]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_lib.c
Merge Nokia copyright notice into standard
[thirdparty/openssl.git] / ssl / ssl_lib.c
1 /*
2 * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the OpenSSL license (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include "ssl_locl.h"
14 #include <openssl/objects.h>
15 #include <openssl/lhash.h>
16 #include <openssl/x509v3.h>
17 #include <openssl/rand.h>
18 #include <openssl/ocsp.h>
19 #include <openssl/dh.h>
20 #include <openssl/engine.h>
21 #include <openssl/async.h>
22 #include <openssl/ct.h>
23
24 const char SSL_version_str[] = OPENSSL_VERSION_TEXT;
25
26 SSL3_ENC_METHOD ssl3_undef_enc_method = {
27 /*
28 * evil casts, but these functions are only called if there's a library
29 * bug
30 */
31 (int (*)(SSL *, SSL3_RECORD *, size_t, int))ssl_undefined_function,
32 (int (*)(SSL *, SSL3_RECORD *, unsigned char *, int))ssl_undefined_function,
33 ssl_undefined_function,
34 (int (*)(SSL *, unsigned char *, unsigned char *, size_t, size_t *))
35 ssl_undefined_function,
36 (int (*)(SSL *, int))ssl_undefined_function,
37 (size_t (*)(SSL *, const char *, size_t, unsigned char *))
38 ssl_undefined_function,
39 NULL, /* client_finished_label */
40 0, /* client_finished_label_len */
41 NULL, /* server_finished_label */
42 0, /* server_finished_label_len */
43 (int (*)(int))ssl_undefined_function,
44 (int (*)(SSL *, unsigned char *, size_t, const char *,
45 size_t, const unsigned char *, size_t,
46 int use_context))ssl_undefined_function,
47 };
48
49 struct ssl_async_args {
50 SSL *s;
51 void *buf;
52 size_t num;
53 enum { READFUNC, WRITEFUNC, OTHERFUNC } type;
54 union {
55 int (*func_read) (SSL *, void *, size_t, size_t *);
56 int (*func_write) (SSL *, const void *, size_t, size_t *);
57 int (*func_other) (SSL *);
58 } f;
59 };
60
61 static const struct {
62 uint8_t mtype;
63 uint8_t ord;
64 int nid;
65 } dane_mds[] = {
66 {
67 DANETLS_MATCHING_FULL, 0, NID_undef
68 },
69 {
70 DANETLS_MATCHING_2256, 1, NID_sha256
71 },
72 {
73 DANETLS_MATCHING_2512, 2, NID_sha512
74 },
75 };
76
77 static int dane_ctx_enable(struct dane_ctx_st *dctx)
78 {
79 const EVP_MD **mdevp;
80 uint8_t *mdord;
81 uint8_t mdmax = DANETLS_MATCHING_LAST;
82 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */
83 size_t i;
84
85 if (dctx->mdevp != NULL)
86 return 1;
87
88 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp));
89 mdord = OPENSSL_zalloc(n * sizeof(*mdord));
90
91 if (mdord == NULL || mdevp == NULL) {
92 OPENSSL_free(mdord);
93 OPENSSL_free(mdevp);
94 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE);
95 return 0;
96 }
97
98 /* Install default entries */
99 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) {
100 const EVP_MD *md;
101
102 if (dane_mds[i].nid == NID_undef ||
103 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL)
104 continue;
105 mdevp[dane_mds[i].mtype] = md;
106 mdord[dane_mds[i].mtype] = dane_mds[i].ord;
107 }
108
109 dctx->mdevp = mdevp;
110 dctx->mdord = mdord;
111 dctx->mdmax = mdmax;
112
113 return 1;
114 }
115
116 static void dane_ctx_final(struct dane_ctx_st *dctx)
117 {
118 OPENSSL_free(dctx->mdevp);
119 dctx->mdevp = NULL;
120
121 OPENSSL_free(dctx->mdord);
122 dctx->mdord = NULL;
123 dctx->mdmax = 0;
124 }
125
126 static void tlsa_free(danetls_record *t)
127 {
128 if (t == NULL)
129 return;
130 OPENSSL_free(t->data);
131 EVP_PKEY_free(t->spki);
132 OPENSSL_free(t);
133 }
134
135 static void dane_final(SSL_DANE *dane)
136 {
137 sk_danetls_record_pop_free(dane->trecs, tlsa_free);
138 dane->trecs = NULL;
139
140 sk_X509_pop_free(dane->certs, X509_free);
141 dane->certs = NULL;
142
143 X509_free(dane->mcert);
144 dane->mcert = NULL;
145 dane->mtlsa = NULL;
146 dane->mdpth = -1;
147 dane->pdpth = -1;
148 }
149
150 /*
151 * dane_copy - Copy dane configuration, sans verification state.
152 */
153 static int ssl_dane_dup(SSL *to, SSL *from)
154 {
155 int num;
156 int i;
157
158 if (!DANETLS_ENABLED(&from->dane))
159 return 1;
160
161 dane_final(&to->dane);
162 to->dane.flags = from->dane.flags;
163 to->dane.dctx = &to->ctx->dane;
164 to->dane.trecs = sk_danetls_record_new_null();
165
166 if (to->dane.trecs == NULL) {
167 SSLerr(SSL_F_SSL_DANE_DUP, ERR_R_MALLOC_FAILURE);
168 return 0;
169 }
170
171 num = sk_danetls_record_num(from->dane.trecs);
172 for (i = 0; i < num; ++i) {
173 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i);
174
175 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype,
176 t->data, t->dlen) <= 0)
177 return 0;
178 }
179 return 1;
180 }
181
182 static int dane_mtype_set(struct dane_ctx_st *dctx,
183 const EVP_MD *md, uint8_t mtype, uint8_t ord)
184 {
185 int i;
186
187 if (mtype == DANETLS_MATCHING_FULL && md != NULL) {
188 SSLerr(SSL_F_DANE_MTYPE_SET, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL);
189 return 0;
190 }
191
192 if (mtype > dctx->mdmax) {
193 const EVP_MD **mdevp;
194 uint8_t *mdord;
195 int n = ((int)mtype) + 1;
196
197 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp));
198 if (mdevp == NULL) {
199 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
200 return -1;
201 }
202 dctx->mdevp = mdevp;
203
204 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord));
205 if (mdord == NULL) {
206 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
207 return -1;
208 }
209 dctx->mdord = mdord;
210
211 /* Zero-fill any gaps */
212 for (i = dctx->mdmax + 1; i < mtype; ++i) {
213 mdevp[i] = NULL;
214 mdord[i] = 0;
215 }
216
217 dctx->mdmax = mtype;
218 }
219
220 dctx->mdevp[mtype] = md;
221 /* Coerce ordinal of disabled matching types to 0 */
222 dctx->mdord[mtype] = (md == NULL) ? 0 : ord;
223
224 return 1;
225 }
226
227 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype)
228 {
229 if (mtype > dane->dctx->mdmax)
230 return NULL;
231 return dane->dctx->mdevp[mtype];
232 }
233
234 static int dane_tlsa_add(SSL_DANE *dane,
235 uint8_t usage,
236 uint8_t selector,
237 uint8_t mtype, unsigned char *data, size_t dlen)
238 {
239 danetls_record *t;
240 const EVP_MD *md = NULL;
241 int ilen = (int)dlen;
242 int i;
243 int num;
244
245 if (dane->trecs == NULL) {
246 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED);
247 return -1;
248 }
249
250 if (ilen < 0 || dlen != (size_t)ilen) {
251 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH);
252 return 0;
253 }
254
255 if (usage > DANETLS_USAGE_LAST) {
256 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE);
257 return 0;
258 }
259
260 if (selector > DANETLS_SELECTOR_LAST) {
261 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR);
262 return 0;
263 }
264
265 if (mtype != DANETLS_MATCHING_FULL) {
266 md = tlsa_md_get(dane, mtype);
267 if (md == NULL) {
268 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE);
269 return 0;
270 }
271 }
272
273 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) {
274 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH);
275 return 0;
276 }
277 if (!data) {
278 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA);
279 return 0;
280 }
281
282 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) {
283 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
284 return -1;
285 }
286
287 t->usage = usage;
288 t->selector = selector;
289 t->mtype = mtype;
290 t->data = OPENSSL_malloc(dlen);
291 if (t->data == NULL) {
292 tlsa_free(t);
293 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
294 return -1;
295 }
296 memcpy(t->data, data, dlen);
297 t->dlen = dlen;
298
299 /* Validate and cache full certificate or public key */
300 if (mtype == DANETLS_MATCHING_FULL) {
301 const unsigned char *p = data;
302 X509 *cert = NULL;
303 EVP_PKEY *pkey = NULL;
304
305 switch (selector) {
306 case DANETLS_SELECTOR_CERT:
307 if (!d2i_X509(&cert, &p, ilen) || p < data ||
308 dlen != (size_t)(p - data)) {
309 tlsa_free(t);
310 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
311 return 0;
312 }
313 if (X509_get0_pubkey(cert) == NULL) {
314 tlsa_free(t);
315 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
316 return 0;
317 }
318
319 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) {
320 X509_free(cert);
321 break;
322 }
323
324 /*
325 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA
326 * records that contain full certificates of trust-anchors that are
327 * not present in the wire chain. For usage PKIX-TA(0), we augment
328 * the chain with untrusted Full(0) certificates from DNS, in case
329 * they are missing from the chain.
330 */
331 if ((dane->certs == NULL &&
332 (dane->certs = sk_X509_new_null()) == NULL) ||
333 !sk_X509_push(dane->certs, cert)) {
334 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
335 X509_free(cert);
336 tlsa_free(t);
337 return -1;
338 }
339 break;
340
341 case DANETLS_SELECTOR_SPKI:
342 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data ||
343 dlen != (size_t)(p - data)) {
344 tlsa_free(t);
345 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY);
346 return 0;
347 }
348
349 /*
350 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA
351 * records that contain full bare keys of trust-anchors that are
352 * not present in the wire chain.
353 */
354 if (usage == DANETLS_USAGE_DANE_TA)
355 t->spki = pkey;
356 else
357 EVP_PKEY_free(pkey);
358 break;
359 }
360 }
361
362 /*-
363 * Find the right insertion point for the new record.
364 *
365 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that
366 * they can be processed first, as they require no chain building, and no
367 * expiration or hostname checks. Because DANE-EE(3) is numerically
368 * largest, this is accomplished via descending sort by "usage".
369 *
370 * We also sort in descending order by matching ordinal to simplify
371 * the implementation of digest agility in the verification code.
372 *
373 * The choice of order for the selector is not significant, so we
374 * use the same descending order for consistency.
375 */
376 num = sk_danetls_record_num(dane->trecs);
377 for (i = 0; i < num; ++i) {
378 danetls_record *rec = sk_danetls_record_value(dane->trecs, i);
379
380 if (rec->usage > usage)
381 continue;
382 if (rec->usage < usage)
383 break;
384 if (rec->selector > selector)
385 continue;
386 if (rec->selector < selector)
387 break;
388 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype])
389 continue;
390 break;
391 }
392
393 if (!sk_danetls_record_insert(dane->trecs, t, i)) {
394 tlsa_free(t);
395 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
396 return -1;
397 }
398 dane->umask |= DANETLS_USAGE_BIT(usage);
399
400 return 1;
401 }
402
403 static void clear_ciphers(SSL *s)
404 {
405 /* clear the current cipher */
406 ssl_clear_cipher_ctx(s);
407 ssl_clear_hash_ctx(&s->read_hash);
408 ssl_clear_hash_ctx(&s->write_hash);
409 }
410
411 int SSL_clear(SSL *s)
412 {
413 if (s->method == NULL) {
414 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED);
415 return 0;
416 }
417
418 if (ssl_clear_bad_session(s)) {
419 SSL_SESSION_free(s->session);
420 s->session = NULL;
421 }
422
423 s->error = 0;
424 s->hit = 0;
425 s->shutdown = 0;
426
427 if (s->renegotiate) {
428 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR);
429 return 0;
430 }
431
432 ossl_statem_clear(s);
433
434 s->version = s->method->version;
435 s->client_version = s->version;
436 s->rwstate = SSL_NOTHING;
437
438 BUF_MEM_free(s->init_buf);
439 s->init_buf = NULL;
440 clear_ciphers(s);
441 s->first_packet = 0;
442
443 s->key_update = SSL_KEY_UPDATE_NONE;
444
445 /* Reset DANE verification result state */
446 s->dane.mdpth = -1;
447 s->dane.pdpth = -1;
448 X509_free(s->dane.mcert);
449 s->dane.mcert = NULL;
450 s->dane.mtlsa = NULL;
451
452 /* Clear the verification result peername */
453 X509_VERIFY_PARAM_move_peername(s->param, NULL);
454
455 /*
456 * Check to see if we were changed into a different method, if so, revert
457 * back if we are not doing session-id reuse.
458 */
459 if (!ossl_statem_get_in_handshake(s) && (s->session == NULL)
460 && (s->method != s->ctx->method)) {
461 s->method->ssl_free(s);
462 s->method = s->ctx->method;
463 if (!s->method->ssl_new(s))
464 return 0;
465 } else {
466 if (!s->method->ssl_clear(s))
467 return 0;
468 }
469
470 RECORD_LAYER_clear(&s->rlayer);
471
472 return 1;
473 }
474
475 /** Used to change an SSL_CTXs default SSL method type */
476 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth)
477 {
478 STACK_OF(SSL_CIPHER) *sk;
479
480 ctx->method = meth;
481
482 sk = ssl_create_cipher_list(ctx->method, &(ctx->cipher_list),
483 &(ctx->cipher_list_by_id),
484 SSL_DEFAULT_CIPHER_LIST, ctx->cert);
485 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) {
486 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
487 return (0);
488 }
489 return (1);
490 }
491
492 SSL *SSL_new(SSL_CTX *ctx)
493 {
494 SSL *s;
495
496 if (ctx == NULL) {
497 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX);
498 return (NULL);
499 }
500 if (ctx->method == NULL) {
501 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
502 return (NULL);
503 }
504
505 s = OPENSSL_zalloc(sizeof(*s));
506 if (s == NULL)
507 goto err;
508
509 s->lock = CRYPTO_THREAD_lock_new();
510 if (s->lock == NULL) {
511 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
512 OPENSSL_free(s);
513 return NULL;
514 }
515
516 RECORD_LAYER_init(&s->rlayer, s);
517
518 s->options = ctx->options;
519 s->dane.flags = ctx->dane.flags;
520 s->min_proto_version = ctx->min_proto_version;
521 s->max_proto_version = ctx->max_proto_version;
522 s->mode = ctx->mode;
523 s->max_cert_list = ctx->max_cert_list;
524 s->references = 1;
525 s->max_early_data = ctx->max_early_data;
526
527 /*
528 * Earlier library versions used to copy the pointer to the CERT, not
529 * its contents; only when setting new parameters for the per-SSL
530 * copy, ssl_cert_new would be called (and the direct reference to
531 * the per-SSL_CTX settings would be lost, but those still were
532 * indirectly accessed for various purposes, and for that reason they
533 * used to be known as s->ctx->default_cert). Now we don't look at the
534 * SSL_CTX's CERT after having duplicated it once.
535 */
536 s->cert = ssl_cert_dup(ctx->cert);
537 if (s->cert == NULL)
538 goto err;
539
540 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead);
541 s->msg_callback = ctx->msg_callback;
542 s->msg_callback_arg = ctx->msg_callback_arg;
543 s->verify_mode = ctx->verify_mode;
544 s->not_resumable_session_cb = ctx->not_resumable_session_cb;
545 s->record_padding_cb = ctx->record_padding_cb;
546 s->record_padding_arg = ctx->record_padding_arg;
547 s->block_padding = ctx->block_padding;
548 s->sid_ctx_length = ctx->sid_ctx_length;
549 if (!ossl_assert(s->sid_ctx_length <= sizeof s->sid_ctx))
550 goto err;
551 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
552 s->verify_callback = ctx->default_verify_callback;
553 s->generate_session_id = ctx->generate_session_id;
554
555 s->param = X509_VERIFY_PARAM_new();
556 if (s->param == NULL)
557 goto err;
558 X509_VERIFY_PARAM_inherit(s->param, ctx->param);
559 s->quiet_shutdown = ctx->quiet_shutdown;
560 s->max_send_fragment = ctx->max_send_fragment;
561 s->split_send_fragment = ctx->split_send_fragment;
562 s->max_pipelines = ctx->max_pipelines;
563 if (s->max_pipelines > 1)
564 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
565 if (ctx->default_read_buf_len > 0)
566 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len);
567
568 SSL_CTX_up_ref(ctx);
569 s->ctx = ctx;
570 s->ext.debug_cb = 0;
571 s->ext.debug_arg = NULL;
572 s->ext.ticket_expected = 0;
573 s->ext.status_type = ctx->ext.status_type;
574 s->ext.status_expected = 0;
575 s->ext.ocsp.ids = NULL;
576 s->ext.ocsp.exts = NULL;
577 s->ext.ocsp.resp = NULL;
578 s->ext.ocsp.resp_len = 0;
579 SSL_CTX_up_ref(ctx);
580 s->session_ctx = ctx;
581 #ifndef OPENSSL_NO_EC
582 if (ctx->ext.ecpointformats) {
583 s->ext.ecpointformats =
584 OPENSSL_memdup(ctx->ext.ecpointformats,
585 ctx->ext.ecpointformats_len);
586 if (!s->ext.ecpointformats)
587 goto err;
588 s->ext.ecpointformats_len =
589 ctx->ext.ecpointformats_len;
590 }
591 if (ctx->ext.supportedgroups) {
592 s->ext.supportedgroups =
593 OPENSSL_memdup(ctx->ext.supportedgroups,
594 ctx->ext.supportedgroups_len);
595 if (!s->ext.supportedgroups)
596 goto err;
597 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len;
598 }
599 #endif
600 #ifndef OPENSSL_NO_NEXTPROTONEG
601 s->ext.npn = NULL;
602 #endif
603
604 if (s->ctx->ext.alpn) {
605 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len);
606 if (s->ext.alpn == NULL)
607 goto err;
608 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len);
609 s->ext.alpn_len = s->ctx->ext.alpn_len;
610 }
611
612 s->verified_chain = NULL;
613 s->verify_result = X509_V_OK;
614
615 s->default_passwd_callback = ctx->default_passwd_callback;
616 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata;
617
618 s->method = ctx->method;
619
620 s->key_update = SSL_KEY_UPDATE_NONE;
621
622 if (!s->method->ssl_new(s))
623 goto err;
624
625 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1;
626
627 if (!SSL_clear(s))
628 goto err;
629
630 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data))
631 goto err;
632
633 #ifndef OPENSSL_NO_PSK
634 s->psk_client_callback = ctx->psk_client_callback;
635 s->psk_server_callback = ctx->psk_server_callback;
636 #endif
637
638 s->job = NULL;
639
640 #ifndef OPENSSL_NO_CT
641 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback,
642 ctx->ct_validation_callback_arg))
643 goto err;
644 #endif
645
646 return s;
647 err:
648 SSL_free(s);
649 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
650 return NULL;
651 }
652
653 int SSL_is_dtls(const SSL *s)
654 {
655 return SSL_IS_DTLS(s) ? 1 : 0;
656 }
657
658 int SSL_up_ref(SSL *s)
659 {
660 int i;
661
662 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0)
663 return 0;
664
665 REF_PRINT_COUNT("SSL", s);
666 REF_ASSERT_ISNT(i < 2);
667 return ((i > 1) ? 1 : 0);
668 }
669
670 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
671 unsigned int sid_ctx_len)
672 {
673 if (sid_ctx_len > sizeof ctx->sid_ctx) {
674 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT,
675 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
676 return 0;
677 }
678 ctx->sid_ctx_length = sid_ctx_len;
679 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
680
681 return 1;
682 }
683
684 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
685 unsigned int sid_ctx_len)
686 {
687 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
688 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT,
689 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
690 return 0;
691 }
692 ssl->sid_ctx_length = sid_ctx_len;
693 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
694
695 return 1;
696 }
697
698 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb)
699 {
700 CRYPTO_THREAD_write_lock(ctx->lock);
701 ctx->generate_session_id = cb;
702 CRYPTO_THREAD_unlock(ctx->lock);
703 return 1;
704 }
705
706 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb)
707 {
708 CRYPTO_THREAD_write_lock(ssl->lock);
709 ssl->generate_session_id = cb;
710 CRYPTO_THREAD_unlock(ssl->lock);
711 return 1;
712 }
713
714 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
715 unsigned int id_len)
716 {
717 /*
718 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how
719 * we can "construct" a session to give us the desired check - i.e. to
720 * find if there's a session in the hash table that would conflict with
721 * any new session built out of this id/id_len and the ssl_version in use
722 * by this SSL.
723 */
724 SSL_SESSION r, *p;
725
726 if (id_len > sizeof r.session_id)
727 return 0;
728
729 r.ssl_version = ssl->version;
730 r.session_id_length = id_len;
731 memcpy(r.session_id, id, id_len);
732
733 CRYPTO_THREAD_read_lock(ssl->session_ctx->lock);
734 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r);
735 CRYPTO_THREAD_unlock(ssl->session_ctx->lock);
736 return (p != NULL);
737 }
738
739 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose)
740 {
741 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
742 }
743
744 int SSL_set_purpose(SSL *s, int purpose)
745 {
746 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
747 }
748
749 int SSL_CTX_set_trust(SSL_CTX *s, int trust)
750 {
751 return X509_VERIFY_PARAM_set_trust(s->param, trust);
752 }
753
754 int SSL_set_trust(SSL *s, int trust)
755 {
756 return X509_VERIFY_PARAM_set_trust(s->param, trust);
757 }
758
759 int SSL_set1_host(SSL *s, const char *hostname)
760 {
761 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0);
762 }
763
764 int SSL_add1_host(SSL *s, const char *hostname)
765 {
766 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0);
767 }
768
769 void SSL_set_hostflags(SSL *s, unsigned int flags)
770 {
771 X509_VERIFY_PARAM_set_hostflags(s->param, flags);
772 }
773
774 const char *SSL_get0_peername(SSL *s)
775 {
776 return X509_VERIFY_PARAM_get0_peername(s->param);
777 }
778
779 int SSL_CTX_dane_enable(SSL_CTX *ctx)
780 {
781 return dane_ctx_enable(&ctx->dane);
782 }
783
784 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags)
785 {
786 unsigned long orig = ctx->dane.flags;
787
788 ctx->dane.flags |= flags;
789 return orig;
790 }
791
792 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags)
793 {
794 unsigned long orig = ctx->dane.flags;
795
796 ctx->dane.flags &= ~flags;
797 return orig;
798 }
799
800 int SSL_dane_enable(SSL *s, const char *basedomain)
801 {
802 SSL_DANE *dane = &s->dane;
803
804 if (s->ctx->dane.mdmax == 0) {
805 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED);
806 return 0;
807 }
808 if (dane->trecs != NULL) {
809 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED);
810 return 0;
811 }
812
813 /*
814 * Default SNI name. This rejects empty names, while set1_host below
815 * accepts them and disables host name checks. To avoid side-effects with
816 * invalid input, set the SNI name first.
817 */
818 if (s->ext.hostname == NULL) {
819 if (!SSL_set_tlsext_host_name(s, basedomain)) {
820 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
821 return -1;
822 }
823 }
824
825 /* Primary RFC6125 reference identifier */
826 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) {
827 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
828 return -1;
829 }
830
831 dane->mdpth = -1;
832 dane->pdpth = -1;
833 dane->dctx = &s->ctx->dane;
834 dane->trecs = sk_danetls_record_new_null();
835
836 if (dane->trecs == NULL) {
837 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE);
838 return -1;
839 }
840 return 1;
841 }
842
843 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags)
844 {
845 unsigned long orig = ssl->dane.flags;
846
847 ssl->dane.flags |= flags;
848 return orig;
849 }
850
851 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags)
852 {
853 unsigned long orig = ssl->dane.flags;
854
855 ssl->dane.flags &= ~flags;
856 return orig;
857 }
858
859 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki)
860 {
861 SSL_DANE *dane = &s->dane;
862
863 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
864 return -1;
865 if (dane->mtlsa) {
866 if (mcert)
867 *mcert = dane->mcert;
868 if (mspki)
869 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL;
870 }
871 return dane->mdpth;
872 }
873
874 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector,
875 uint8_t *mtype, unsigned const char **data, size_t *dlen)
876 {
877 SSL_DANE *dane = &s->dane;
878
879 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
880 return -1;
881 if (dane->mtlsa) {
882 if (usage)
883 *usage = dane->mtlsa->usage;
884 if (selector)
885 *selector = dane->mtlsa->selector;
886 if (mtype)
887 *mtype = dane->mtlsa->mtype;
888 if (data)
889 *data = dane->mtlsa->data;
890 if (dlen)
891 *dlen = dane->mtlsa->dlen;
892 }
893 return dane->mdpth;
894 }
895
896 SSL_DANE *SSL_get0_dane(SSL *s)
897 {
898 return &s->dane;
899 }
900
901 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector,
902 uint8_t mtype, unsigned char *data, size_t dlen)
903 {
904 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen);
905 }
906
907 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype,
908 uint8_t ord)
909 {
910 return dane_mtype_set(&ctx->dane, md, mtype, ord);
911 }
912
913 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm)
914 {
915 return X509_VERIFY_PARAM_set1(ctx->param, vpm);
916 }
917
918 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm)
919 {
920 return X509_VERIFY_PARAM_set1(ssl->param, vpm);
921 }
922
923 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx)
924 {
925 return ctx->param;
926 }
927
928 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl)
929 {
930 return ssl->param;
931 }
932
933 void SSL_certs_clear(SSL *s)
934 {
935 ssl_cert_clear_certs(s->cert);
936 }
937
938 void SSL_free(SSL *s)
939 {
940 int i;
941
942 if (s == NULL)
943 return;
944
945 CRYPTO_DOWN_REF(&s->references, &i, s->lock);
946 REF_PRINT_COUNT("SSL", s);
947 if (i > 0)
948 return;
949 REF_ASSERT_ISNT(i < 0);
950
951 X509_VERIFY_PARAM_free(s->param);
952 dane_final(&s->dane);
953 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
954
955 /* Ignore return value */
956 ssl_free_wbio_buffer(s);
957
958 BIO_free_all(s->wbio);
959 BIO_free_all(s->rbio);
960
961 BUF_MEM_free(s->init_buf);
962
963 /* add extra stuff */
964 sk_SSL_CIPHER_free(s->cipher_list);
965 sk_SSL_CIPHER_free(s->cipher_list_by_id);
966
967 /* Make the next call work :-) */
968 if (s->session != NULL) {
969 ssl_clear_bad_session(s);
970 SSL_SESSION_free(s->session);
971 }
972
973 clear_ciphers(s);
974
975 ssl_cert_free(s->cert);
976 /* Free up if allocated */
977
978 OPENSSL_free(s->ext.hostname);
979 SSL_CTX_free(s->session_ctx);
980 #ifndef OPENSSL_NO_EC
981 OPENSSL_free(s->ext.ecpointformats);
982 OPENSSL_free(s->ext.supportedgroups);
983 #endif /* OPENSSL_NO_EC */
984 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free);
985 #ifndef OPENSSL_NO_OCSP
986 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free);
987 #endif
988 #ifndef OPENSSL_NO_CT
989 SCT_LIST_free(s->scts);
990 OPENSSL_free(s->ext.scts);
991 #endif
992 OPENSSL_free(s->ext.ocsp.resp);
993 OPENSSL_free(s->ext.alpn);
994 OPENSSL_free(s->ext.tls13_cookie);
995 OPENSSL_free(s->clienthello);
996
997 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free);
998
999 sk_X509_pop_free(s->verified_chain, X509_free);
1000
1001 if (s->method != NULL)
1002 s->method->ssl_free(s);
1003
1004 RECORD_LAYER_release(&s->rlayer);
1005
1006 SSL_CTX_free(s->ctx);
1007
1008 ASYNC_WAIT_CTX_free(s->waitctx);
1009
1010 #if !defined(OPENSSL_NO_NEXTPROTONEG)
1011 OPENSSL_free(s->ext.npn);
1012 #endif
1013
1014 #ifndef OPENSSL_NO_SRTP
1015 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles);
1016 #endif
1017
1018 CRYPTO_THREAD_lock_free(s->lock);
1019
1020 OPENSSL_free(s);
1021 }
1022
1023 void SSL_set0_rbio(SSL *s, BIO *rbio)
1024 {
1025 BIO_free_all(s->rbio);
1026 s->rbio = rbio;
1027 }
1028
1029 void SSL_set0_wbio(SSL *s, BIO *wbio)
1030 {
1031 /*
1032 * If the output buffering BIO is still in place, remove it
1033 */
1034 if (s->bbio != NULL)
1035 s->wbio = BIO_pop(s->wbio);
1036
1037 BIO_free_all(s->wbio);
1038 s->wbio = wbio;
1039
1040 /* Re-attach |bbio| to the new |wbio|. */
1041 if (s->bbio != NULL)
1042 s->wbio = BIO_push(s->bbio, s->wbio);
1043 }
1044
1045 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio)
1046 {
1047 /*
1048 * For historical reasons, this function has many different cases in
1049 * ownership handling.
1050 */
1051
1052 /* If nothing has changed, do nothing */
1053 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s))
1054 return;
1055
1056 /*
1057 * If the two arguments are equal then one fewer reference is granted by the
1058 * caller than we want to take
1059 */
1060 if (rbio != NULL && rbio == wbio)
1061 BIO_up_ref(rbio);
1062
1063 /*
1064 * If only the wbio is changed only adopt one reference.
1065 */
1066 if (rbio == SSL_get_rbio(s)) {
1067 SSL_set0_wbio(s, wbio);
1068 return;
1069 }
1070 /*
1071 * There is an asymmetry here for historical reasons. If only the rbio is
1072 * changed AND the rbio and wbio were originally different, then we only
1073 * adopt one reference.
1074 */
1075 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) {
1076 SSL_set0_rbio(s, rbio);
1077 return;
1078 }
1079
1080 /* Otherwise, adopt both references. */
1081 SSL_set0_rbio(s, rbio);
1082 SSL_set0_wbio(s, wbio);
1083 }
1084
1085 BIO *SSL_get_rbio(const SSL *s)
1086 {
1087 return s->rbio;
1088 }
1089
1090 BIO *SSL_get_wbio(const SSL *s)
1091 {
1092 if (s->bbio != NULL) {
1093 /*
1094 * If |bbio| is active, the true caller-configured BIO is its
1095 * |next_bio|.
1096 */
1097 return BIO_next(s->bbio);
1098 }
1099 return s->wbio;
1100 }
1101
1102 int SSL_get_fd(const SSL *s)
1103 {
1104 return SSL_get_rfd(s);
1105 }
1106
1107 int SSL_get_rfd(const SSL *s)
1108 {
1109 int ret = -1;
1110 BIO *b, *r;
1111
1112 b = SSL_get_rbio(s);
1113 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1114 if (r != NULL)
1115 BIO_get_fd(r, &ret);
1116 return (ret);
1117 }
1118
1119 int SSL_get_wfd(const SSL *s)
1120 {
1121 int ret = -1;
1122 BIO *b, *r;
1123
1124 b = SSL_get_wbio(s);
1125 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1126 if (r != NULL)
1127 BIO_get_fd(r, &ret);
1128 return (ret);
1129 }
1130
1131 #ifndef OPENSSL_NO_SOCK
1132 int SSL_set_fd(SSL *s, int fd)
1133 {
1134 int ret = 0;
1135 BIO *bio = NULL;
1136
1137 bio = BIO_new(BIO_s_socket());
1138
1139 if (bio == NULL) {
1140 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB);
1141 goto err;
1142 }
1143 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1144 SSL_set_bio(s, bio, bio);
1145 ret = 1;
1146 err:
1147 return (ret);
1148 }
1149
1150 int SSL_set_wfd(SSL *s, int fd)
1151 {
1152 BIO *rbio = SSL_get_rbio(s);
1153
1154 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET
1155 || (int)BIO_get_fd(rbio, NULL) != fd) {
1156 BIO *bio = BIO_new(BIO_s_socket());
1157
1158 if (bio == NULL) {
1159 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB);
1160 return 0;
1161 }
1162 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1163 SSL_set0_wbio(s, bio);
1164 } else {
1165 BIO_up_ref(rbio);
1166 SSL_set0_wbio(s, rbio);
1167 }
1168 return 1;
1169 }
1170
1171 int SSL_set_rfd(SSL *s, int fd)
1172 {
1173 BIO *wbio = SSL_get_wbio(s);
1174
1175 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET
1176 || ((int)BIO_get_fd(wbio, NULL) != fd)) {
1177 BIO *bio = BIO_new(BIO_s_socket());
1178
1179 if (bio == NULL) {
1180 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB);
1181 return 0;
1182 }
1183 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1184 SSL_set0_rbio(s, bio);
1185 } else {
1186 BIO_up_ref(wbio);
1187 SSL_set0_rbio(s, wbio);
1188 }
1189
1190 return 1;
1191 }
1192 #endif
1193
1194 /* return length of latest Finished message we sent, copy to 'buf' */
1195 size_t SSL_get_finished(const SSL *s, void *buf, size_t count)
1196 {
1197 size_t ret = 0;
1198
1199 if (s->s3 != NULL) {
1200 ret = s->s3->tmp.finish_md_len;
1201 if (count > ret)
1202 count = ret;
1203 memcpy(buf, s->s3->tmp.finish_md, count);
1204 }
1205 return ret;
1206 }
1207
1208 /* return length of latest Finished message we expected, copy to 'buf' */
1209 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count)
1210 {
1211 size_t ret = 0;
1212
1213 if (s->s3 != NULL) {
1214 ret = s->s3->tmp.peer_finish_md_len;
1215 if (count > ret)
1216 count = ret;
1217 memcpy(buf, s->s3->tmp.peer_finish_md, count);
1218 }
1219 return ret;
1220 }
1221
1222 int SSL_get_verify_mode(const SSL *s)
1223 {
1224 return (s->verify_mode);
1225 }
1226
1227 int SSL_get_verify_depth(const SSL *s)
1228 {
1229 return X509_VERIFY_PARAM_get_depth(s->param);
1230 }
1231
1232 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) {
1233 return (s->verify_callback);
1234 }
1235
1236 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx)
1237 {
1238 return (ctx->verify_mode);
1239 }
1240
1241 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx)
1242 {
1243 return X509_VERIFY_PARAM_get_depth(ctx->param);
1244 }
1245
1246 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) {
1247 return (ctx->default_verify_callback);
1248 }
1249
1250 void SSL_set_verify(SSL *s, int mode,
1251 int (*callback) (int ok, X509_STORE_CTX *ctx))
1252 {
1253 s->verify_mode = mode;
1254 if (callback != NULL)
1255 s->verify_callback = callback;
1256 }
1257
1258 void SSL_set_verify_depth(SSL *s, int depth)
1259 {
1260 X509_VERIFY_PARAM_set_depth(s->param, depth);
1261 }
1262
1263 void SSL_set_read_ahead(SSL *s, int yes)
1264 {
1265 RECORD_LAYER_set_read_ahead(&s->rlayer, yes);
1266 }
1267
1268 int SSL_get_read_ahead(const SSL *s)
1269 {
1270 return RECORD_LAYER_get_read_ahead(&s->rlayer);
1271 }
1272
1273 int SSL_pending(const SSL *s)
1274 {
1275 size_t pending = s->method->ssl_pending(s);
1276
1277 /*
1278 * SSL_pending cannot work properly if read-ahead is enabled
1279 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is
1280 * impossible to fix since SSL_pending cannot report errors that may be
1281 * observed while scanning the new data. (Note that SSL_pending() is
1282 * often used as a boolean value, so we'd better not return -1.)
1283 *
1284 * SSL_pending also cannot work properly if the value >INT_MAX. In that case
1285 * we just return INT_MAX.
1286 */
1287 return pending < INT_MAX ? (int)pending : INT_MAX;
1288 }
1289
1290 int SSL_has_pending(const SSL *s)
1291 {
1292 /*
1293 * Similar to SSL_pending() but returns a 1 to indicate that we have
1294 * unprocessed data available or 0 otherwise (as opposed to the number of
1295 * bytes available). Unlike SSL_pending() this will take into account
1296 * read_ahead data. A 1 return simply indicates that we have unprocessed
1297 * data. That data may not result in any application data, or we may fail
1298 * to parse the records for some reason.
1299 */
1300 if (RECORD_LAYER_processed_read_pending(&s->rlayer))
1301 return 1;
1302
1303 return RECORD_LAYER_read_pending(&s->rlayer);
1304 }
1305
1306 X509 *SSL_get_peer_certificate(const SSL *s)
1307 {
1308 X509 *r;
1309
1310 if ((s == NULL) || (s->session == NULL))
1311 r = NULL;
1312 else
1313 r = s->session->peer;
1314
1315 if (r == NULL)
1316 return (r);
1317
1318 X509_up_ref(r);
1319
1320 return (r);
1321 }
1322
1323 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s)
1324 {
1325 STACK_OF(X509) *r;
1326
1327 if ((s == NULL) || (s->session == NULL))
1328 r = NULL;
1329 else
1330 r = s->session->peer_chain;
1331
1332 /*
1333 * If we are a client, cert_chain includes the peer's own certificate; if
1334 * we are a server, it does not.
1335 */
1336
1337 return (r);
1338 }
1339
1340 /*
1341 * Now in theory, since the calling process own 't' it should be safe to
1342 * modify. We need to be able to read f without being hassled
1343 */
1344 int SSL_copy_session_id(SSL *t, const SSL *f)
1345 {
1346 int i;
1347 /* Do we need to to SSL locking? */
1348 if (!SSL_set_session(t, SSL_get_session(f))) {
1349 return 0;
1350 }
1351
1352 /*
1353 * what if we are setup for one protocol version but want to talk another
1354 */
1355 if (t->method != f->method) {
1356 t->method->ssl_free(t);
1357 t->method = f->method;
1358 if (t->method->ssl_new(t) == 0)
1359 return 0;
1360 }
1361
1362 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock);
1363 ssl_cert_free(t->cert);
1364 t->cert = f->cert;
1365 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) {
1366 return 0;
1367 }
1368
1369 return 1;
1370 }
1371
1372 /* Fix this so it checks all the valid key/cert options */
1373 int SSL_CTX_check_private_key(const SSL_CTX *ctx)
1374 {
1375 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) {
1376 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1377 return (0);
1378 }
1379 if (ctx->cert->key->privatekey == NULL) {
1380 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1381 return (0);
1382 }
1383 return (X509_check_private_key
1384 (ctx->cert->key->x509, ctx->cert->key->privatekey));
1385 }
1386
1387 /* Fix this function so that it takes an optional type parameter */
1388 int SSL_check_private_key(const SSL *ssl)
1389 {
1390 if (ssl == NULL) {
1391 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER);
1392 return (0);
1393 }
1394 if (ssl->cert->key->x509 == NULL) {
1395 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1396 return (0);
1397 }
1398 if (ssl->cert->key->privatekey == NULL) {
1399 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1400 return (0);
1401 }
1402 return (X509_check_private_key(ssl->cert->key->x509,
1403 ssl->cert->key->privatekey));
1404 }
1405
1406 int SSL_waiting_for_async(SSL *s)
1407 {
1408 if (s->job)
1409 return 1;
1410
1411 return 0;
1412 }
1413
1414 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds)
1415 {
1416 ASYNC_WAIT_CTX *ctx = s->waitctx;
1417
1418 if (ctx == NULL)
1419 return 0;
1420 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds);
1421 }
1422
1423 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds,
1424 OSSL_ASYNC_FD *delfd, size_t *numdelfds)
1425 {
1426 ASYNC_WAIT_CTX *ctx = s->waitctx;
1427
1428 if (ctx == NULL)
1429 return 0;
1430 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd,
1431 numdelfds);
1432 }
1433
1434 int SSL_accept(SSL *s)
1435 {
1436 if (s->handshake_func == NULL) {
1437 /* Not properly initialized yet */
1438 SSL_set_accept_state(s);
1439 }
1440
1441 return SSL_do_handshake(s);
1442 }
1443
1444 int SSL_connect(SSL *s)
1445 {
1446 if (s->handshake_func == NULL) {
1447 /* Not properly initialized yet */
1448 SSL_set_connect_state(s);
1449 }
1450
1451 return SSL_do_handshake(s);
1452 }
1453
1454 long SSL_get_default_timeout(const SSL *s)
1455 {
1456 return (s->method->get_timeout());
1457 }
1458
1459 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args,
1460 int (*func) (void *))
1461 {
1462 int ret;
1463 if (s->waitctx == NULL) {
1464 s->waitctx = ASYNC_WAIT_CTX_new();
1465 if (s->waitctx == NULL)
1466 return -1;
1467 }
1468 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args,
1469 sizeof(struct ssl_async_args))) {
1470 case ASYNC_ERR:
1471 s->rwstate = SSL_NOTHING;
1472 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC);
1473 return -1;
1474 case ASYNC_PAUSE:
1475 s->rwstate = SSL_ASYNC_PAUSED;
1476 return -1;
1477 case ASYNC_NO_JOBS:
1478 s->rwstate = SSL_ASYNC_NO_JOBS;
1479 return -1;
1480 case ASYNC_FINISH:
1481 s->job = NULL;
1482 return ret;
1483 default:
1484 s->rwstate = SSL_NOTHING;
1485 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR);
1486 /* Shouldn't happen */
1487 return -1;
1488 }
1489 }
1490
1491 static int ssl_io_intern(void *vargs)
1492 {
1493 struct ssl_async_args *args;
1494 SSL *s;
1495 void *buf;
1496 size_t num;
1497
1498 args = (struct ssl_async_args *)vargs;
1499 s = args->s;
1500 buf = args->buf;
1501 num = args->num;
1502 switch (args->type) {
1503 case READFUNC:
1504 return args->f.func_read(s, buf, num, &s->asyncrw);
1505 case WRITEFUNC:
1506 return args->f.func_write(s, buf, num, &s->asyncrw);
1507 case OTHERFUNC:
1508 return args->f.func_other(s);
1509 }
1510 return -1;
1511 }
1512
1513 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1514 {
1515 if (s->handshake_func == NULL) {
1516 SSLerr(SSL_F_SSL_READ_INTERNAL, SSL_R_UNINITIALIZED);
1517 return -1;
1518 }
1519
1520 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1521 s->rwstate = SSL_NOTHING;
1522 return 0;
1523 }
1524
1525 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1526 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) {
1527 SSLerr(SSL_F_SSL_READ_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1528 return 0;
1529 }
1530 /*
1531 * If we are a client and haven't received the ServerHello etc then we
1532 * better do that
1533 */
1534 ossl_statem_check_finish_init(s, 0);
1535
1536 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1537 struct ssl_async_args args;
1538 int ret;
1539
1540 args.s = s;
1541 args.buf = buf;
1542 args.num = num;
1543 args.type = READFUNC;
1544 args.f.func_read = s->method->ssl_read;
1545
1546 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1547 *readbytes = s->asyncrw;
1548 return ret;
1549 } else {
1550 return s->method->ssl_read(s, buf, num, readbytes);
1551 }
1552 }
1553
1554 int SSL_read(SSL *s, void *buf, int num)
1555 {
1556 int ret;
1557 size_t readbytes;
1558
1559 if (num < 0) {
1560 SSLerr(SSL_F_SSL_READ, SSL_R_BAD_LENGTH);
1561 return -1;
1562 }
1563
1564 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes);
1565
1566 /*
1567 * The cast is safe here because ret should be <= INT_MAX because num is
1568 * <= INT_MAX
1569 */
1570 if (ret > 0)
1571 ret = (int)readbytes;
1572
1573 return ret;
1574 }
1575
1576 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1577 {
1578 int ret = ssl_read_internal(s, buf, num, readbytes);
1579
1580 if (ret < 0)
1581 ret = 0;
1582 return ret;
1583 }
1584
1585 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes)
1586 {
1587 int ret;
1588
1589 if (!s->server) {
1590 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1591 return SSL_READ_EARLY_DATA_ERROR;
1592 }
1593
1594 switch (s->early_data_state) {
1595 case SSL_EARLY_DATA_NONE:
1596 if (!SSL_in_before(s)) {
1597 SSLerr(SSL_F_SSL_READ_EARLY_DATA,
1598 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1599 return SSL_READ_EARLY_DATA_ERROR;
1600 }
1601 /* fall through */
1602
1603 case SSL_EARLY_DATA_ACCEPT_RETRY:
1604 s->early_data_state = SSL_EARLY_DATA_ACCEPTING;
1605 ret = SSL_accept(s);
1606 if (ret <= 0) {
1607 /* NBIO or error */
1608 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY;
1609 return SSL_READ_EARLY_DATA_ERROR;
1610 }
1611 /* fall through */
1612
1613 case SSL_EARLY_DATA_READ_RETRY:
1614 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) {
1615 s->early_data_state = SSL_EARLY_DATA_READING;
1616 ret = SSL_read_ex(s, buf, num, readbytes);
1617 /*
1618 * State machine will update early_data_state to
1619 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData
1620 * message
1621 */
1622 if (ret > 0 || (ret <= 0 && s->early_data_state
1623 != SSL_EARLY_DATA_FINISHED_READING)) {
1624 s->early_data_state = SSL_EARLY_DATA_READ_RETRY;
1625 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS
1626 : SSL_READ_EARLY_DATA_ERROR;
1627 }
1628 } else {
1629 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING;
1630 }
1631 *readbytes = 0;
1632 return SSL_READ_EARLY_DATA_FINISH;
1633
1634 default:
1635 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1636 return SSL_READ_EARLY_DATA_ERROR;
1637 }
1638 }
1639
1640 int SSL_get_early_data_status(const SSL *s)
1641 {
1642 return s->ext.early_data;
1643 }
1644
1645 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1646 {
1647 if (s->handshake_func == NULL) {
1648 SSLerr(SSL_F_SSL_PEEK_INTERNAL, SSL_R_UNINITIALIZED);
1649 return -1;
1650 }
1651
1652 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1653 return 0;
1654 }
1655 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1656 struct ssl_async_args args;
1657 int ret;
1658
1659 args.s = s;
1660 args.buf = buf;
1661 args.num = num;
1662 args.type = READFUNC;
1663 args.f.func_read = s->method->ssl_peek;
1664
1665 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1666 *readbytes = s->asyncrw;
1667 return ret;
1668 } else {
1669 return s->method->ssl_peek(s, buf, num, readbytes);
1670 }
1671 }
1672
1673 int SSL_peek(SSL *s, void *buf, int num)
1674 {
1675 int ret;
1676 size_t readbytes;
1677
1678 if (num < 0) {
1679 SSLerr(SSL_F_SSL_PEEK, SSL_R_BAD_LENGTH);
1680 return -1;
1681 }
1682
1683 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes);
1684
1685 /*
1686 * The cast is safe here because ret should be <= INT_MAX because num is
1687 * <= INT_MAX
1688 */
1689 if (ret > 0)
1690 ret = (int)readbytes;
1691
1692 return ret;
1693 }
1694
1695
1696 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1697 {
1698 int ret = ssl_peek_internal(s, buf, num, readbytes);
1699
1700 if (ret < 0)
1701 ret = 0;
1702 return ret;
1703 }
1704
1705 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written)
1706 {
1707 if (s->handshake_func == NULL) {
1708 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_UNINITIALIZED);
1709 return -1;
1710 }
1711
1712 if (s->shutdown & SSL_SENT_SHUTDOWN) {
1713 s->rwstate = SSL_NOTHING;
1714 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_PROTOCOL_IS_SHUTDOWN);
1715 return -1;
1716 }
1717
1718 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1719 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY
1720 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) {
1721 SSLerr(SSL_F_SSL_WRITE_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1722 return 0;
1723 }
1724 /* If we are a client and haven't sent the Finished we better do that */
1725 ossl_statem_check_finish_init(s, 1);
1726
1727 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1728 int ret;
1729 struct ssl_async_args args;
1730
1731 args.s = s;
1732 args.buf = (void *)buf;
1733 args.num = num;
1734 args.type = WRITEFUNC;
1735 args.f.func_write = s->method->ssl_write;
1736
1737 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1738 *written = s->asyncrw;
1739 return ret;
1740 } else {
1741 return s->method->ssl_write(s, buf, num, written);
1742 }
1743 }
1744
1745 int SSL_write(SSL *s, const void *buf, int num)
1746 {
1747 int ret;
1748 size_t written;
1749
1750 if (num < 0) {
1751 SSLerr(SSL_F_SSL_WRITE, SSL_R_BAD_LENGTH);
1752 return -1;
1753 }
1754
1755 ret = ssl_write_internal(s, buf, (size_t)num, &written);
1756
1757 /*
1758 * The cast is safe here because ret should be <= INT_MAX because num is
1759 * <= INT_MAX
1760 */
1761 if (ret > 0)
1762 ret = (int)written;
1763
1764 return ret;
1765 }
1766
1767 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written)
1768 {
1769 int ret = ssl_write_internal(s, buf, num, written);
1770
1771 if (ret < 0)
1772 ret = 0;
1773 return ret;
1774 }
1775
1776 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written)
1777 {
1778 int ret, early_data_state;
1779
1780 switch (s->early_data_state) {
1781 case SSL_EARLY_DATA_NONE:
1782 if (s->server
1783 || !SSL_in_before(s)
1784 || s->session == NULL
1785 || s->session->ext.max_early_data == 0) {
1786 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA,
1787 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1788 return 0;
1789 }
1790 /* fall through */
1791
1792 case SSL_EARLY_DATA_CONNECT_RETRY:
1793 s->early_data_state = SSL_EARLY_DATA_CONNECTING;
1794 ret = SSL_connect(s);
1795 if (ret <= 0) {
1796 /* NBIO or error */
1797 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY;
1798 return 0;
1799 }
1800 /* fall through */
1801
1802 case SSL_EARLY_DATA_WRITE_RETRY:
1803 s->early_data_state = SSL_EARLY_DATA_WRITING;
1804 ret = SSL_write_ex(s, buf, num, written);
1805 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
1806 return ret;
1807
1808 case SSL_EARLY_DATA_FINISHED_READING:
1809 case SSL_EARLY_DATA_READ_RETRY:
1810 early_data_state = s->early_data_state;
1811 /* We are a server writing to an unauthenticated client */
1812 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING;
1813 ret = SSL_write_ex(s, buf, num, written);
1814 s->early_data_state = early_data_state;
1815 return ret;
1816
1817 default:
1818 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1819 return 0;
1820 }
1821 }
1822
1823 int SSL_shutdown(SSL *s)
1824 {
1825 /*
1826 * Note that this function behaves differently from what one might
1827 * expect. Return values are 0 for no success (yet), 1 for success; but
1828 * calling it once is usually not enough, even if blocking I/O is used
1829 * (see ssl3_shutdown).
1830 */
1831
1832 if (s->handshake_func == NULL) {
1833 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED);
1834 return -1;
1835 }
1836
1837 if (!SSL_in_init(s)) {
1838 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1839 struct ssl_async_args args;
1840
1841 args.s = s;
1842 args.type = OTHERFUNC;
1843 args.f.func_other = s->method->ssl_shutdown;
1844
1845 return ssl_start_async_job(s, &args, ssl_io_intern);
1846 } else {
1847 return s->method->ssl_shutdown(s);
1848 }
1849 } else {
1850 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT);
1851 return -1;
1852 }
1853 }
1854
1855 int SSL_key_update(SSL *s, int updatetype)
1856 {
1857 /*
1858 * TODO(TLS1.3): How will applications know whether TLSv1.3 has been
1859 * negotiated, and that it is appropriate to call SSL_key_update() instead
1860 * of SSL_renegotiate().
1861 */
1862 if (!SSL_IS_TLS13(s)) {
1863 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_WRONG_SSL_VERSION);
1864 return 0;
1865 }
1866
1867 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED
1868 && updatetype != SSL_KEY_UPDATE_REQUESTED) {
1869 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_INVALID_KEY_UPDATE_TYPE);
1870 return 0;
1871 }
1872
1873 if (!SSL_is_init_finished(s)) {
1874 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_STILL_IN_INIT);
1875 return 0;
1876 }
1877
1878 ossl_statem_set_in_init(s, 1);
1879 s->key_update = updatetype;
1880 return 1;
1881 }
1882
1883 int SSL_get_key_update_type(SSL *s)
1884 {
1885 return s->key_update;
1886 }
1887
1888 int SSL_renegotiate(SSL *s)
1889 {
1890 if (SSL_IS_TLS13(s)) {
1891 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_WRONG_SSL_VERSION);
1892 return 0;
1893 }
1894
1895 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
1896 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_NO_RENEGOTIATION);
1897 return 0;
1898 }
1899
1900 s->renegotiate = 1;
1901 s->new_session = 1;
1902
1903 return (s->method->ssl_renegotiate(s));
1904 }
1905
1906 int SSL_renegotiate_abbreviated(SSL *s)
1907 {
1908 if (SSL_IS_TLS13(s)) {
1909 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_WRONG_SSL_VERSION);
1910 return 0;
1911 }
1912
1913 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
1914 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_NO_RENEGOTIATION);
1915 return 0;
1916 }
1917
1918 s->renegotiate = 1;
1919 s->new_session = 0;
1920
1921 return (s->method->ssl_renegotiate(s));
1922 }
1923
1924 int SSL_renegotiate_pending(SSL *s)
1925 {
1926 /*
1927 * becomes true when negotiation is requested; false again once a
1928 * handshake has finished
1929 */
1930 return (s->renegotiate != 0);
1931 }
1932
1933 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg)
1934 {
1935 long l;
1936
1937 switch (cmd) {
1938 case SSL_CTRL_GET_READ_AHEAD:
1939 return (RECORD_LAYER_get_read_ahead(&s->rlayer));
1940 case SSL_CTRL_SET_READ_AHEAD:
1941 l = RECORD_LAYER_get_read_ahead(&s->rlayer);
1942 RECORD_LAYER_set_read_ahead(&s->rlayer, larg);
1943 return (l);
1944
1945 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
1946 s->msg_callback_arg = parg;
1947 return 1;
1948
1949 case SSL_CTRL_MODE:
1950 return (s->mode |= larg);
1951 case SSL_CTRL_CLEAR_MODE:
1952 return (s->mode &= ~larg);
1953 case SSL_CTRL_GET_MAX_CERT_LIST:
1954 return (long)(s->max_cert_list);
1955 case SSL_CTRL_SET_MAX_CERT_LIST:
1956 if (larg < 0)
1957 return 0;
1958 l = (long)s->max_cert_list;
1959 s->max_cert_list = (size_t)larg;
1960 return l;
1961 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
1962 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
1963 return 0;
1964 s->max_send_fragment = larg;
1965 if (s->max_send_fragment < s->split_send_fragment)
1966 s->split_send_fragment = s->max_send_fragment;
1967 return 1;
1968 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
1969 if ((size_t)larg > s->max_send_fragment || larg == 0)
1970 return 0;
1971 s->split_send_fragment = larg;
1972 return 1;
1973 case SSL_CTRL_SET_MAX_PIPELINES:
1974 if (larg < 1 || larg > SSL_MAX_PIPELINES)
1975 return 0;
1976 s->max_pipelines = larg;
1977 if (larg > 1)
1978 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
1979 return 1;
1980 case SSL_CTRL_GET_RI_SUPPORT:
1981 if (s->s3)
1982 return s->s3->send_connection_binding;
1983 else
1984 return 0;
1985 case SSL_CTRL_CERT_FLAGS:
1986 return (s->cert->cert_flags |= larg);
1987 case SSL_CTRL_CLEAR_CERT_FLAGS:
1988 return (s->cert->cert_flags &= ~larg);
1989
1990 case SSL_CTRL_GET_RAW_CIPHERLIST:
1991 if (parg) {
1992 if (s->s3->tmp.ciphers_raw == NULL)
1993 return 0;
1994 *(unsigned char **)parg = s->s3->tmp.ciphers_raw;
1995 return (int)s->s3->tmp.ciphers_rawlen;
1996 } else {
1997 return TLS_CIPHER_LEN;
1998 }
1999 case SSL_CTRL_GET_EXTMS_SUPPORT:
2000 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s))
2001 return -1;
2002 if (s->session->flags & SSL_SESS_FLAG_EXTMS)
2003 return 1;
2004 else
2005 return 0;
2006 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2007 return ssl_set_version_bound(s->ctx->method->version, (int)larg,
2008 &s->min_proto_version);
2009 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2010 return ssl_set_version_bound(s->ctx->method->version, (int)larg,
2011 &s->max_proto_version);
2012 default:
2013 return (s->method->ssl_ctrl(s, cmd, larg, parg));
2014 }
2015 }
2016
2017 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
2018 {
2019 switch (cmd) {
2020 case SSL_CTRL_SET_MSG_CALLBACK:
2021 s->msg_callback = (void (*)
2022 (int write_p, int version, int content_type,
2023 const void *buf, size_t len, SSL *ssl,
2024 void *arg))(fp);
2025 return 1;
2026
2027 default:
2028 return (s->method->ssl_callback_ctrl(s, cmd, fp));
2029 }
2030 }
2031
2032 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx)
2033 {
2034 return ctx->sessions;
2035 }
2036
2037 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
2038 {
2039 long l;
2040 /* For some cases with ctx == NULL perform syntax checks */
2041 if (ctx == NULL) {
2042 switch (cmd) {
2043 #ifndef OPENSSL_NO_EC
2044 case SSL_CTRL_SET_GROUPS_LIST:
2045 return tls1_set_groups_list(NULL, NULL, parg);
2046 #endif
2047 case SSL_CTRL_SET_SIGALGS_LIST:
2048 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST:
2049 return tls1_set_sigalgs_list(NULL, parg, 0);
2050 default:
2051 return 0;
2052 }
2053 }
2054
2055 switch (cmd) {
2056 case SSL_CTRL_GET_READ_AHEAD:
2057 return (ctx->read_ahead);
2058 case SSL_CTRL_SET_READ_AHEAD:
2059 l = ctx->read_ahead;
2060 ctx->read_ahead = larg;
2061 return (l);
2062
2063 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2064 ctx->msg_callback_arg = parg;
2065 return 1;
2066
2067 case SSL_CTRL_GET_MAX_CERT_LIST:
2068 return (long)(ctx->max_cert_list);
2069 case SSL_CTRL_SET_MAX_CERT_LIST:
2070 if (larg < 0)
2071 return 0;
2072 l = (long)ctx->max_cert_list;
2073 ctx->max_cert_list = (size_t)larg;
2074 return l;
2075
2076 case SSL_CTRL_SET_SESS_CACHE_SIZE:
2077 if (larg < 0)
2078 return 0;
2079 l = (long)ctx->session_cache_size;
2080 ctx->session_cache_size = (size_t)larg;
2081 return l;
2082 case SSL_CTRL_GET_SESS_CACHE_SIZE:
2083 return (long)(ctx->session_cache_size);
2084 case SSL_CTRL_SET_SESS_CACHE_MODE:
2085 l = ctx->session_cache_mode;
2086 ctx->session_cache_mode = larg;
2087 return (l);
2088 case SSL_CTRL_GET_SESS_CACHE_MODE:
2089 return (ctx->session_cache_mode);
2090
2091 case SSL_CTRL_SESS_NUMBER:
2092 return (lh_SSL_SESSION_num_items(ctx->sessions));
2093 case SSL_CTRL_SESS_CONNECT:
2094 return (ctx->stats.sess_connect);
2095 case SSL_CTRL_SESS_CONNECT_GOOD:
2096 return (ctx->stats.sess_connect_good);
2097 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE:
2098 return (ctx->stats.sess_connect_renegotiate);
2099 case SSL_CTRL_SESS_ACCEPT:
2100 return (ctx->stats.sess_accept);
2101 case SSL_CTRL_SESS_ACCEPT_GOOD:
2102 return (ctx->stats.sess_accept_good);
2103 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE:
2104 return (ctx->stats.sess_accept_renegotiate);
2105 case SSL_CTRL_SESS_HIT:
2106 return (ctx->stats.sess_hit);
2107 case SSL_CTRL_SESS_CB_HIT:
2108 return (ctx->stats.sess_cb_hit);
2109 case SSL_CTRL_SESS_MISSES:
2110 return (ctx->stats.sess_miss);
2111 case SSL_CTRL_SESS_TIMEOUTS:
2112 return (ctx->stats.sess_timeout);
2113 case SSL_CTRL_SESS_CACHE_FULL:
2114 return (ctx->stats.sess_cache_full);
2115 case SSL_CTRL_MODE:
2116 return (ctx->mode |= larg);
2117 case SSL_CTRL_CLEAR_MODE:
2118 return (ctx->mode &= ~larg);
2119 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2120 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2121 return 0;
2122 ctx->max_send_fragment = larg;
2123 if (ctx->max_send_fragment < ctx->split_send_fragment)
2124 ctx->split_send_fragment = ctx->max_send_fragment;
2125 return 1;
2126 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2127 if ((size_t)larg > ctx->max_send_fragment || larg == 0)
2128 return 0;
2129 ctx->split_send_fragment = larg;
2130 return 1;
2131 case SSL_CTRL_SET_MAX_PIPELINES:
2132 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2133 return 0;
2134 ctx->max_pipelines = larg;
2135 return 1;
2136 case SSL_CTRL_CERT_FLAGS:
2137 return (ctx->cert->cert_flags |= larg);
2138 case SSL_CTRL_CLEAR_CERT_FLAGS:
2139 return (ctx->cert->cert_flags &= ~larg);
2140 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2141 return ssl_set_version_bound(ctx->method->version, (int)larg,
2142 &ctx->min_proto_version);
2143 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2144 return ssl_set_version_bound(ctx->method->version, (int)larg,
2145 &ctx->max_proto_version);
2146 default:
2147 return (ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg));
2148 }
2149 }
2150
2151 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
2152 {
2153 switch (cmd) {
2154 case SSL_CTRL_SET_MSG_CALLBACK:
2155 ctx->msg_callback = (void (*)
2156 (int write_p, int version, int content_type,
2157 const void *buf, size_t len, SSL *ssl,
2158 void *arg))(fp);
2159 return 1;
2160
2161 default:
2162 return (ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp));
2163 }
2164 }
2165
2166 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b)
2167 {
2168 if (a->id > b->id)
2169 return 1;
2170 if (a->id < b->id)
2171 return -1;
2172 return 0;
2173 }
2174
2175 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap,
2176 const SSL_CIPHER *const *bp)
2177 {
2178 if ((*ap)->id > (*bp)->id)
2179 return 1;
2180 if ((*ap)->id < (*bp)->id)
2181 return -1;
2182 return 0;
2183 }
2184
2185 /** return a STACK of the ciphers available for the SSL and in order of
2186 * preference */
2187 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s)
2188 {
2189 if (s != NULL) {
2190 if (s->cipher_list != NULL) {
2191 return (s->cipher_list);
2192 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) {
2193 return (s->ctx->cipher_list);
2194 }
2195 }
2196 return (NULL);
2197 }
2198
2199 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s)
2200 {
2201 if ((s == NULL) || (s->session == NULL) || !s->server)
2202 return NULL;
2203 return s->session->ciphers;
2204 }
2205
2206 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s)
2207 {
2208 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers;
2209 int i;
2210 ciphers = SSL_get_ciphers(s);
2211 if (!ciphers)
2212 return NULL;
2213 ssl_set_client_disabled(s);
2214 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
2215 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i);
2216 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) {
2217 if (!sk)
2218 sk = sk_SSL_CIPHER_new_null();
2219 if (!sk)
2220 return NULL;
2221 if (!sk_SSL_CIPHER_push(sk, c)) {
2222 sk_SSL_CIPHER_free(sk);
2223 return NULL;
2224 }
2225 }
2226 }
2227 return sk;
2228 }
2229
2230 /** return a STACK of the ciphers available for the SSL and in order of
2231 * algorithm id */
2232 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s)
2233 {
2234 if (s != NULL) {
2235 if (s->cipher_list_by_id != NULL) {
2236 return (s->cipher_list_by_id);
2237 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) {
2238 return (s->ctx->cipher_list_by_id);
2239 }
2240 }
2241 return (NULL);
2242 }
2243
2244 /** The old interface to get the same thing as SSL_get_ciphers() */
2245 const char *SSL_get_cipher_list(const SSL *s, int n)
2246 {
2247 const SSL_CIPHER *c;
2248 STACK_OF(SSL_CIPHER) *sk;
2249
2250 if (s == NULL)
2251 return (NULL);
2252 sk = SSL_get_ciphers(s);
2253 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n))
2254 return (NULL);
2255 c = sk_SSL_CIPHER_value(sk, n);
2256 if (c == NULL)
2257 return (NULL);
2258 return (c->name);
2259 }
2260
2261 /** return a STACK of the ciphers available for the SSL_CTX and in order of
2262 * preference */
2263 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx)
2264 {
2265 if (ctx != NULL)
2266 return ctx->cipher_list;
2267 return NULL;
2268 }
2269
2270 /** specify the ciphers to be used by default by the SSL_CTX */
2271 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)
2272 {
2273 STACK_OF(SSL_CIPHER) *sk;
2274
2275 sk = ssl_create_cipher_list(ctx->method, &ctx->cipher_list,
2276 &ctx->cipher_list_by_id, str, ctx->cert);
2277 /*
2278 * ssl_create_cipher_list may return an empty stack if it was unable to
2279 * find a cipher matching the given rule string (for example if the rule
2280 * string specifies a cipher which has been disabled). This is not an
2281 * error as far as ssl_create_cipher_list is concerned, and hence
2282 * ctx->cipher_list and ctx->cipher_list_by_id has been updated.
2283 */
2284 if (sk == NULL)
2285 return 0;
2286 else if (sk_SSL_CIPHER_num(sk) == 0) {
2287 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2288 return 0;
2289 }
2290 return 1;
2291 }
2292
2293 /** specify the ciphers to be used by the SSL */
2294 int SSL_set_cipher_list(SSL *s, const char *str)
2295 {
2296 STACK_OF(SSL_CIPHER) *sk;
2297
2298 sk = ssl_create_cipher_list(s->ctx->method, &s->cipher_list,
2299 &s->cipher_list_by_id, str, s->cert);
2300 /* see comment in SSL_CTX_set_cipher_list */
2301 if (sk == NULL)
2302 return 0;
2303 else if (sk_SSL_CIPHER_num(sk) == 0) {
2304 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2305 return 0;
2306 }
2307 return 1;
2308 }
2309
2310 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int len)
2311 {
2312 char *p;
2313 STACK_OF(SSL_CIPHER) *sk;
2314 const SSL_CIPHER *c;
2315 int i;
2316
2317 if ((s->session == NULL) || (s->session->ciphers == NULL) || (len < 2))
2318 return (NULL);
2319
2320 p = buf;
2321 sk = s->session->ciphers;
2322
2323 if (sk_SSL_CIPHER_num(sk) == 0)
2324 return NULL;
2325
2326 for (i = 0; i < sk_SSL_CIPHER_num(sk); i++) {
2327 int n;
2328
2329 c = sk_SSL_CIPHER_value(sk, i);
2330 n = strlen(c->name);
2331 if (n + 1 > len) {
2332 if (p != buf)
2333 --p;
2334 *p = '\0';
2335 return buf;
2336 }
2337 memcpy(p, c->name, n + 1);
2338 p += n;
2339 *(p++) = ':';
2340 len -= n + 1;
2341 }
2342 p[-1] = '\0';
2343 return (buf);
2344 }
2345
2346 /** return a servername extension value if provided in Client Hello, or NULL.
2347 * So far, only host_name types are defined (RFC 3546).
2348 */
2349
2350 const char *SSL_get_servername(const SSL *s, const int type)
2351 {
2352 if (type != TLSEXT_NAMETYPE_host_name)
2353 return NULL;
2354
2355 return s->session && !s->ext.hostname ?
2356 s->session->ext.hostname : s->ext.hostname;
2357 }
2358
2359 int SSL_get_servername_type(const SSL *s)
2360 {
2361 if (s->session
2362 && (!s->ext.hostname ? s->session->
2363 ext.hostname : s->ext.hostname))
2364 return TLSEXT_NAMETYPE_host_name;
2365 return -1;
2366 }
2367
2368 /*
2369 * SSL_select_next_proto implements the standard protocol selection. It is
2370 * expected that this function is called from the callback set by
2371 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a
2372 * vector of 8-bit, length prefixed byte strings. The length byte itself is
2373 * not included in the length. A byte string of length 0 is invalid. No byte
2374 * string may be truncated. The current, but experimental algorithm for
2375 * selecting the protocol is: 1) If the server doesn't support NPN then this
2376 * is indicated to the callback. In this case, the client application has to
2377 * abort the connection or have a default application level protocol. 2) If
2378 * the server supports NPN, but advertises an empty list then the client
2379 * selects the first protocol in its list, but indicates via the API that this
2380 * fallback case was enacted. 3) Otherwise, the client finds the first
2381 * protocol in the server's list that it supports and selects this protocol.
2382 * This is because it's assumed that the server has better information about
2383 * which protocol a client should use. 4) If the client doesn't support any
2384 * of the server's advertised protocols, then this is treated the same as
2385 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was
2386 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
2387 */
2388 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen,
2389 const unsigned char *server,
2390 unsigned int server_len,
2391 const unsigned char *client, unsigned int client_len)
2392 {
2393 unsigned int i, j;
2394 const unsigned char *result;
2395 int status = OPENSSL_NPN_UNSUPPORTED;
2396
2397 /*
2398 * For each protocol in server preference order, see if we support it.
2399 */
2400 for (i = 0; i < server_len;) {
2401 for (j = 0; j < client_len;) {
2402 if (server[i] == client[j] &&
2403 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
2404 /* We found a match */
2405 result = &server[i];
2406 status = OPENSSL_NPN_NEGOTIATED;
2407 goto found;
2408 }
2409 j += client[j];
2410 j++;
2411 }
2412 i += server[i];
2413 i++;
2414 }
2415
2416 /* There's no overlap between our protocols and the server's list. */
2417 result = client;
2418 status = OPENSSL_NPN_NO_OVERLAP;
2419
2420 found:
2421 *out = (unsigned char *)result + 1;
2422 *outlen = result[0];
2423 return status;
2424 }
2425
2426 #ifndef OPENSSL_NO_NEXTPROTONEG
2427 /*
2428 * SSL_get0_next_proto_negotiated sets *data and *len to point to the
2429 * client's requested protocol for this connection and returns 0. If the
2430 * client didn't request any protocol, then *data is set to NULL. Note that
2431 * the client can request any protocol it chooses. The value returned from
2432 * this function need not be a member of the list of supported protocols
2433 * provided by the callback.
2434 */
2435 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data,
2436 unsigned *len)
2437 {
2438 *data = s->ext.npn;
2439 if (!*data) {
2440 *len = 0;
2441 } else {
2442 *len = (unsigned int)s->ext.npn_len;
2443 }
2444 }
2445
2446 /*
2447 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when
2448 * a TLS server needs a list of supported protocols for Next Protocol
2449 * Negotiation. The returned list must be in wire format. The list is
2450 * returned by setting |out| to point to it and |outlen| to its length. This
2451 * memory will not be modified, but one should assume that the SSL* keeps a
2452 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it
2453 * wishes to advertise. Otherwise, no such extension will be included in the
2454 * ServerHello.
2455 */
2456 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx,
2457 SSL_CTX_npn_advertised_cb_func cb,
2458 void *arg)
2459 {
2460 ctx->ext.npn_advertised_cb = cb;
2461 ctx->ext.npn_advertised_cb_arg = arg;
2462 }
2463
2464 /*
2465 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
2466 * client needs to select a protocol from the server's provided list. |out|
2467 * must be set to point to the selected protocol (which may be within |in|).
2468 * The length of the protocol name must be written into |outlen|. The
2469 * server's advertised protocols are provided in |in| and |inlen|. The
2470 * callback can assume that |in| is syntactically valid. The client must
2471 * select a protocol. It is fatal to the connection if this callback returns
2472 * a value other than SSL_TLSEXT_ERR_OK.
2473 */
2474 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx,
2475 SSL_CTX_npn_select_cb_func cb,
2476 void *arg)
2477 {
2478 ctx->ext.npn_select_cb = cb;
2479 ctx->ext.npn_select_cb_arg = arg;
2480 }
2481 #endif
2482
2483 /*
2484 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|.
2485 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2486 * length-prefixed strings). Returns 0 on success.
2487 */
2488 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos,
2489 unsigned int protos_len)
2490 {
2491 OPENSSL_free(ctx->ext.alpn);
2492 ctx->ext.alpn = OPENSSL_memdup(protos, protos_len);
2493 if (ctx->ext.alpn == NULL) {
2494 SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2495 return 1;
2496 }
2497 ctx->ext.alpn_len = protos_len;
2498
2499 return 0;
2500 }
2501
2502 /*
2503 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|.
2504 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2505 * length-prefixed strings). Returns 0 on success.
2506 */
2507 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos,
2508 unsigned int protos_len)
2509 {
2510 OPENSSL_free(ssl->ext.alpn);
2511 ssl->ext.alpn = OPENSSL_memdup(protos, protos_len);
2512 if (ssl->ext.alpn == NULL) {
2513 SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2514 return 1;
2515 }
2516 ssl->ext.alpn_len = protos_len;
2517
2518 return 0;
2519 }
2520
2521 /*
2522 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is
2523 * called during ClientHello processing in order to select an ALPN protocol
2524 * from the client's list of offered protocols.
2525 */
2526 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
2527 SSL_CTX_alpn_select_cb_func cb,
2528 void *arg)
2529 {
2530 ctx->ext.alpn_select_cb = cb;
2531 ctx->ext.alpn_select_cb_arg = arg;
2532 }
2533
2534 /*
2535 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|.
2536 * On return it sets |*data| to point to |*len| bytes of protocol name
2537 * (not including the leading length-prefix byte). If the server didn't
2538 * respond with a negotiated protocol then |*len| will be zero.
2539 */
2540 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data,
2541 unsigned int *len)
2542 {
2543 *data = NULL;
2544 if (ssl->s3)
2545 *data = ssl->s3->alpn_selected;
2546 if (*data == NULL)
2547 *len = 0;
2548 else
2549 *len = (unsigned int)ssl->s3->alpn_selected_len;
2550 }
2551
2552 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
2553 const char *label, size_t llen,
2554 const unsigned char *p, size_t plen,
2555 int use_context)
2556 {
2557 if (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER)
2558 return -1;
2559
2560 return s->method->ssl3_enc->export_keying_material(s, out, olen, label,
2561 llen, p, plen,
2562 use_context);
2563 }
2564
2565 static unsigned long ssl_session_hash(const SSL_SESSION *a)
2566 {
2567 const unsigned char *session_id = a->session_id;
2568 unsigned long l;
2569 unsigned char tmp_storage[4];
2570
2571 if (a->session_id_length < sizeof(tmp_storage)) {
2572 memset(tmp_storage, 0, sizeof(tmp_storage));
2573 memcpy(tmp_storage, a->session_id, a->session_id_length);
2574 session_id = tmp_storage;
2575 }
2576
2577 l = (unsigned long)
2578 ((unsigned long)session_id[0]) |
2579 ((unsigned long)session_id[1] << 8L) |
2580 ((unsigned long)session_id[2] << 16L) |
2581 ((unsigned long)session_id[3] << 24L);
2582 return (l);
2583 }
2584
2585 /*
2586 * NB: If this function (or indeed the hash function which uses a sort of
2587 * coarser function than this one) is changed, ensure
2588 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on
2589 * being able to construct an SSL_SESSION that will collide with any existing
2590 * session with a matching session ID.
2591 */
2592 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b)
2593 {
2594 if (a->ssl_version != b->ssl_version)
2595 return (1);
2596 if (a->session_id_length != b->session_id_length)
2597 return (1);
2598 return (memcmp(a->session_id, b->session_id, a->session_id_length));
2599 }
2600
2601 /*
2602 * These wrapper functions should remain rather than redeclaring
2603 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each
2604 * variable. The reason is that the functions aren't static, they're exposed
2605 * via ssl.h.
2606 */
2607
2608 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth)
2609 {
2610 SSL_CTX *ret = NULL;
2611
2612 if (meth == NULL) {
2613 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED);
2614 return (NULL);
2615 }
2616
2617 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL))
2618 return NULL;
2619
2620 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
2621 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
2622 goto err;
2623 }
2624 ret = OPENSSL_zalloc(sizeof(*ret));
2625 if (ret == NULL)
2626 goto err;
2627
2628 ret->method = meth;
2629 ret->min_proto_version = 0;
2630 ret->max_proto_version = 0;
2631 ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
2632 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
2633 /* We take the system default. */
2634 ret->session_timeout = meth->get_timeout();
2635 ret->references = 1;
2636 ret->lock = CRYPTO_THREAD_lock_new();
2637 if (ret->lock == NULL) {
2638 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2639 OPENSSL_free(ret);
2640 return NULL;
2641 }
2642 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
2643 ret->verify_mode = SSL_VERIFY_NONE;
2644 if ((ret->cert = ssl_cert_new()) == NULL)
2645 goto err;
2646
2647 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
2648 if (ret->sessions == NULL)
2649 goto err;
2650 ret->cert_store = X509_STORE_new();
2651 if (ret->cert_store == NULL)
2652 goto err;
2653 #ifndef OPENSSL_NO_CT
2654 ret->ctlog_store = CTLOG_STORE_new();
2655 if (ret->ctlog_store == NULL)
2656 goto err;
2657 #endif
2658 if (!ssl_create_cipher_list(ret->method,
2659 &ret->cipher_list, &ret->cipher_list_by_id,
2660 SSL_DEFAULT_CIPHER_LIST, ret->cert)
2661 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) {
2662 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS);
2663 goto err2;
2664 }
2665
2666 ret->param = X509_VERIFY_PARAM_new();
2667 if (ret->param == NULL)
2668 goto err;
2669
2670 if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) {
2671 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES);
2672 goto err2;
2673 }
2674 if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) {
2675 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES);
2676 goto err2;
2677 }
2678
2679 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL)
2680 goto err;
2681
2682 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data))
2683 goto err;
2684
2685 /* No compression for DTLS */
2686 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS))
2687 ret->comp_methods = SSL_COMP_get_compression_methods();
2688
2689 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2690 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2691
2692 /* Setup RFC5077 ticket keys */
2693 if ((RAND_bytes(ret->ext.tick_key_name,
2694 sizeof(ret->ext.tick_key_name)) <= 0)
2695 || (RAND_bytes(ret->ext.tick_hmac_key,
2696 sizeof(ret->ext.tick_hmac_key)) <= 0)
2697 || (RAND_bytes(ret->ext.tick_aes_key,
2698 sizeof(ret->ext.tick_aes_key)) <= 0))
2699 ret->options |= SSL_OP_NO_TICKET;
2700
2701 #ifndef OPENSSL_NO_SRP
2702 if (!SSL_CTX_SRP_CTX_init(ret))
2703 goto err;
2704 #endif
2705 #ifndef OPENSSL_NO_ENGINE
2706 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO
2707 # define eng_strx(x) #x
2708 # define eng_str(x) eng_strx(x)
2709 /* Use specific client engine automatically... ignore errors */
2710 {
2711 ENGINE *eng;
2712 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2713 if (!eng) {
2714 ERR_clear_error();
2715 ENGINE_load_builtin_engines();
2716 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2717 }
2718 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng))
2719 ERR_clear_error();
2720 }
2721 # endif
2722 #endif
2723 /*
2724 * Default is to connect to non-RI servers. When RI is more widely
2725 * deployed might change this.
2726 */
2727 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT;
2728 /*
2729 * Disable compression by default to prevent CRIME. Applications can
2730 * re-enable compression by configuring
2731 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION);
2732 * or by using the SSL_CONF library.
2733 */
2734 ret->options |= SSL_OP_NO_COMPRESSION;
2735
2736 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing;
2737
2738 /*
2739 * Default max early data is a fully loaded single record. Could be split
2740 * across multiple records in practice
2741 */
2742 ret->max_early_data = SSL3_RT_MAX_PLAIN_LENGTH;
2743
2744 return ret;
2745 err:
2746 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2747 err2:
2748 SSL_CTX_free(ret);
2749 return NULL;
2750 }
2751
2752 int SSL_CTX_up_ref(SSL_CTX *ctx)
2753 {
2754 int i;
2755
2756 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0)
2757 return 0;
2758
2759 REF_PRINT_COUNT("SSL_CTX", ctx);
2760 REF_ASSERT_ISNT(i < 2);
2761 return ((i > 1) ? 1 : 0);
2762 }
2763
2764 void SSL_CTX_free(SSL_CTX *a)
2765 {
2766 int i;
2767
2768 if (a == NULL)
2769 return;
2770
2771 CRYPTO_DOWN_REF(&a->references, &i, a->lock);
2772 REF_PRINT_COUNT("SSL_CTX", a);
2773 if (i > 0)
2774 return;
2775 REF_ASSERT_ISNT(i < 0);
2776
2777 X509_VERIFY_PARAM_free(a->param);
2778 dane_ctx_final(&a->dane);
2779
2780 /*
2781 * Free internal session cache. However: the remove_cb() may reference
2782 * the ex_data of SSL_CTX, thus the ex_data store can only be removed
2783 * after the sessions were flushed.
2784 * As the ex_data handling routines might also touch the session cache,
2785 * the most secure solution seems to be: empty (flush) the cache, then
2786 * free ex_data, then finally free the cache.
2787 * (See ticket [openssl.org #212].)
2788 */
2789 if (a->sessions != NULL)
2790 SSL_CTX_flush_sessions(a, 0);
2791
2792 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data);
2793 lh_SSL_SESSION_free(a->sessions);
2794 X509_STORE_free(a->cert_store);
2795 #ifndef OPENSSL_NO_CT
2796 CTLOG_STORE_free(a->ctlog_store);
2797 #endif
2798 sk_SSL_CIPHER_free(a->cipher_list);
2799 sk_SSL_CIPHER_free(a->cipher_list_by_id);
2800 ssl_cert_free(a->cert);
2801 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free);
2802 sk_X509_pop_free(a->extra_certs, X509_free);
2803 a->comp_methods = NULL;
2804 #ifndef OPENSSL_NO_SRTP
2805 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles);
2806 #endif
2807 #ifndef OPENSSL_NO_SRP
2808 SSL_CTX_SRP_CTX_free(a);
2809 #endif
2810 #ifndef OPENSSL_NO_ENGINE
2811 ENGINE_finish(a->client_cert_engine);
2812 #endif
2813
2814 #ifndef OPENSSL_NO_EC
2815 OPENSSL_free(a->ext.ecpointformats);
2816 OPENSSL_free(a->ext.supportedgroups);
2817 #endif
2818 OPENSSL_free(a->ext.alpn);
2819
2820 CRYPTO_THREAD_lock_free(a->lock);
2821
2822 OPENSSL_free(a);
2823 }
2824
2825 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb)
2826 {
2827 ctx->default_passwd_callback = cb;
2828 }
2829
2830 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u)
2831 {
2832 ctx->default_passwd_callback_userdata = u;
2833 }
2834
2835 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx)
2836 {
2837 return ctx->default_passwd_callback;
2838 }
2839
2840 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx)
2841 {
2842 return ctx->default_passwd_callback_userdata;
2843 }
2844
2845 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb)
2846 {
2847 s->default_passwd_callback = cb;
2848 }
2849
2850 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u)
2851 {
2852 s->default_passwd_callback_userdata = u;
2853 }
2854
2855 pem_password_cb *SSL_get_default_passwd_cb(SSL *s)
2856 {
2857 return s->default_passwd_callback;
2858 }
2859
2860 void *SSL_get_default_passwd_cb_userdata(SSL *s)
2861 {
2862 return s->default_passwd_callback_userdata;
2863 }
2864
2865 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
2866 int (*cb) (X509_STORE_CTX *, void *),
2867 void *arg)
2868 {
2869 ctx->app_verify_callback = cb;
2870 ctx->app_verify_arg = arg;
2871 }
2872
2873 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
2874 int (*cb) (int, X509_STORE_CTX *))
2875 {
2876 ctx->verify_mode = mode;
2877 ctx->default_verify_callback = cb;
2878 }
2879
2880 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth)
2881 {
2882 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
2883 }
2884
2885 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg)
2886 {
2887 ssl_cert_set_cert_cb(c->cert, cb, arg);
2888 }
2889
2890 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg)
2891 {
2892 ssl_cert_set_cert_cb(s->cert, cb, arg);
2893 }
2894
2895 void ssl_set_masks(SSL *s)
2896 {
2897 CERT *c = s->cert;
2898 uint32_t *pvalid = s->s3->tmp.valid_flags;
2899 int rsa_enc, rsa_sign, dh_tmp, dsa_sign;
2900 unsigned long mask_k, mask_a;
2901 #ifndef OPENSSL_NO_EC
2902 int have_ecc_cert, ecdsa_ok;
2903 #endif
2904 if (c == NULL)
2905 return;
2906
2907 #ifndef OPENSSL_NO_DH
2908 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto);
2909 #else
2910 dh_tmp = 0;
2911 #endif
2912
2913 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
2914 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
2915 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID;
2916 #ifndef OPENSSL_NO_EC
2917 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID;
2918 #endif
2919 mask_k = 0;
2920 mask_a = 0;
2921
2922 #ifdef CIPHER_DEBUG
2923 fprintf(stderr, "dht=%d re=%d rs=%d ds=%d\n",
2924 dh_tmp, rsa_enc, rsa_sign, dsa_sign);
2925 #endif
2926
2927 #ifndef OPENSSL_NO_GOST
2928 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) {
2929 mask_k |= SSL_kGOST;
2930 mask_a |= SSL_aGOST12;
2931 }
2932 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) {
2933 mask_k |= SSL_kGOST;
2934 mask_a |= SSL_aGOST12;
2935 }
2936 if (ssl_has_cert(s, SSL_PKEY_GOST01)) {
2937 mask_k |= SSL_kGOST;
2938 mask_a |= SSL_aGOST01;
2939 }
2940 #endif
2941
2942 if (rsa_enc)
2943 mask_k |= SSL_kRSA;
2944
2945 if (dh_tmp)
2946 mask_k |= SSL_kDHE;
2947
2948 if (rsa_enc || rsa_sign) {
2949 mask_a |= SSL_aRSA;
2950 }
2951
2952 if (dsa_sign) {
2953 mask_a |= SSL_aDSS;
2954 }
2955
2956 mask_a |= SSL_aNULL;
2957
2958 /*
2959 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites
2960 * depending on the key usage extension.
2961 */
2962 #ifndef OPENSSL_NO_EC
2963 if (have_ecc_cert) {
2964 uint32_t ex_kusage;
2965 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509);
2966 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE;
2967 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN))
2968 ecdsa_ok = 0;
2969 if (ecdsa_ok)
2970 mask_a |= SSL_aECDSA;
2971 }
2972 #endif
2973
2974 #ifndef OPENSSL_NO_EC
2975 mask_k |= SSL_kECDHE;
2976 #endif
2977
2978 #ifndef OPENSSL_NO_PSK
2979 mask_k |= SSL_kPSK;
2980 mask_a |= SSL_aPSK;
2981 if (mask_k & SSL_kRSA)
2982 mask_k |= SSL_kRSAPSK;
2983 if (mask_k & SSL_kDHE)
2984 mask_k |= SSL_kDHEPSK;
2985 if (mask_k & SSL_kECDHE)
2986 mask_k |= SSL_kECDHEPSK;
2987 #endif
2988
2989 s->s3->tmp.mask_k = mask_k;
2990 s->s3->tmp.mask_a = mask_a;
2991 }
2992
2993 #ifndef OPENSSL_NO_EC
2994
2995 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s)
2996 {
2997 if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aECDSA) {
2998 /* key usage, if present, must allow signing */
2999 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) {
3000 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG,
3001 SSL_R_ECC_CERT_NOT_FOR_SIGNING);
3002 return 0;
3003 }
3004 }
3005 return 1; /* all checks are ok */
3006 }
3007
3008 #endif
3009
3010 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo,
3011 size_t *serverinfo_length)
3012 {
3013 CERT_PKEY *cpk = s->s3->tmp.cert;
3014 *serverinfo_length = 0;
3015
3016 if (cpk == NULL || cpk->serverinfo == NULL)
3017 return 0;
3018
3019 *serverinfo = cpk->serverinfo;
3020 *serverinfo_length = cpk->serverinfo_length;
3021 return 1;
3022 }
3023
3024 void ssl_update_cache(SSL *s, int mode)
3025 {
3026 int i;
3027
3028 /*
3029 * If the session_id_length is 0, we are not supposed to cache it, and it
3030 * would be rather hard to do anyway :-)
3031 */
3032 if (s->session->session_id_length == 0)
3033 return;
3034
3035 i = s->session_ctx->session_cache_mode;
3036 if ((i & mode) && (!s->hit)
3037 && ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE)
3038 || SSL_CTX_add_session(s->session_ctx, s->session))
3039 && (s->session_ctx->new_session_cb != NULL)) {
3040 SSL_SESSION_up_ref(s->session);
3041 if (!s->session_ctx->new_session_cb(s, s->session))
3042 SSL_SESSION_free(s->session);
3043 }
3044
3045 /* auto flush every 255 connections */
3046 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) {
3047 if ((((mode & SSL_SESS_CACHE_CLIENT)
3048 ? s->session_ctx->stats.sess_connect_good
3049 : s->session_ctx->stats.sess_accept_good) & 0xff) == 0xff) {
3050 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL));
3051 }
3052 }
3053 }
3054
3055 const SSL_METHOD *SSL_CTX_get_ssl_method(SSL_CTX *ctx)
3056 {
3057 return ctx->method;
3058 }
3059
3060 const SSL_METHOD *SSL_get_ssl_method(SSL *s)
3061 {
3062 return (s->method);
3063 }
3064
3065 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth)
3066 {
3067 int ret = 1;
3068
3069 if (s->method != meth) {
3070 const SSL_METHOD *sm = s->method;
3071 int (*hf) (SSL *) = s->handshake_func;
3072
3073 if (sm->version == meth->version)
3074 s->method = meth;
3075 else {
3076 sm->ssl_free(s);
3077 s->method = meth;
3078 ret = s->method->ssl_new(s);
3079 }
3080
3081 if (hf == sm->ssl_connect)
3082 s->handshake_func = meth->ssl_connect;
3083 else if (hf == sm->ssl_accept)
3084 s->handshake_func = meth->ssl_accept;
3085 }
3086 return (ret);
3087 }
3088
3089 int SSL_get_error(const SSL *s, int i)
3090 {
3091 int reason;
3092 unsigned long l;
3093 BIO *bio;
3094
3095 if (i > 0)
3096 return (SSL_ERROR_NONE);
3097
3098 /*
3099 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
3100 * where we do encode the error
3101 */
3102 if ((l = ERR_peek_error()) != 0) {
3103 if (ERR_GET_LIB(l) == ERR_LIB_SYS)
3104 return (SSL_ERROR_SYSCALL);
3105 else
3106 return (SSL_ERROR_SSL);
3107 }
3108
3109 if (SSL_want_read(s)) {
3110 bio = SSL_get_rbio(s);
3111 if (BIO_should_read(bio))
3112 return (SSL_ERROR_WANT_READ);
3113 else if (BIO_should_write(bio))
3114 /*
3115 * This one doesn't make too much sense ... We never try to write
3116 * to the rbio, and an application program where rbio and wbio
3117 * are separate couldn't even know what it should wait for.
3118 * However if we ever set s->rwstate incorrectly (so that we have
3119 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and
3120 * wbio *are* the same, this test works around that bug; so it
3121 * might be safer to keep it.
3122 */
3123 return (SSL_ERROR_WANT_WRITE);
3124 else if (BIO_should_io_special(bio)) {
3125 reason = BIO_get_retry_reason(bio);
3126 if (reason == BIO_RR_CONNECT)
3127 return (SSL_ERROR_WANT_CONNECT);
3128 else if (reason == BIO_RR_ACCEPT)
3129 return (SSL_ERROR_WANT_ACCEPT);
3130 else
3131 return (SSL_ERROR_SYSCALL); /* unknown */
3132 }
3133 }
3134
3135 if (SSL_want_write(s)) {
3136 /* Access wbio directly - in order to use the buffered bio if present */
3137 bio = s->wbio;
3138 if (BIO_should_write(bio))
3139 return (SSL_ERROR_WANT_WRITE);
3140 else if (BIO_should_read(bio))
3141 /*
3142 * See above (SSL_want_read(s) with BIO_should_write(bio))
3143 */
3144 return (SSL_ERROR_WANT_READ);
3145 else if (BIO_should_io_special(bio)) {
3146 reason = BIO_get_retry_reason(bio);
3147 if (reason == BIO_RR_CONNECT)
3148 return (SSL_ERROR_WANT_CONNECT);
3149 else if (reason == BIO_RR_ACCEPT)
3150 return (SSL_ERROR_WANT_ACCEPT);
3151 else
3152 return (SSL_ERROR_SYSCALL);
3153 }
3154 }
3155 if (SSL_want_x509_lookup(s))
3156 return (SSL_ERROR_WANT_X509_LOOKUP);
3157 if (SSL_want_async(s))
3158 return SSL_ERROR_WANT_ASYNC;
3159 if (SSL_want_async_job(s))
3160 return SSL_ERROR_WANT_ASYNC_JOB;
3161 if (SSL_want_early(s))
3162 return SSL_ERROR_WANT_EARLY;
3163
3164 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
3165 (s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY))
3166 return (SSL_ERROR_ZERO_RETURN);
3167
3168 return (SSL_ERROR_SYSCALL);
3169 }
3170
3171 static int ssl_do_handshake_intern(void *vargs)
3172 {
3173 struct ssl_async_args *args;
3174 SSL *s;
3175
3176 args = (struct ssl_async_args *)vargs;
3177 s = args->s;
3178
3179 return s->handshake_func(s);
3180 }
3181
3182 int SSL_do_handshake(SSL *s)
3183 {
3184 int ret = 1;
3185
3186 if (s->handshake_func == NULL) {
3187 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET);
3188 return -1;
3189 }
3190
3191 ossl_statem_check_finish_init(s, -1);
3192
3193 s->method->ssl_renegotiate_check(s, 0);
3194
3195 if (SSL_in_init(s) || SSL_in_before(s)) {
3196 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
3197 struct ssl_async_args args;
3198
3199 args.s = s;
3200
3201 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern);
3202 } else {
3203 ret = s->handshake_func(s);
3204 }
3205 }
3206 return ret;
3207 }
3208
3209 void SSL_set_accept_state(SSL *s)
3210 {
3211 s->server = 1;
3212 s->shutdown = 0;
3213 ossl_statem_clear(s);
3214 s->handshake_func = s->method->ssl_accept;
3215 clear_ciphers(s);
3216 }
3217
3218 void SSL_set_connect_state(SSL *s)
3219 {
3220 s->server = 0;
3221 s->shutdown = 0;
3222 ossl_statem_clear(s);
3223 s->handshake_func = s->method->ssl_connect;
3224 clear_ciphers(s);
3225 }
3226
3227 int ssl_undefined_function(SSL *s)
3228 {
3229 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3230 return (0);
3231 }
3232
3233 int ssl_undefined_void_function(void)
3234 {
3235 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION,
3236 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3237 return (0);
3238 }
3239
3240 int ssl_undefined_const_function(const SSL *s)
3241 {
3242 return (0);
3243 }
3244
3245 const SSL_METHOD *ssl_bad_method(int ver)
3246 {
3247 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3248 return (NULL);
3249 }
3250
3251 const char *ssl_protocol_to_string(int version)
3252 {
3253 switch(version)
3254 {
3255 case TLS1_3_VERSION:
3256 return "TLSv1.3";
3257
3258 case TLS1_2_VERSION:
3259 return "TLSv1.2";
3260
3261 case TLS1_1_VERSION:
3262 return "TLSv1.1";
3263
3264 case TLS1_VERSION:
3265 return "TLSv1";
3266
3267 case SSL3_VERSION:
3268 return "SSLv3";
3269
3270 case DTLS1_BAD_VER:
3271 return "DTLSv0.9";
3272
3273 case DTLS1_VERSION:
3274 return "DTLSv1";
3275
3276 case DTLS1_2_VERSION:
3277 return "DTLSv1.2";
3278
3279 default:
3280 return "unknown";
3281 }
3282 }
3283
3284 const char *SSL_get_version(const SSL *s)
3285 {
3286 return ssl_protocol_to_string(s->version);
3287 }
3288
3289 SSL *SSL_dup(SSL *s)
3290 {
3291 STACK_OF(X509_NAME) *sk;
3292 X509_NAME *xn;
3293 SSL *ret;
3294 int i;
3295
3296 /* If we're not quiescent, just up_ref! */
3297 if (!SSL_in_init(s) || !SSL_in_before(s)) {
3298 CRYPTO_UP_REF(&s->references, &i, s->lock);
3299 return s;
3300 }
3301
3302 /*
3303 * Otherwise, copy configuration state, and session if set.
3304 */
3305 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL)
3306 return (NULL);
3307
3308 if (s->session != NULL) {
3309 /*
3310 * Arranges to share the same session via up_ref. This "copies"
3311 * session-id, SSL_METHOD, sid_ctx, and 'cert'
3312 */
3313 if (!SSL_copy_session_id(ret, s))
3314 goto err;
3315 } else {
3316 /*
3317 * No session has been established yet, so we have to expect that
3318 * s->cert or ret->cert will be changed later -- they should not both
3319 * point to the same object, and thus we can't use
3320 * SSL_copy_session_id.
3321 */
3322 if (!SSL_set_ssl_method(ret, s->method))
3323 goto err;
3324
3325 if (s->cert != NULL) {
3326 ssl_cert_free(ret->cert);
3327 ret->cert = ssl_cert_dup(s->cert);
3328 if (ret->cert == NULL)
3329 goto err;
3330 }
3331
3332 if (!SSL_set_session_id_context(ret, s->sid_ctx,
3333 (int)s->sid_ctx_length))
3334 goto err;
3335 }
3336
3337 if (!ssl_dane_dup(ret, s))
3338 goto err;
3339 ret->version = s->version;
3340 ret->options = s->options;
3341 ret->mode = s->mode;
3342 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s));
3343 SSL_set_read_ahead(ret, SSL_get_read_ahead(s));
3344 ret->msg_callback = s->msg_callback;
3345 ret->msg_callback_arg = s->msg_callback_arg;
3346 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s));
3347 SSL_set_verify_depth(ret, SSL_get_verify_depth(s));
3348 ret->generate_session_id = s->generate_session_id;
3349
3350 SSL_set_info_callback(ret, SSL_get_info_callback(s));
3351
3352 /* copy app data, a little dangerous perhaps */
3353 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data))
3354 goto err;
3355
3356 /* setup rbio, and wbio */
3357 if (s->rbio != NULL) {
3358 if (!BIO_dup_state(s->rbio, (char *)&ret->rbio))
3359 goto err;
3360 }
3361 if (s->wbio != NULL) {
3362 if (s->wbio != s->rbio) {
3363 if (!BIO_dup_state(s->wbio, (char *)&ret->wbio))
3364 goto err;
3365 } else {
3366 BIO_up_ref(ret->rbio);
3367 ret->wbio = ret->rbio;
3368 }
3369 }
3370
3371 ret->server = s->server;
3372 if (s->handshake_func) {
3373 if (s->server)
3374 SSL_set_accept_state(ret);
3375 else
3376 SSL_set_connect_state(ret);
3377 }
3378 ret->shutdown = s->shutdown;
3379 ret->hit = s->hit;
3380
3381 ret->default_passwd_callback = s->default_passwd_callback;
3382 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata;
3383
3384 X509_VERIFY_PARAM_inherit(ret->param, s->param);
3385
3386 /* dup the cipher_list and cipher_list_by_id stacks */
3387 if (s->cipher_list != NULL) {
3388 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL)
3389 goto err;
3390 }
3391 if (s->cipher_list_by_id != NULL)
3392 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id))
3393 == NULL)
3394 goto err;
3395
3396 /* Dup the client_CA list */
3397 if (s->ca_names != NULL) {
3398 if ((sk = sk_X509_NAME_dup(s->ca_names)) == NULL)
3399 goto err;
3400 ret->ca_names = sk;
3401 for (i = 0; i < sk_X509_NAME_num(sk); i++) {
3402 xn = sk_X509_NAME_value(sk, i);
3403 if (sk_X509_NAME_set(sk, i, X509_NAME_dup(xn)) == NULL) {
3404 X509_NAME_free(xn);
3405 goto err;
3406 }
3407 }
3408 }
3409 return ret;
3410
3411 err:
3412 SSL_free(ret);
3413 return NULL;
3414 }
3415
3416 void ssl_clear_cipher_ctx(SSL *s)
3417 {
3418 if (s->enc_read_ctx != NULL) {
3419 EVP_CIPHER_CTX_free(s->enc_read_ctx);
3420 s->enc_read_ctx = NULL;
3421 }
3422 if (s->enc_write_ctx != NULL) {
3423 EVP_CIPHER_CTX_free(s->enc_write_ctx);
3424 s->enc_write_ctx = NULL;
3425 }
3426 #ifndef OPENSSL_NO_COMP
3427 COMP_CTX_free(s->expand);
3428 s->expand = NULL;
3429 COMP_CTX_free(s->compress);
3430 s->compress = NULL;
3431 #endif
3432 }
3433
3434 X509 *SSL_get_certificate(const SSL *s)
3435 {
3436 if (s->cert != NULL)
3437 return (s->cert->key->x509);
3438 else
3439 return (NULL);
3440 }
3441
3442 EVP_PKEY *SSL_get_privatekey(const SSL *s)
3443 {
3444 if (s->cert != NULL)
3445 return (s->cert->key->privatekey);
3446 else
3447 return (NULL);
3448 }
3449
3450 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx)
3451 {
3452 if (ctx->cert != NULL)
3453 return ctx->cert->key->x509;
3454 else
3455 return NULL;
3456 }
3457
3458 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx)
3459 {
3460 if (ctx->cert != NULL)
3461 return ctx->cert->key->privatekey;
3462 else
3463 return NULL;
3464 }
3465
3466 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s)
3467 {
3468 if ((s->session != NULL) && (s->session->cipher != NULL))
3469 return (s->session->cipher);
3470 return (NULL);
3471 }
3472
3473 const COMP_METHOD *SSL_get_current_compression(SSL *s)
3474 {
3475 #ifndef OPENSSL_NO_COMP
3476 return s->compress ? COMP_CTX_get_method(s->compress) : NULL;
3477 #else
3478 return NULL;
3479 #endif
3480 }
3481
3482 const COMP_METHOD *SSL_get_current_expansion(SSL *s)
3483 {
3484 #ifndef OPENSSL_NO_COMP
3485 return s->expand ? COMP_CTX_get_method(s->expand) : NULL;
3486 #else
3487 return NULL;
3488 #endif
3489 }
3490
3491 int ssl_init_wbio_buffer(SSL *s)
3492 {
3493 BIO *bbio;
3494
3495 if (s->bbio != NULL) {
3496 /* Already buffered. */
3497 return 1;
3498 }
3499
3500 bbio = BIO_new(BIO_f_buffer());
3501 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) {
3502 BIO_free(bbio);
3503 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB);
3504 return 0;
3505 }
3506 s->bbio = bbio;
3507 s->wbio = BIO_push(bbio, s->wbio);
3508
3509 return 1;
3510 }
3511
3512 int ssl_free_wbio_buffer(SSL *s)
3513 {
3514 /* callers ensure s is never null */
3515 if (s->bbio == NULL)
3516 return 1;
3517
3518 s->wbio = BIO_pop(s->wbio);
3519 if (!ossl_assert(s->wbio != NULL))
3520 return 0;
3521 BIO_free(s->bbio);
3522 s->bbio = NULL;
3523
3524 return 1;
3525 }
3526
3527 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode)
3528 {
3529 ctx->quiet_shutdown = mode;
3530 }
3531
3532 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx)
3533 {
3534 return (ctx->quiet_shutdown);
3535 }
3536
3537 void SSL_set_quiet_shutdown(SSL *s, int mode)
3538 {
3539 s->quiet_shutdown = mode;
3540 }
3541
3542 int SSL_get_quiet_shutdown(const SSL *s)
3543 {
3544 return (s->quiet_shutdown);
3545 }
3546
3547 void SSL_set_shutdown(SSL *s, int mode)
3548 {
3549 s->shutdown = mode;
3550 }
3551
3552 int SSL_get_shutdown(const SSL *s)
3553 {
3554 return s->shutdown;
3555 }
3556
3557 int SSL_version(const SSL *s)
3558 {
3559 return s->version;
3560 }
3561
3562 int SSL_client_version(const SSL *s)
3563 {
3564 return s->client_version;
3565 }
3566
3567 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl)
3568 {
3569 return ssl->ctx;
3570 }
3571
3572 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx)
3573 {
3574 CERT *new_cert;
3575 if (ssl->ctx == ctx)
3576 return ssl->ctx;
3577 if (ctx == NULL)
3578 ctx = ssl->session_ctx;
3579 new_cert = ssl_cert_dup(ctx->cert);
3580 if (new_cert == NULL) {
3581 return NULL;
3582 }
3583
3584 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) {
3585 ssl_cert_free(new_cert);
3586 return NULL;
3587 }
3588
3589 ssl_cert_free(ssl->cert);
3590 ssl->cert = new_cert;
3591
3592 /*
3593 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH),
3594 * so setter APIs must prevent invalid lengths from entering the system.
3595 */
3596 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx)))
3597 return NULL;
3598
3599 /*
3600 * If the session ID context matches that of the parent SSL_CTX,
3601 * inherit it from the new SSL_CTX as well. If however the context does
3602 * not match (i.e., it was set per-ssl with SSL_set_session_id_context),
3603 * leave it unchanged.
3604 */
3605 if ((ssl->ctx != NULL) &&
3606 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) &&
3607 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) {
3608 ssl->sid_ctx_length = ctx->sid_ctx_length;
3609 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx));
3610 }
3611
3612 SSL_CTX_up_ref(ctx);
3613 SSL_CTX_free(ssl->ctx); /* decrement reference count */
3614 ssl->ctx = ctx;
3615
3616 return ssl->ctx;
3617 }
3618
3619 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx)
3620 {
3621 return (X509_STORE_set_default_paths(ctx->cert_store));
3622 }
3623
3624 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx)
3625 {
3626 X509_LOOKUP *lookup;
3627
3628 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir());
3629 if (lookup == NULL)
3630 return 0;
3631 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
3632
3633 /* Clear any errors if the default directory does not exist */
3634 ERR_clear_error();
3635
3636 return 1;
3637 }
3638
3639 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx)
3640 {
3641 X509_LOOKUP *lookup;
3642
3643 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file());
3644 if (lookup == NULL)
3645 return 0;
3646
3647 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT);
3648
3649 /* Clear any errors if the default file does not exist */
3650 ERR_clear_error();
3651
3652 return 1;
3653 }
3654
3655 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
3656 const char *CApath)
3657 {
3658 return (X509_STORE_load_locations(ctx->cert_store, CAfile, CApath));
3659 }
3660
3661 void SSL_set_info_callback(SSL *ssl,
3662 void (*cb) (const SSL *ssl, int type, int val))
3663 {
3664 ssl->info_callback = cb;
3665 }
3666
3667 /*
3668 * One compiler (Diab DCC) doesn't like argument names in returned function
3669 * pointer.
3670 */
3671 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ ,
3672 int /* type */ ,
3673 int /* val */ ) {
3674 return ssl->info_callback;
3675 }
3676
3677 void SSL_set_verify_result(SSL *ssl, long arg)
3678 {
3679 ssl->verify_result = arg;
3680 }
3681
3682 long SSL_get_verify_result(const SSL *ssl)
3683 {
3684 return (ssl->verify_result);
3685 }
3686
3687 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen)
3688 {
3689 if (outlen == 0)
3690 return sizeof(ssl->s3->client_random);
3691 if (outlen > sizeof(ssl->s3->client_random))
3692 outlen = sizeof(ssl->s3->client_random);
3693 memcpy(out, ssl->s3->client_random, outlen);
3694 return outlen;
3695 }
3696
3697 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen)
3698 {
3699 if (outlen == 0)
3700 return sizeof(ssl->s3->server_random);
3701 if (outlen > sizeof(ssl->s3->server_random))
3702 outlen = sizeof(ssl->s3->server_random);
3703 memcpy(out, ssl->s3->server_random, outlen);
3704 return outlen;
3705 }
3706
3707 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session,
3708 unsigned char *out, size_t outlen)
3709 {
3710 if (outlen == 0)
3711 return session->master_key_length;
3712 if (outlen > session->master_key_length)
3713 outlen = session->master_key_length;
3714 memcpy(out, session->master_key, outlen);
3715 return outlen;
3716 }
3717
3718 int SSL_set_ex_data(SSL *s, int idx, void *arg)
3719 {
3720 return (CRYPTO_set_ex_data(&s->ex_data, idx, arg));
3721 }
3722
3723 void *SSL_get_ex_data(const SSL *s, int idx)
3724 {
3725 return (CRYPTO_get_ex_data(&s->ex_data, idx));
3726 }
3727
3728 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg)
3729 {
3730 return (CRYPTO_set_ex_data(&s->ex_data, idx, arg));
3731 }
3732
3733 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx)
3734 {
3735 return (CRYPTO_get_ex_data(&s->ex_data, idx));
3736 }
3737
3738 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx)
3739 {
3740 return (ctx->cert_store);
3741 }
3742
3743 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store)
3744 {
3745 X509_STORE_free(ctx->cert_store);
3746 ctx->cert_store = store;
3747 }
3748
3749 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store)
3750 {
3751 if (store != NULL)
3752 X509_STORE_up_ref(store);
3753 SSL_CTX_set_cert_store(ctx, store);
3754 }
3755
3756 int SSL_want(const SSL *s)
3757 {
3758 return (s->rwstate);
3759 }
3760
3761 /**
3762 * \brief Set the callback for generating temporary DH keys.
3763 * \param ctx the SSL context.
3764 * \param dh the callback
3765 */
3766
3767 #ifndef OPENSSL_NO_DH
3768 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
3769 DH *(*dh) (SSL *ssl, int is_export,
3770 int keylength))
3771 {
3772 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
3773 }
3774
3775 void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export,
3776 int keylength))
3777 {
3778 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
3779 }
3780 #endif
3781
3782 #ifndef OPENSSL_NO_PSK
3783 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint)
3784 {
3785 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
3786 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
3787 return 0;
3788 }
3789 OPENSSL_free(ctx->cert->psk_identity_hint);
3790 if (identity_hint != NULL) {
3791 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
3792 if (ctx->cert->psk_identity_hint == NULL)
3793 return 0;
3794 } else
3795 ctx->cert->psk_identity_hint = NULL;
3796 return 1;
3797 }
3798
3799 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint)
3800 {
3801 if (s == NULL)
3802 return 0;
3803
3804 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
3805 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
3806 return 0;
3807 }
3808 OPENSSL_free(s->cert->psk_identity_hint);
3809 if (identity_hint != NULL) {
3810 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
3811 if (s->cert->psk_identity_hint == NULL)
3812 return 0;
3813 } else
3814 s->cert->psk_identity_hint = NULL;
3815 return 1;
3816 }
3817
3818 const char *SSL_get_psk_identity_hint(const SSL *s)
3819 {
3820 if (s == NULL || s->session == NULL)
3821 return NULL;
3822 return (s->session->psk_identity_hint);
3823 }
3824
3825 const char *SSL_get_psk_identity(const SSL *s)
3826 {
3827 if (s == NULL || s->session == NULL)
3828 return NULL;
3829 return (s->session->psk_identity);
3830 }
3831
3832 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb)
3833 {
3834 s->psk_client_callback = cb;
3835 }
3836
3837 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb)
3838 {
3839 ctx->psk_client_callback = cb;
3840 }
3841
3842 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb)
3843 {
3844 s->psk_server_callback = cb;
3845 }
3846
3847 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb)
3848 {
3849 ctx->psk_server_callback = cb;
3850 }
3851 #endif
3852
3853 void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
3854 void (*cb) (int write_p, int version,
3855 int content_type, const void *buf,
3856 size_t len, SSL *ssl, void *arg))
3857 {
3858 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
3859 }
3860
3861 void SSL_set_msg_callback(SSL *ssl,
3862 void (*cb) (int write_p, int version,
3863 int content_type, const void *buf,
3864 size_t len, SSL *ssl, void *arg))
3865 {
3866 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
3867 }
3868
3869 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx,
3870 int (*cb) (SSL *ssl,
3871 int
3872 is_forward_secure))
3873 {
3874 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
3875 (void (*)(void))cb);
3876 }
3877
3878 void SSL_set_not_resumable_session_callback(SSL *ssl,
3879 int (*cb) (SSL *ssl,
3880 int is_forward_secure))
3881 {
3882 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
3883 (void (*)(void))cb);
3884 }
3885
3886 void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx,
3887 size_t (*cb) (SSL *ssl, int type,
3888 size_t len, void *arg))
3889 {
3890 ctx->record_padding_cb = cb;
3891 }
3892
3893 void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg)
3894 {
3895 ctx->record_padding_arg = arg;
3896 }
3897
3898 void *SSL_CTX_get_record_padding_callback_arg(SSL_CTX *ctx)
3899 {
3900 return ctx->record_padding_arg;
3901 }
3902
3903 int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size)
3904 {
3905 /* block size of 0 or 1 is basically no padding */
3906 if (block_size == 1)
3907 ctx->block_padding = 0;
3908 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
3909 ctx->block_padding = block_size;
3910 else
3911 return 0;
3912 return 1;
3913 }
3914
3915 void SSL_set_record_padding_callback(SSL *ssl,
3916 size_t (*cb) (SSL *ssl, int type,
3917 size_t len, void *arg))
3918 {
3919 ssl->record_padding_cb = cb;
3920 }
3921
3922 void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg)
3923 {
3924 ssl->record_padding_arg = arg;
3925 }
3926
3927 void *SSL_get_record_padding_callback_arg(SSL *ssl)
3928 {
3929 return ssl->record_padding_arg;
3930 }
3931
3932 int SSL_set_block_padding(SSL *ssl, size_t block_size)
3933 {
3934 /* block size of 0 or 1 is basically no padding */
3935 if (block_size == 1)
3936 ssl->block_padding = 0;
3937 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
3938 ssl->block_padding = block_size;
3939 else
3940 return 0;
3941 return 1;
3942 }
3943
3944 /*
3945 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer
3946 * variable, freeing EVP_MD_CTX previously stored in that variable, if any.
3947 * If EVP_MD pointer is passed, initializes ctx with this |md|.
3948 * Returns the newly allocated ctx;
3949 */
3950
3951 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md)
3952 {
3953 ssl_clear_hash_ctx(hash);
3954 *hash = EVP_MD_CTX_new();
3955 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) {
3956 EVP_MD_CTX_free(*hash);
3957 *hash = NULL;
3958 return NULL;
3959 }
3960 return *hash;
3961 }
3962
3963 void ssl_clear_hash_ctx(EVP_MD_CTX **hash)
3964 {
3965
3966 EVP_MD_CTX_free(*hash);
3967 *hash = NULL;
3968 }
3969
3970 /* Retrieve handshake hashes */
3971 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen,
3972 size_t *hashlen)
3973 {
3974 EVP_MD_CTX *ctx = NULL;
3975 EVP_MD_CTX *hdgst = s->s3->handshake_dgst;
3976 int hashleni = EVP_MD_CTX_size(hdgst);
3977 int ret = 0;
3978
3979 if (hashleni < 0 || (size_t)hashleni > outlen)
3980 goto err;
3981
3982 ctx = EVP_MD_CTX_new();
3983 if (ctx == NULL)
3984 goto err;
3985
3986 if (!EVP_MD_CTX_copy_ex(ctx, hdgst)
3987 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0)
3988 goto err;
3989
3990 *hashlen = hashleni;
3991
3992 ret = 1;
3993 err:
3994 EVP_MD_CTX_free(ctx);
3995 return ret;
3996 }
3997
3998 int SSL_session_reused(SSL *s)
3999 {
4000 return s->hit;
4001 }
4002
4003 int SSL_is_server(const SSL *s)
4004 {
4005 return s->server;
4006 }
4007
4008 #if OPENSSL_API_COMPAT < 0x10100000L
4009 void SSL_set_debug(SSL *s, int debug)
4010 {
4011 /* Old function was do-nothing anyway... */
4012 (void)s;
4013 (void)debug;
4014 }
4015 #endif
4016
4017 void SSL_set_security_level(SSL *s, int level)
4018 {
4019 s->cert->sec_level = level;
4020 }
4021
4022 int SSL_get_security_level(const SSL *s)
4023 {
4024 return s->cert->sec_level;
4025 }
4026
4027 void SSL_set_security_callback(SSL *s,
4028 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4029 int op, int bits, int nid,
4030 void *other, void *ex))
4031 {
4032 s->cert->sec_cb = cb;
4033 }
4034
4035 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s,
4036 const SSL_CTX *ctx, int op,
4037 int bits, int nid, void *other,
4038 void *ex) {
4039 return s->cert->sec_cb;
4040 }
4041
4042 void SSL_set0_security_ex_data(SSL *s, void *ex)
4043 {
4044 s->cert->sec_ex = ex;
4045 }
4046
4047 void *SSL_get0_security_ex_data(const SSL *s)
4048 {
4049 return s->cert->sec_ex;
4050 }
4051
4052 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level)
4053 {
4054 ctx->cert->sec_level = level;
4055 }
4056
4057 int SSL_CTX_get_security_level(const SSL_CTX *ctx)
4058 {
4059 return ctx->cert->sec_level;
4060 }
4061
4062 void SSL_CTX_set_security_callback(SSL_CTX *ctx,
4063 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4064 int op, int bits, int nid,
4065 void *other, void *ex))
4066 {
4067 ctx->cert->sec_cb = cb;
4068 }
4069
4070 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s,
4071 const SSL_CTX *ctx,
4072 int op, int bits,
4073 int nid,
4074 void *other,
4075 void *ex) {
4076 return ctx->cert->sec_cb;
4077 }
4078
4079 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex)
4080 {
4081 ctx->cert->sec_ex = ex;
4082 }
4083
4084 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx)
4085 {
4086 return ctx->cert->sec_ex;
4087 }
4088
4089 /*
4090 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that
4091 * can return unsigned long, instead of the generic long return value from the
4092 * control interface.
4093 */
4094 unsigned long SSL_CTX_get_options(const SSL_CTX *ctx)
4095 {
4096 return ctx->options;
4097 }
4098
4099 unsigned long SSL_get_options(const SSL *s)
4100 {
4101 return s->options;
4102 }
4103
4104 unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op)
4105 {
4106 return ctx->options |= op;
4107 }
4108
4109 unsigned long SSL_set_options(SSL *s, unsigned long op)
4110 {
4111 return s->options |= op;
4112 }
4113
4114 unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op)
4115 {
4116 return ctx->options &= ~op;
4117 }
4118
4119 unsigned long SSL_clear_options(SSL *s, unsigned long op)
4120 {
4121 return s->options &= ~op;
4122 }
4123
4124 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s)
4125 {
4126 return s->verified_chain;
4127 }
4128
4129 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id);
4130
4131 #ifndef OPENSSL_NO_CT
4132
4133 /*
4134 * Moves SCTs from the |src| stack to the |dst| stack.
4135 * The source of each SCT will be set to |origin|.
4136 * If |dst| points to a NULL pointer, a new stack will be created and owned by
4137 * the caller.
4138 * Returns the number of SCTs moved, or a negative integer if an error occurs.
4139 */
4140 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src,
4141 sct_source_t origin)
4142 {
4143 int scts_moved = 0;
4144 SCT *sct = NULL;
4145
4146 if (*dst == NULL) {
4147 *dst = sk_SCT_new_null();
4148 if (*dst == NULL) {
4149 SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE);
4150 goto err;
4151 }
4152 }
4153
4154 while ((sct = sk_SCT_pop(src)) != NULL) {
4155 if (SCT_set_source(sct, origin) != 1)
4156 goto err;
4157
4158 if (sk_SCT_push(*dst, sct) <= 0)
4159 goto err;
4160 scts_moved += 1;
4161 }
4162
4163 return scts_moved;
4164 err:
4165 if (sct != NULL)
4166 sk_SCT_push(src, sct); /* Put the SCT back */
4167 return -1;
4168 }
4169
4170 /*
4171 * Look for data collected during ServerHello and parse if found.
4172 * Returns the number of SCTs extracted.
4173 */
4174 static int ct_extract_tls_extension_scts(SSL *s)
4175 {
4176 int scts_extracted = 0;
4177
4178 if (s->ext.scts != NULL) {
4179 const unsigned char *p = s->ext.scts;
4180 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len);
4181
4182 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION);
4183
4184 SCT_LIST_free(scts);
4185 }
4186
4187 return scts_extracted;
4188 }
4189
4190 /*
4191 * Checks for an OCSP response and then attempts to extract any SCTs found if it
4192 * contains an SCT X509 extension. They will be stored in |s->scts|.
4193 * Returns:
4194 * - The number of SCTs extracted, assuming an OCSP response exists.
4195 * - 0 if no OCSP response exists or it contains no SCTs.
4196 * - A negative integer if an error occurs.
4197 */
4198 static int ct_extract_ocsp_response_scts(SSL *s)
4199 {
4200 # ifndef OPENSSL_NO_OCSP
4201 int scts_extracted = 0;
4202 const unsigned char *p;
4203 OCSP_BASICRESP *br = NULL;
4204 OCSP_RESPONSE *rsp = NULL;
4205 STACK_OF(SCT) *scts = NULL;
4206 int i;
4207
4208 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0)
4209 goto err;
4210
4211 p = s->ext.ocsp.resp;
4212 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len);
4213 if (rsp == NULL)
4214 goto err;
4215
4216 br = OCSP_response_get1_basic(rsp);
4217 if (br == NULL)
4218 goto err;
4219
4220 for (i = 0; i < OCSP_resp_count(br); ++i) {
4221 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i);
4222
4223 if (single == NULL)
4224 continue;
4225
4226 scts =
4227 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL);
4228 scts_extracted =
4229 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE);
4230 if (scts_extracted < 0)
4231 goto err;
4232 }
4233 err:
4234 SCT_LIST_free(scts);
4235 OCSP_BASICRESP_free(br);
4236 OCSP_RESPONSE_free(rsp);
4237 return scts_extracted;
4238 # else
4239 /* Behave as if no OCSP response exists */
4240 return 0;
4241 # endif
4242 }
4243
4244 /*
4245 * Attempts to extract SCTs from the peer certificate.
4246 * Return the number of SCTs extracted, or a negative integer if an error
4247 * occurs.
4248 */
4249 static int ct_extract_x509v3_extension_scts(SSL *s)
4250 {
4251 int scts_extracted = 0;
4252 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4253
4254 if (cert != NULL) {
4255 STACK_OF(SCT) *scts =
4256 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL);
4257
4258 scts_extracted =
4259 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION);
4260
4261 SCT_LIST_free(scts);
4262 }
4263
4264 return scts_extracted;
4265 }
4266
4267 /*
4268 * Attempts to find all received SCTs by checking TLS extensions, the OCSP
4269 * response (if it exists) and X509v3 extensions in the certificate.
4270 * Returns NULL if an error occurs.
4271 */
4272 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s)
4273 {
4274 if (!s->scts_parsed) {
4275 if (ct_extract_tls_extension_scts(s) < 0 ||
4276 ct_extract_ocsp_response_scts(s) < 0 ||
4277 ct_extract_x509v3_extension_scts(s) < 0)
4278 goto err;
4279
4280 s->scts_parsed = 1;
4281 }
4282 return s->scts;
4283 err:
4284 return NULL;
4285 }
4286
4287 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx,
4288 const STACK_OF(SCT) *scts, void *unused_arg)
4289 {
4290 return 1;
4291 }
4292
4293 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx,
4294 const STACK_OF(SCT) *scts, void *unused_arg)
4295 {
4296 int count = scts != NULL ? sk_SCT_num(scts) : 0;
4297 int i;
4298
4299 for (i = 0; i < count; ++i) {
4300 SCT *sct = sk_SCT_value(scts, i);
4301 int status = SCT_get_validation_status(sct);
4302
4303 if (status == SCT_VALIDATION_STATUS_VALID)
4304 return 1;
4305 }
4306 SSLerr(SSL_F_CT_STRICT, SSL_R_NO_VALID_SCTS);
4307 return 0;
4308 }
4309
4310 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback,
4311 void *arg)
4312 {
4313 /*
4314 * Since code exists that uses the custom extension handler for CT, look
4315 * for this and throw an error if they have already registered to use CT.
4316 */
4317 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx,
4318 TLSEXT_TYPE_signed_certificate_timestamp))
4319 {
4320 SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK,
4321 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4322 return 0;
4323 }
4324
4325 if (callback != NULL) {
4326 /*
4327 * If we are validating CT, then we MUST accept SCTs served via OCSP
4328 */
4329 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp))
4330 return 0;
4331 }
4332
4333 s->ct_validation_callback = callback;
4334 s->ct_validation_callback_arg = arg;
4335
4336 return 1;
4337 }
4338
4339 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx,
4340 ssl_ct_validation_cb callback, void *arg)
4341 {
4342 /*
4343 * Since code exists that uses the custom extension handler for CT, look for
4344 * this and throw an error if they have already registered to use CT.
4345 */
4346 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx,
4347 TLSEXT_TYPE_signed_certificate_timestamp))
4348 {
4349 SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK,
4350 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4351 return 0;
4352 }
4353
4354 ctx->ct_validation_callback = callback;
4355 ctx->ct_validation_callback_arg = arg;
4356 return 1;
4357 }
4358
4359 int SSL_ct_is_enabled(const SSL *s)
4360 {
4361 return s->ct_validation_callback != NULL;
4362 }
4363
4364 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx)
4365 {
4366 return ctx->ct_validation_callback != NULL;
4367 }
4368
4369 int ssl_validate_ct(SSL *s)
4370 {
4371 int ret = 0;
4372 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4373 X509 *issuer;
4374 SSL_DANE *dane = &s->dane;
4375 CT_POLICY_EVAL_CTX *ctx = NULL;
4376 const STACK_OF(SCT) *scts;
4377
4378 /*
4379 * If no callback is set, the peer is anonymous, or its chain is invalid,
4380 * skip SCT validation - just return success. Applications that continue
4381 * handshakes without certificates, with unverified chains, or pinned leaf
4382 * certificates are outside the scope of the WebPKI and CT.
4383 *
4384 * The above exclusions notwithstanding the vast majority of peers will
4385 * have rather ordinary certificate chains validated by typical
4386 * applications that perform certificate verification and therefore will
4387 * process SCTs when enabled.
4388 */
4389 if (s->ct_validation_callback == NULL || cert == NULL ||
4390 s->verify_result != X509_V_OK ||
4391 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1)
4392 return 1;
4393
4394 /*
4395 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3)
4396 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2
4397 */
4398 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) {
4399 switch (dane->mtlsa->usage) {
4400 case DANETLS_USAGE_DANE_TA:
4401 case DANETLS_USAGE_DANE_EE:
4402 return 1;
4403 }
4404 }
4405
4406 ctx = CT_POLICY_EVAL_CTX_new();
4407 if (ctx == NULL) {
4408 SSLerr(SSL_F_SSL_VALIDATE_CT, ERR_R_MALLOC_FAILURE);
4409 goto end;
4410 }
4411
4412 issuer = sk_X509_value(s->verified_chain, 1);
4413 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert);
4414 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer);
4415 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store);
4416 CT_POLICY_EVAL_CTX_set_time(
4417 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000);
4418
4419 scts = SSL_get0_peer_scts(s);
4420
4421 /*
4422 * This function returns success (> 0) only when all the SCTs are valid, 0
4423 * when some are invalid, and < 0 on various internal errors (out of
4424 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient
4425 * reason to abort the handshake, that decision is up to the callback.
4426 * Therefore, we error out only in the unexpected case that the return
4427 * value is negative.
4428 *
4429 * XXX: One might well argue that the return value of this function is an
4430 * unfortunate design choice. Its job is only to determine the validation
4431 * status of each of the provided SCTs. So long as it correctly separates
4432 * the wheat from the chaff it should return success. Failure in this case
4433 * ought to correspond to an inability to carry out its duties.
4434 */
4435 if (SCT_LIST_validate(scts, ctx) < 0) {
4436 SSLerr(SSL_F_SSL_VALIDATE_CT, SSL_R_SCT_VERIFICATION_FAILED);
4437 goto end;
4438 }
4439
4440 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg);
4441 if (ret < 0)
4442 ret = 0; /* This function returns 0 on failure */
4443
4444 end:
4445 CT_POLICY_EVAL_CTX_free(ctx);
4446 /*
4447 * With SSL_VERIFY_NONE the session may be cached and re-used despite a
4448 * failure return code here. Also the application may wish the complete
4449 * the handshake, and then disconnect cleanly at a higher layer, after
4450 * checking the verification status of the completed connection.
4451 *
4452 * We therefore force a certificate verification failure which will be
4453 * visible via SSL_get_verify_result() and cached as part of any resumed
4454 * session.
4455 *
4456 * Note: the permissive callback is for information gathering only, always
4457 * returns success, and does not affect verification status. Only the
4458 * strict callback or a custom application-specified callback can trigger
4459 * connection failure or record a verification error.
4460 */
4461 if (ret <= 0)
4462 s->verify_result = X509_V_ERR_NO_VALID_SCTS;
4463 return ret;
4464 }
4465
4466 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode)
4467 {
4468 switch (validation_mode) {
4469 default:
4470 SSLerr(SSL_F_SSL_CTX_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4471 return 0;
4472 case SSL_CT_VALIDATION_PERMISSIVE:
4473 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL);
4474 case SSL_CT_VALIDATION_STRICT:
4475 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL);
4476 }
4477 }
4478
4479 int SSL_enable_ct(SSL *s, int validation_mode)
4480 {
4481 switch (validation_mode) {
4482 default:
4483 SSLerr(SSL_F_SSL_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4484 return 0;
4485 case SSL_CT_VALIDATION_PERMISSIVE:
4486 return SSL_set_ct_validation_callback(s, ct_permissive, NULL);
4487 case SSL_CT_VALIDATION_STRICT:
4488 return SSL_set_ct_validation_callback(s, ct_strict, NULL);
4489 }
4490 }
4491
4492 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx)
4493 {
4494 return CTLOG_STORE_load_default_file(ctx->ctlog_store);
4495 }
4496
4497 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path)
4498 {
4499 return CTLOG_STORE_load_file(ctx->ctlog_store, path);
4500 }
4501
4502 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs)
4503 {
4504 CTLOG_STORE_free(ctx->ctlog_store);
4505 ctx->ctlog_store = logs;
4506 }
4507
4508 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx)
4509 {
4510 return ctx->ctlog_store;
4511 }
4512
4513 #endif /* OPENSSL_NO_CT */
4514
4515 void SSL_CTX_set_early_cb(SSL_CTX *c, SSL_early_cb_fn cb, void *arg)
4516 {
4517 c->early_cb = cb;
4518 c->early_cb_arg = arg;
4519 }
4520
4521 int SSL_early_isv2(SSL *s)
4522 {
4523 if (s->clienthello == NULL)
4524 return 0;
4525 return s->clienthello->isv2;
4526 }
4527
4528 unsigned int SSL_early_get0_legacy_version(SSL *s)
4529 {
4530 if (s->clienthello == NULL)
4531 return 0;
4532 return s->clienthello->legacy_version;
4533 }
4534
4535 size_t SSL_early_get0_random(SSL *s, const unsigned char **out)
4536 {
4537 if (s->clienthello == NULL)
4538 return 0;
4539 if (out != NULL)
4540 *out = s->clienthello->random;
4541 return SSL3_RANDOM_SIZE;
4542 }
4543
4544 size_t SSL_early_get0_session_id(SSL *s, const unsigned char **out)
4545 {
4546 if (s->clienthello == NULL)
4547 return 0;
4548 if (out != NULL)
4549 *out = s->clienthello->session_id;
4550 return s->clienthello->session_id_len;
4551 }
4552
4553 size_t SSL_early_get0_ciphers(SSL *s, const unsigned char **out)
4554 {
4555 if (s->clienthello == NULL)
4556 return 0;
4557 if (out != NULL)
4558 *out = PACKET_data(&s->clienthello->ciphersuites);
4559 return PACKET_remaining(&s->clienthello->ciphersuites);
4560 }
4561
4562 size_t SSL_early_get0_compression_methods(SSL *s, const unsigned char **out)
4563 {
4564 if (s->clienthello == NULL)
4565 return 0;
4566 if (out != NULL)
4567 *out = s->clienthello->compressions;
4568 return s->clienthello->compressions_len;
4569 }
4570
4571 int SSL_early_get1_extensions_present(SSL *s, int **out, size_t *outlen)
4572 {
4573 RAW_EXTENSION *ext;
4574 int *present;
4575 size_t num = 0, i;
4576
4577 if (s->clienthello == NULL || out == NULL || outlen == NULL)
4578 return 0;
4579 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
4580 ext = s->clienthello->pre_proc_exts + i;
4581 if (ext->present)
4582 num++;
4583 }
4584 present = OPENSSL_malloc(sizeof(*present) * num);
4585 if (present == NULL)
4586 return 0;
4587 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
4588 ext = s->clienthello->pre_proc_exts + i;
4589 if (ext->present) {
4590 if (ext->received_order >= num)
4591 goto err;
4592 present[ext->received_order] = ext->type;
4593 }
4594 }
4595 *out = present;
4596 *outlen = num;
4597 return 1;
4598 err:
4599 OPENSSL_free(present);
4600 return 0;
4601 }
4602
4603 int SSL_early_get0_ext(SSL *s, unsigned int type, const unsigned char **out,
4604 size_t *outlen)
4605 {
4606 size_t i;
4607 RAW_EXTENSION *r;
4608
4609 if (s->clienthello == NULL)
4610 return 0;
4611 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) {
4612 r = s->clienthello->pre_proc_exts + i;
4613 if (r->present && r->type == type) {
4614 if (out != NULL)
4615 *out = PACKET_data(&r->data);
4616 if (outlen != NULL)
4617 *outlen = PACKET_remaining(&r->data);
4618 return 1;
4619 }
4620 }
4621 return 0;
4622 }
4623
4624 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb)
4625 {
4626 ctx->keylog_callback = cb;
4627 }
4628
4629 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx)
4630 {
4631 return ctx->keylog_callback;
4632 }
4633
4634 static int nss_keylog_int(const char *prefix,
4635 SSL *ssl,
4636 const uint8_t *parameter_1,
4637 size_t parameter_1_len,
4638 const uint8_t *parameter_2,
4639 size_t parameter_2_len)
4640 {
4641 char *out = NULL;
4642 char *cursor = NULL;
4643 size_t out_len = 0;
4644 size_t i;
4645 size_t prefix_len;
4646
4647 if (ssl->ctx->keylog_callback == NULL) return 1;
4648
4649 /*
4650 * Our output buffer will contain the following strings, rendered with
4651 * space characters in between, terminated by a NULL character: first the
4652 * prefix, then the first parameter, then the second parameter. The
4653 * meaning of each parameter depends on the specific key material being
4654 * logged. Note that the first and second parameters are encoded in
4655 * hexadecimal, so we need a buffer that is twice their lengths.
4656 */
4657 prefix_len = strlen(prefix);
4658 out_len = prefix_len + (2*parameter_1_len) + (2*parameter_2_len) + 3;
4659 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) {
4660 SSLerr(SSL_F_NSS_KEYLOG_INT, ERR_R_MALLOC_FAILURE);
4661 return 0;
4662 }
4663
4664 strcpy(cursor, prefix);
4665 cursor += prefix_len;
4666 *cursor++ = ' ';
4667
4668 for (i = 0; i < parameter_1_len; i++) {
4669 sprintf(cursor, "%02x", parameter_1[i]);
4670 cursor += 2;
4671 }
4672 *cursor++ = ' ';
4673
4674 for (i = 0; i < parameter_2_len; i++) {
4675 sprintf(cursor, "%02x", parameter_2[i]);
4676 cursor += 2;
4677 }
4678 *cursor = '\0';
4679
4680 ssl->ctx->keylog_callback(ssl, (const char *)out);
4681 OPENSSL_free(out);
4682 return 1;
4683
4684 }
4685
4686 int ssl_log_rsa_client_key_exchange(SSL *ssl,
4687 const uint8_t *encrypted_premaster,
4688 size_t encrypted_premaster_len,
4689 const uint8_t *premaster,
4690 size_t premaster_len)
4691 {
4692 if (encrypted_premaster_len < 8) {
4693 SSLerr(SSL_F_SSL_LOG_RSA_CLIENT_KEY_EXCHANGE, ERR_R_INTERNAL_ERROR);
4694 return 0;
4695 }
4696
4697 /* We only want the first 8 bytes of the encrypted premaster as a tag. */
4698 return nss_keylog_int("RSA",
4699 ssl,
4700 encrypted_premaster,
4701 8,
4702 premaster,
4703 premaster_len);
4704 }
4705
4706 int ssl_log_secret(SSL *ssl,
4707 const char *label,
4708 const uint8_t *secret,
4709 size_t secret_len)
4710 {
4711 return nss_keylog_int(label,
4712 ssl,
4713 ssl->s3->client_random,
4714 SSL3_RANDOM_SIZE,
4715 secret,
4716 secret_len);
4717 }
4718
4719 #define SSLV2_CIPHER_LEN 3
4720
4721 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format,
4722 int *al)
4723 {
4724 int n;
4725
4726 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
4727
4728 if (PACKET_remaining(cipher_suites) == 0) {
4729 SSLerr(SSL_F_SSL_CACHE_CIPHERLIST, SSL_R_NO_CIPHERS_SPECIFIED);
4730 *al = SSL_AD_ILLEGAL_PARAMETER;
4731 return 0;
4732 }
4733
4734 if (PACKET_remaining(cipher_suites) % n != 0) {
4735 SSLerr(SSL_F_SSL_CACHE_CIPHERLIST,
4736 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
4737 *al = SSL_AD_DECODE_ERROR;
4738 return 0;
4739 }
4740
4741 OPENSSL_free(s->s3->tmp.ciphers_raw);
4742 s->s3->tmp.ciphers_raw = NULL;
4743 s->s3->tmp.ciphers_rawlen = 0;
4744
4745 if (sslv2format) {
4746 size_t numciphers = PACKET_remaining(cipher_suites) / n;
4747 PACKET sslv2ciphers = *cipher_suites;
4748 unsigned int leadbyte;
4749 unsigned char *raw;
4750
4751 /*
4752 * We store the raw ciphers list in SSLv3+ format so we need to do some
4753 * preprocessing to convert the list first. If there are any SSLv2 only
4754 * ciphersuites with a non-zero leading byte then we are going to
4755 * slightly over allocate because we won't store those. But that isn't a
4756 * problem.
4757 */
4758 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN);
4759 s->s3->tmp.ciphers_raw = raw;
4760 if (raw == NULL) {
4761 *al = SSL_AD_INTERNAL_ERROR;
4762 goto err;
4763 }
4764 for (s->s3->tmp.ciphers_rawlen = 0;
4765 PACKET_remaining(&sslv2ciphers) > 0;
4766 raw += TLS_CIPHER_LEN) {
4767 if (!PACKET_get_1(&sslv2ciphers, &leadbyte)
4768 || (leadbyte == 0
4769 && !PACKET_copy_bytes(&sslv2ciphers, raw,
4770 TLS_CIPHER_LEN))
4771 || (leadbyte != 0
4772 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) {
4773 *al = SSL_AD_DECODE_ERROR;
4774 OPENSSL_free(s->s3->tmp.ciphers_raw);
4775 s->s3->tmp.ciphers_raw = NULL;
4776 s->s3->tmp.ciphers_rawlen = 0;
4777 goto err;
4778 }
4779 if (leadbyte == 0)
4780 s->s3->tmp.ciphers_rawlen += TLS_CIPHER_LEN;
4781 }
4782 } else if (!PACKET_memdup(cipher_suites, &s->s3->tmp.ciphers_raw,
4783 &s->s3->tmp.ciphers_rawlen)) {
4784 *al = SSL_AD_INTERNAL_ERROR;
4785 goto err;
4786 }
4787 return 1;
4788 err:
4789 return 0;
4790 }
4791
4792 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len,
4793 int isv2format, STACK_OF(SSL_CIPHER) **sk,
4794 STACK_OF(SSL_CIPHER) **scsvs)
4795 {
4796 int alert;
4797 PACKET pkt;
4798
4799 if (!PACKET_buf_init(&pkt, bytes, len))
4800 return 0;
4801 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, &alert);
4802 }
4803
4804 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites,
4805 STACK_OF(SSL_CIPHER) **skp,
4806 STACK_OF(SSL_CIPHER) **scsvs_out,
4807 int sslv2format, int *al)
4808 {
4809 const SSL_CIPHER *c;
4810 STACK_OF(SSL_CIPHER) *sk = NULL;
4811 STACK_OF(SSL_CIPHER) *scsvs = NULL;
4812 int n;
4813 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */
4814 unsigned char cipher[SSLV2_CIPHER_LEN];
4815
4816 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
4817
4818 if (PACKET_remaining(cipher_suites) == 0) {
4819 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_NO_CIPHERS_SPECIFIED);
4820 *al = SSL_AD_ILLEGAL_PARAMETER;
4821 return 0;
4822 }
4823
4824 if (PACKET_remaining(cipher_suites) % n != 0) {
4825 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST,
4826 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
4827 *al = SSL_AD_DECODE_ERROR;
4828 return 0;
4829 }
4830
4831 sk = sk_SSL_CIPHER_new_null();
4832 scsvs = sk_SSL_CIPHER_new_null();
4833 if (sk == NULL || scsvs == NULL) {
4834 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
4835 *al = SSL_AD_INTERNAL_ERROR;
4836 goto err;
4837 }
4838
4839 while (PACKET_copy_bytes(cipher_suites, cipher, n)) {
4840 /*
4841 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the
4842 * first byte set to zero, while true SSLv2 ciphers have a non-zero
4843 * first byte. We don't support any true SSLv2 ciphers, so skip them.
4844 */
4845 if (sslv2format && cipher[0] != '\0')
4846 continue;
4847
4848 /* For SSLv2-compat, ignore leading 0-byte. */
4849 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1);
4850 if (c != NULL) {
4851 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) ||
4852 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) {
4853 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
4854 *al = SSL_AD_INTERNAL_ERROR;
4855 goto err;
4856 }
4857 }
4858 }
4859 if (PACKET_remaining(cipher_suites) > 0) {
4860 *al = SSL_AD_DECODE_ERROR;
4861 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_BAD_LENGTH);
4862 goto err;
4863 }
4864
4865 if (skp != NULL)
4866 *skp = sk;
4867 else
4868 sk_SSL_CIPHER_free(sk);
4869 if (scsvs_out != NULL)
4870 *scsvs_out = scsvs;
4871 else
4872 sk_SSL_CIPHER_free(scsvs);
4873 return 1;
4874 err:
4875 sk_SSL_CIPHER_free(sk);
4876 sk_SSL_CIPHER_free(scsvs);
4877 return 0;
4878 }
4879
4880 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data)
4881 {
4882 ctx->max_early_data = max_early_data;
4883
4884 return 1;
4885 }
4886
4887 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx)
4888 {
4889 return ctx->max_early_data;
4890 }
4891
4892 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data)
4893 {
4894 s->max_early_data = max_early_data;
4895
4896 return 1;
4897 }
4898
4899 uint32_t SSL_get_max_early_data(const SSL *s)
4900 {
4901 return s->max_early_data;
4902 }