)
666 goto err;
667
668 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead);
669 s->msg_callback = ctx->msg_callback;
670 s->msg_callback_arg = ctx->msg_callback_arg;
671 s->verify_mode = ctx->verify_mode;
672 s->not_resumable_session_cb = ctx->not_resumable_session_cb;
673 s->record_padding_cb = ctx->record_padding_cb;
674 s->record_padding_arg = ctx->record_padding_arg;
675 s->block_padding = ctx->block_padding;
676 s->sid_ctx_length = ctx->sid_ctx_length;
677 if (!ossl_assert(s->sid_ctx_length <= sizeof s->sid_ctx))
678 goto err;
679 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
680 s->verify_callback = ctx->default_verify_callback;
681 s->generate_session_id = ctx->generate_session_id;
682
683 s->param = X509_VERIFY_PARAM_new();
684 if (s->param == NULL)
685 goto err;
686 X509_VERIFY_PARAM_inherit(s->param, ctx->param);
687 s->quiet_shutdown = ctx->quiet_shutdown;
688 s->max_send_fragment = ctx->max_send_fragment;
689 s->split_send_fragment = ctx->split_send_fragment;
690 s->max_pipelines = ctx->max_pipelines;
691 if (s->max_pipelines > 1)
692 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
693 if (ctx->default_read_buf_len > 0)
694 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len);
695
696 SSL_CTX_up_ref(ctx);
697 s->ctx = ctx;
698 s->ext.debug_cb = 0;
699 s->ext.debug_arg = NULL;
700 s->ext.ticket_expected = 0;
701 s->ext.status_type = ctx->ext.status_type;
702 s->ext.status_expected = 0;
703 s->ext.ocsp.ids = NULL;
704 s->ext.ocsp.exts = NULL;
705 s->ext.ocsp.resp = NULL;
706 s->ext.ocsp.resp_len = 0;
707 SSL_CTX_up_ref(ctx);
708 s->session_ctx = ctx;
709 #ifndef OPENSSL_NO_EC
710 if (ctx->ext.ecpointformats) {
711 s->ext.ecpointformats =
712 OPENSSL_memdup(ctx->ext.ecpointformats,
713 ctx->ext.ecpointformats_len);
714 if (!s->ext.ecpointformats)
715 goto err;
716 s->ext.ecpointformats_len =
717 ctx->ext.ecpointformats_len;
718 }
719 if (ctx->ext.supportedgroups) {
720 s->ext.supportedgroups =
721 OPENSSL_memdup(ctx->ext.supportedgroups,
722 ctx->ext.supportedgroups_len
723 * sizeof(*ctx->ext.supportedgroups));
724 if (!s->ext.supportedgroups)
725 goto err;
726 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len;
727 }
728 #endif
729 #ifndef OPENSSL_NO_NEXTPROTONEG
730 s->ext.npn = NULL;
731 #endif
732
733 if (s->ctx->ext.alpn) {
734 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len);
735 if (s->ext.alpn == NULL)
736 goto err;
737 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len);
738 s->ext.alpn_len = s->ctx->ext.alpn_len;
739 }
740
741 s->verified_chain = NULL;
742 s->verify_result = X509_V_OK;
743
744 s->default_passwd_callback = ctx->default_passwd_callback;
745 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata;
746
747 s->method = ctx->method;
748
749 s->key_update = SSL_KEY_UPDATE_NONE;
750
751 if (!s->method->ssl_new(s))
752 goto err;
753
754 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1;
755
756 if (!SSL_clear(s))
757 goto err;
758
759 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data))
760 goto err;
761
762 #ifndef OPENSSL_NO_PSK
763 s->psk_client_callback = ctx->psk_client_callback;
764 s->psk_server_callback = ctx->psk_server_callback;
765 #endif
766 s->psk_find_session_cb = ctx->psk_find_session_cb;
767 s->psk_use_session_cb = ctx->psk_use_session_cb;
768
769 s->job = NULL;
770
771 #ifndef OPENSSL_NO_CT
772 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback,
773 ctx->ct_validation_callback_arg))
774 goto err;
775 #endif
776
777 return s;
778 err:
779 SSL_free(s);
780 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
781 return NULL;
782 }
783
784 int SSL_is_dtls(const SSL *s)
785 {
786 return SSL_IS_DTLS(s) ? 1 : 0;
787 }
788
789 int SSL_up_ref(SSL *s)
790 {
791 int i;
792
793 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0)
794 return 0;
795
796 REF_PRINT_COUNT("SSL", s);
797 REF_ASSERT_ISNT(i < 2);
798 return ((i > 1) ? 1 : 0);
799 }
800
801 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
802 unsigned int sid_ctx_len)
803 {
804 if (sid_ctx_len > sizeof ctx->sid_ctx) {
805 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT,
806 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
807 return 0;
808 }
809 ctx->sid_ctx_length = sid_ctx_len;
810 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
811
812 return 1;
813 }
814
815 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
816 unsigned int sid_ctx_len)
817 {
818 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
819 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT,
820 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
821 return 0;
822 }
823 ssl->sid_ctx_length = sid_ctx_len;
824 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
825
826 return 1;
827 }
828
829 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb)
830 {
831 CRYPTO_THREAD_write_lock(ctx->lock);
832 ctx->generate_session_id = cb;
833 CRYPTO_THREAD_unlock(ctx->lock);
834 return 1;
835 }
836
837 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb)
838 {
839 CRYPTO_THREAD_write_lock(ssl->lock);
840 ssl->generate_session_id = cb;
841 CRYPTO_THREAD_unlock(ssl->lock);
842 return 1;
843 }
844
845 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
846 unsigned int id_len)
847 {
848 /*
849 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how
850 * we can "construct" a session to give us the desired check - i.e. to
851 * find if there's a session in the hash table that would conflict with
852 * any new session built out of this id/id_len and the ssl_version in use
853 * by this SSL.
854 */
855 SSL_SESSION r, *p;
856
857 if (id_len > sizeof r.session_id)
858 return 0;
859
860 r.ssl_version = ssl->version;
861 r.session_id_length = id_len;
862 memcpy(r.session_id, id, id_len);
863
864 CRYPTO_THREAD_read_lock(ssl->session_ctx->lock);
865 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r);
866 CRYPTO_THREAD_unlock(ssl->session_ctx->lock);
867 return (p != NULL);
868 }
869
870 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose)
871 {
872 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
873 }
874
875 int SSL_set_purpose(SSL *s, int purpose)
876 {
877 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
878 }
879
880 int SSL_CTX_set_trust(SSL_CTX *s, int trust)
881 {
882 return X509_VERIFY_PARAM_set_trust(s->param, trust);
883 }
884
885 int SSL_set_trust(SSL *s, int trust)
886 {
887 return X509_VERIFY_PARAM_set_trust(s->param, trust);
888 }
889
890 int SSL_set1_host(SSL *s, const char *hostname)
891 {
892 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0);
893 }
894
895 int SSL_add1_host(SSL *s, const char *hostname)
896 {
897 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0);
898 }
899
900 void SSL_set_hostflags(SSL *s, unsigned int flags)
901 {
902 X509_VERIFY_PARAM_set_hostflags(s->param, flags);
903 }
904
905 const char *SSL_get0_peername(SSL *s)
906 {
907 return X509_VERIFY_PARAM_get0_peername(s->param);
908 }
909
910 int SSL_CTX_dane_enable(SSL_CTX *ctx)
911 {
912 return dane_ctx_enable(&ctx->dane);
913 }
914
915 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags)
916 {
917 unsigned long orig = ctx->dane.flags;
918
919 ctx->dane.flags |= flags;
920 return orig;
921 }
922
923 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags)
924 {
925 unsigned long orig = ctx->dane.flags;
926
927 ctx->dane.flags &= ~flags;
928 return orig;
929 }
930
931 int SSL_dane_enable(SSL *s, const char *basedomain)
932 {
933 SSL_DANE *dane = &s->dane;
934
935 if (s->ctx->dane.mdmax == 0) {
936 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED);
937 return 0;
938 }
939 if (dane->trecs != NULL) {
940 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED);
941 return 0;
942 }
943
944 /*
945 * Default SNI name. This rejects empty names, while set1_host below
946 * accepts them and disables host name checks. To avoid side-effects with
947 * invalid input, set the SNI name first.
948 */
949 if (s->ext.hostname == NULL) {
950 if (!SSL_set_tlsext_host_name(s, basedomain)) {
951 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
952 return -1;
953 }
954 }
955
956 /* Primary RFC6125 reference identifier */
957 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) {
958 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
959 return -1;
960 }
961
962 dane->mdpth = -1;
963 dane->pdpth = -1;
964 dane->dctx = &s->ctx->dane;
965 dane->trecs = sk_danetls_record_new_null();
966
967 if (dane->trecs == NULL) {
968 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE);
969 return -1;
970 }
971 return 1;
972 }
973
974 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags)
975 {
976 unsigned long orig = ssl->dane.flags;
977
978 ssl->dane.flags |= flags;
979 return orig;
980 }
981
982 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags)
983 {
984 unsigned long orig = ssl->dane.flags;
985
986 ssl->dane.flags &= ~flags;
987 return orig;
988 }
989
990 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki)
991 {
992 SSL_DANE *dane = &s->dane;
993
994 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
995 return -1;
996 if (dane->mtlsa) {
997 if (mcert)
998 *mcert = dane->mcert;
999 if (mspki)
1000 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL;
1001 }
1002 return dane->mdpth;
1003 }
1004
1005 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector,
1006 uint8_t *mtype, unsigned const char **data, size_t *dlen)
1007 {
1008 SSL_DANE *dane = &s->dane;
1009
1010 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1011 return -1;
1012 if (dane->mtlsa) {
1013 if (usage)
1014 *usage = dane->mtlsa->usage;
1015 if (selector)
1016 *selector = dane->mtlsa->selector;
1017 if (mtype)
1018 *mtype = dane->mtlsa->mtype;
1019 if (data)
1020 *data = dane->mtlsa->data;
1021 if (dlen)
1022 *dlen = dane->mtlsa->dlen;
1023 }
1024 return dane->mdpth;
1025 }
1026
1027 SSL_DANE *SSL_get0_dane(SSL *s)
1028 {
1029 return &s->dane;
1030 }
1031
1032 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector,
1033 uint8_t mtype, unsigned char *data, size_t dlen)
1034 {
1035 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen);
1036 }
1037
1038 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype,
1039 uint8_t ord)
1040 {
1041 return dane_mtype_set(&ctx->dane, md, mtype, ord);
1042 }
1043
1044 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm)
1045 {
1046 return X509_VERIFY_PARAM_set1(ctx->param, vpm);
1047 }
1048
1049 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm)
1050 {
1051 return X509_VERIFY_PARAM_set1(ssl->param, vpm);
1052 }
1053
1054 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx)
1055 {
1056 return ctx->param;
1057 }
1058
1059 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl)
1060 {
1061 return ssl->param;
1062 }
1063
1064 void SSL_certs_clear(SSL *s)
1065 {
1066 ssl_cert_clear_certs(s->cert);
1067 }
1068
1069 void SSL_free(SSL *s)
1070 {
1071 int i;
1072
1073 if (s == NULL)
1074 return;
1075
1076 CRYPTO_DOWN_REF(&s->references, &i, s->lock);
1077 REF_PRINT_COUNT("SSL", s);
1078 if (i > 0)
1079 return;
1080 REF_ASSERT_ISNT(i < 0);
1081
1082 X509_VERIFY_PARAM_free(s->param);
1083 dane_final(&s->dane);
1084 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
1085
1086 /* Ignore return value */
1087 ssl_free_wbio_buffer(s);
1088
1089 BIO_free_all(s->wbio);
1090 BIO_free_all(s->rbio);
1091
1092 BUF_MEM_free(s->init_buf);
1093
1094 /* add extra stuff */
1095 sk_SSL_CIPHER_free(s->cipher_list);
1096 sk_SSL_CIPHER_free(s->cipher_list_by_id);
1097
1098 /* Make the next call work :-) */
1099 if (s->session != NULL) {
1100 ssl_clear_bad_session(s);
1101 SSL_SESSION_free(s->session);
1102 }
1103 SSL_SESSION_free(s->psksession);
1104 OPENSSL_free(s->psksession_id);
1105
1106 clear_ciphers(s);
1107
1108 ssl_cert_free(s->cert);
1109 /* Free up if allocated */
1110
1111 OPENSSL_free(s->ext.hostname);
1112 SSL_CTX_free(s->session_ctx);
1113 #ifndef OPENSSL_NO_EC
1114 OPENSSL_free(s->ext.ecpointformats);
1115 OPENSSL_free(s->ext.supportedgroups);
1116 #endif /* OPENSSL_NO_EC */
1117 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free);
1118 #ifndef OPENSSL_NO_OCSP
1119 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free);
1120 #endif
1121 #ifndef OPENSSL_NO_CT
1122 SCT_LIST_free(s->scts);
1123 OPENSSL_free(s->ext.scts);
1124 #endif
1125 OPENSSL_free(s->ext.ocsp.resp);
1126 OPENSSL_free(s->ext.alpn);
1127 OPENSSL_free(s->ext.tls13_cookie);
1128 OPENSSL_free(s->clienthello);
1129
1130 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free);
1131
1132 sk_X509_pop_free(s->verified_chain, X509_free);
1133
1134 if (s->method != NULL)
1135 s->method->ssl_free(s);
1136
1137 RECORD_LAYER_release(&s->rlayer);
1138
1139 SSL_CTX_free(s->ctx);
1140
1141 ASYNC_WAIT_CTX_free(s->waitctx);
1142
1143 #if !defined(OPENSSL_NO_NEXTPROTONEG)
1144 OPENSSL_free(s->ext.npn);
1145 #endif
1146
1147 #ifndef OPENSSL_NO_SRTP
1148 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles);
1149 #endif
1150
1151 RAND_DRBG_free(s->drbg);
1152 CRYPTO_THREAD_lock_free(s->lock);
1153
1154 OPENSSL_free(s);
1155 }
1156
1157 void SSL_set0_rbio(SSL *s, BIO *rbio)
1158 {
1159 BIO_free_all(s->rbio);
1160 s->rbio = rbio;
1161 }
1162
1163 void SSL_set0_wbio(SSL *s, BIO *wbio)
1164 {
1165 /*
1166 * If the output buffering BIO is still in place, remove it
1167 */
1168 if (s->bbio != NULL)
1169 s->wbio = BIO_pop(s->wbio);
1170
1171 BIO_free_all(s->wbio);
1172 s->wbio = wbio;
1173
1174 /* Re-attach |bbio| to the new |wbio|. */
1175 if (s->bbio != NULL)
1176 s->wbio = BIO_push(s->bbio, s->wbio);
1177 }
1178
1179 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio)
1180 {
1181 /*
1182 * For historical reasons, this function has many different cases in
1183 * ownership handling.
1184 */
1185
1186 /* If nothing has changed, do nothing */
1187 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s))
1188 return;
1189
1190 /*
1191 * If the two arguments are equal then one fewer reference is granted by the
1192 * caller than we want to take
1193 */
1194 if (rbio != NULL && rbio == wbio)
1195 BIO_up_ref(rbio);
1196
1197 /*
1198 * If only the wbio is changed only adopt one reference.
1199 */
1200 if (rbio == SSL_get_rbio(s)) {
1201 SSL_set0_wbio(s, wbio);
1202 return;
1203 }
1204 /*
1205 * There is an asymmetry here for historical reasons. If only the rbio is
1206 * changed AND the rbio and wbio were originally different, then we only
1207 * adopt one reference.
1208 */
1209 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) {
1210 SSL_set0_rbio(s, rbio);
1211 return;
1212 }
1213
1214 /* Otherwise, adopt both references. */
1215 SSL_set0_rbio(s, rbio);
1216 SSL_set0_wbio(s, wbio);
1217 }
1218
1219 BIO *SSL_get_rbio(const SSL *s)
1220 {
1221 return s->rbio;
1222 }
1223
1224 BIO *SSL_get_wbio(const SSL *s)
1225 {
1226 if (s->bbio != NULL) {
1227 /*
1228 * If |bbio| is active, the true caller-configured BIO is its
1229 * |next_bio|.
1230 */
1231 return BIO_next(s->bbio);
1232 }
1233 return s->wbio;
1234 }
1235
1236 int SSL_get_fd(const SSL *s)
1237 {
1238 return SSL_get_rfd(s);
1239 }
1240
1241 int SSL_get_rfd(const SSL *s)
1242 {
1243 int ret = -1;
1244 BIO *b, *r;
1245
1246 b = SSL_get_rbio(s);
1247 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1248 if (r != NULL)
1249 BIO_get_fd(r, &ret);
1250 return (ret);
1251 }
1252
1253 int SSL_get_wfd(const SSL *s)
1254 {
1255 int ret = -1;
1256 BIO *b, *r;
1257
1258 b = SSL_get_wbio(s);
1259 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1260 if (r != NULL)
1261 BIO_get_fd(r, &ret);
1262 return (ret);
1263 }
1264
1265 #ifndef OPENSSL_NO_SOCK
1266 int SSL_set_fd(SSL *s, int fd)
1267 {
1268 int ret = 0;
1269 BIO *bio = NULL;
1270
1271 bio = BIO_new(BIO_s_socket());
1272
1273 if (bio == NULL) {
1274 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB);
1275 goto err;
1276 }
1277 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1278 SSL_set_bio(s, bio, bio);
1279 ret = 1;
1280 err:
1281 return (ret);
1282 }
1283
1284 int SSL_set_wfd(SSL *s, int fd)
1285 {
1286 BIO *rbio = SSL_get_rbio(s);
1287
1288 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET
1289 || (int)BIO_get_fd(rbio, NULL) != fd) {
1290 BIO *bio = BIO_new(BIO_s_socket());
1291
1292 if (bio == NULL) {
1293 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB);
1294 return 0;
1295 }
1296 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1297 SSL_set0_wbio(s, bio);
1298 } else {
1299 BIO_up_ref(rbio);
1300 SSL_set0_wbio(s, rbio);
1301 }
1302 return 1;
1303 }
1304
1305 int SSL_set_rfd(SSL *s, int fd)
1306 {
1307 BIO *wbio = SSL_get_wbio(s);
1308
1309 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET
1310 || ((int)BIO_get_fd(wbio, NULL) != fd)) {
1311 BIO *bio = BIO_new(BIO_s_socket());
1312
1313 if (bio == NULL) {
1314 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB);
1315 return 0;
1316 }
1317 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1318 SSL_set0_rbio(s, bio);
1319 } else {
1320 BIO_up_ref(wbio);
1321 SSL_set0_rbio(s, wbio);
1322 }
1323
1324 return 1;
1325 }
1326 #endif
1327
1328 /* return length of latest Finished message we sent, copy to 'buf' */
1329 size_t SSL_get_finished(const SSL *s, void *buf, size_t count)
1330 {
1331 size_t ret = 0;
1332
1333 if (s->s3 != NULL) {
1334 ret = s->s3->tmp.finish_md_len;
1335 if (count > ret)
1336 count = ret;
1337 memcpy(buf, s->s3->tmp.finish_md, count);
1338 }
1339 return ret;
1340 }
1341
1342 /* return length of latest Finished message we expected, copy to 'buf' */
1343 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count)
1344 {
1345 size_t ret = 0;
1346
1347 if (s->s3 != NULL) {
1348 ret = s->s3->tmp.peer_finish_md_len;
1349 if (count > ret)
1350 count = ret;
1351 memcpy(buf, s->s3->tmp.peer_finish_md, count);
1352 }
1353 return ret;
1354 }
1355
1356 int SSL_get_verify_mode(const SSL *s)
1357 {
1358 return (s->verify_mode);
1359 }
1360
1361 int SSL_get_verify_depth(const SSL *s)
1362 {
1363 return X509_VERIFY_PARAM_get_depth(s->param);
1364 }
1365
1366 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) {
1367 return (s->verify_callback);
1368 }
1369
1370 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx)
1371 {
1372 return (ctx->verify_mode);
1373 }
1374
1375 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx)
1376 {
1377 return X509_VERIFY_PARAM_get_depth(ctx->param);
1378 }
1379
1380 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) {
1381 return (ctx->default_verify_callback);
1382 }
1383
1384 void SSL_set_verify(SSL *s, int mode,
1385 int (*callback) (int ok, X509_STORE_CTX *ctx))
1386 {
1387 s->verify_mode = mode;
1388 if (callback != NULL)
1389 s->verify_callback = callback;
1390 }
1391
1392 void SSL_set_verify_depth(SSL *s, int depth)
1393 {
1394 X509_VERIFY_PARAM_set_depth(s->param, depth);
1395 }
1396
1397 void SSL_set_read_ahead(SSL *s, int yes)
1398 {
1399 RECORD_LAYER_set_read_ahead(&s->rlayer, yes);
1400 }
1401
1402 int SSL_get_read_ahead(const SSL *s)
1403 {
1404 return RECORD_LAYER_get_read_ahead(&s->rlayer);
1405 }
1406
1407 int SSL_pending(const SSL *s)
1408 {
1409 size_t pending = s->method->ssl_pending(s);
1410
1411 /*
1412 * SSL_pending cannot work properly if read-ahead is enabled
1413 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is
1414 * impossible to fix since SSL_pending cannot report errors that may be
1415 * observed while scanning the new data. (Note that SSL_pending() is
1416 * often used as a boolean value, so we'd better not return -1.)
1417 *
1418 * SSL_pending also cannot work properly if the value >INT_MAX. In that case
1419 * we just return INT_MAX.
1420 */
1421 return pending < INT_MAX ? (int)pending : INT_MAX;
1422 }
1423
1424 int SSL_has_pending(const SSL *s)
1425 {
1426 /*
1427 * Similar to SSL_pending() but returns a 1 to indicate that we have
1428 * unprocessed data available or 0 otherwise (as opposed to the number of
1429 * bytes available). Unlike SSL_pending() this will take into account
1430 * read_ahead data. A 1 return simply indicates that we have unprocessed
1431 * data. That data may not result in any application data, or we may fail
1432 * to parse the records for some reason.
1433 */
1434 if (RECORD_LAYER_processed_read_pending(&s->rlayer))
1435 return 1;
1436
1437 return RECORD_LAYER_read_pending(&s->rlayer);
1438 }
1439
1440 X509 *SSL_get_peer_certificate(const SSL *s)
1441 {
1442 X509 *r;
1443
1444 if ((s == NULL) || (s->session == NULL))
1445 r = NULL;
1446 else
1447 r = s->session->peer;
1448
1449 if (r == NULL)
1450 return (r);
1451
1452 X509_up_ref(r);
1453
1454 return (r);
1455 }
1456
1457 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s)
1458 {
1459 STACK_OF(X509) *r;
1460
1461 if ((s == NULL) || (s->session == NULL))
1462 r = NULL;
1463 else
1464 r = s->session->peer_chain;
1465
1466 /*
1467 * If we are a client, cert_chain includes the peer's own certificate; if
1468 * we are a server, it does not.
1469 */
1470
1471 return (r);
1472 }
1473
1474 /*
1475 * Now in theory, since the calling process own 't' it should be safe to
1476 * modify. We need to be able to read f without being hassled
1477 */
1478 int SSL_copy_session_id(SSL *t, const SSL *f)
1479 {
1480 int i;
1481 /* Do we need to to SSL locking? */
1482 if (!SSL_set_session(t, SSL_get_session(f))) {
1483 return 0;
1484 }
1485
1486 /*
1487 * what if we are setup for one protocol version but want to talk another
1488 */
1489 if (t->method != f->method) {
1490 t->method->ssl_free(t);
1491 t->method = f->method;
1492 if (t->method->ssl_new(t) == 0)
1493 return 0;
1494 }
1495
1496 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock);
1497 ssl_cert_free(t->cert);
1498 t->cert = f->cert;
1499 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) {
1500 return 0;
1501 }
1502
1503 return 1;
1504 }
1505
1506 /* Fix this so it checks all the valid key/cert options */
1507 int SSL_CTX_check_private_key(const SSL_CTX *ctx)
1508 {
1509 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) {
1510 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1511 return (0);
1512 }
1513 if (ctx->cert->key->privatekey == NULL) {
1514 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1515 return (0);
1516 }
1517 return (X509_check_private_key
1518 (ctx->cert->key->x509, ctx->cert->key->privatekey));
1519 }
1520
1521 /* Fix this function so that it takes an optional type parameter */
1522 int SSL_check_private_key(const SSL *ssl)
1523 {
1524 if (ssl == NULL) {
1525 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER);
1526 return (0);
1527 }
1528 if (ssl->cert->key->x509 == NULL) {
1529 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1530 return (0);
1531 }
1532 if (ssl->cert->key->privatekey == NULL) {
1533 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1534 return (0);
1535 }
1536 return (X509_check_private_key(ssl->cert->key->x509,
1537 ssl->cert->key->privatekey));
1538 }
1539
1540 int SSL_waiting_for_async(SSL *s)
1541 {
1542 if (s->job)
1543 return 1;
1544
1545 return 0;
1546 }
1547
1548 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds)
1549 {
1550 ASYNC_WAIT_CTX *ctx = s->waitctx;
1551
1552 if (ctx == NULL)
1553 return 0;
1554 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds);
1555 }
1556
1557 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds,
1558 OSSL_ASYNC_FD *delfd, size_t *numdelfds)
1559 {
1560 ASYNC_WAIT_CTX *ctx = s->waitctx;
1561
1562 if (ctx == NULL)
1563 return 0;
1564 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd,
1565 numdelfds);
1566 }
1567
1568 int SSL_accept(SSL *s)
1569 {
1570 if (s->handshake_func == NULL) {
1571 /* Not properly initialized yet */
1572 SSL_set_accept_state(s);
1573 }
1574
1575 return SSL_do_handshake(s);
1576 }
1577
1578 int SSL_connect(SSL *s)
1579 {
1580 if (s->handshake_func == NULL) {
1581 /* Not properly initialized yet */
1582 SSL_set_connect_state(s);
1583 }
1584
1585 return SSL_do_handshake(s);
1586 }
1587
1588 long SSL_get_default_timeout(const SSL *s)
1589 {
1590 return (s->method->get_timeout());
1591 }
1592
1593 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args,
1594 int (*func) (void *))
1595 {
1596 int ret;
1597 if (s->waitctx == NULL) {
1598 s->waitctx = ASYNC_WAIT_CTX_new();
1599 if (s->waitctx == NULL)
1600 return -1;
1601 }
1602 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args,
1603 sizeof(struct ssl_async_args))) {
1604 case ASYNC_ERR:
1605 s->rwstate = SSL_NOTHING;
1606 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC);
1607 return -1;
1608 case ASYNC_PAUSE:
1609 s->rwstate = SSL_ASYNC_PAUSED;
1610 return -1;
1611 case ASYNC_NO_JOBS:
1612 s->rwstate = SSL_ASYNC_NO_JOBS;
1613 return -1;
1614 case ASYNC_FINISH:
1615 s->job = NULL;
1616 return ret;
1617 default:
1618 s->rwstate = SSL_NOTHING;
1619 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR);
1620 /* Shouldn't happen */
1621 return -1;
1622 }
1623 }
1624
1625 static int ssl_io_intern(void *vargs)
1626 {
1627 struct ssl_async_args *args;
1628 SSL *s;
1629 void *buf;
1630 size_t num;
1631
1632 args = (struct ssl_async_args *)vargs;
1633 s = args->s;
1634 buf = args->buf;
1635 num = args->num;
1636 switch (args->type) {
1637 case READFUNC:
1638 return args->f.func_read(s, buf, num, &s->asyncrw);
1639 case WRITEFUNC:
1640 return args->f.func_write(s, buf, num, &s->asyncrw);
1641 case OTHERFUNC:
1642 return args->f.func_other(s);
1643 }
1644 return -1;
1645 }
1646
1647 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1648 {
1649 if (s->handshake_func == NULL) {
1650 SSLerr(SSL_F_SSL_READ_INTERNAL, SSL_R_UNINITIALIZED);
1651 return -1;
1652 }
1653
1654 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1655 s->rwstate = SSL_NOTHING;
1656 return 0;
1657 }
1658
1659 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1660 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) {
1661 SSLerr(SSL_F_SSL_READ_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1662 return 0;
1663 }
1664 /*
1665 * If we are a client and haven't received the ServerHello etc then we
1666 * better do that
1667 */
1668 ossl_statem_check_finish_init(s, 0);
1669
1670 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1671 struct ssl_async_args args;
1672 int ret;
1673
1674 args.s = s;
1675 args.buf = buf;
1676 args.num = num;
1677 args.type = READFUNC;
1678 args.f.func_read = s->method->ssl_read;
1679
1680 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1681 *readbytes = s->asyncrw;
1682 return ret;
1683 } else {
1684 return s->method->ssl_read(s, buf, num, readbytes);
1685 }
1686 }
1687
1688 int SSL_read(SSL *s, void *buf, int num)
1689 {
1690 int ret;
1691 size_t readbytes;
1692
1693 if (num < 0) {
1694 SSLerr(SSL_F_SSL_READ, SSL_R_BAD_LENGTH);
1695 return -1;
1696 }
1697
1698 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes);
1699
1700 /*
1701 * The cast is safe here because ret should be <= INT_MAX because num is
1702 * <= INT_MAX
1703 */
1704 if (ret > 0)
1705 ret = (int)readbytes;
1706
1707 return ret;
1708 }
1709
1710 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1711 {
1712 int ret = ssl_read_internal(s, buf, num, readbytes);
1713
1714 if (ret < 0)
1715 ret = 0;
1716 return ret;
1717 }
1718
1719 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes)
1720 {
1721 int ret;
1722
1723 if (!s->server) {
1724 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1725 return SSL_READ_EARLY_DATA_ERROR;
1726 }
1727
1728 switch (s->early_data_state) {
1729 case SSL_EARLY_DATA_NONE:
1730 if (!SSL_in_before(s)) {
1731 SSLerr(SSL_F_SSL_READ_EARLY_DATA,
1732 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1733 return SSL_READ_EARLY_DATA_ERROR;
1734 }
1735 /* fall through */
1736
1737 case SSL_EARLY_DATA_ACCEPT_RETRY:
1738 s->early_data_state = SSL_EARLY_DATA_ACCEPTING;
1739 ret = SSL_accept(s);
1740 if (ret <= 0) {
1741 /* NBIO or error */
1742 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY;
1743 return SSL_READ_EARLY_DATA_ERROR;
1744 }
1745 /* fall through */
1746
1747 case SSL_EARLY_DATA_READ_RETRY:
1748 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) {
1749 s->early_data_state = SSL_EARLY_DATA_READING;
1750 ret = SSL_read_ex(s, buf, num, readbytes);
1751 /*
1752 * State machine will update early_data_state to
1753 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData
1754 * message
1755 */
1756 if (ret > 0 || (ret <= 0 && s->early_data_state
1757 != SSL_EARLY_DATA_FINISHED_READING)) {
1758 s->early_data_state = SSL_EARLY_DATA_READ_RETRY;
1759 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS
1760 : SSL_READ_EARLY_DATA_ERROR;
1761 }
1762 } else {
1763 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING;
1764 }
1765 *readbytes = 0;
1766 return SSL_READ_EARLY_DATA_FINISH;
1767
1768 default:
1769 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1770 return SSL_READ_EARLY_DATA_ERROR;
1771 }
1772 }
1773
1774 int SSL_get_early_data_status(const SSL *s)
1775 {
1776 return s->ext.early_data;
1777 }
1778
1779 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1780 {
1781 if (s->handshake_func == NULL) {
1782 SSLerr(SSL_F_SSL_PEEK_INTERNAL, SSL_R_UNINITIALIZED);
1783 return -1;
1784 }
1785
1786 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1787 return 0;
1788 }
1789 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1790 struct ssl_async_args args;
1791 int ret;
1792
1793 args.s = s;
1794 args.buf = buf;
1795 args.num = num;
1796 args.type = READFUNC;
1797 args.f.func_read = s->method->ssl_peek;
1798
1799 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1800 *readbytes = s->asyncrw;
1801 return ret;
1802 } else {
1803 return s->method->ssl_peek(s, buf, num, readbytes);
1804 }
1805 }
1806
1807 int SSL_peek(SSL *s, void *buf, int num)
1808 {
1809 int ret;
1810 size_t readbytes;
1811
1812 if (num < 0) {
1813 SSLerr(SSL_F_SSL_PEEK, SSL_R_BAD_LENGTH);
1814 return -1;
1815 }
1816
1817 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes);
1818
1819 /*
1820 * The cast is safe here because ret should be <= INT_MAX because num is
1821 * <= INT_MAX
1822 */
1823 if (ret > 0)
1824 ret = (int)readbytes;
1825
1826 return ret;
1827 }
1828
1829
1830 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1831 {
1832 int ret = ssl_peek_internal(s, buf, num, readbytes);
1833
1834 if (ret < 0)
1835 ret = 0;
1836 return ret;
1837 }
1838
1839 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written)
1840 {
1841 if (s->handshake_func == NULL) {
1842 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_UNINITIALIZED);
1843 return -1;
1844 }
1845
1846 if (s->shutdown & SSL_SENT_SHUTDOWN) {
1847 s->rwstate = SSL_NOTHING;
1848 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_PROTOCOL_IS_SHUTDOWN);
1849 return -1;
1850 }
1851
1852 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1853 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY
1854 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) {
1855 SSLerr(SSL_F_SSL_WRITE_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1856 return 0;
1857 }
1858 /* If we are a client and haven't sent the Finished we better do that */
1859 ossl_statem_check_finish_init(s, 1);
1860
1861 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1862 int ret;
1863 struct ssl_async_args args;
1864
1865 args.s = s;
1866 args.buf = (void *)buf;
1867 args.num = num;
1868 args.type = WRITEFUNC;
1869 args.f.func_write = s->method->ssl_write;
1870
1871 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1872 *written = s->asyncrw;
1873 return ret;
1874 } else {
1875 return s->method->ssl_write(s, buf, num, written);
1876 }
1877 }
1878
1879 int SSL_write(SSL *s, const void *buf, int num)
1880 {
1881 int ret;
1882 size_t written;
1883
1884 if (num < 0) {
1885 SSLerr(SSL_F_SSL_WRITE, SSL_R_BAD_LENGTH);
1886 return -1;
1887 }
1888
1889 ret = ssl_write_internal(s, buf, (size_t)num, &written);
1890
1891 /*
1892 * The cast is safe here because ret should be <= INT_MAX because num is
1893 * <= INT_MAX
1894 */
1895 if (ret > 0)
1896 ret = (int)written;
1897
1898 return ret;
1899 }
1900
1901 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written)
1902 {
1903 int ret = ssl_write_internal(s, buf, num, written);
1904
1905 if (ret < 0)
1906 ret = 0;
1907 return ret;
1908 }
1909
1910 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written)
1911 {
1912 int ret, early_data_state;
1913
1914 switch (s->early_data_state) {
1915 case SSL_EARLY_DATA_NONE:
1916 if (s->server
1917 || !SSL_in_before(s)
1918 || ((s->session == NULL || s->session->ext.max_early_data == 0)
1919 && (s->psk_use_session_cb == NULL))) {
1920 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA,
1921 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1922 return 0;
1923 }
1924 /* fall through */
1925
1926 case SSL_EARLY_DATA_CONNECT_RETRY:
1927 s->early_data_state = SSL_EARLY_DATA_CONNECTING;
1928 ret = SSL_connect(s);
1929 if (ret <= 0) {
1930 /* NBIO or error */
1931 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY;
1932 return 0;
1933 }
1934 /* fall through */
1935
1936 case SSL_EARLY_DATA_WRITE_RETRY:
1937 s->early_data_state = SSL_EARLY_DATA_WRITING;
1938 ret = SSL_write_ex(s, buf, num, written);
1939 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
1940 return ret;
1941
1942 case SSL_EARLY_DATA_FINISHED_READING:
1943 case SSL_EARLY_DATA_READ_RETRY:
1944 early_data_state = s->early_data_state;
1945 /* We are a server writing to an unauthenticated client */
1946 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING;
1947 ret = SSL_write_ex(s, buf, num, written);
1948 s->early_data_state = early_data_state;
1949 return ret;
1950
1951 default:
1952 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1953 return 0;
1954 }
1955 }
1956
1957 int SSL_shutdown(SSL *s)
1958 {
1959 /*
1960 * Note that this function behaves differently from what one might
1961 * expect. Return values are 0 for no success (yet), 1 for success; but
1962 * calling it once is usually not enough, even if blocking I/O is used
1963 * (see ssl3_shutdown).
1964 */
1965
1966 if (s->handshake_func == NULL) {
1967 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED);
1968 return -1;
1969 }
1970
1971 if (!SSL_in_init(s)) {
1972 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1973 struct ssl_async_args args;
1974
1975 args.s = s;
1976 args.type = OTHERFUNC;
1977 args.f.func_other = s->method->ssl_shutdown;
1978
1979 return ssl_start_async_job(s, &args, ssl_io_intern);
1980 } else {
1981 return s->method->ssl_shutdown(s);
1982 }
1983 } else {
1984 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT);
1985 return -1;
1986 }
1987 }
1988
1989 int SSL_key_update(SSL *s, int updatetype)
1990 {
1991 /*
1992 * TODO(TLS1.3): How will applications know whether TLSv1.3 has been
1993 * negotiated, and that it is appropriate to call SSL_key_update() instead
1994 * of SSL_renegotiate().
1995 */
1996 if (!SSL_IS_TLS13(s)) {
1997 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_WRONG_SSL_VERSION);
1998 return 0;
1999 }
2000
2001 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED
2002 && updatetype != SSL_KEY_UPDATE_REQUESTED) {
2003 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_INVALID_KEY_UPDATE_TYPE);
2004 return 0;
2005 }
2006
2007 if (!SSL_is_init_finished(s)) {
2008 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_STILL_IN_INIT);
2009 return 0;
2010 }
2011
2012 ossl_statem_set_in_init(s, 1);
2013 s->key_update = updatetype;
2014 return 1;
2015 }
2016
2017 int SSL_get_key_update_type(SSL *s)
2018 {
2019 return s->key_update;
2020 }
2021
2022 int SSL_renegotiate(SSL *s)
2023 {
2024 if (SSL_IS_TLS13(s)) {
2025 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_WRONG_SSL_VERSION);
2026 return 0;
2027 }
2028
2029 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2030 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_NO_RENEGOTIATION);
2031 return 0;
2032 }
2033
2034 s->renegotiate = 1;
2035 s->new_session = 1;
2036
2037 return (s->method->ssl_renegotiate(s));
2038 }
2039
2040 int SSL_renegotiate_abbreviated(SSL *s)
2041 {
2042 if (SSL_IS_TLS13(s)) {
2043 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_WRONG_SSL_VERSION);
2044 return 0;
2045 }
2046
2047 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2048 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_NO_RENEGOTIATION);
2049 return 0;
2050 }
2051
2052 s->renegotiate = 1;
2053 s->new_session = 0;
2054
2055 return (s->method->ssl_renegotiate(s));
2056 }
2057
2058 int SSL_renegotiate_pending(SSL *s)
2059 {
2060 /*
2061 * becomes true when negotiation is requested; false again once a
2062 * handshake has finished
2063 */
2064 return (s->renegotiate != 0);
2065 }
2066
2067 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg)
2068 {
2069 long l;
2070
2071 switch (cmd) {
2072 case SSL_CTRL_GET_READ_AHEAD:
2073 return (RECORD_LAYER_get_read_ahead(&s->rlayer));
2074 case SSL_CTRL_SET_READ_AHEAD:
2075 l = RECORD_LAYER_get_read_ahead(&s->rlayer);
2076 RECORD_LAYER_set_read_ahead(&s->rlayer, larg);
2077 return (l);
2078
2079 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2080 s->msg_callback_arg = parg;
2081 return 1;
2082
2083 case SSL_CTRL_MODE:
2084 return (s->mode |= larg);
2085 case SSL_CTRL_CLEAR_MODE:
2086 return (s->mode &= ~larg);
2087 case SSL_CTRL_GET_MAX_CERT_LIST:
2088 return (long)(s->max_cert_list);
2089 case SSL_CTRL_SET_MAX_CERT_LIST:
2090 if (larg < 0)
2091 return 0;
2092 l = (long)s->max_cert_list;
2093 s->max_cert_list = (size_t)larg;
2094 return l;
2095 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2096 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2097 return 0;
2098 s->max_send_fragment = larg;
2099 if (s->max_send_fragment < s->split_send_fragment)
2100 s->split_send_fragment = s->max_send_fragment;
2101 return 1;
2102 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2103 if ((size_t)larg > s->max_send_fragment || larg == 0)
2104 return 0;
2105 s->split_send_fragment = larg;
2106 return 1;
2107 case SSL_CTRL_SET_MAX_PIPELINES:
2108 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2109 return 0;
2110 s->max_pipelines = larg;
2111 if (larg > 1)
2112 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
2113 return 1;
2114 case SSL_CTRL_GET_RI_SUPPORT:
2115 if (s->s3)
2116 return s->s3->send_connection_binding;
2117 else
2118 return 0;
2119 case SSL_CTRL_CERT_FLAGS:
2120 return (s->cert->cert_flags |= larg);
2121 case SSL_CTRL_CLEAR_CERT_FLAGS:
2122 return (s->cert->cert_flags &= ~larg);
2123
2124 case SSL_CTRL_GET_RAW_CIPHERLIST:
2125 if (parg) {
2126 if (s->s3->tmp.ciphers_raw == NULL)
2127 return 0;
2128 *(unsigned char **)parg = s->s3->tmp.ciphers_raw;
2129 return (int)s->s3->tmp.ciphers_rawlen;
2130 } else {
2131 return TLS_CIPHER_LEN;
2132 }
2133 case SSL_CTRL_GET_EXTMS_SUPPORT:
2134 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s))
2135 return -1;
2136 if (s->session->flags & SSL_SESS_FLAG_EXTMS)
2137 return 1;
2138 else
2139 return 0;
2140 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2141 return ssl_check_allowed_versions(larg, s->max_proto_version)
2142 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2143 &s->min_proto_version);
2144 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2145 return s->min_proto_version;
2146 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2147 return ssl_check_allowed_versions(s->min_proto_version, larg)
2148 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2149 &s->max_proto_version);
2150 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2151 return s->max_proto_version;
2152 default:
2153 return (s->method->ssl_ctrl(s, cmd, larg, parg));
2154 }
2155 }
2156
2157 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
2158 {
2159 switch (cmd) {
2160 case SSL_CTRL_SET_MSG_CALLBACK:
2161 s->msg_callback = (void (*)
2162 (int write_p, int version, int content_type,
2163 const void *buf, size_t len, SSL *ssl,
2164 void *arg))(fp);
2165 return 1;
2166
2167 default:
2168 return (s->method->ssl_callback_ctrl(s, cmd, fp));
2169 }
2170 }
2171
2172 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx)
2173 {
2174 return ctx->sessions;
2175 }
2176
2177 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
2178 {
2179 long l;
2180 /* For some cases with ctx == NULL perform syntax checks */
2181 if (ctx == NULL) {
2182 switch (cmd) {
2183 #ifndef OPENSSL_NO_EC
2184 case SSL_CTRL_SET_GROUPS_LIST:
2185 return tls1_set_groups_list(NULL, NULL, parg);
2186 #endif
2187 case SSL_CTRL_SET_SIGALGS_LIST:
2188 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST:
2189 return tls1_set_sigalgs_list(NULL, parg, 0);
2190 default:
2191 return 0;
2192 }
2193 }
2194
2195 switch (cmd) {
2196 case SSL_CTRL_GET_READ_AHEAD:
2197 return (ctx->read_ahead);
2198 case SSL_CTRL_SET_READ_AHEAD:
2199 l = ctx->read_ahead;
2200 ctx->read_ahead = larg;
2201 return (l);
2202
2203 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2204 ctx->msg_callback_arg = parg;
2205 return 1;
2206
2207 case SSL_CTRL_GET_MAX_CERT_LIST:
2208 return (long)(ctx->max_cert_list);
2209 case SSL_CTRL_SET_MAX_CERT_LIST:
2210 if (larg < 0)
2211 return 0;
2212 l = (long)ctx->max_cert_list;
2213 ctx->max_cert_list = (size_t)larg;
2214 return l;
2215
2216 case SSL_CTRL_SET_SESS_CACHE_SIZE:
2217 if (larg < 0)
2218 return 0;
2219 l = (long)ctx->session_cache_size;
2220 ctx->session_cache_size = (size_t)larg;
2221 return l;
2222 case SSL_CTRL_GET_SESS_CACHE_SIZE:
2223 return (long)(ctx->session_cache_size);
2224 case SSL_CTRL_SET_SESS_CACHE_MODE:
2225 l = ctx->session_cache_mode;
2226 ctx->session_cache_mode = larg;
2227 return (l);
2228 case SSL_CTRL_GET_SESS_CACHE_MODE:
2229 return (ctx->session_cache_mode);
2230
2231 case SSL_CTRL_SESS_NUMBER:
2232 return (lh_SSL_SESSION_num_items(ctx->sessions));
2233 case SSL_CTRL_SESS_CONNECT:
2234 return (ctx->stats.sess_connect);
2235 case SSL_CTRL_SESS_CONNECT_GOOD:
2236 return (ctx->stats.sess_connect_good);
2237 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE:
2238 return (ctx->stats.sess_connect_renegotiate);
2239 case SSL_CTRL_SESS_ACCEPT:
2240 return (ctx->stats.sess_accept);
2241 case SSL_CTRL_SESS_ACCEPT_GOOD:
2242 return (ctx->stats.sess_accept_good);
2243 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE:
2244 return (ctx->stats.sess_accept_renegotiate);
2245 case SSL_CTRL_SESS_HIT:
2246 return (ctx->stats.sess_hit);
2247 case SSL_CTRL_SESS_CB_HIT:
2248 return (ctx->stats.sess_cb_hit);
2249 case SSL_CTRL_SESS_MISSES:
2250 return (ctx->stats.sess_miss);
2251 case SSL_CTRL_SESS_TIMEOUTS:
2252 return (ctx->stats.sess_timeout);
2253 case SSL_CTRL_SESS_CACHE_FULL:
2254 return (ctx->stats.sess_cache_full);
2255 case SSL_CTRL_MODE:
2256 return (ctx->mode |= larg);
2257 case SSL_CTRL_CLEAR_MODE:
2258 return (ctx->mode &= ~larg);
2259 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2260 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2261 return 0;
2262 ctx->max_send_fragment = larg;
2263 if (ctx->max_send_fragment < ctx->split_send_fragment)
2264 ctx->split_send_fragment = ctx->max_send_fragment;
2265 return 1;
2266 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2267 if ((size_t)larg > ctx->max_send_fragment || larg == 0)
2268 return 0;
2269 ctx->split_send_fragment = larg;
2270 return 1;
2271 case SSL_CTRL_SET_MAX_PIPELINES:
2272 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2273 return 0;
2274 ctx->max_pipelines = larg;
2275 return 1;
2276 case SSL_CTRL_CERT_FLAGS:
2277 return (ctx->cert->cert_flags |= larg);
2278 case SSL_CTRL_CLEAR_CERT_FLAGS:
2279 return (ctx->cert->cert_flags &= ~larg);
2280 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2281 return ssl_check_allowed_versions(larg, ctx->max_proto_version)
2282 && ssl_set_version_bound(ctx->method->version, (int)larg,
2283 &ctx->min_proto_version);
2284 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2285 return ctx->min_proto_version;
2286 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2287 return ssl_check_allowed_versions(ctx->min_proto_version, larg)
2288 && ssl_set_version_bound(ctx->method->version, (int)larg,
2289 &ctx->max_proto_version);
2290 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2291 return ctx->max_proto_version;
2292 default:
2293 return (ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg));
2294 }
2295 }
2296
2297 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
2298 {
2299 switch (cmd) {
2300 case SSL_CTRL_SET_MSG_CALLBACK:
2301 ctx->msg_callback = (void (*)
2302 (int write_p, int version, int content_type,
2303 const void *buf, size_t len, SSL *ssl,
2304 void *arg))(fp);
2305 return 1;
2306
2307 default:
2308 return (ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp));
2309 }
2310 }
2311
2312 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b)
2313 {
2314 if (a->id > b->id)
2315 return 1;
2316 if (a->id < b->id)
2317 return -1;
2318 return 0;
2319 }
2320
2321 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap,
2322 const SSL_CIPHER *const *bp)
2323 {
2324 if ((*ap)->id > (*bp)->id)
2325 return 1;
2326 if ((*ap)->id < (*bp)->id)
2327 return -1;
2328 return 0;
2329 }
2330
2331 /** return a STACK of the ciphers available for the SSL and in order of
2332 * preference */
2333 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s)
2334 {
2335 if (s != NULL) {
2336 if (s->cipher_list != NULL) {
2337 return (s->cipher_list);
2338 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) {
2339 return (s->ctx->cipher_list);
2340 }
2341 }
2342 return (NULL);
2343 }
2344
2345 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s)
2346 {
2347 if ((s == NULL) || (s->session == NULL) || !s->server)
2348 return NULL;
2349 return s->session->ciphers;
2350 }
2351
2352 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s)
2353 {
2354 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers;
2355 int i;
2356 ciphers = SSL_get_ciphers(s);
2357 if (!ciphers)
2358 return NULL;
2359 ssl_set_client_disabled(s);
2360 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
2361 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i);
2362 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) {
2363 if (!sk)
2364 sk = sk_SSL_CIPHER_new_null();
2365 if (!sk)
2366 return NULL;
2367 if (!sk_SSL_CIPHER_push(sk, c)) {
2368 sk_SSL_CIPHER_free(sk);
2369 return NULL;
2370 }
2371 }
2372 }
2373 return sk;
2374 }
2375
2376 /** return a STACK of the ciphers available for the SSL and in order of
2377 * algorithm id */
2378 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s)
2379 {
2380 if (s != NULL) {
2381 if (s->cipher_list_by_id != NULL) {
2382 return (s->cipher_list_by_id);
2383 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) {
2384 return (s->ctx->cipher_list_by_id);
2385 }
2386 }
2387 return (NULL);
2388 }
2389
2390 /** The old interface to get the same thing as SSL_get_ciphers() */
2391 const char *SSL_get_cipher_list(const SSL *s, int n)
2392 {
2393 const SSL_CIPHER *c;
2394 STACK_OF(SSL_CIPHER) *sk;
2395
2396 if (s == NULL)
2397 return (NULL);
2398 sk = SSL_get_ciphers(s);
2399 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n))
2400 return (NULL);
2401 c = sk_SSL_CIPHER_value(sk, n);
2402 if (c == NULL)
2403 return (NULL);
2404 return (c->name);
2405 }
2406
2407 /** return a STACK of the ciphers available for the SSL_CTX and in order of
2408 * preference */
2409 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx)
2410 {
2411 if (ctx != NULL)
2412 return ctx->cipher_list;
2413 return NULL;
2414 }
2415
2416 /** specify the ciphers to be used by default by the SSL_CTX */
2417 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)
2418 {
2419 STACK_OF(SSL_CIPHER) *sk;
2420
2421 sk = ssl_create_cipher_list(ctx->method, &ctx->cipher_list,
2422 &ctx->cipher_list_by_id, str, ctx->cert);
2423 /*
2424 * ssl_create_cipher_list may return an empty stack if it was unable to
2425 * find a cipher matching the given rule string (for example if the rule
2426 * string specifies a cipher which has been disabled). This is not an
2427 * error as far as ssl_create_cipher_list is concerned, and hence
2428 * ctx->cipher_list and ctx->cipher_list_by_id has been updated.
2429 */
2430 if (sk == NULL)
2431 return 0;
2432 else if (sk_SSL_CIPHER_num(sk) == 0) {
2433 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2434 return 0;
2435 }
2436 return 1;
2437 }
2438
2439 /** specify the ciphers to be used by the SSL */
2440 int SSL_set_cipher_list(SSL *s, const char *str)
2441 {
2442 STACK_OF(SSL_CIPHER) *sk;
2443
2444 sk = ssl_create_cipher_list(s->ctx->method, &s->cipher_list,
2445 &s->cipher_list_by_id, str, s->cert);
2446 /* see comment in SSL_CTX_set_cipher_list */
2447 if (sk == NULL)
2448 return 0;
2449 else if (sk_SSL_CIPHER_num(sk) == 0) {
2450 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2451 return 0;
2452 }
2453 return 1;
2454 }
2455
2456 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int len)
2457 {
2458 char *p;
2459 STACK_OF(SSL_CIPHER) *sk;
2460 const SSL_CIPHER *c;
2461 int i;
2462
2463 if ((s->session == NULL) || (s->session->ciphers == NULL) || (len < 2))
2464 return (NULL);
2465
2466 p = buf;
2467 sk = s->session->ciphers;
2468
2469 if (sk_SSL_CIPHER_num(sk) == 0)
2470 return NULL;
2471
2472 for (i = 0; i < sk_SSL_CIPHER_num(sk); i++) {
2473 int n;
2474
2475 c = sk_SSL_CIPHER_value(sk, i);
2476 n = strlen(c->name);
2477 if (n + 1 > len) {
2478 if (p != buf)
2479 --p;
2480 *p = '\0';
2481 return buf;
2482 }
2483 strcpy(p, c->name);
2484 p += n;
2485 *(p++) = ':';
2486 len -= n + 1;
2487 }
2488 p[-1] = '\0';
2489 return (buf);
2490 }
2491
2492 /** return a servername extension value if provided in Client Hello, or NULL.
2493 * So far, only host_name types are defined (RFC 3546).
2494 */
2495
2496 const char *SSL_get_servername(const SSL *s, const int type)
2497 {
2498 if (type != TLSEXT_NAMETYPE_host_name)
2499 return NULL;
2500
2501 return s->session && !s->ext.hostname ?
2502 s->session->ext.hostname : s->ext.hostname;
2503 }
2504
2505 int SSL_get_servername_type(const SSL *s)
2506 {
2507 if (s->session
2508 && (!s->ext.hostname ? s->session->
2509 ext.hostname : s->ext.hostname))
2510 return TLSEXT_NAMETYPE_host_name;
2511 return -1;
2512 }
2513
2514 /*
2515 * SSL_select_next_proto implements the standard protocol selection. It is
2516 * expected that this function is called from the callback set by
2517 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a
2518 * vector of 8-bit, length prefixed byte strings. The length byte itself is
2519 * not included in the length. A byte string of length 0 is invalid. No byte
2520 * string may be truncated. The current, but experimental algorithm for
2521 * selecting the protocol is: 1) If the server doesn't support NPN then this
2522 * is indicated to the callback. In this case, the client application has to
2523 * abort the connection or have a default application level protocol. 2) If
2524 * the server supports NPN, but advertises an empty list then the client
2525 * selects the first protocol in its list, but indicates via the API that this
2526 * fallback case was enacted. 3) Otherwise, the client finds the first
2527 * protocol in the server's list that it supports and selects this protocol.
2528 * This is because it's assumed that the server has better information about
2529 * which protocol a client should use. 4) If the client doesn't support any
2530 * of the server's advertised protocols, then this is treated the same as
2531 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was
2532 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
2533 */
2534 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen,
2535 const unsigned char *server,
2536 unsigned int server_len,
2537 const unsigned char *client, unsigned int client_len)
2538 {
2539 unsigned int i, j;
2540 const unsigned char *result;
2541 int status = OPENSSL_NPN_UNSUPPORTED;
2542
2543 /*
2544 * For each protocol in server preference order, see if we support it.
2545 */
2546 for (i = 0; i < server_len;) {
2547 for (j = 0; j < client_len;) {
2548 if (server[i] == client[j] &&
2549 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
2550 /* We found a match */
2551 result = &server[i];
2552 status = OPENSSL_NPN_NEGOTIATED;
2553 goto found;
2554 }
2555 j += client[j];
2556 j++;
2557 }
2558 i += server[i];
2559 i++;
2560 }
2561
2562 /* There's no overlap between our protocols and the server's list. */
2563 result = client;
2564 status = OPENSSL_NPN_NO_OVERLAP;
2565
2566 found:
2567 *out = (unsigned char *)result + 1;
2568 *outlen = result[0];
2569 return status;
2570 }
2571
2572 #ifndef OPENSSL_NO_NEXTPROTONEG
2573 /*
2574 * SSL_get0_next_proto_negotiated sets *data and *len to point to the
2575 * client's requested protocol for this connection and returns 0. If the
2576 * client didn't request any protocol, then *data is set to NULL. Note that
2577 * the client can request any protocol it chooses. The value returned from
2578 * this function need not be a member of the list of supported protocols
2579 * provided by the callback.
2580 */
2581 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data,
2582 unsigned *len)
2583 {
2584 *data = s->ext.npn;
2585 if (!*data) {
2586 *len = 0;
2587 } else {
2588 *len = (unsigned int)s->ext.npn_len;
2589 }
2590 }
2591
2592 /*
2593 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when
2594 * a TLS server needs a list of supported protocols for Next Protocol
2595 * Negotiation. The returned list must be in wire format. The list is
2596 * returned by setting |out| to point to it and |outlen| to its length. This
2597 * memory will not be modified, but one should assume that the SSL* keeps a
2598 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it
2599 * wishes to advertise. Otherwise, no such extension will be included in the
2600 * ServerHello.
2601 */
2602 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx,
2603 SSL_CTX_npn_advertised_cb_func cb,
2604 void *arg)
2605 {
2606 ctx->ext.npn_advertised_cb = cb;
2607 ctx->ext.npn_advertised_cb_arg = arg;
2608 }
2609
2610 /*
2611 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
2612 * client needs to select a protocol from the server's provided list. |out|
2613 * must be set to point to the selected protocol (which may be within |in|).
2614 * The length of the protocol name must be written into |outlen|. The
2615 * server's advertised protocols are provided in |in| and |inlen|. The
2616 * callback can assume that |in| is syntactically valid. The client must
2617 * select a protocol. It is fatal to the connection if this callback returns
2618 * a value other than SSL_TLSEXT_ERR_OK.
2619 */
2620 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx,
2621 SSL_CTX_npn_select_cb_func cb,
2622 void *arg)
2623 {
2624 ctx->ext.npn_select_cb = cb;
2625 ctx->ext.npn_select_cb_arg = arg;
2626 }
2627 #endif
2628
2629 /*
2630 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|.
2631 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2632 * length-prefixed strings). Returns 0 on success.
2633 */
2634 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos,
2635 unsigned int protos_len)
2636 {
2637 OPENSSL_free(ctx->ext.alpn);
2638 ctx->ext.alpn = OPENSSL_memdup(protos, protos_len);
2639 if (ctx->ext.alpn == NULL) {
2640 SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2641 return 1;
2642 }
2643 ctx->ext.alpn_len = protos_len;
2644
2645 return 0;
2646 }
2647
2648 /*
2649 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|.
2650 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2651 * length-prefixed strings). Returns 0 on success.
2652 */
2653 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos,
2654 unsigned int protos_len)
2655 {
2656 OPENSSL_free(ssl->ext.alpn);
2657 ssl->ext.alpn = OPENSSL_memdup(protos, protos_len);
2658 if (ssl->ext.alpn == NULL) {
2659 SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2660 return 1;
2661 }
2662 ssl->ext.alpn_len = protos_len;
2663
2664 return 0;
2665 }
2666
2667 /*
2668 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is
2669 * called during ClientHello processing in order to select an ALPN protocol
2670 * from the client's list of offered protocols.
2671 */
2672 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
2673 SSL_CTX_alpn_select_cb_func cb,
2674 void *arg)
2675 {
2676 ctx->ext.alpn_select_cb = cb;
2677 ctx->ext.alpn_select_cb_arg = arg;
2678 }
2679
2680 /*
2681 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|.
2682 * On return it sets |*data| to point to |*len| bytes of protocol name
2683 * (not including the leading length-prefix byte). If the server didn't
2684 * respond with a negotiated protocol then |*len| will be zero.
2685 */
2686 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data,
2687 unsigned int *len)
2688 {
2689 *data = NULL;
2690 if (ssl->s3)
2691 *data = ssl->s3->alpn_selected;
2692 if (*data == NULL)
2693 *len = 0;
2694 else
2695 *len = (unsigned int)ssl->s3->alpn_selected_len;
2696 }
2697
2698 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
2699 const char *label, size_t llen,
2700 const unsigned char *context, size_t contextlen,
2701 int use_context)
2702 {
2703 if (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER)
2704 return -1;
2705
2706 return s->method->ssl3_enc->export_keying_material(s, out, olen, label,
2707 llen, context,
2708 contextlen, use_context);
2709 }
2710
2711 static unsigned long ssl_session_hash(const SSL_SESSION *a)
2712 {
2713 const unsigned char *session_id = a->session_id;
2714 unsigned long l;
2715 unsigned char tmp_storage[4];
2716
2717 if (a->session_id_length < sizeof(tmp_storage)) {
2718 memset(tmp_storage, 0, sizeof(tmp_storage));
2719 memcpy(tmp_storage, a->session_id, a->session_id_length);
2720 session_id = tmp_storage;
2721 }
2722
2723 l = (unsigned long)
2724 ((unsigned long)session_id[0]) |
2725 ((unsigned long)session_id[1] << 8L) |
2726 ((unsigned long)session_id[2] << 16L) |
2727 ((unsigned long)session_id[3] << 24L);
2728 return (l);
2729 }
2730
2731 /*
2732 * NB: If this function (or indeed the hash function which uses a sort of
2733 * coarser function than this one) is changed, ensure
2734 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on
2735 * being able to construct an SSL_SESSION that will collide with any existing
2736 * session with a matching session ID.
2737 */
2738 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b)
2739 {
2740 if (a->ssl_version != b->ssl_version)
2741 return (1);
2742 if (a->session_id_length != b->session_id_length)
2743 return (1);
2744 return (memcmp(a->session_id, b->session_id, a->session_id_length));
2745 }
2746
2747 /*
2748 * These wrapper functions should remain rather than redeclaring
2749 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each
2750 * variable. The reason is that the functions aren't static, they're exposed
2751 * via ssl.h.
2752 */
2753
2754 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth)
2755 {
2756 SSL_CTX *ret = NULL;
2757
2758 if (meth == NULL) {
2759 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED);
2760 return (NULL);
2761 }
2762
2763 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL))
2764 return NULL;
2765
2766 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
2767 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
2768 goto err;
2769 }
2770 ret = OPENSSL_zalloc(sizeof(*ret));
2771 if (ret == NULL)
2772 goto err;
2773
2774 ret->method = meth;
2775 ret->min_proto_version = 0;
2776 ret->max_proto_version = 0;
2777 ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
2778 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
2779 /* We take the system default. */
2780 ret->session_timeout = meth->get_timeout();
2781 ret->references = 1;
2782 ret->lock = CRYPTO_THREAD_lock_new();
2783 if (ret->lock == NULL) {
2784 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2785 OPENSSL_free(ret);
2786 return NULL;
2787 }
2788 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
2789 ret->verify_mode = SSL_VERIFY_NONE;
2790 if ((ret->cert = ssl_cert_new()) == NULL)
2791 goto err;
2792
2793 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
2794 if (ret->sessions == NULL)
2795 goto err;
2796 ret->cert_store = X509_STORE_new();
2797 if (ret->cert_store == NULL)
2798 goto err;
2799 #ifndef OPENSSL_NO_CT
2800 ret->ctlog_store = CTLOG_STORE_new();
2801 if (ret->ctlog_store == NULL)
2802 goto err;
2803 #endif
2804 if (!ssl_create_cipher_list(ret->method,
2805 &ret->cipher_list, &ret->cipher_list_by_id,
2806 SSL_DEFAULT_CIPHER_LIST, ret->cert)
2807 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) {
2808 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS);
2809 goto err2;
2810 }
2811
2812 ret->param = X509_VERIFY_PARAM_new();
2813 if (ret->param == NULL)
2814 goto err;
2815
2816 if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) {
2817 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES);
2818 goto err2;
2819 }
2820 if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) {
2821 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES);
2822 goto err2;
2823 }
2824
2825 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL)
2826 goto err;
2827
2828 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data))
2829 goto err;
2830
2831 /* No compression for DTLS */
2832 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS))
2833 ret->comp_methods = SSL_COMP_get_compression_methods();
2834
2835 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2836 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2837
2838 /* Setup RFC5077 ticket keys */
2839 if ((RAND_bytes(ret->ext.tick_key_name,
2840 sizeof(ret->ext.tick_key_name)) <= 0)
2841 || (RAND_bytes(ret->ext.tick_hmac_key,
2842 sizeof(ret->ext.tick_hmac_key)) <= 0)
2843 || (RAND_bytes(ret->ext.tick_aes_key,
2844 sizeof(ret->ext.tick_aes_key)) <= 0))
2845 ret->options |= SSL_OP_NO_TICKET;
2846
2847 #ifndef OPENSSL_NO_SRP
2848 if (!SSL_CTX_SRP_CTX_init(ret))
2849 goto err;
2850 #endif
2851 #ifndef OPENSSL_NO_ENGINE
2852 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO
2853 # define eng_strx(x) #x
2854 # define eng_str(x) eng_strx(x)
2855 /* Use specific client engine automatically... ignore errors */
2856 {
2857 ENGINE *eng;
2858 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2859 if (!eng) {
2860 ERR_clear_error();
2861 ENGINE_load_builtin_engines();
2862 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2863 }
2864 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng))
2865 ERR_clear_error();
2866 }
2867 # endif
2868 #endif
2869 /*
2870 * Default is to connect to non-RI servers. When RI is more widely
2871 * deployed might change this.
2872 */
2873 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT;
2874 /*
2875 * Disable compression by default to prevent CRIME. Applications can
2876 * re-enable compression by configuring
2877 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION);
2878 * or by using the SSL_CONF library.
2879 */
2880 ret->options |= SSL_OP_NO_COMPRESSION;
2881
2882 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing;
2883
2884 /*
2885 * Default max early data is a fully loaded single record. Could be split
2886 * across multiple records in practice
2887 */
2888 ret->max_early_data = SSL3_RT_MAX_PLAIN_LENGTH;
2889
2890 return ret;
2891 err:
2892 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2893 err2:
2894 SSL_CTX_free(ret);
2895 return NULL;
2896 }
2897
2898 int SSL_CTX_up_ref(SSL_CTX *ctx)
2899 {
2900 int i;
2901
2902 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0)
2903 return 0;
2904
2905 REF_PRINT_COUNT("SSL_CTX", ctx);
2906 REF_ASSERT_ISNT(i < 2);
2907 return ((i > 1) ? 1 : 0);
2908 }
2909
2910 void SSL_CTX_free(SSL_CTX *a)
2911 {
2912 int i;
2913
2914 if (a == NULL)
2915 return;
2916
2917 CRYPTO_DOWN_REF(&a->references, &i, a->lock);
2918 REF_PRINT_COUNT("SSL_CTX", a);
2919 if (i > 0)
2920 return;
2921 REF_ASSERT_ISNT(i < 0);
2922
2923 X509_VERIFY_PARAM_free(a->param);
2924 dane_ctx_final(&a->dane);
2925
2926 /*
2927 * Free internal session cache. However: the remove_cb() may reference
2928 * the ex_data of SSL_CTX, thus the ex_data store can only be removed
2929 * after the sessions were flushed.
2930 * As the ex_data handling routines might also touch the session cache,
2931 * the most secure solution seems to be: empty (flush) the cache, then
2932 * free ex_data, then finally free the cache.
2933 * (See ticket [openssl.org #212].)
2934 */
2935 if (a->sessions != NULL)
2936 SSL_CTX_flush_sessions(a, 0);
2937
2938 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data);
2939 lh_SSL_SESSION_free(a->sessions);
2940 X509_STORE_free(a->cert_store);
2941 #ifndef OPENSSL_NO_CT
2942 CTLOG_STORE_free(a->ctlog_store);
2943 #endif
2944 sk_SSL_CIPHER_free(a->cipher_list);
2945 sk_SSL_CIPHER_free(a->cipher_list_by_id);
2946 ssl_cert_free(a->cert);
2947 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free);
2948 sk_X509_pop_free(a->extra_certs, X509_free);
2949 a->comp_methods = NULL;
2950 #ifndef OPENSSL_NO_SRTP
2951 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles);
2952 #endif
2953 #ifndef OPENSSL_NO_SRP
2954 SSL_CTX_SRP_CTX_free(a);
2955 #endif
2956 #ifndef OPENSSL_NO_ENGINE
2957 ENGINE_finish(a->client_cert_engine);
2958 #endif
2959
2960 #ifndef OPENSSL_NO_EC
2961 OPENSSL_free(a->ext.ecpointformats);
2962 OPENSSL_free(a->ext.supportedgroups);
2963 #endif
2964 OPENSSL_free(a->ext.alpn);
2965
2966 CRYPTO_THREAD_lock_free(a->lock);
2967
2968 OPENSSL_free(a);
2969 }
2970
2971 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb)
2972 {
2973 ctx->default_passwd_callback = cb;
2974 }
2975
2976 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u)
2977 {
2978 ctx->default_passwd_callback_userdata = u;
2979 }
2980
2981 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx)
2982 {
2983 return ctx->default_passwd_callback;
2984 }
2985
2986 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx)
2987 {
2988 return ctx->default_passwd_callback_userdata;
2989 }
2990
2991 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb)
2992 {
2993 s->default_passwd_callback = cb;
2994 }
2995
2996 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u)
2997 {
2998 s->default_passwd_callback_userdata = u;
2999 }
3000
3001 pem_password_cb *SSL_get_default_passwd_cb(SSL *s)
3002 {
3003 return s->default_passwd_callback;
3004 }
3005
3006 void *SSL_get_default_passwd_cb_userdata(SSL *s)
3007 {
3008 return s->default_passwd_callback_userdata;
3009 }
3010
3011 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
3012 int (*cb) (X509_STORE_CTX *, void *),
3013 void *arg)
3014 {
3015 ctx->app_verify_callback = cb;
3016 ctx->app_verify_arg = arg;
3017 }
3018
3019 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
3020 int (*cb) (int, X509_STORE_CTX *))
3021 {
3022 ctx->verify_mode = mode;
3023 ctx->default_verify_callback = cb;
3024 }
3025
3026 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth)
3027 {
3028 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
3029 }
3030
3031 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg)
3032 {
3033 ssl_cert_set_cert_cb(c->cert, cb, arg);
3034 }
3035
3036 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg)
3037 {
3038 ssl_cert_set_cert_cb(s->cert, cb, arg);
3039 }
3040
3041 void ssl_set_masks(SSL *s)
3042 {
3043 CERT *c = s->cert;
3044 uint32_t *pvalid = s->s3->tmp.valid_flags;
3045 int rsa_enc, rsa_sign, dh_tmp, dsa_sign;
3046 unsigned long mask_k, mask_a;
3047 #ifndef OPENSSL_NO_EC
3048 int have_ecc_cert, ecdsa_ok;
3049 #endif
3050 if (c == NULL)
3051 return;
3052
3053 #ifndef OPENSSL_NO_DH
3054 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto);
3055 #else
3056 dh_tmp = 0;
3057 #endif
3058
3059 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3060 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3061 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID;
3062 #ifndef OPENSSL_NO_EC
3063 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID;
3064 #endif
3065 mask_k = 0;
3066 mask_a = 0;
3067
3068 #ifdef CIPHER_DEBUG
3069 fprintf(stderr, "dht=%d re=%d rs=%d ds=%d\n",
3070 dh_tmp, rsa_enc, rsa_sign, dsa_sign);
3071 #endif
3072
3073 #ifndef OPENSSL_NO_GOST
3074 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) {
3075 mask_k |= SSL_kGOST;
3076 mask_a |= SSL_aGOST12;
3077 }
3078 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) {
3079 mask_k |= SSL_kGOST;
3080 mask_a |= SSL_aGOST12;
3081 }
3082 if (ssl_has_cert(s, SSL_PKEY_GOST01)) {
3083 mask_k |= SSL_kGOST;
3084 mask_a |= SSL_aGOST01;
3085 }
3086 #endif
3087
3088 if (rsa_enc)
3089 mask_k |= SSL_kRSA;
3090
3091 if (dh_tmp)
3092 mask_k |= SSL_kDHE;
3093
3094 /*
3095 * If we only have an RSA-PSS certificate allow RSA authentication
3096 * if TLS 1.2 and peer supports it.
3097 */
3098
3099 if (rsa_enc || rsa_sign || (ssl_has_cert(s, SSL_PKEY_RSA_PSS_SIGN)
3100 && pvalid[SSL_PKEY_RSA_PSS_SIGN] & CERT_PKEY_EXPLICIT_SIGN
3101 && TLS1_get_version(s) == TLS1_2_VERSION))
3102 mask_a |= SSL_aRSA;
3103
3104 if (dsa_sign) {
3105 mask_a |= SSL_aDSS;
3106 }
3107
3108 mask_a |= SSL_aNULL;
3109
3110 /*
3111 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites
3112 * depending on the key usage extension.
3113 */
3114 #ifndef OPENSSL_NO_EC
3115 if (have_ecc_cert) {
3116 uint32_t ex_kusage;
3117 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509);
3118 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE;
3119 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN))
3120 ecdsa_ok = 0;
3121 if (ecdsa_ok)
3122 mask_a |= SSL_aECDSA;
3123 }
3124 /* Allow Ed25519 for TLS 1.2 if peer supports it */
3125 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED25519)
3126 && pvalid[SSL_PKEY_ED25519] & CERT_PKEY_EXPLICIT_SIGN
3127 && TLS1_get_version(s) == TLS1_2_VERSION)
3128 mask_a |= SSL_aECDSA;
3129 #endif
3130
3131 #ifndef OPENSSL_NO_EC
3132 mask_k |= SSL_kECDHE;
3133 #endif
3134
3135 #ifndef OPENSSL_NO_PSK
3136 mask_k |= SSL_kPSK;
3137 mask_a |= SSL_aPSK;
3138 if (mask_k & SSL_kRSA)
3139 mask_k |= SSL_kRSAPSK;
3140 if (mask_k & SSL_kDHE)
3141 mask_k |= SSL_kDHEPSK;
3142 if (mask_k & SSL_kECDHE)
3143 mask_k |= SSL_kECDHEPSK;
3144 #endif
3145
3146 s->s3->tmp.mask_k = mask_k;
3147 s->s3->tmp.mask_a = mask_a;
3148 }
3149
3150 #ifndef OPENSSL_NO_EC
3151
3152 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s)
3153 {
3154 if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aECDSA) {
3155 /* key usage, if present, must allow signing */
3156 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) {
3157 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG,
3158 SSL_R_ECC_CERT_NOT_FOR_SIGNING);
3159 return 0;
3160 }
3161 }
3162 return 1; /* all checks are ok */
3163 }
3164
3165 #endif
3166
3167 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo,
3168 size_t *serverinfo_length)
3169 {
3170 CERT_PKEY *cpk = s->s3->tmp.cert;
3171 *serverinfo_length = 0;
3172
3173 if (cpk == NULL || cpk->serverinfo == NULL)
3174 return 0;
3175
3176 *serverinfo = cpk->serverinfo;
3177 *serverinfo_length = cpk->serverinfo_length;
3178 return 1;
3179 }
3180
3181 void ssl_update_cache(SSL *s, int mode)
3182 {
3183 int i;
3184
3185 /*
3186 * If the session_id_length is 0, we are not supposed to cache it, and it
3187 * would be rather hard to do anyway :-)
3188 */
3189 if (s->session->session_id_length == 0)
3190 return;
3191
3192 i = s->session_ctx->session_cache_mode;
3193 if ((i & mode) != 0
3194 && (!s->hit || SSL_IS_TLS13(s))
3195 && ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) != 0
3196 || SSL_CTX_add_session(s->session_ctx, s->session))
3197 && s->session_ctx->new_session_cb != NULL) {
3198 SSL_SESSION_up_ref(s->session);
3199 if (!s->session_ctx->new_session_cb(s, s->session))
3200 SSL_SESSION_free(s->session);
3201 }
3202
3203 /* auto flush every 255 connections */
3204 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) {
3205 if ((((mode & SSL_SESS_CACHE_CLIENT)
3206 ? s->session_ctx->stats.sess_connect_good
3207 : s->session_ctx->stats.sess_accept_good) & 0xff) == 0xff) {
3208 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL));
3209 }
3210 }
3211 }
3212
3213 const SSL_METHOD *SSL_CTX_get_ssl_method(SSL_CTX *ctx)
3214 {
3215 return ctx->method;
3216 }
3217
3218 const SSL_METHOD *SSL_get_ssl_method(SSL *s)
3219 {
3220 return (s->method);
3221 }
3222
3223 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth)
3224 {
3225 int ret = 1;
3226
3227 if (s->method != meth) {
3228 const SSL_METHOD *sm = s->method;
3229 int (*hf) (SSL *) = s->handshake_func;
3230
3231 if (sm->version == meth->version)
3232 s->method = meth;
3233 else {
3234 sm->ssl_free(s);
3235 s->method = meth;
3236 ret = s->method->ssl_new(s);
3237 }
3238
3239 if (hf == sm->ssl_connect)
3240 s->handshake_func = meth->ssl_connect;
3241 else if (hf == sm->ssl_accept)
3242 s->handshake_func = meth->ssl_accept;
3243 }
3244 return (ret);
3245 }
3246
3247 int SSL_get_error(const SSL *s, int i)
3248 {
3249 int reason;
3250 unsigned long l;
3251 BIO *bio;
3252
3253 if (i > 0)
3254 return (SSL_ERROR_NONE);
3255
3256 /*
3257 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
3258 * where we do encode the error
3259 */
3260 if ((l = ERR_peek_error()) != 0) {
3261 if (ERR_GET_LIB(l) == ERR_LIB_SYS)
3262 return (SSL_ERROR_SYSCALL);
3263 else
3264 return (SSL_ERROR_SSL);
3265 }
3266
3267 if (SSL_want_read(s)) {
3268 bio = SSL_get_rbio(s);
3269 if (BIO_should_read(bio))
3270 return (SSL_ERROR_WANT_READ);
3271 else if (BIO_should_write(bio))
3272 /*
3273 * This one doesn't make too much sense ... We never try to write
3274 * to the rbio, and an application program where rbio and wbio
3275 * are separate couldn't even know what it should wait for.
3276 * However if we ever set s->rwstate incorrectly (so that we have
3277 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and
3278 * wbio *are* the same, this test works around that bug; so it
3279 * might be safer to keep it.
3280 */
3281 return (SSL_ERROR_WANT_WRITE);
3282 else if (BIO_should_io_special(bio)) {
3283 reason = BIO_get_retry_reason(bio);
3284 if (reason == BIO_RR_CONNECT)
3285 return (SSL_ERROR_WANT_CONNECT);
3286 else if (reason == BIO_RR_ACCEPT)
3287 return (SSL_ERROR_WANT_ACCEPT);
3288 else
3289 return (SSL_ERROR_SYSCALL); /* unknown */
3290 }
3291 }
3292
3293 if (SSL_want_write(s)) {
3294 /* Access wbio directly - in order to use the buffered bio if present */
3295 bio = s->wbio;
3296 if (BIO_should_write(bio))
3297 return (SSL_ERROR_WANT_WRITE);
3298 else if (BIO_should_read(bio))
3299 /*
3300 * See above (SSL_want_read(s) with BIO_should_write(bio))
3301 */
3302 return (SSL_ERROR_WANT_READ);
3303 else if (BIO_should_io_special(bio)) {
3304 reason = BIO_get_retry_reason(bio);
3305 if (reason == BIO_RR_CONNECT)
3306 return (SSL_ERROR_WANT_CONNECT);
3307 else if (reason == BIO_RR_ACCEPT)
3308 return (SSL_ERROR_WANT_ACCEPT);
3309 else
3310 return (SSL_ERROR_SYSCALL);
3311 }
3312 }
3313 if (SSL_want_x509_lookup(s))
3314 return (SSL_ERROR_WANT_X509_LOOKUP);
3315 if (SSL_want_async(s))
3316 return SSL_ERROR_WANT_ASYNC;
3317 if (SSL_want_async_job(s))
3318 return SSL_ERROR_WANT_ASYNC_JOB;
3319 if (SSL_want_client_hello_cb(s))
3320 return SSL_ERROR_WANT_CLIENT_HELLO_CB;
3321
3322 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
3323 (s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY))
3324 return (SSL_ERROR_ZERO_RETURN);
3325
3326 return (SSL_ERROR_SYSCALL);
3327 }
3328
3329 static int ssl_do_handshake_intern(void *vargs)
3330 {
3331 struct ssl_async_args *args;
3332 SSL *s;
3333
3334 args = (struct ssl_async_args *)vargs;
3335 s = args->s;
3336
3337 return s->handshake_func(s);
3338 }
3339
3340 int SSL_do_handshake(SSL *s)
3341 {
3342 int ret = 1;
3343
3344 if (s->handshake_func == NULL) {
3345 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET);
3346 return -1;
3347 }
3348
3349 ossl_statem_check_finish_init(s, -1);
3350
3351 s->method->ssl_renegotiate_check(s, 0);
3352
3353 if (SSL_is_server(s)) {
3354 /* clear SNI settings at server-side */
3355 OPENSSL_free(s->ext.hostname);
3356 s->ext.hostname = NULL;
3357 }
3358
3359 if (SSL_in_init(s) || SSL_in_before(s)) {
3360 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
3361 struct ssl_async_args args;
3362
3363 args.s = s;
3364
3365 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern);
3366 } else {
3367 ret = s->handshake_func(s);
3368 }
3369 }
3370 return ret;
3371 }
3372
3373 void SSL_set_accept_state(SSL *s)
3374 {
3375 s->server = 1;
3376 s->shutdown = 0;
3377 ossl_statem_clear(s);
3378 s->handshake_func = s->method->ssl_accept;
3379 clear_ciphers(s);
3380 }
3381
3382 void SSL_set_connect_state(SSL *s)
3383 {
3384 s->server = 0;
3385 s->shutdown = 0;
3386 ossl_statem_clear(s);
3387 s->handshake_func = s->method->ssl_connect;
3388 clear_ciphers(s);
3389 }
3390
3391 int ssl_undefined_function(SSL *s)
3392 {
3393 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3394 return (0);
3395 }
3396
3397 int ssl_undefined_void_function(void)
3398 {
3399 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION,
3400 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3401 return (0);
3402 }
3403
3404 int ssl_undefined_const_function(const SSL *s)
3405 {
3406 return (0);
3407 }
3408
3409 const SSL_METHOD *ssl_bad_method(int ver)
3410 {
3411 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3412 return (NULL);
3413 }
3414
3415 const char *ssl_protocol_to_string(int version)
3416 {
3417 switch(version)
3418 {
3419 case TLS1_3_VERSION:
3420 return "TLSv1.3";
3421
3422 case TLS1_2_VERSION:
3423 return "TLSv1.2";
3424
3425 case TLS1_1_VERSION:
3426 return "TLSv1.1";
3427
3428 case TLS1_VERSION:
3429 return "TLSv1";
3430
3431 case SSL3_VERSION:
3432 return "SSLv3";
3433
3434 case DTLS1_BAD_VER:
3435 return "DTLSv0.9";
3436
3437 case DTLS1_VERSION:
3438 return "DTLSv1";
3439
3440 case DTLS1_2_VERSION:
3441 return "DTLSv1.2";
3442
3443 default:
3444 return "unknown";
3445 }
3446 }
3447
3448 const char *SSL_get_version(const SSL *s)
3449 {
3450 return ssl_protocol_to_string(s->version);
3451 }
3452
3453 SSL *SSL_dup(SSL *s)
3454 {
3455 STACK_OF(X509_NAME) *sk;
3456 X509_NAME *xn;
3457 SSL *ret;
3458 int i;
3459
3460 /* If we're not quiescent, just up_ref! */
3461 if (!SSL_in_init(s) || !SSL_in_before(s)) {
3462 CRYPTO_UP_REF(&s->references, &i, s->lock);
3463 return s;
3464 }
3465
3466 /*
3467 * Otherwise, copy configuration state, and session if set.
3468 */
3469 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL)
3470 return (NULL);
3471
3472 if (s->session != NULL) {
3473 /*
3474 * Arranges to share the same session via up_ref. This "copies"
3475 * session-id, SSL_METHOD, sid_ctx, and 'cert'
3476 */
3477 if (!SSL_copy_session_id(ret, s))
3478 goto err;
3479 } else {
3480 /*
3481 * No session has been established yet, so we have to expect that
3482 * s->cert or ret->cert will be changed later -- they should not both
3483 * point to the same object, and thus we can't use
3484 * SSL_copy_session_id.
3485 */
3486 if (!SSL_set_ssl_method(ret, s->method))
3487 goto err;
3488
3489 if (s->cert != NULL) {
3490 ssl_cert_free(ret->cert);
3491 ret->cert = ssl_cert_dup(s->cert);
3492 if (ret->cert == NULL)
3493 goto err;
3494 }
3495
3496 if (!SSL_set_session_id_context(ret, s->sid_ctx,
3497 (int)s->sid_ctx_length))
3498 goto err;
3499 }
3500
3501 if (!ssl_dane_dup(ret, s))
3502 goto err;
3503 ret->version = s->version;
3504 ret->options = s->options;
3505 ret->mode = s->mode;
3506 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s));
3507 SSL_set_read_ahead(ret, SSL_get_read_ahead(s));
3508 ret->msg_callback = s->msg_callback;
3509 ret->msg_callback_arg = s->msg_callback_arg;
3510 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s));
3511 SSL_set_verify_depth(ret, SSL_get_verify_depth(s));
3512 ret->generate_session_id = s->generate_session_id;
3513
3514 SSL_set_info_callback(ret, SSL_get_info_callback(s));
3515
3516 /* copy app data, a little dangerous perhaps */
3517 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data))
3518 goto err;
3519
3520 /* setup rbio, and wbio */
3521 if (s->rbio != NULL) {
3522 if (!BIO_dup_state(s->rbio, (char *)&ret->rbio))
3523 goto err;
3524 }
3525 if (s->wbio != NULL) {
3526 if (s->wbio != s->rbio) {
3527 if (!BIO_dup_state(s->wbio, (char *)&ret->wbio))
3528 goto err;
3529 } else {
3530 BIO_up_ref(ret->rbio);
3531 ret->wbio = ret->rbio;
3532 }
3533 }
3534
3535 ret->server = s->server;
3536 if (s->handshake_func) {
3537 if (s->server)
3538 SSL_set_accept_state(ret);
3539 else
3540 SSL_set_connect_state(ret);
3541 }
3542 ret->shutdown = s->shutdown;
3543 ret->hit = s->hit;
3544
3545 ret->default_passwd_callback = s->default_passwd_callback;
3546 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata;
3547
3548 X509_VERIFY_PARAM_inherit(ret->param, s->param);
3549
3550 /* dup the cipher_list and cipher_list_by_id stacks */
3551 if (s->cipher_list != NULL) {
3552 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL)
3553 goto err;
3554 }
3555 if (s->cipher_list_by_id != NULL)
3556 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id))
3557 == NULL)
3558 goto err;
3559
3560 /* Dup the client_CA list */
3561 if (s->ca_names != NULL) {
3562 if ((sk = sk_X509_NAME_dup(s->ca_names)) == NULL)
3563 goto err;
3564 ret->ca_names = sk;
3565 for (i = 0; i < sk_X509_NAME_num(sk); i++) {
3566 xn = sk_X509_NAME_value(sk, i);
3567 if (sk_X509_NAME_set(sk, i, X509_NAME_dup(xn)) == NULL) {
3568 X509_NAME_free(xn);
3569 goto err;
3570 }
3571 }
3572 }
3573 return ret;
3574
3575 err:
3576 SSL_free(ret);
3577 return NULL;
3578 }
3579
3580 void ssl_clear_cipher_ctx(SSL *s)
3581 {
3582 if (s->enc_read_ctx != NULL) {
3583 EVP_CIPHER_CTX_free(s->enc_read_ctx);
3584 s->enc_read_ctx = NULL;
3585 }
3586 if (s->enc_write_ctx != NULL) {
3587 EVP_CIPHER_CTX_free(s->enc_write_ctx);
3588 s->enc_write_ctx = NULL;
3589 }
3590 #ifndef OPENSSL_NO_COMP
3591 COMP_CTX_free(s->expand);
3592 s->expand = NULL;
3593 COMP_CTX_free(s->compress);
3594 s->compress = NULL;
3595 #endif
3596 }
3597
3598 X509 *SSL_get_certificate(const SSL *s)
3599 {
3600 if (s->cert != NULL)
3601 return (s->cert->key->x509);
3602 else
3603 return (NULL);
3604 }
3605
3606 EVP_PKEY *SSL_get_privatekey(const SSL *s)
3607 {
3608 if (s->cert != NULL)
3609 return (s->cert->key->privatekey);
3610 else
3611 return (NULL);
3612 }
3613
3614 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx)
3615 {
3616 if (ctx->cert != NULL)
3617 return ctx->cert->key->x509;
3618 else
3619 return NULL;
3620 }
3621
3622 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx)
3623 {
3624 if (ctx->cert != NULL)
3625 return ctx->cert->key->privatekey;
3626 else
3627 return NULL;
3628 }
3629
3630 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s)
3631 {
3632 if ((s->session != NULL) && (s->session->cipher != NULL))
3633 return (s->session->cipher);
3634 return (NULL);
3635 }
3636
3637 const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s)
3638 {
3639 return s->s3->tmp.new_cipher;
3640 }
3641
3642 const COMP_METHOD *SSL_get_current_compression(SSL *s)
3643 {
3644 #ifndef OPENSSL_NO_COMP
3645 return s->compress ? COMP_CTX_get_method(s->compress) : NULL;
3646 #else
3647 return NULL;
3648 #endif
3649 }
3650
3651 const COMP_METHOD *SSL_get_current_expansion(SSL *s)
3652 {
3653 #ifndef OPENSSL_NO_COMP
3654 return s->expand ? COMP_CTX_get_method(s->expand) : NULL;
3655 #else
3656 return NULL;
3657 #endif
3658 }
3659
3660 int ssl_init_wbio_buffer(SSL *s)
3661 {
3662 BIO *bbio;
3663
3664 if (s->bbio != NULL) {
3665 /* Already buffered. */
3666 return 1;
3667 }
3668
3669 bbio = BIO_new(BIO_f_buffer());
3670 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) {
3671 BIO_free(bbio);
3672 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB);
3673 return 0;
3674 }
3675 s->bbio = bbio;
3676 s->wbio = BIO_push(bbio, s->wbio);
3677
3678 return 1;
3679 }
3680
3681 int ssl_free_wbio_buffer(SSL *s)
3682 {
3683 /* callers ensure s is never null */
3684 if (s->bbio == NULL)
3685 return 1;
3686
3687 s->wbio = BIO_pop(s->wbio);
3688 if (!ossl_assert(s->wbio != NULL))
3689 return 0;
3690 BIO_free(s->bbio);
3691 s->bbio = NULL;
3692
3693 return 1;
3694 }
3695
3696 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode)
3697 {
3698 ctx->quiet_shutdown = mode;
3699 }
3700
3701 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx)
3702 {
3703 return (ctx->quiet_shutdown);
3704 }
3705
3706 void SSL_set_quiet_shutdown(SSL *s, int mode)
3707 {
3708 s->quiet_shutdown = mode;
3709 }
3710
3711 int SSL_get_quiet_shutdown(const SSL *s)
3712 {
3713 return (s->quiet_shutdown);
3714 }
3715
3716 void SSL_set_shutdown(SSL *s, int mode)
3717 {
3718 s->shutdown = mode;
3719 }
3720
3721 int SSL_get_shutdown(const SSL *s)
3722 {
3723 return s->shutdown;
3724 }
3725
3726 int SSL_version(const SSL *s)
3727 {
3728 return s->version;
3729 }
3730
3731 int SSL_client_version(const SSL *s)
3732 {
3733 return s->client_version;
3734 }
3735
3736 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl)
3737 {
3738 return ssl->ctx;
3739 }
3740
3741 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx)
3742 {
3743 CERT *new_cert;
3744 if (ssl->ctx == ctx)
3745 return ssl->ctx;
3746 if (ctx == NULL)
3747 ctx = ssl->session_ctx;
3748 new_cert = ssl_cert_dup(ctx->cert);
3749 if (new_cert == NULL) {
3750 return NULL;
3751 }
3752
3753 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) {
3754 ssl_cert_free(new_cert);
3755 return NULL;
3756 }
3757
3758 ssl_cert_free(ssl->cert);
3759 ssl->cert = new_cert;
3760
3761 /*
3762 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH),
3763 * so setter APIs must prevent invalid lengths from entering the system.
3764 */
3765 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx)))
3766 return NULL;
3767
3768 /*
3769 * If the session ID context matches that of the parent SSL_CTX,
3770 * inherit it from the new SSL_CTX as well. If however the context does
3771 * not match (i.e., it was set per-ssl with SSL_set_session_id_context),
3772 * leave it unchanged.
3773 */
3774 if ((ssl->ctx != NULL) &&
3775 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) &&
3776 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) {
3777 ssl->sid_ctx_length = ctx->sid_ctx_length;
3778 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx));
3779 }
3780
3781 SSL_CTX_up_ref(ctx);
3782 SSL_CTX_free(ssl->ctx); /* decrement reference count */
3783 ssl->ctx = ctx;
3784
3785 return ssl->ctx;
3786 }
3787
3788 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx)
3789 {
3790 return (X509_STORE_set_default_paths(ctx->cert_store));
3791 }
3792
3793 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx)
3794 {
3795 X509_LOOKUP *lookup;
3796
3797 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir());
3798 if (lookup == NULL)
3799 return 0;
3800 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
3801
3802 /* Clear any errors if the default directory does not exist */
3803 ERR_clear_error();
3804
3805 return 1;
3806 }
3807
3808 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx)
3809 {
3810 X509_LOOKUP *lookup;
3811
3812 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file());
3813 if (lookup == NULL)
3814 return 0;
3815
3816 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT);
3817
3818 /* Clear any errors if the default file does not exist */
3819 ERR_clear_error();
3820
3821 return 1;
3822 }
3823
3824 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
3825 const char *CApath)
3826 {
3827 return (X509_STORE_load_locations(ctx->cert_store, CAfile, CApath));
3828 }
3829
3830 void SSL_set_info_callback(SSL *ssl,
3831 void (*cb) (const SSL *ssl, int type, int val))
3832 {
3833 ssl->info_callback = cb;
3834 }
3835
3836 /*
3837 * One compiler (Diab DCC) doesn't like argument names in returned function
3838 * pointer.
3839 */
3840 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ ,
3841 int /* type */ ,
3842 int /* val */ ) {
3843 return ssl->info_callback;
3844 }
3845
3846 void SSL_set_verify_result(SSL *ssl, long arg)
3847 {
3848 ssl->verify_result = arg;
3849 }
3850
3851 long SSL_get_verify_result(const SSL *ssl)
3852 {
3853 return (ssl->verify_result);
3854 }
3855
3856 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen)
3857 {
3858 if (outlen == 0)
3859 return sizeof(ssl->s3->client_random);
3860 if (outlen > sizeof(ssl->s3->client_random))
3861 outlen = sizeof(ssl->s3->client_random);
3862 memcpy(out, ssl->s3->client_random, outlen);
3863 return outlen;
3864 }
3865
3866 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen)
3867 {
3868 if (outlen == 0)
3869 return sizeof(ssl->s3->server_random);
3870 if (outlen > sizeof(ssl->s3->server_random))
3871 outlen = sizeof(ssl->s3->server_random);
3872 memcpy(out, ssl->s3->server_random, outlen);
3873 return outlen;
3874 }
3875
3876 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session,
3877 unsigned char *out, size_t outlen)
3878 {
3879 if (outlen == 0)
3880 return session->master_key_length;
3881 if (outlen > session->master_key_length)
3882 outlen = session->master_key_length;
3883 memcpy(out, session->master_key, outlen);
3884 return outlen;
3885 }
3886
3887 int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in,
3888 size_t len)
3889 {
3890 if (len > sizeof(sess->master_key))
3891 return 0;
3892
3893 memcpy(sess->master_key, in, len);
3894 sess->master_key_length = len;
3895 return 1;
3896 }
3897
3898
3899 int SSL_set_ex_data(SSL *s, int idx, void *arg)
3900 {
3901 return (CRYPTO_set_ex_data(&s->ex_data, idx, arg));
3902 }
3903
3904 void *SSL_get_ex_data(const SSL *s, int idx)
3905 {
3906 return (CRYPTO_get_ex_data(&s->ex_data, idx));
3907 }
3908
3909 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg)
3910 {
3911 return (CRYPTO_set_ex_data(&s->ex_data, idx, arg));
3912 }
3913
3914 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx)
3915 {
3916 return (CRYPTO_get_ex_data(&s->ex_data, idx));
3917 }
3918
3919 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx)
3920 {
3921 return (ctx->cert_store);
3922 }
3923
3924 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store)
3925 {
3926 X509_STORE_free(ctx->cert_store);
3927 ctx->cert_store = store;
3928 }
3929
3930 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store)
3931 {
3932 if (store != NULL)
3933 X509_STORE_up_ref(store);
3934 SSL_CTX_set_cert_store(ctx, store);
3935 }
3936
3937 int SSL_want(const SSL *s)
3938 {
3939 return (s->rwstate);
3940 }
3941
3942 /**
3943 * \brief Set the callback for generating temporary DH keys.
3944 * \param ctx the SSL context.
3945 * \param dh the callback
3946 */
3947
3948 #ifndef OPENSSL_NO_DH
3949 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
3950 DH *(*dh) (SSL *ssl, int is_export,
3951 int keylength))
3952 {
3953 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
3954 }
3955
3956 void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export,
3957 int keylength))
3958 {
3959 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
3960 }
3961 #endif
3962
3963 #ifndef OPENSSL_NO_PSK
3964 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint)
3965 {
3966 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
3967 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
3968 return 0;
3969 }
3970 OPENSSL_free(ctx->cert->psk_identity_hint);
3971 if (identity_hint != NULL) {
3972 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
3973 if (ctx->cert->psk_identity_hint == NULL)
3974 return 0;
3975 } else
3976 ctx->cert->psk_identity_hint = NULL;
3977 return 1;
3978 }
3979
3980 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint)
3981 {
3982 if (s == NULL)
3983 return 0;
3984
3985 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
3986 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
3987 return 0;
3988 }
3989 OPENSSL_free(s->cert->psk_identity_hint);
3990 if (identity_hint != NULL) {
3991 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
3992 if (s->cert->psk_identity_hint == NULL)
3993 return 0;
3994 } else
3995 s->cert->psk_identity_hint = NULL;
3996 return 1;
3997 }
3998
3999 const char *SSL_get_psk_identity_hint(const SSL *s)
4000 {
4001 if (s == NULL || s->session == NULL)
4002 return NULL;
4003 return (s->session->psk_identity_hint);
4004 }
4005
4006 const char *SSL_get_psk_identity(const SSL *s)
4007 {
4008 if (s == NULL || s->session == NULL)
4009 return NULL;
4010 return (s->session->psk_identity);
4011 }
4012
4013 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb)
4014 {
4015 s->psk_client_callback = cb;
4016 }
4017
4018 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb)
4019 {
4020 ctx->psk_client_callback = cb;
4021 }
4022
4023 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb)
4024 {
4025 s->psk_server_callback = cb;
4026 }
4027
4028 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb)
4029 {
4030 ctx->psk_server_callback = cb;
4031 }
4032 #endif
4033
4034 void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb)
4035 {
4036 s->psk_find_session_cb = cb;
4037 }
4038
4039 void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx,
4040 SSL_psk_find_session_cb_func cb)
4041 {
4042 ctx->psk_find_session_cb = cb;
4043 }
4044
4045 void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb)
4046 {
4047 s->psk_use_session_cb = cb;
4048 }
4049
4050 void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx,
4051 SSL_psk_use_session_cb_func cb)
4052 {
4053 ctx->psk_use_session_cb = cb;
4054 }
4055
4056 void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
4057 void (*cb) (int write_p, int version,
4058 int content_type, const void *buf,
4059 size_t len, SSL *ssl, void *arg))
4060 {
4061 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4062 }
4063
4064 void SSL_set_msg_callback(SSL *ssl,
4065 void (*cb) (int write_p, int version,
4066 int content_type, const void *buf,
4067 size_t len, SSL *ssl, void *arg))
4068 {
4069 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4070 }
4071
4072 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx,
4073 int (*cb) (SSL *ssl,
4074 int
4075 is_forward_secure))
4076 {
4077 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4078 (void (*)(void))cb);
4079 }
4080
4081 void SSL_set_not_resumable_session_callback(SSL *ssl,
4082 int (*cb) (SSL *ssl,
4083 int is_forward_secure))
4084 {
4085 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4086 (void (*)(void))cb);
4087 }
4088
4089 void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx,
4090 size_t (*cb) (SSL *ssl, int type,
4091 size_t len, void *arg))
4092 {
4093 ctx->record_padding_cb = cb;
4094 }
4095
4096 void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg)
4097 {
4098 ctx->record_padding_arg = arg;
4099 }
4100
4101 void *SSL_CTX_get_record_padding_callback_arg(SSL_CTX *ctx)
4102 {
4103 return ctx->record_padding_arg;
4104 }
4105
4106 int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size)
4107 {
4108 /* block size of 0 or 1 is basically no padding */
4109 if (block_size == 1)
4110 ctx->block_padding = 0;
4111 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4112 ctx->block_padding = block_size;
4113 else
4114 return 0;
4115 return 1;
4116 }
4117
4118 void SSL_set_record_padding_callback(SSL *ssl,
4119 size_t (*cb) (SSL *ssl, int type,
4120 size_t len, void *arg))
4121 {
4122 ssl->record_padding_cb = cb;
4123 }
4124
4125 void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg)
4126 {
4127 ssl->record_padding_arg = arg;
4128 }
4129
4130 void *SSL_get_record_padding_callback_arg(SSL *ssl)
4131 {
4132 return ssl->record_padding_arg;
4133 }
4134
4135 int SSL_set_block_padding(SSL *ssl, size_t block_size)
4136 {
4137 /* block size of 0 or 1 is basically no padding */
4138 if (block_size == 1)
4139 ssl->block_padding = 0;
4140 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4141 ssl->block_padding = block_size;
4142 else
4143 return 0;
4144 return 1;
4145 }
4146
4147 /*
4148 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer
4149 * variable, freeing EVP_MD_CTX previously stored in that variable, if any.
4150 * If EVP_MD pointer is passed, initializes ctx with this |md|.
4151 * Returns the newly allocated ctx;
4152 */
4153
4154 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md)
4155 {
4156 ssl_clear_hash_ctx(hash);
4157 *hash = EVP_MD_CTX_new();
4158 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) {
4159 EVP_MD_CTX_free(*hash);
4160 *hash = NULL;
4161 return NULL;
4162 }
4163 return *hash;
4164 }
4165
4166 void ssl_clear_hash_ctx(EVP_MD_CTX **hash)
4167 {
4168
4169 EVP_MD_CTX_free(*hash);
4170 *hash = NULL;
4171 }
4172
4173 /* Retrieve handshake hashes */
4174 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen,
4175 size_t *hashlen)
4176 {
4177 EVP_MD_CTX *ctx = NULL;
4178 EVP_MD_CTX *hdgst = s->s3->handshake_dgst;
4179 int hashleni = EVP_MD_CTX_size(hdgst);
4180 int ret = 0;
4181
4182 if (hashleni < 0 || (size_t)hashleni > outlen)
4183 goto err;
4184
4185 ctx = EVP_MD_CTX_new();
4186 if (ctx == NULL)
4187 goto err;
4188
4189 if (!EVP_MD_CTX_copy_ex(ctx, hdgst)
4190 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0)
4191 goto err;
4192
4193 *hashlen = hashleni;
4194
4195 ret = 1;
4196 err:
4197 EVP_MD_CTX_free(ctx);
4198 return ret;
4199 }
4200
4201 int SSL_session_reused(SSL *s)
4202 {
4203 return s->hit;
4204 }
4205
4206 int SSL_is_server(const SSL *s)
4207 {
4208 return s->server;
4209 }
4210
4211 #if OPENSSL_API_COMPAT < 0x10100000L
4212 void SSL_set_debug(SSL *s, int debug)
4213 {
4214 /* Old function was do-nothing anyway... */
4215 (void)s;
4216 (void)debug;
4217 }
4218 #endif
4219
4220 void SSL_set_security_level(SSL *s, int level)
4221 {
4222 s->cert->sec_level = level;
4223 }
4224
4225 int SSL_get_security_level(const SSL *s)
4226 {
4227 return s->cert->sec_level;
4228 }
4229
4230 void SSL_set_security_callback(SSL *s,
4231 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4232 int op, int bits, int nid,
4233 void *other, void *ex))
4234 {
4235 s->cert->sec_cb = cb;
4236 }
4237
4238 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s,
4239 const SSL_CTX *ctx, int op,
4240 int bits, int nid, void *other,
4241 void *ex) {
4242 return s->cert->sec_cb;
4243 }
4244
4245 void SSL_set0_security_ex_data(SSL *s, void *ex)
4246 {
4247 s->cert->sec_ex = ex;
4248 }
4249
4250 void *SSL_get0_security_ex_data(const SSL *s)
4251 {
4252 return s->cert->sec_ex;
4253 }
4254
4255 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level)
4256 {
4257 ctx->cert->sec_level = level;
4258 }
4259
4260 int SSL_CTX_get_security_level(const SSL_CTX *ctx)
4261 {
4262 return ctx->cert->sec_level;
4263 }
4264
4265 void SSL_CTX_set_security_callback(SSL_CTX *ctx,
4266 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4267 int op, int bits, int nid,
4268 void *other, void *ex))
4269 {
4270 ctx->cert->sec_cb = cb;
4271 }
4272
4273 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s,
4274 const SSL_CTX *ctx,
4275 int op, int bits,
4276 int nid,
4277 void *other,
4278 void *ex) {
4279 return ctx->cert->sec_cb;
4280 }
4281
4282 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex)
4283 {
4284 ctx->cert->sec_ex = ex;
4285 }
4286
4287 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx)
4288 {
4289 return ctx->cert->sec_ex;
4290 }
4291
4292 /*
4293 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that
4294 * can return unsigned long, instead of the generic long return value from the
4295 * control interface.
4296 */
4297 unsigned long SSL_CTX_get_options(const SSL_CTX *ctx)
4298 {
4299 return ctx->options;
4300 }
4301
4302 unsigned long SSL_get_options(const SSL *s)
4303 {
4304 return s->options;
4305 }
4306
4307 unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op)
4308 {
4309 return ctx->options |= op;
4310 }
4311
4312 unsigned long SSL_set_options(SSL *s, unsigned long op)
4313 {
4314 return s->options |= op;
4315 }
4316
4317 unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op)
4318 {
4319 return ctx->options &= ~op;
4320 }
4321
4322 unsigned long SSL_clear_options(SSL *s, unsigned long op)
4323 {
4324 return s->options &= ~op;
4325 }
4326
4327 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s)
4328 {
4329 return s->verified_chain;
4330 }
4331
4332 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id);
4333
4334 #ifndef OPENSSL_NO_CT
4335
4336 /*
4337 * Moves SCTs from the |src| stack to the |dst| stack.
4338 * The source of each SCT will be set to |origin|.
4339 * If |dst| points to a NULL pointer, a new stack will be created and owned by
4340 * the caller.
4341 * Returns the number of SCTs moved, or a negative integer if an error occurs.
4342 */
4343 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src,
4344 sct_source_t origin)
4345 {
4346 int scts_moved = 0;
4347 SCT *sct = NULL;
4348
4349 if (*dst == NULL) {
4350 *dst = sk_SCT_new_null();
4351 if (*dst == NULL) {
4352 SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE);
4353 goto err;
4354 }
4355 }
4356
4357 while ((sct = sk_SCT_pop(src)) != NULL) {
4358 if (SCT_set_source(sct, origin) != 1)
4359 goto err;
4360
4361 if (sk_SCT_push(*dst, sct) <= 0)
4362 goto err;
4363 scts_moved += 1;
4364 }
4365
4366 return scts_moved;
4367 err:
4368 if (sct != NULL)
4369 sk_SCT_push(src, sct); /* Put the SCT back */
4370 return -1;
4371 }
4372
4373 /*
4374 * Look for data collected during ServerHello and parse if found.
4375 * Returns the number of SCTs extracted.
4376 */
4377 static int ct_extract_tls_extension_scts(SSL *s)
4378 {
4379 int scts_extracted = 0;
4380
4381 if (s->ext.scts != NULL) {
4382 const unsigned char *p = s->ext.scts;
4383 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len);
4384
4385 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION);
4386
4387 SCT_LIST_free(scts);
4388 }
4389
4390 return scts_extracted;
4391 }
4392
4393 /*
4394 * Checks for an OCSP response and then attempts to extract any SCTs found if it
4395 * contains an SCT X509 extension. They will be stored in |s->scts|.
4396 * Returns:
4397 * - The number of SCTs extracted, assuming an OCSP response exists.
4398 * - 0 if no OCSP response exists or it contains no SCTs.
4399 * - A negative integer if an error occurs.
4400 */
4401 static int ct_extract_ocsp_response_scts(SSL *s)
4402 {
4403 # ifndef OPENSSL_NO_OCSP
4404 int scts_extracted = 0;
4405 const unsigned char *p;
4406 OCSP_BASICRESP *br = NULL;
4407 OCSP_RESPONSE *rsp = NULL;
4408 STACK_OF(SCT) *scts = NULL;
4409 int i;
4410
4411 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0)
4412 goto err;
4413
4414 p = s->ext.ocsp.resp;
4415 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len);
4416 if (rsp == NULL)
4417 goto err;
4418
4419 br = OCSP_response_get1_basic(rsp);
4420 if (br == NULL)
4421 goto err;
4422
4423 for (i = 0; i < OCSP_resp_count(br); ++i) {
4424 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i);
4425
4426 if (single == NULL)
4427 continue;
4428
4429 scts =
4430 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL);
4431 scts_extracted =
4432 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE);
4433 if (scts_extracted < 0)
4434 goto err;
4435 }
4436 err:
4437 SCT_LIST_free(scts);
4438 OCSP_BASICRESP_free(br);
4439 OCSP_RESPONSE_free(rsp);
4440 return scts_extracted;
4441 # else
4442 /* Behave as if no OCSP response exists */
4443 return 0;
4444 # endif
4445 }
4446
4447 /*
4448 * Attempts to extract SCTs from the peer certificate.
4449 * Return the number of SCTs extracted, or a negative integer if an error
4450 * occurs.
4451 */
4452 static int ct_extract_x509v3_extension_scts(SSL *s)
4453 {
4454 int scts_extracted = 0;
4455 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4456
4457 if (cert != NULL) {
4458 STACK_OF(SCT) *scts =
4459 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL);
4460
4461 scts_extracted =
4462 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION);
4463
4464 SCT_LIST_free(scts);
4465 }
4466
4467 return scts_extracted;
4468 }
4469
4470 /*
4471 * Attempts to find all received SCTs by checking TLS extensions, the OCSP
4472 * response (if it exists) and X509v3 extensions in the certificate.
4473 * Returns NULL if an error occurs.
4474 */
4475 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s)
4476 {
4477 if (!s->scts_parsed) {
4478 if (ct_extract_tls_extension_scts(s) < 0 ||
4479 ct_extract_ocsp_response_scts(s) < 0 ||
4480 ct_extract_x509v3_extension_scts(s) < 0)
4481 goto err;
4482
4483 s->scts_parsed = 1;
4484 }
4485 return s->scts;
4486 err:
4487 return NULL;
4488 }
4489
4490 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx,
4491 const STACK_OF(SCT) *scts, void *unused_arg)
4492 {
4493 return 1;
4494 }
4495
4496 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx,
4497 const STACK_OF(SCT) *scts, void *unused_arg)
4498 {
4499 int count = scts != NULL ? sk_SCT_num(scts) : 0;
4500 int i;
4501
4502 for (i = 0; i < count; ++i) {
4503 SCT *sct = sk_SCT_value(scts, i);
4504 int status = SCT_get_validation_status(sct);
4505
4506 if (status == SCT_VALIDATION_STATUS_VALID)
4507 return 1;
4508 }
4509 SSLerr(SSL_F_CT_STRICT, SSL_R_NO_VALID_SCTS);
4510 return 0;
4511 }
4512
4513 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback,
4514 void *arg)
4515 {
4516 /*
4517 * Since code exists that uses the custom extension handler for CT, look
4518 * for this and throw an error if they have already registered to use CT.
4519 */
4520 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx,
4521 TLSEXT_TYPE_signed_certificate_timestamp))
4522 {
4523 SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK,
4524 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4525 return 0;
4526 }
4527
4528 if (callback != NULL) {
4529 /*
4530 * If we are validating CT, then we MUST accept SCTs served via OCSP
4531 */
4532 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp))
4533 return 0;
4534 }
4535
4536 s->ct_validation_callback = callback;
4537 s->ct_validation_callback_arg = arg;
4538
4539 return 1;
4540 }
4541
4542 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx,
4543 ssl_ct_validation_cb callback, void *arg)
4544 {
4545 /*
4546 * Since code exists that uses the custom extension handler for CT, look for
4547 * this and throw an error if they have already registered to use CT.
4548 */
4549 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx,
4550 TLSEXT_TYPE_signed_certificate_timestamp))
4551 {
4552 SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK,
4553 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4554 return 0;
4555 }
4556
4557 ctx->ct_validation_callback = callback;
4558 ctx->ct_validation_callback_arg = arg;
4559 return 1;
4560 }
4561
4562 int SSL_ct_is_enabled(const SSL *s)
4563 {
4564 return s->ct_validation_callback != NULL;
4565 }
4566
4567 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx)
4568 {
4569 return ctx->ct_validation_callback != NULL;
4570 }
4571
4572 int ssl_validate_ct(SSL *s)
4573 {
4574 int ret = 0;
4575 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4576 X509 *issuer;
4577 SSL_DANE *dane = &s->dane;
4578 CT_POLICY_EVAL_CTX *ctx = NULL;
4579 const STACK_OF(SCT) *scts;
4580
4581 /*
4582 * If no callback is set, the peer is anonymous, or its chain is invalid,
4583 * skip SCT validation - just return success. Applications that continue
4584 * handshakes without certificates, with unverified chains, or pinned leaf
4585 * certificates are outside the scope of the WebPKI and CT.
4586 *
4587 * The above exclusions notwithstanding the vast majority of peers will
4588 * have rather ordinary certificate chains validated by typical
4589 * applications that perform certificate verification and therefore will
4590 * process SCTs when enabled.
4591 */
4592 if (s->ct_validation_callback == NULL || cert == NULL ||
4593 s->verify_result != X509_V_OK ||
4594 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1)
4595 return 1;
4596
4597 /*
4598 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3)
4599 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2
4600 */
4601 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) {
4602 switch (dane->mtlsa->usage) {
4603 case DANETLS_USAGE_DANE_TA:
4604 case DANETLS_USAGE_DANE_EE:
4605 return 1;
4606 }
4607 }
4608
4609 ctx = CT_POLICY_EVAL_CTX_new();
4610 if (ctx == NULL) {
4611 SSLerr(SSL_F_SSL_VALIDATE_CT, ERR_R_MALLOC_FAILURE);
4612 goto end;
4613 }
4614
4615 issuer = sk_X509_value(s->verified_chain, 1);
4616 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert);
4617 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer);
4618 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store);
4619 CT_POLICY_EVAL_CTX_set_time(
4620 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000);
4621
4622 scts = SSL_get0_peer_scts(s);
4623
4624 /*
4625 * This function returns success (> 0) only when all the SCTs are valid, 0
4626 * when some are invalid, and < 0 on various internal errors (out of
4627 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient
4628 * reason to abort the handshake, that decision is up to the callback.
4629 * Therefore, we error out only in the unexpected case that the return
4630 * value is negative.
4631 *
4632 * XXX: One might well argue that the return value of this function is an
4633 * unfortunate design choice. Its job is only to determine the validation
4634 * status of each of the provided SCTs. So long as it correctly separates
4635 * the wheat from the chaff it should return success. Failure in this case
4636 * ought to correspond to an inability to carry out its duties.
4637 */
4638 if (SCT_LIST_validate(scts, ctx) < 0) {
4639 SSLerr(SSL_F_SSL_VALIDATE_CT, SSL_R_SCT_VERIFICATION_FAILED);
4640 goto end;
4641 }
4642
4643 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg);
4644 if (ret < 0)
4645 ret = 0; /* This function returns 0 on failure */
4646
4647 end:
4648 CT_POLICY_EVAL_CTX_free(ctx);
4649 /*
4650 * With SSL_VERIFY_NONE the session may be cached and re-used despite a
4651 * failure return code here. Also the application may wish the complete
4652 * the handshake, and then disconnect cleanly at a higher layer, after
4653 * checking the verification status of the completed connection.
4654 *
4655 * We therefore force a certificate verification failure which will be
4656 * visible via SSL_get_verify_result() and cached as part of any resumed
4657 * session.
4658 *
4659 * Note: the permissive callback is for information gathering only, always
4660 * returns success, and does not affect verification status. Only the
4661 * strict callback or a custom application-specified callback can trigger
4662 * connection failure or record a verification error.
4663 */
4664 if (ret <= 0)
4665 s->verify_result = X509_V_ERR_NO_VALID_SCTS;
4666 return ret;
4667 }
4668
4669 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode)
4670 {
4671 switch (validation_mode) {
4672 default:
4673 SSLerr(SSL_F_SSL_CTX_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4674 return 0;
4675 case SSL_CT_VALIDATION_PERMISSIVE:
4676 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL);
4677 case SSL_CT_VALIDATION_STRICT:
4678 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL);
4679 }
4680 }
4681
4682 int SSL_enable_ct(SSL *s, int validation_mode)
4683 {
4684 switch (validation_mode) {
4685 default:
4686 SSLerr(SSL_F_SSL_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4687 return 0;
4688 case SSL_CT_VALIDATION_PERMISSIVE:
4689 return SSL_set_ct_validation_callback(s, ct_permissive, NULL);
4690 case SSL_CT_VALIDATION_STRICT:
4691 return SSL_set_ct_validation_callback(s, ct_strict, NULL);
4692 }
4693 }
4694
4695 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx)
4696 {
4697 return CTLOG_STORE_load_default_file(ctx->ctlog_store);
4698 }
4699
4700 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path)
4701 {
4702 return CTLOG_STORE_load_file(ctx->ctlog_store, path);
4703 }
4704
4705 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs)
4706 {
4707 CTLOG_STORE_free(ctx->ctlog_store);
4708 ctx->ctlog_store = logs;
4709 }
4710
4711 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx)
4712 {
4713 return ctx->ctlog_store;
4714 }
4715
4716 #endif /* OPENSSL_NO_CT */
4717
4718 void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb,
4719 void *arg)
4720 {
4721 c->client_hello_cb = cb;
4722 c->client_hello_cb_arg = arg;
4723 }
4724
4725 int SSL_client_hello_isv2(SSL *s)
4726 {
4727 if (s->clienthello == NULL)
4728 return 0;
4729 return s->clienthello->isv2;
4730 }
4731
4732 unsigned int SSL_client_hello_get0_legacy_version(SSL *s)
4733 {
4734 if (s->clienthello == NULL)
4735 return 0;
4736 return s->clienthello->legacy_version;
4737 }
4738
4739 size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out)
4740 {
4741 if (s->clienthello == NULL)
4742 return 0;
4743 if (out != NULL)
4744 *out = s->clienthello->random;
4745 return SSL3_RANDOM_SIZE;
4746 }
4747
4748 size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out)
4749 {
4750 if (s->clienthello == NULL)
4751 return 0;
4752 if (out != NULL)
4753 *out = s->clienthello->session_id;
4754 return s->clienthello->session_id_len;
4755 }
4756
4757 size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out)
4758 {
4759 if (s->clienthello == NULL)
4760 return 0;
4761 if (out != NULL)
4762 *out = PACKET_data(&s->clienthello->ciphersuites);
4763 return PACKET_remaining(&s->clienthello->ciphersuites);
4764 }
4765
4766 size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out)
4767 {
4768 if (s->clienthello == NULL)
4769 return 0;
4770 if (out != NULL)
4771 *out = s->clienthello->compressions;
4772 return s->clienthello->compressions_len;
4773 }
4774
4775 int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen)
4776 {
4777 RAW_EXTENSION *ext;
4778 int *present;
4779 size_t num = 0, i;
4780
4781 if (s->clienthello == NULL || out == NULL || outlen == NULL)
4782 return 0;
4783 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
4784 ext = s->clienthello->pre_proc_exts + i;
4785 if (ext->present)
4786 num++;
4787 }
4788 present = OPENSSL_malloc(sizeof(*present) * num);
4789 if (present == NULL)
4790 return 0;
4791 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
4792 ext = s->clienthello->pre_proc_exts + i;
4793 if (ext->present) {
4794 if (ext->received_order >= num)
4795 goto err;
4796 present[ext->received_order] = ext->type;
4797 }
4798 }
4799 *out = present;
4800 *outlen = num;
4801 return 1;
4802 err:
4803 OPENSSL_free(present);
4804 return 0;
4805 }
4806
4807 int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out,
4808 size_t *outlen)
4809 {
4810 size_t i;
4811 RAW_EXTENSION *r;
4812
4813 if (s->clienthello == NULL)
4814 return 0;
4815 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) {
4816 r = s->clienthello->pre_proc_exts + i;
4817 if (r->present && r->type == type) {
4818 if (out != NULL)
4819 *out = PACKET_data(&r->data);
4820 if (outlen != NULL)
4821 *outlen = PACKET_remaining(&r->data);
4822 return 1;
4823 }
4824 }
4825 return 0;
4826 }
4827
4828 int SSL_free_buffers(SSL *ssl)
4829 {
4830 RECORD_LAYER *rl = &ssl->rlayer;
4831
4832 if (RECORD_LAYER_read_pending(rl) || RECORD_LAYER_write_pending(rl))
4833 return 0;
4834
4835 RECORD_LAYER_release(rl);
4836 return 1;
4837 }
4838
4839 int SSL_alloc_buffers(SSL *ssl)
4840 {
4841 return ssl3_setup_buffers(ssl);
4842 }
4843
4844 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb)
4845 {
4846 ctx->keylog_callback = cb;
4847 }
4848
4849 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx)
4850 {
4851 return ctx->keylog_callback;
4852 }
4853
4854 static int nss_keylog_int(const char *prefix,
4855 SSL *ssl,
4856 const uint8_t *parameter_1,
4857 size_t parameter_1_len,
4858 const uint8_t *parameter_2,
4859 size_t parameter_2_len)
4860 {
4861 char *out = NULL;
4862 char *cursor = NULL;
4863 size_t out_len = 0;
4864 size_t i;
4865 size_t prefix_len;
4866
4867 if (ssl->ctx->keylog_callback == NULL) return 1;
4868
4869 /*
4870 * Our output buffer will contain the following strings, rendered with
4871 * space characters in between, terminated by a NULL character: first the
4872 * prefix, then the first parameter, then the second parameter. The
4873 * meaning of each parameter depends on the specific key material being
4874 * logged. Note that the first and second parameters are encoded in
4875 * hexadecimal, so we need a buffer that is twice their lengths.
4876 */
4877 prefix_len = strlen(prefix);
4878 out_len = prefix_len + (2*parameter_1_len) + (2*parameter_2_len) + 3;
4879 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) {
4880 SSLerr(SSL_F_NSS_KEYLOG_INT, ERR_R_MALLOC_FAILURE);
4881 return 0;
4882 }
4883
4884 strcpy(cursor, prefix);
4885 cursor += prefix_len;
4886 *cursor++ = ' ';
4887
4888 for (i = 0; i < parameter_1_len; i++) {
4889 sprintf(cursor, "%02x", parameter_1[i]);
4890 cursor += 2;
4891 }
4892 *cursor++ = ' ';
4893
4894 for (i = 0; i < parameter_2_len; i++) {
4895 sprintf(cursor, "%02x", parameter_2[i]);
4896 cursor += 2;
4897 }
4898 *cursor = '\0';
4899
4900 ssl->ctx->keylog_callback(ssl, (const char *)out);
4901 OPENSSL_free(out);
4902 return 1;
4903
4904 }
4905
4906 int ssl_log_rsa_client_key_exchange(SSL *ssl,
4907 const uint8_t *encrypted_premaster,
4908 size_t encrypted_premaster_len,
4909 const uint8_t *premaster,
4910 size_t premaster_len)
4911 {
4912 if (encrypted_premaster_len < 8) {
4913 SSLerr(SSL_F_SSL_LOG_RSA_CLIENT_KEY_EXCHANGE, ERR_R_INTERNAL_ERROR);
4914 return 0;
4915 }
4916
4917 /* We only want the first 8 bytes of the encrypted premaster as a tag. */
4918 return nss_keylog_int("RSA",
4919 ssl,
4920 encrypted_premaster,
4921 8,
4922 premaster,
4923 premaster_len);
4924 }
4925
4926 int ssl_log_secret(SSL *ssl,
4927 const char *label,
4928 const uint8_t *secret,
4929 size_t secret_len)
4930 {
4931 return nss_keylog_int(label,
4932 ssl,
4933 ssl->s3->client_random,
4934 SSL3_RANDOM_SIZE,
4935 secret,
4936 secret_len);
4937 }
4938
4939 #define SSLV2_CIPHER_LEN 3
4940
4941 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format,
4942 int *al)
4943 {
4944 int n;
4945
4946 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
4947
4948 if (PACKET_remaining(cipher_suites) == 0) {
4949 SSLerr(SSL_F_SSL_CACHE_CIPHERLIST, SSL_R_NO_CIPHERS_SPECIFIED);
4950 *al = SSL_AD_ILLEGAL_PARAMETER;
4951 return 0;
4952 }
4953
4954 if (PACKET_remaining(cipher_suites) % n != 0) {
4955 SSLerr(SSL_F_SSL_CACHE_CIPHERLIST,
4956 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
4957 *al = SSL_AD_DECODE_ERROR;
4958 return 0;
4959 }
4960
4961 OPENSSL_free(s->s3->tmp.ciphers_raw);
4962 s->s3->tmp.ciphers_raw = NULL;
4963 s->s3->tmp.ciphers_rawlen = 0;
4964
4965 if (sslv2format) {
4966 size_t numciphers = PACKET_remaining(cipher_suites) / n;
4967 PACKET sslv2ciphers = *cipher_suites;
4968 unsigned int leadbyte;
4969 unsigned char *raw;
4970
4971 /*
4972 * We store the raw ciphers list in SSLv3+ format so we need to do some
4973 * preprocessing to convert the list first. If there are any SSLv2 only
4974 * ciphersuites with a non-zero leading byte then we are going to
4975 * slightly over allocate because we won't store those. But that isn't a
4976 * problem.
4977 */
4978 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN);
4979 s->s3->tmp.ciphers_raw = raw;
4980 if (raw == NULL) {
4981 *al = SSL_AD_INTERNAL_ERROR;
4982 goto err;
4983 }
4984 for (s->s3->tmp.ciphers_rawlen = 0;
4985 PACKET_remaining(&sslv2ciphers) > 0;
4986 raw += TLS_CIPHER_LEN) {
4987 if (!PACKET_get_1(&sslv2ciphers, &leadbyte)
4988 || (leadbyte == 0
4989 && !PACKET_copy_bytes(&sslv2ciphers, raw,
4990 TLS_CIPHER_LEN))
4991 || (leadbyte != 0
4992 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) {
4993 *al = SSL_AD_DECODE_ERROR;
4994 OPENSSL_free(s->s3->tmp.ciphers_raw);
4995 s->s3->tmp.ciphers_raw = NULL;
4996 s->s3->tmp.ciphers_rawlen = 0;
4997 goto err;
4998 }
4999 if (leadbyte == 0)
5000 s->s3->tmp.ciphers_rawlen += TLS_CIPHER_LEN;
5001 }
5002 } else if (!PACKET_memdup(cipher_suites, &s->s3->tmp.ciphers_raw,
5003 &s->s3->tmp.ciphers_rawlen)) {
5004 *al = SSL_AD_INTERNAL_ERROR;
5005 goto err;
5006 }
5007 return 1;
5008 err:
5009 return 0;
5010 }
5011
5012 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len,
5013 int isv2format, STACK_OF(SSL_CIPHER) **sk,
5014 STACK_OF(SSL_CIPHER) **scsvs)
5015 {
5016 int alert;
5017 PACKET pkt;
5018
5019 if (!PACKET_buf_init(&pkt, bytes, len))
5020 return 0;
5021 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, &alert);
5022 }
5023
5024 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites,
5025 STACK_OF(SSL_CIPHER) **skp,
5026 STACK_OF(SSL_CIPHER) **scsvs_out,
5027 int sslv2format, int *al)
5028 {
5029 const SSL_CIPHER *c;
5030 STACK_OF(SSL_CIPHER) *sk = NULL;
5031 STACK_OF(SSL_CIPHER) *scsvs = NULL;
5032 int n;
5033 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */
5034 unsigned char cipher[SSLV2_CIPHER_LEN];
5035
5036 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5037
5038 if (PACKET_remaining(cipher_suites) == 0) {
5039 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_NO_CIPHERS_SPECIFIED);
5040 *al = SSL_AD_ILLEGAL_PARAMETER;
5041 return 0;
5042 }
5043
5044 if (PACKET_remaining(cipher_suites) % n != 0) {
5045 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST,
5046 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5047 *al = SSL_AD_DECODE_ERROR;
5048 return 0;
5049 }
5050
5051 sk = sk_SSL_CIPHER_new_null();
5052 scsvs = sk_SSL_CIPHER_new_null();
5053 if (sk == NULL || scsvs == NULL) {
5054 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5055 *al = SSL_AD_INTERNAL_ERROR;
5056 goto err;
5057 }
5058
5059 while (PACKET_copy_bytes(cipher_suites, cipher, n)) {
5060 /*
5061 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the
5062 * first byte set to zero, while true SSLv2 ciphers have a non-zero
5063 * first byte. We don't support any true SSLv2 ciphers, so skip them.
5064 */
5065 if (sslv2format && cipher[0] != '\0')
5066 continue;
5067
5068 /* For SSLv2-compat, ignore leading 0-byte. */
5069 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1);
5070 if (c != NULL) {
5071 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) ||
5072 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) {
5073 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5074 *al = SSL_AD_INTERNAL_ERROR;
5075 goto err;
5076 }
5077 }
5078 }
5079 if (PACKET_remaining(cipher_suites) > 0) {
5080 *al = SSL_AD_DECODE_ERROR;
5081 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_BAD_LENGTH);
5082 goto err;
5083 }
5084
5085 if (skp != NULL)
5086 *skp = sk;
5087 else
5088 sk_SSL_CIPHER_free(sk);
5089 if (scsvs_out != NULL)
5090 *scsvs_out = scsvs;
5091 else
5092 sk_SSL_CIPHER_free(scsvs);
5093 return 1;
5094 err:
5095 sk_SSL_CIPHER_free(sk);
5096 sk_SSL_CIPHER_free(scsvs);
5097 return 0;
5098 }
5099
5100 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data)
5101 {
5102 ctx->max_early_data = max_early_data;
5103
5104 return 1;
5105 }
5106
5107 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx)
5108 {
5109 return ctx->max_early_data;
5110 }
5111
5112 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data)
5113 {
5114 s->max_early_data = max_early_data;
5115
5116 return 1;
5117 }
5118
5119 uint32_t SSL_get_max_early_data(const SSL *s)
5120 {
5121 return s->max_early_data;
5122 }
5123
5124 int ssl_randbytes(SSL *s, unsigned char *rnd, size_t size)
5125 {
5126 if (s->drbg != NULL)
5127 return RAND_DRBG_generate(s->drbg, rnd, size, 0, NULL, 0);
5128 return RAND_bytes(rnd, (int)size);
5129 }