]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_lib.c
Add stack space reservations.
[thirdparty/openssl.git] / ssl / ssl_lib.c
1 /*
2 * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the OpenSSL license (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include "ssl_locl.h"
14 #include <openssl/objects.h>
15 #include <openssl/lhash.h>
16 #include <openssl/x509v3.h>
17 #include <openssl/rand.h>
18 #include <openssl/ocsp.h>
19 #include <openssl/dh.h>
20 #include <openssl/engine.h>
21 #include <openssl/async.h>
22 #include <openssl/ct.h>
23 #include "internal/cryptlib.h"
24 #include "internal/rand.h"
25 #include "internal/refcount.h"
26
27 const char SSL_version_str[] = OPENSSL_VERSION_TEXT;
28
29 SSL3_ENC_METHOD ssl3_undef_enc_method = {
30 /*
31 * evil casts, but these functions are only called if there's a library
32 * bug
33 */
34 (int (*)(SSL *, SSL3_RECORD *, size_t, int))ssl_undefined_function,
35 (int (*)(SSL *, SSL3_RECORD *, unsigned char *, int))ssl_undefined_function,
36 ssl_undefined_function,
37 (int (*)(SSL *, unsigned char *, unsigned char *, size_t, size_t *))
38 ssl_undefined_function,
39 (int (*)(SSL *, int))ssl_undefined_function,
40 (size_t (*)(SSL *, const char *, size_t, unsigned char *))
41 ssl_undefined_function,
42 NULL, /* client_finished_label */
43 0, /* client_finished_label_len */
44 NULL, /* server_finished_label */
45 0, /* server_finished_label_len */
46 (int (*)(int))ssl_undefined_function,
47 (int (*)(SSL *, unsigned char *, size_t, const char *,
48 size_t, const unsigned char *, size_t,
49 int use_context))ssl_undefined_function,
50 };
51
52 struct ssl_async_args {
53 SSL *s;
54 void *buf;
55 size_t num;
56 enum { READFUNC, WRITEFUNC, OTHERFUNC } type;
57 union {
58 int (*func_read) (SSL *, void *, size_t, size_t *);
59 int (*func_write) (SSL *, const void *, size_t, size_t *);
60 int (*func_other) (SSL *);
61 } f;
62 };
63
64 static const struct {
65 uint8_t mtype;
66 uint8_t ord;
67 int nid;
68 } dane_mds[] = {
69 {
70 DANETLS_MATCHING_FULL, 0, NID_undef
71 },
72 {
73 DANETLS_MATCHING_2256, 1, NID_sha256
74 },
75 {
76 DANETLS_MATCHING_2512, 2, NID_sha512
77 },
78 };
79
80 static int dane_ctx_enable(struct dane_ctx_st *dctx)
81 {
82 const EVP_MD **mdevp;
83 uint8_t *mdord;
84 uint8_t mdmax = DANETLS_MATCHING_LAST;
85 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */
86 size_t i;
87
88 if (dctx->mdevp != NULL)
89 return 1;
90
91 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp));
92 mdord = OPENSSL_zalloc(n * sizeof(*mdord));
93
94 if (mdord == NULL || mdevp == NULL) {
95 OPENSSL_free(mdord);
96 OPENSSL_free(mdevp);
97 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE);
98 return 0;
99 }
100
101 /* Install default entries */
102 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) {
103 const EVP_MD *md;
104
105 if (dane_mds[i].nid == NID_undef ||
106 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL)
107 continue;
108 mdevp[dane_mds[i].mtype] = md;
109 mdord[dane_mds[i].mtype] = dane_mds[i].ord;
110 }
111
112 dctx->mdevp = mdevp;
113 dctx->mdord = mdord;
114 dctx->mdmax = mdmax;
115
116 return 1;
117 }
118
119 static void dane_ctx_final(struct dane_ctx_st *dctx)
120 {
121 OPENSSL_free(dctx->mdevp);
122 dctx->mdevp = NULL;
123
124 OPENSSL_free(dctx->mdord);
125 dctx->mdord = NULL;
126 dctx->mdmax = 0;
127 }
128
129 static void tlsa_free(danetls_record *t)
130 {
131 if (t == NULL)
132 return;
133 OPENSSL_free(t->data);
134 EVP_PKEY_free(t->spki);
135 OPENSSL_free(t);
136 }
137
138 static void dane_final(SSL_DANE *dane)
139 {
140 sk_danetls_record_pop_free(dane->trecs, tlsa_free);
141 dane->trecs = NULL;
142
143 sk_X509_pop_free(dane->certs, X509_free);
144 dane->certs = NULL;
145
146 X509_free(dane->mcert);
147 dane->mcert = NULL;
148 dane->mtlsa = NULL;
149 dane->mdpth = -1;
150 dane->pdpth = -1;
151 }
152
153 /*
154 * dane_copy - Copy dane configuration, sans verification state.
155 */
156 static int ssl_dane_dup(SSL *to, SSL *from)
157 {
158 int num;
159 int i;
160
161 if (!DANETLS_ENABLED(&from->dane))
162 return 1;
163
164 num = sk_danetls_record_num(from->dane.trecs);
165 dane_final(&to->dane);
166 to->dane.flags = from->dane.flags;
167 to->dane.dctx = &to->ctx->dane;
168 to->dane.trecs = sk_danetls_record_new_null();
169
170 if (to->dane.trecs == NULL) {
171 SSLerr(SSL_F_SSL_DANE_DUP, ERR_R_MALLOC_FAILURE);
172 return 0;
173 }
174 if (!sk_danetls_record_reserve(to->dane.trecs, num))
175 return 0;
176
177 for (i = 0; i < num; ++i) {
178 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i);
179
180 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype,
181 t->data, t->dlen) <= 0)
182 return 0;
183 }
184 return 1;
185 }
186
187 static int dane_mtype_set(struct dane_ctx_st *dctx,
188 const EVP_MD *md, uint8_t mtype, uint8_t ord)
189 {
190 int i;
191
192 if (mtype == DANETLS_MATCHING_FULL && md != NULL) {
193 SSLerr(SSL_F_DANE_MTYPE_SET, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL);
194 return 0;
195 }
196
197 if (mtype > dctx->mdmax) {
198 const EVP_MD **mdevp;
199 uint8_t *mdord;
200 int n = ((int)mtype) + 1;
201
202 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp));
203 if (mdevp == NULL) {
204 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
205 return -1;
206 }
207 dctx->mdevp = mdevp;
208
209 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord));
210 if (mdord == NULL) {
211 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
212 return -1;
213 }
214 dctx->mdord = mdord;
215
216 /* Zero-fill any gaps */
217 for (i = dctx->mdmax + 1; i < mtype; ++i) {
218 mdevp[i] = NULL;
219 mdord[i] = 0;
220 }
221
222 dctx->mdmax = mtype;
223 }
224
225 dctx->mdevp[mtype] = md;
226 /* Coerce ordinal of disabled matching types to 0 */
227 dctx->mdord[mtype] = (md == NULL) ? 0 : ord;
228
229 return 1;
230 }
231
232 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype)
233 {
234 if (mtype > dane->dctx->mdmax)
235 return NULL;
236 return dane->dctx->mdevp[mtype];
237 }
238
239 static int dane_tlsa_add(SSL_DANE *dane,
240 uint8_t usage,
241 uint8_t selector,
242 uint8_t mtype, unsigned char *data, size_t dlen)
243 {
244 danetls_record *t;
245 const EVP_MD *md = NULL;
246 int ilen = (int)dlen;
247 int i;
248 int num;
249
250 if (dane->trecs == NULL) {
251 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED);
252 return -1;
253 }
254
255 if (ilen < 0 || dlen != (size_t)ilen) {
256 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH);
257 return 0;
258 }
259
260 if (usage > DANETLS_USAGE_LAST) {
261 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE);
262 return 0;
263 }
264
265 if (selector > DANETLS_SELECTOR_LAST) {
266 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR);
267 return 0;
268 }
269
270 if (mtype != DANETLS_MATCHING_FULL) {
271 md = tlsa_md_get(dane, mtype);
272 if (md == NULL) {
273 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE);
274 return 0;
275 }
276 }
277
278 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) {
279 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH);
280 return 0;
281 }
282 if (!data) {
283 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA);
284 return 0;
285 }
286
287 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) {
288 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
289 return -1;
290 }
291
292 t->usage = usage;
293 t->selector = selector;
294 t->mtype = mtype;
295 t->data = OPENSSL_malloc(dlen);
296 if (t->data == NULL) {
297 tlsa_free(t);
298 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
299 return -1;
300 }
301 memcpy(t->data, data, dlen);
302 t->dlen = dlen;
303
304 /* Validate and cache full certificate or public key */
305 if (mtype == DANETLS_MATCHING_FULL) {
306 const unsigned char *p = data;
307 X509 *cert = NULL;
308 EVP_PKEY *pkey = NULL;
309
310 switch (selector) {
311 case DANETLS_SELECTOR_CERT:
312 if (!d2i_X509(&cert, &p, ilen) || p < data ||
313 dlen != (size_t)(p - data)) {
314 tlsa_free(t);
315 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
316 return 0;
317 }
318 if (X509_get0_pubkey(cert) == NULL) {
319 tlsa_free(t);
320 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
321 return 0;
322 }
323
324 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) {
325 X509_free(cert);
326 break;
327 }
328
329 /*
330 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA
331 * records that contain full certificates of trust-anchors that are
332 * not present in the wire chain. For usage PKIX-TA(0), we augment
333 * the chain with untrusted Full(0) certificates from DNS, in case
334 * they are missing from the chain.
335 */
336 if ((dane->certs == NULL &&
337 (dane->certs = sk_X509_new_null()) == NULL) ||
338 !sk_X509_push(dane->certs, cert)) {
339 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
340 X509_free(cert);
341 tlsa_free(t);
342 return -1;
343 }
344 break;
345
346 case DANETLS_SELECTOR_SPKI:
347 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data ||
348 dlen != (size_t)(p - data)) {
349 tlsa_free(t);
350 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY);
351 return 0;
352 }
353
354 /*
355 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA
356 * records that contain full bare keys of trust-anchors that are
357 * not present in the wire chain.
358 */
359 if (usage == DANETLS_USAGE_DANE_TA)
360 t->spki = pkey;
361 else
362 EVP_PKEY_free(pkey);
363 break;
364 }
365 }
366
367 /*-
368 * Find the right insertion point for the new record.
369 *
370 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that
371 * they can be processed first, as they require no chain building, and no
372 * expiration or hostname checks. Because DANE-EE(3) is numerically
373 * largest, this is accomplished via descending sort by "usage".
374 *
375 * We also sort in descending order by matching ordinal to simplify
376 * the implementation of digest agility in the verification code.
377 *
378 * The choice of order for the selector is not significant, so we
379 * use the same descending order for consistency.
380 */
381 num = sk_danetls_record_num(dane->trecs);
382 for (i = 0; i < num; ++i) {
383 danetls_record *rec = sk_danetls_record_value(dane->trecs, i);
384
385 if (rec->usage > usage)
386 continue;
387 if (rec->usage < usage)
388 break;
389 if (rec->selector > selector)
390 continue;
391 if (rec->selector < selector)
392 break;
393 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype])
394 continue;
395 break;
396 }
397
398 if (!sk_danetls_record_insert(dane->trecs, t, i)) {
399 tlsa_free(t);
400 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
401 return -1;
402 }
403 dane->umask |= DANETLS_USAGE_BIT(usage);
404
405 return 1;
406 }
407
408 /*
409 * Return 0 if there is only one version configured and it was disabled
410 * at configure time. Return 1 otherwise.
411 */
412 static int ssl_check_allowed_versions(int min_version, int max_version)
413 {
414 int minisdtls = 0, maxisdtls = 0;
415
416 /* Figure out if we're doing DTLS versions or TLS versions */
417 if (min_version == DTLS1_BAD_VER
418 || min_version >> 8 == DTLS1_VERSION_MAJOR)
419 minisdtls = 1;
420 if (max_version == DTLS1_BAD_VER
421 || max_version >> 8 == DTLS1_VERSION_MAJOR)
422 maxisdtls = 1;
423 /* A wildcard version of 0 could be DTLS or TLS. */
424 if ((minisdtls && !maxisdtls && max_version != 0)
425 || (maxisdtls && !minisdtls && min_version != 0)) {
426 /* Mixing DTLS and TLS versions will lead to sadness; deny it. */
427 return 0;
428 }
429
430 if (minisdtls || maxisdtls) {
431 /* Do DTLS version checks. */
432 if (min_version == 0)
433 /* Ignore DTLS1_BAD_VER */
434 min_version = DTLS1_VERSION;
435 if (max_version == 0)
436 max_version = DTLS1_2_VERSION;
437 #ifdef OPENSSL_NO_DTLS1_2
438 if (max_version == DTLS1_2_VERSION)
439 max_version = DTLS1_VERSION;
440 #endif
441 #ifdef OPENSSL_NO_DTLS1
442 if (min_version == DTLS1_VERSION)
443 min_version = DTLS1_2_VERSION;
444 #endif
445 /* Done massaging versions; do the check. */
446 if (0
447 #ifdef OPENSSL_NO_DTLS1
448 || (DTLS_VERSION_GE(min_version, DTLS1_VERSION)
449 && DTLS_VERSION_GE(DTLS1_VERSION, max_version))
450 #endif
451 #ifdef OPENSSL_NO_DTLS1_2
452 || (DTLS_VERSION_GE(min_version, DTLS1_2_VERSION)
453 && DTLS_VERSION_GE(DTLS1_2_VERSION, max_version))
454 #endif
455 )
456 return 0;
457 } else {
458 /* Regular TLS version checks. */
459 if (min_version == 0)
460 min_version = SSL3_VERSION;
461 if (max_version == 0)
462 max_version = TLS1_3_VERSION;
463 #ifdef OPENSSL_NO_TLS1_3
464 if (max_version == TLS1_3_VERSION)
465 max_version = TLS1_2_VERSION;
466 #endif
467 #ifdef OPENSSL_NO_TLS1_2
468 if (max_version == TLS1_2_VERSION)
469 max_version = TLS1_1_VERSION;
470 #endif
471 #ifdef OPENSSL_NO_TLS1_1
472 if (max_version == TLS1_1_VERSION)
473 max_version = TLS1_VERSION;
474 #endif
475 #ifdef OPENSSL_NO_TLS1
476 if (max_version == TLS1_VERSION)
477 max_version = SSL3_VERSION;
478 #endif
479 #ifdef OPENSSL_NO_SSL3
480 if (min_version == SSL3_VERSION)
481 min_version = TLS1_VERSION;
482 #endif
483 #ifdef OPENSSL_NO_TLS1
484 if (min_version == TLS1_VERSION)
485 min_version = TLS1_1_VERSION;
486 #endif
487 #ifdef OPENSSL_NO_TLS1_1
488 if (min_version == TLS1_1_VERSION)
489 min_version = TLS1_2_VERSION;
490 #endif
491 #ifdef OPENSSL_NO_TLS1_2
492 if (min_version == TLS1_2_VERSION)
493 min_version = TLS1_3_VERSION;
494 #endif
495 /* Done massaging versions; do the check. */
496 if (0
497 #ifdef OPENSSL_NO_SSL3
498 || (min_version <= SSL3_VERSION && SSL3_VERSION <= max_version)
499 #endif
500 #ifdef OPENSSL_NO_TLS1
501 || (min_version <= TLS1_VERSION && TLS1_VERSION <= max_version)
502 #endif
503 #ifdef OPENSSL_NO_TLS1_1
504 || (min_version <= TLS1_1_VERSION && TLS1_1_VERSION <= max_version)
505 #endif
506 #ifdef OPENSSL_NO_TLS1_2
507 || (min_version <= TLS1_2_VERSION && TLS1_2_VERSION <= max_version)
508 #endif
509 #ifdef OPENSSL_NO_TLS1_3
510 || (min_version <= TLS1_3_VERSION && TLS1_3_VERSION <= max_version)
511 #endif
512 )
513 return 0;
514 }
515 return 1;
516 }
517
518 static void clear_ciphers(SSL *s)
519 {
520 /* clear the current cipher */
521 ssl_clear_cipher_ctx(s);
522 ssl_clear_hash_ctx(&s->read_hash);
523 ssl_clear_hash_ctx(&s->write_hash);
524 }
525
526 int SSL_clear(SSL *s)
527 {
528 if (s->method == NULL) {
529 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED);
530 return 0;
531 }
532
533 if (ssl_clear_bad_session(s)) {
534 SSL_SESSION_free(s->session);
535 s->session = NULL;
536 }
537 SSL_SESSION_free(s->psksession);
538 s->psksession = NULL;
539 OPENSSL_free(s->psksession_id);
540 s->psksession_id = NULL;
541 s->psksession_id_len = 0;
542
543 s->error = 0;
544 s->hit = 0;
545 s->shutdown = 0;
546
547 if (s->renegotiate) {
548 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR);
549 return 0;
550 }
551
552 ossl_statem_clear(s);
553
554 s->version = s->method->version;
555 s->client_version = s->version;
556 s->rwstate = SSL_NOTHING;
557
558 BUF_MEM_free(s->init_buf);
559 s->init_buf = NULL;
560 clear_ciphers(s);
561 s->first_packet = 0;
562
563 s->key_update = SSL_KEY_UPDATE_NONE;
564
565 /* Reset DANE verification result state */
566 s->dane.mdpth = -1;
567 s->dane.pdpth = -1;
568 X509_free(s->dane.mcert);
569 s->dane.mcert = NULL;
570 s->dane.mtlsa = NULL;
571
572 /* Clear the verification result peername */
573 X509_VERIFY_PARAM_move_peername(s->param, NULL);
574
575 /*
576 * Check to see if we were changed into a different method, if so, revert
577 * back.
578 */
579 if (s->method != s->ctx->method) {
580 s->method->ssl_free(s);
581 s->method = s->ctx->method;
582 if (!s->method->ssl_new(s))
583 return 0;
584 } else {
585 if (!s->method->ssl_clear(s))
586 return 0;
587 }
588
589 RECORD_LAYER_clear(&s->rlayer);
590
591 return 1;
592 }
593
594 /** Used to change an SSL_CTXs default SSL method type */
595 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth)
596 {
597 STACK_OF(SSL_CIPHER) *sk;
598
599 ctx->method = meth;
600
601 sk = ssl_create_cipher_list(ctx->method, &(ctx->cipher_list),
602 &(ctx->cipher_list_by_id),
603 SSL_DEFAULT_CIPHER_LIST, ctx->cert);
604 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) {
605 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
606 return (0);
607 }
608 return (1);
609 }
610
611 SSL *SSL_new(SSL_CTX *ctx)
612 {
613 SSL *s;
614
615 if (ctx == NULL) {
616 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX);
617 return (NULL);
618 }
619 if (ctx->method == NULL) {
620 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
621 return (NULL);
622 }
623
624 s = OPENSSL_zalloc(sizeof(*s));
625 if (s == NULL)
626 goto err;
627
628 s->lock = CRYPTO_THREAD_lock_new();
629 if (s->lock == NULL)
630 goto err;
631
632 /*
633 * If not using the standard RAND (say for fuzzing), then don't use a
634 * chained DRBG.
635 */
636 if (RAND_get_rand_method() == RAND_OpenSSL()) {
637 s->drbg = RAND_DRBG_new(NID_aes_128_ctr, RAND_DRBG_FLAG_CTR_USE_DF,
638 RAND_DRBG_get0_global());
639 if (s->drbg == NULL
640 || RAND_DRBG_instantiate(s->drbg, NULL, 0) == 0) {
641 CRYPTO_THREAD_lock_free(s->lock);
642 goto err;
643 }
644 }
645
646 RECORD_LAYER_init(&s->rlayer, s);
647
648 s->options = ctx->options;
649 s->dane.flags = ctx->dane.flags;
650 s->min_proto_version = ctx->min_proto_version;
651 s->max_proto_version = ctx->max_proto_version;
652 s->mode = ctx->mode;
653 s->max_cert_list = ctx->max_cert_list;
654 s->references = 1;
655 s->max_early_data = ctx->max_early_data;
656
657 /*
658 * Earlier library versions used to copy the pointer to the CERT, not
659 * its contents; only when setting new parameters for the per-SSL
660 * copy, ssl_cert_new would be called (and the direct reference to
661 * the per-SSL_CTX settings would be lost, but those still were
662 * indirectly accessed for various purposes, and for that reason they
663 * used to be known as s->ctx->default_cert). Now we don't look at the
664 * SSL_CTX's CERT after having duplicated it once.
665 */
666 s->cert = ssl_cert_dup(ctx->cert);
667 if (s->cert == NULL)
668 goto err;
669
670 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead);
671 s->msg_callback = ctx->msg_callback;
672 s->msg_callback_arg = ctx->msg_callback_arg;
673 s->verify_mode = ctx->verify_mode;
674 s->not_resumable_session_cb = ctx->not_resumable_session_cb;
675 s->record_padding_cb = ctx->record_padding_cb;
676 s->record_padding_arg = ctx->record_padding_arg;
677 s->block_padding = ctx->block_padding;
678 s->sid_ctx_length = ctx->sid_ctx_length;
679 if (!ossl_assert(s->sid_ctx_length <= sizeof s->sid_ctx))
680 goto err;
681 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
682 s->verify_callback = ctx->default_verify_callback;
683 s->generate_session_id = ctx->generate_session_id;
684
685 s->param = X509_VERIFY_PARAM_new();
686 if (s->param == NULL)
687 goto err;
688 X509_VERIFY_PARAM_inherit(s->param, ctx->param);
689 s->quiet_shutdown = ctx->quiet_shutdown;
690 s->max_send_fragment = ctx->max_send_fragment;
691 s->split_send_fragment = ctx->split_send_fragment;
692 s->max_pipelines = ctx->max_pipelines;
693 if (s->max_pipelines > 1)
694 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
695 if (ctx->default_read_buf_len > 0)
696 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len);
697
698 SSL_CTX_up_ref(ctx);
699 s->ctx = ctx;
700 s->ext.debug_cb = 0;
701 s->ext.debug_arg = NULL;
702 s->ext.ticket_expected = 0;
703 s->ext.status_type = ctx->ext.status_type;
704 s->ext.status_expected = 0;
705 s->ext.ocsp.ids = NULL;
706 s->ext.ocsp.exts = NULL;
707 s->ext.ocsp.resp = NULL;
708 s->ext.ocsp.resp_len = 0;
709 SSL_CTX_up_ref(ctx);
710 s->session_ctx = ctx;
711 #ifndef OPENSSL_NO_EC
712 if (ctx->ext.ecpointformats) {
713 s->ext.ecpointformats =
714 OPENSSL_memdup(ctx->ext.ecpointformats,
715 ctx->ext.ecpointformats_len);
716 if (!s->ext.ecpointformats)
717 goto err;
718 s->ext.ecpointformats_len =
719 ctx->ext.ecpointformats_len;
720 }
721 if (ctx->ext.supportedgroups) {
722 s->ext.supportedgroups =
723 OPENSSL_memdup(ctx->ext.supportedgroups,
724 ctx->ext.supportedgroups_len
725 * sizeof(*ctx->ext.supportedgroups));
726 if (!s->ext.supportedgroups)
727 goto err;
728 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len;
729 }
730 #endif
731 #ifndef OPENSSL_NO_NEXTPROTONEG
732 s->ext.npn = NULL;
733 #endif
734
735 if (s->ctx->ext.alpn) {
736 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len);
737 if (s->ext.alpn == NULL)
738 goto err;
739 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len);
740 s->ext.alpn_len = s->ctx->ext.alpn_len;
741 }
742
743 s->verified_chain = NULL;
744 s->verify_result = X509_V_OK;
745
746 s->default_passwd_callback = ctx->default_passwd_callback;
747 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata;
748
749 s->method = ctx->method;
750
751 s->key_update = SSL_KEY_UPDATE_NONE;
752
753 if (!s->method->ssl_new(s))
754 goto err;
755
756 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1;
757
758 if (!SSL_clear(s))
759 goto err;
760
761 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data))
762 goto err;
763
764 #ifndef OPENSSL_NO_PSK
765 s->psk_client_callback = ctx->psk_client_callback;
766 s->psk_server_callback = ctx->psk_server_callback;
767 #endif
768 s->psk_find_session_cb = ctx->psk_find_session_cb;
769 s->psk_use_session_cb = ctx->psk_use_session_cb;
770
771 s->job = NULL;
772
773 #ifndef OPENSSL_NO_CT
774 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback,
775 ctx->ct_validation_callback_arg))
776 goto err;
777 #endif
778
779 return s;
780 err:
781 SSL_free(s);
782 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
783 return NULL;
784 }
785
786 int SSL_is_dtls(const SSL *s)
787 {
788 return SSL_IS_DTLS(s) ? 1 : 0;
789 }
790
791 int SSL_up_ref(SSL *s)
792 {
793 int i;
794
795 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0)
796 return 0;
797
798 REF_PRINT_COUNT("SSL", s);
799 REF_ASSERT_ISNT(i < 2);
800 return ((i > 1) ? 1 : 0);
801 }
802
803 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
804 unsigned int sid_ctx_len)
805 {
806 if (sid_ctx_len > sizeof ctx->sid_ctx) {
807 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT,
808 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
809 return 0;
810 }
811 ctx->sid_ctx_length = sid_ctx_len;
812 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
813
814 return 1;
815 }
816
817 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
818 unsigned int sid_ctx_len)
819 {
820 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
821 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT,
822 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
823 return 0;
824 }
825 ssl->sid_ctx_length = sid_ctx_len;
826 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
827
828 return 1;
829 }
830
831 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb)
832 {
833 CRYPTO_THREAD_write_lock(ctx->lock);
834 ctx->generate_session_id = cb;
835 CRYPTO_THREAD_unlock(ctx->lock);
836 return 1;
837 }
838
839 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb)
840 {
841 CRYPTO_THREAD_write_lock(ssl->lock);
842 ssl->generate_session_id = cb;
843 CRYPTO_THREAD_unlock(ssl->lock);
844 return 1;
845 }
846
847 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
848 unsigned int id_len)
849 {
850 /*
851 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how
852 * we can "construct" a session to give us the desired check - i.e. to
853 * find if there's a session in the hash table that would conflict with
854 * any new session built out of this id/id_len and the ssl_version in use
855 * by this SSL.
856 */
857 SSL_SESSION r, *p;
858
859 if (id_len > sizeof r.session_id)
860 return 0;
861
862 r.ssl_version = ssl->version;
863 r.session_id_length = id_len;
864 memcpy(r.session_id, id, id_len);
865
866 CRYPTO_THREAD_read_lock(ssl->session_ctx->lock);
867 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r);
868 CRYPTO_THREAD_unlock(ssl->session_ctx->lock);
869 return (p != NULL);
870 }
871
872 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose)
873 {
874 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
875 }
876
877 int SSL_set_purpose(SSL *s, int purpose)
878 {
879 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
880 }
881
882 int SSL_CTX_set_trust(SSL_CTX *s, int trust)
883 {
884 return X509_VERIFY_PARAM_set_trust(s->param, trust);
885 }
886
887 int SSL_set_trust(SSL *s, int trust)
888 {
889 return X509_VERIFY_PARAM_set_trust(s->param, trust);
890 }
891
892 int SSL_set1_host(SSL *s, const char *hostname)
893 {
894 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0);
895 }
896
897 int SSL_add1_host(SSL *s, const char *hostname)
898 {
899 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0);
900 }
901
902 void SSL_set_hostflags(SSL *s, unsigned int flags)
903 {
904 X509_VERIFY_PARAM_set_hostflags(s->param, flags);
905 }
906
907 const char *SSL_get0_peername(SSL *s)
908 {
909 return X509_VERIFY_PARAM_get0_peername(s->param);
910 }
911
912 int SSL_CTX_dane_enable(SSL_CTX *ctx)
913 {
914 return dane_ctx_enable(&ctx->dane);
915 }
916
917 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags)
918 {
919 unsigned long orig = ctx->dane.flags;
920
921 ctx->dane.flags |= flags;
922 return orig;
923 }
924
925 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags)
926 {
927 unsigned long orig = ctx->dane.flags;
928
929 ctx->dane.flags &= ~flags;
930 return orig;
931 }
932
933 int SSL_dane_enable(SSL *s, const char *basedomain)
934 {
935 SSL_DANE *dane = &s->dane;
936
937 if (s->ctx->dane.mdmax == 0) {
938 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED);
939 return 0;
940 }
941 if (dane->trecs != NULL) {
942 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED);
943 return 0;
944 }
945
946 /*
947 * Default SNI name. This rejects empty names, while set1_host below
948 * accepts them and disables host name checks. To avoid side-effects with
949 * invalid input, set the SNI name first.
950 */
951 if (s->ext.hostname == NULL) {
952 if (!SSL_set_tlsext_host_name(s, basedomain)) {
953 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
954 return -1;
955 }
956 }
957
958 /* Primary RFC6125 reference identifier */
959 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) {
960 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
961 return -1;
962 }
963
964 dane->mdpth = -1;
965 dane->pdpth = -1;
966 dane->dctx = &s->ctx->dane;
967 dane->trecs = sk_danetls_record_new_null();
968
969 if (dane->trecs == NULL) {
970 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE);
971 return -1;
972 }
973 return 1;
974 }
975
976 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags)
977 {
978 unsigned long orig = ssl->dane.flags;
979
980 ssl->dane.flags |= flags;
981 return orig;
982 }
983
984 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags)
985 {
986 unsigned long orig = ssl->dane.flags;
987
988 ssl->dane.flags &= ~flags;
989 return orig;
990 }
991
992 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki)
993 {
994 SSL_DANE *dane = &s->dane;
995
996 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
997 return -1;
998 if (dane->mtlsa) {
999 if (mcert)
1000 *mcert = dane->mcert;
1001 if (mspki)
1002 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL;
1003 }
1004 return dane->mdpth;
1005 }
1006
1007 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector,
1008 uint8_t *mtype, unsigned const char **data, size_t *dlen)
1009 {
1010 SSL_DANE *dane = &s->dane;
1011
1012 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1013 return -1;
1014 if (dane->mtlsa) {
1015 if (usage)
1016 *usage = dane->mtlsa->usage;
1017 if (selector)
1018 *selector = dane->mtlsa->selector;
1019 if (mtype)
1020 *mtype = dane->mtlsa->mtype;
1021 if (data)
1022 *data = dane->mtlsa->data;
1023 if (dlen)
1024 *dlen = dane->mtlsa->dlen;
1025 }
1026 return dane->mdpth;
1027 }
1028
1029 SSL_DANE *SSL_get0_dane(SSL *s)
1030 {
1031 return &s->dane;
1032 }
1033
1034 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector,
1035 uint8_t mtype, unsigned char *data, size_t dlen)
1036 {
1037 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen);
1038 }
1039
1040 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype,
1041 uint8_t ord)
1042 {
1043 return dane_mtype_set(&ctx->dane, md, mtype, ord);
1044 }
1045
1046 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm)
1047 {
1048 return X509_VERIFY_PARAM_set1(ctx->param, vpm);
1049 }
1050
1051 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm)
1052 {
1053 return X509_VERIFY_PARAM_set1(ssl->param, vpm);
1054 }
1055
1056 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx)
1057 {
1058 return ctx->param;
1059 }
1060
1061 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl)
1062 {
1063 return ssl->param;
1064 }
1065
1066 void SSL_certs_clear(SSL *s)
1067 {
1068 ssl_cert_clear_certs(s->cert);
1069 }
1070
1071 void SSL_free(SSL *s)
1072 {
1073 int i;
1074
1075 if (s == NULL)
1076 return;
1077
1078 CRYPTO_DOWN_REF(&s->references, &i, s->lock);
1079 REF_PRINT_COUNT("SSL", s);
1080 if (i > 0)
1081 return;
1082 REF_ASSERT_ISNT(i < 0);
1083
1084 X509_VERIFY_PARAM_free(s->param);
1085 dane_final(&s->dane);
1086 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
1087
1088 /* Ignore return value */
1089 ssl_free_wbio_buffer(s);
1090
1091 BIO_free_all(s->wbio);
1092 BIO_free_all(s->rbio);
1093
1094 BUF_MEM_free(s->init_buf);
1095
1096 /* add extra stuff */
1097 sk_SSL_CIPHER_free(s->cipher_list);
1098 sk_SSL_CIPHER_free(s->cipher_list_by_id);
1099
1100 /* Make the next call work :-) */
1101 if (s->session != NULL) {
1102 ssl_clear_bad_session(s);
1103 SSL_SESSION_free(s->session);
1104 }
1105 SSL_SESSION_free(s->psksession);
1106 OPENSSL_free(s->psksession_id);
1107
1108 clear_ciphers(s);
1109
1110 ssl_cert_free(s->cert);
1111 /* Free up if allocated */
1112
1113 OPENSSL_free(s->ext.hostname);
1114 SSL_CTX_free(s->session_ctx);
1115 #ifndef OPENSSL_NO_EC
1116 OPENSSL_free(s->ext.ecpointformats);
1117 OPENSSL_free(s->ext.supportedgroups);
1118 #endif /* OPENSSL_NO_EC */
1119 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free);
1120 #ifndef OPENSSL_NO_OCSP
1121 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free);
1122 #endif
1123 #ifndef OPENSSL_NO_CT
1124 SCT_LIST_free(s->scts);
1125 OPENSSL_free(s->ext.scts);
1126 #endif
1127 OPENSSL_free(s->ext.ocsp.resp);
1128 OPENSSL_free(s->ext.alpn);
1129 OPENSSL_free(s->ext.tls13_cookie);
1130 OPENSSL_free(s->clienthello);
1131
1132 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free);
1133
1134 sk_X509_pop_free(s->verified_chain, X509_free);
1135
1136 if (s->method != NULL)
1137 s->method->ssl_free(s);
1138
1139 RECORD_LAYER_release(&s->rlayer);
1140
1141 SSL_CTX_free(s->ctx);
1142
1143 ASYNC_WAIT_CTX_free(s->waitctx);
1144
1145 #if !defined(OPENSSL_NO_NEXTPROTONEG)
1146 OPENSSL_free(s->ext.npn);
1147 #endif
1148
1149 #ifndef OPENSSL_NO_SRTP
1150 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles);
1151 #endif
1152
1153 RAND_DRBG_free(s->drbg);
1154 CRYPTO_THREAD_lock_free(s->lock);
1155
1156 OPENSSL_free(s);
1157 }
1158
1159 void SSL_set0_rbio(SSL *s, BIO *rbio)
1160 {
1161 BIO_free_all(s->rbio);
1162 s->rbio = rbio;
1163 }
1164
1165 void SSL_set0_wbio(SSL *s, BIO *wbio)
1166 {
1167 /*
1168 * If the output buffering BIO is still in place, remove it
1169 */
1170 if (s->bbio != NULL)
1171 s->wbio = BIO_pop(s->wbio);
1172
1173 BIO_free_all(s->wbio);
1174 s->wbio = wbio;
1175
1176 /* Re-attach |bbio| to the new |wbio|. */
1177 if (s->bbio != NULL)
1178 s->wbio = BIO_push(s->bbio, s->wbio);
1179 }
1180
1181 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio)
1182 {
1183 /*
1184 * For historical reasons, this function has many different cases in
1185 * ownership handling.
1186 */
1187
1188 /* If nothing has changed, do nothing */
1189 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s))
1190 return;
1191
1192 /*
1193 * If the two arguments are equal then one fewer reference is granted by the
1194 * caller than we want to take
1195 */
1196 if (rbio != NULL && rbio == wbio)
1197 BIO_up_ref(rbio);
1198
1199 /*
1200 * If only the wbio is changed only adopt one reference.
1201 */
1202 if (rbio == SSL_get_rbio(s)) {
1203 SSL_set0_wbio(s, wbio);
1204 return;
1205 }
1206 /*
1207 * There is an asymmetry here for historical reasons. If only the rbio is
1208 * changed AND the rbio and wbio were originally different, then we only
1209 * adopt one reference.
1210 */
1211 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) {
1212 SSL_set0_rbio(s, rbio);
1213 return;
1214 }
1215
1216 /* Otherwise, adopt both references. */
1217 SSL_set0_rbio(s, rbio);
1218 SSL_set0_wbio(s, wbio);
1219 }
1220
1221 BIO *SSL_get_rbio(const SSL *s)
1222 {
1223 return s->rbio;
1224 }
1225
1226 BIO *SSL_get_wbio(const SSL *s)
1227 {
1228 if (s->bbio != NULL) {
1229 /*
1230 * If |bbio| is active, the true caller-configured BIO is its
1231 * |next_bio|.
1232 */
1233 return BIO_next(s->bbio);
1234 }
1235 return s->wbio;
1236 }
1237
1238 int SSL_get_fd(const SSL *s)
1239 {
1240 return SSL_get_rfd(s);
1241 }
1242
1243 int SSL_get_rfd(const SSL *s)
1244 {
1245 int ret = -1;
1246 BIO *b, *r;
1247
1248 b = SSL_get_rbio(s);
1249 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1250 if (r != NULL)
1251 BIO_get_fd(r, &ret);
1252 return (ret);
1253 }
1254
1255 int SSL_get_wfd(const SSL *s)
1256 {
1257 int ret = -1;
1258 BIO *b, *r;
1259
1260 b = SSL_get_wbio(s);
1261 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1262 if (r != NULL)
1263 BIO_get_fd(r, &ret);
1264 return (ret);
1265 }
1266
1267 #ifndef OPENSSL_NO_SOCK
1268 int SSL_set_fd(SSL *s, int fd)
1269 {
1270 int ret = 0;
1271 BIO *bio = NULL;
1272
1273 bio = BIO_new(BIO_s_socket());
1274
1275 if (bio == NULL) {
1276 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB);
1277 goto err;
1278 }
1279 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1280 SSL_set_bio(s, bio, bio);
1281 ret = 1;
1282 err:
1283 return (ret);
1284 }
1285
1286 int SSL_set_wfd(SSL *s, int fd)
1287 {
1288 BIO *rbio = SSL_get_rbio(s);
1289
1290 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET
1291 || (int)BIO_get_fd(rbio, NULL) != fd) {
1292 BIO *bio = BIO_new(BIO_s_socket());
1293
1294 if (bio == NULL) {
1295 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB);
1296 return 0;
1297 }
1298 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1299 SSL_set0_wbio(s, bio);
1300 } else {
1301 BIO_up_ref(rbio);
1302 SSL_set0_wbio(s, rbio);
1303 }
1304 return 1;
1305 }
1306
1307 int SSL_set_rfd(SSL *s, int fd)
1308 {
1309 BIO *wbio = SSL_get_wbio(s);
1310
1311 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET
1312 || ((int)BIO_get_fd(wbio, NULL) != fd)) {
1313 BIO *bio = BIO_new(BIO_s_socket());
1314
1315 if (bio == NULL) {
1316 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB);
1317 return 0;
1318 }
1319 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1320 SSL_set0_rbio(s, bio);
1321 } else {
1322 BIO_up_ref(wbio);
1323 SSL_set0_rbio(s, wbio);
1324 }
1325
1326 return 1;
1327 }
1328 #endif
1329
1330 /* return length of latest Finished message we sent, copy to 'buf' */
1331 size_t SSL_get_finished(const SSL *s, void *buf, size_t count)
1332 {
1333 size_t ret = 0;
1334
1335 if (s->s3 != NULL) {
1336 ret = s->s3->tmp.finish_md_len;
1337 if (count > ret)
1338 count = ret;
1339 memcpy(buf, s->s3->tmp.finish_md, count);
1340 }
1341 return ret;
1342 }
1343
1344 /* return length of latest Finished message we expected, copy to 'buf' */
1345 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count)
1346 {
1347 size_t ret = 0;
1348
1349 if (s->s3 != NULL) {
1350 ret = s->s3->tmp.peer_finish_md_len;
1351 if (count > ret)
1352 count = ret;
1353 memcpy(buf, s->s3->tmp.peer_finish_md, count);
1354 }
1355 return ret;
1356 }
1357
1358 int SSL_get_verify_mode(const SSL *s)
1359 {
1360 return (s->verify_mode);
1361 }
1362
1363 int SSL_get_verify_depth(const SSL *s)
1364 {
1365 return X509_VERIFY_PARAM_get_depth(s->param);
1366 }
1367
1368 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) {
1369 return (s->verify_callback);
1370 }
1371
1372 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx)
1373 {
1374 return (ctx->verify_mode);
1375 }
1376
1377 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx)
1378 {
1379 return X509_VERIFY_PARAM_get_depth(ctx->param);
1380 }
1381
1382 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) {
1383 return (ctx->default_verify_callback);
1384 }
1385
1386 void SSL_set_verify(SSL *s, int mode,
1387 int (*callback) (int ok, X509_STORE_CTX *ctx))
1388 {
1389 s->verify_mode = mode;
1390 if (callback != NULL)
1391 s->verify_callback = callback;
1392 }
1393
1394 void SSL_set_verify_depth(SSL *s, int depth)
1395 {
1396 X509_VERIFY_PARAM_set_depth(s->param, depth);
1397 }
1398
1399 void SSL_set_read_ahead(SSL *s, int yes)
1400 {
1401 RECORD_LAYER_set_read_ahead(&s->rlayer, yes);
1402 }
1403
1404 int SSL_get_read_ahead(const SSL *s)
1405 {
1406 return RECORD_LAYER_get_read_ahead(&s->rlayer);
1407 }
1408
1409 int SSL_pending(const SSL *s)
1410 {
1411 size_t pending = s->method->ssl_pending(s);
1412
1413 /*
1414 * SSL_pending cannot work properly if read-ahead is enabled
1415 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is
1416 * impossible to fix since SSL_pending cannot report errors that may be
1417 * observed while scanning the new data. (Note that SSL_pending() is
1418 * often used as a boolean value, so we'd better not return -1.)
1419 *
1420 * SSL_pending also cannot work properly if the value >INT_MAX. In that case
1421 * we just return INT_MAX.
1422 */
1423 return pending < INT_MAX ? (int)pending : INT_MAX;
1424 }
1425
1426 int SSL_has_pending(const SSL *s)
1427 {
1428 /*
1429 * Similar to SSL_pending() but returns a 1 to indicate that we have
1430 * unprocessed data available or 0 otherwise (as opposed to the number of
1431 * bytes available). Unlike SSL_pending() this will take into account
1432 * read_ahead data. A 1 return simply indicates that we have unprocessed
1433 * data. That data may not result in any application data, or we may fail
1434 * to parse the records for some reason.
1435 */
1436 if (RECORD_LAYER_processed_read_pending(&s->rlayer))
1437 return 1;
1438
1439 return RECORD_LAYER_read_pending(&s->rlayer);
1440 }
1441
1442 X509 *SSL_get_peer_certificate(const SSL *s)
1443 {
1444 X509 *r;
1445
1446 if ((s == NULL) || (s->session == NULL))
1447 r = NULL;
1448 else
1449 r = s->session->peer;
1450
1451 if (r == NULL)
1452 return (r);
1453
1454 X509_up_ref(r);
1455
1456 return (r);
1457 }
1458
1459 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s)
1460 {
1461 STACK_OF(X509) *r;
1462
1463 if ((s == NULL) || (s->session == NULL))
1464 r = NULL;
1465 else
1466 r = s->session->peer_chain;
1467
1468 /*
1469 * If we are a client, cert_chain includes the peer's own certificate; if
1470 * we are a server, it does not.
1471 */
1472
1473 return (r);
1474 }
1475
1476 /*
1477 * Now in theory, since the calling process own 't' it should be safe to
1478 * modify. We need to be able to read f without being hassled
1479 */
1480 int SSL_copy_session_id(SSL *t, const SSL *f)
1481 {
1482 int i;
1483 /* Do we need to to SSL locking? */
1484 if (!SSL_set_session(t, SSL_get_session(f))) {
1485 return 0;
1486 }
1487
1488 /*
1489 * what if we are setup for one protocol version but want to talk another
1490 */
1491 if (t->method != f->method) {
1492 t->method->ssl_free(t);
1493 t->method = f->method;
1494 if (t->method->ssl_new(t) == 0)
1495 return 0;
1496 }
1497
1498 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock);
1499 ssl_cert_free(t->cert);
1500 t->cert = f->cert;
1501 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) {
1502 return 0;
1503 }
1504
1505 return 1;
1506 }
1507
1508 /* Fix this so it checks all the valid key/cert options */
1509 int SSL_CTX_check_private_key(const SSL_CTX *ctx)
1510 {
1511 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) {
1512 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1513 return (0);
1514 }
1515 if (ctx->cert->key->privatekey == NULL) {
1516 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1517 return (0);
1518 }
1519 return (X509_check_private_key
1520 (ctx->cert->key->x509, ctx->cert->key->privatekey));
1521 }
1522
1523 /* Fix this function so that it takes an optional type parameter */
1524 int SSL_check_private_key(const SSL *ssl)
1525 {
1526 if (ssl == NULL) {
1527 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER);
1528 return (0);
1529 }
1530 if (ssl->cert->key->x509 == NULL) {
1531 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1532 return (0);
1533 }
1534 if (ssl->cert->key->privatekey == NULL) {
1535 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1536 return (0);
1537 }
1538 return (X509_check_private_key(ssl->cert->key->x509,
1539 ssl->cert->key->privatekey));
1540 }
1541
1542 int SSL_waiting_for_async(SSL *s)
1543 {
1544 if (s->job)
1545 return 1;
1546
1547 return 0;
1548 }
1549
1550 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds)
1551 {
1552 ASYNC_WAIT_CTX *ctx = s->waitctx;
1553
1554 if (ctx == NULL)
1555 return 0;
1556 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds);
1557 }
1558
1559 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds,
1560 OSSL_ASYNC_FD *delfd, size_t *numdelfds)
1561 {
1562 ASYNC_WAIT_CTX *ctx = s->waitctx;
1563
1564 if (ctx == NULL)
1565 return 0;
1566 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd,
1567 numdelfds);
1568 }
1569
1570 int SSL_accept(SSL *s)
1571 {
1572 if (s->handshake_func == NULL) {
1573 /* Not properly initialized yet */
1574 SSL_set_accept_state(s);
1575 }
1576
1577 return SSL_do_handshake(s);
1578 }
1579
1580 int SSL_connect(SSL *s)
1581 {
1582 if (s->handshake_func == NULL) {
1583 /* Not properly initialized yet */
1584 SSL_set_connect_state(s);
1585 }
1586
1587 return SSL_do_handshake(s);
1588 }
1589
1590 long SSL_get_default_timeout(const SSL *s)
1591 {
1592 return (s->method->get_timeout());
1593 }
1594
1595 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args,
1596 int (*func) (void *))
1597 {
1598 int ret;
1599 if (s->waitctx == NULL) {
1600 s->waitctx = ASYNC_WAIT_CTX_new();
1601 if (s->waitctx == NULL)
1602 return -1;
1603 }
1604 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args,
1605 sizeof(struct ssl_async_args))) {
1606 case ASYNC_ERR:
1607 s->rwstate = SSL_NOTHING;
1608 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC);
1609 return -1;
1610 case ASYNC_PAUSE:
1611 s->rwstate = SSL_ASYNC_PAUSED;
1612 return -1;
1613 case ASYNC_NO_JOBS:
1614 s->rwstate = SSL_ASYNC_NO_JOBS;
1615 return -1;
1616 case ASYNC_FINISH:
1617 s->job = NULL;
1618 return ret;
1619 default:
1620 s->rwstate = SSL_NOTHING;
1621 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR);
1622 /* Shouldn't happen */
1623 return -1;
1624 }
1625 }
1626
1627 static int ssl_io_intern(void *vargs)
1628 {
1629 struct ssl_async_args *args;
1630 SSL *s;
1631 void *buf;
1632 size_t num;
1633
1634 args = (struct ssl_async_args *)vargs;
1635 s = args->s;
1636 buf = args->buf;
1637 num = args->num;
1638 switch (args->type) {
1639 case READFUNC:
1640 return args->f.func_read(s, buf, num, &s->asyncrw);
1641 case WRITEFUNC:
1642 return args->f.func_write(s, buf, num, &s->asyncrw);
1643 case OTHERFUNC:
1644 return args->f.func_other(s);
1645 }
1646 return -1;
1647 }
1648
1649 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1650 {
1651 if (s->handshake_func == NULL) {
1652 SSLerr(SSL_F_SSL_READ_INTERNAL, SSL_R_UNINITIALIZED);
1653 return -1;
1654 }
1655
1656 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1657 s->rwstate = SSL_NOTHING;
1658 return 0;
1659 }
1660
1661 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1662 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) {
1663 SSLerr(SSL_F_SSL_READ_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1664 return 0;
1665 }
1666 /*
1667 * If we are a client and haven't received the ServerHello etc then we
1668 * better do that
1669 */
1670 ossl_statem_check_finish_init(s, 0);
1671
1672 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1673 struct ssl_async_args args;
1674 int ret;
1675
1676 args.s = s;
1677 args.buf = buf;
1678 args.num = num;
1679 args.type = READFUNC;
1680 args.f.func_read = s->method->ssl_read;
1681
1682 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1683 *readbytes = s->asyncrw;
1684 return ret;
1685 } else {
1686 return s->method->ssl_read(s, buf, num, readbytes);
1687 }
1688 }
1689
1690 int SSL_read(SSL *s, void *buf, int num)
1691 {
1692 int ret;
1693 size_t readbytes;
1694
1695 if (num < 0) {
1696 SSLerr(SSL_F_SSL_READ, SSL_R_BAD_LENGTH);
1697 return -1;
1698 }
1699
1700 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes);
1701
1702 /*
1703 * The cast is safe here because ret should be <= INT_MAX because num is
1704 * <= INT_MAX
1705 */
1706 if (ret > 0)
1707 ret = (int)readbytes;
1708
1709 return ret;
1710 }
1711
1712 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1713 {
1714 int ret = ssl_read_internal(s, buf, num, readbytes);
1715
1716 if (ret < 0)
1717 ret = 0;
1718 return ret;
1719 }
1720
1721 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes)
1722 {
1723 int ret;
1724
1725 if (!s->server) {
1726 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1727 return SSL_READ_EARLY_DATA_ERROR;
1728 }
1729
1730 switch (s->early_data_state) {
1731 case SSL_EARLY_DATA_NONE:
1732 if (!SSL_in_before(s)) {
1733 SSLerr(SSL_F_SSL_READ_EARLY_DATA,
1734 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1735 return SSL_READ_EARLY_DATA_ERROR;
1736 }
1737 /* fall through */
1738
1739 case SSL_EARLY_DATA_ACCEPT_RETRY:
1740 s->early_data_state = SSL_EARLY_DATA_ACCEPTING;
1741 ret = SSL_accept(s);
1742 if (ret <= 0) {
1743 /* NBIO or error */
1744 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY;
1745 return SSL_READ_EARLY_DATA_ERROR;
1746 }
1747 /* fall through */
1748
1749 case SSL_EARLY_DATA_READ_RETRY:
1750 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) {
1751 s->early_data_state = SSL_EARLY_DATA_READING;
1752 ret = SSL_read_ex(s, buf, num, readbytes);
1753 /*
1754 * State machine will update early_data_state to
1755 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData
1756 * message
1757 */
1758 if (ret > 0 || (ret <= 0 && s->early_data_state
1759 != SSL_EARLY_DATA_FINISHED_READING)) {
1760 s->early_data_state = SSL_EARLY_DATA_READ_RETRY;
1761 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS
1762 : SSL_READ_EARLY_DATA_ERROR;
1763 }
1764 } else {
1765 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING;
1766 }
1767 *readbytes = 0;
1768 return SSL_READ_EARLY_DATA_FINISH;
1769
1770 default:
1771 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1772 return SSL_READ_EARLY_DATA_ERROR;
1773 }
1774 }
1775
1776 int SSL_get_early_data_status(const SSL *s)
1777 {
1778 return s->ext.early_data;
1779 }
1780
1781 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1782 {
1783 if (s->handshake_func == NULL) {
1784 SSLerr(SSL_F_SSL_PEEK_INTERNAL, SSL_R_UNINITIALIZED);
1785 return -1;
1786 }
1787
1788 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1789 return 0;
1790 }
1791 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1792 struct ssl_async_args args;
1793 int ret;
1794
1795 args.s = s;
1796 args.buf = buf;
1797 args.num = num;
1798 args.type = READFUNC;
1799 args.f.func_read = s->method->ssl_peek;
1800
1801 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1802 *readbytes = s->asyncrw;
1803 return ret;
1804 } else {
1805 return s->method->ssl_peek(s, buf, num, readbytes);
1806 }
1807 }
1808
1809 int SSL_peek(SSL *s, void *buf, int num)
1810 {
1811 int ret;
1812 size_t readbytes;
1813
1814 if (num < 0) {
1815 SSLerr(SSL_F_SSL_PEEK, SSL_R_BAD_LENGTH);
1816 return -1;
1817 }
1818
1819 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes);
1820
1821 /*
1822 * The cast is safe here because ret should be <= INT_MAX because num is
1823 * <= INT_MAX
1824 */
1825 if (ret > 0)
1826 ret = (int)readbytes;
1827
1828 return ret;
1829 }
1830
1831
1832 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1833 {
1834 int ret = ssl_peek_internal(s, buf, num, readbytes);
1835
1836 if (ret < 0)
1837 ret = 0;
1838 return ret;
1839 }
1840
1841 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written)
1842 {
1843 if (s->handshake_func == NULL) {
1844 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_UNINITIALIZED);
1845 return -1;
1846 }
1847
1848 if (s->shutdown & SSL_SENT_SHUTDOWN) {
1849 s->rwstate = SSL_NOTHING;
1850 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_PROTOCOL_IS_SHUTDOWN);
1851 return -1;
1852 }
1853
1854 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1855 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY
1856 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) {
1857 SSLerr(SSL_F_SSL_WRITE_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1858 return 0;
1859 }
1860 /* If we are a client and haven't sent the Finished we better do that */
1861 ossl_statem_check_finish_init(s, 1);
1862
1863 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1864 int ret;
1865 struct ssl_async_args args;
1866
1867 args.s = s;
1868 args.buf = (void *)buf;
1869 args.num = num;
1870 args.type = WRITEFUNC;
1871 args.f.func_write = s->method->ssl_write;
1872
1873 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1874 *written = s->asyncrw;
1875 return ret;
1876 } else {
1877 return s->method->ssl_write(s, buf, num, written);
1878 }
1879 }
1880
1881 int SSL_write(SSL *s, const void *buf, int num)
1882 {
1883 int ret;
1884 size_t written;
1885
1886 if (num < 0) {
1887 SSLerr(SSL_F_SSL_WRITE, SSL_R_BAD_LENGTH);
1888 return -1;
1889 }
1890
1891 ret = ssl_write_internal(s, buf, (size_t)num, &written);
1892
1893 /*
1894 * The cast is safe here because ret should be <= INT_MAX because num is
1895 * <= INT_MAX
1896 */
1897 if (ret > 0)
1898 ret = (int)written;
1899
1900 return ret;
1901 }
1902
1903 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written)
1904 {
1905 int ret = ssl_write_internal(s, buf, num, written);
1906
1907 if (ret < 0)
1908 ret = 0;
1909 return ret;
1910 }
1911
1912 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written)
1913 {
1914 int ret, early_data_state;
1915
1916 switch (s->early_data_state) {
1917 case SSL_EARLY_DATA_NONE:
1918 if (s->server
1919 || !SSL_in_before(s)
1920 || ((s->session == NULL || s->session->ext.max_early_data == 0)
1921 && (s->psk_use_session_cb == NULL))) {
1922 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA,
1923 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1924 return 0;
1925 }
1926 /* fall through */
1927
1928 case SSL_EARLY_DATA_CONNECT_RETRY:
1929 s->early_data_state = SSL_EARLY_DATA_CONNECTING;
1930 ret = SSL_connect(s);
1931 if (ret <= 0) {
1932 /* NBIO or error */
1933 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY;
1934 return 0;
1935 }
1936 /* fall through */
1937
1938 case SSL_EARLY_DATA_WRITE_RETRY:
1939 s->early_data_state = SSL_EARLY_DATA_WRITING;
1940 ret = SSL_write_ex(s, buf, num, written);
1941 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
1942 return ret;
1943
1944 case SSL_EARLY_DATA_FINISHED_READING:
1945 case SSL_EARLY_DATA_READ_RETRY:
1946 early_data_state = s->early_data_state;
1947 /* We are a server writing to an unauthenticated client */
1948 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING;
1949 ret = SSL_write_ex(s, buf, num, written);
1950 s->early_data_state = early_data_state;
1951 return ret;
1952
1953 default:
1954 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1955 return 0;
1956 }
1957 }
1958
1959 int SSL_shutdown(SSL *s)
1960 {
1961 /*
1962 * Note that this function behaves differently from what one might
1963 * expect. Return values are 0 for no success (yet), 1 for success; but
1964 * calling it once is usually not enough, even if blocking I/O is used
1965 * (see ssl3_shutdown).
1966 */
1967
1968 if (s->handshake_func == NULL) {
1969 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED);
1970 return -1;
1971 }
1972
1973 if (!SSL_in_init(s)) {
1974 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1975 struct ssl_async_args args;
1976
1977 args.s = s;
1978 args.type = OTHERFUNC;
1979 args.f.func_other = s->method->ssl_shutdown;
1980
1981 return ssl_start_async_job(s, &args, ssl_io_intern);
1982 } else {
1983 return s->method->ssl_shutdown(s);
1984 }
1985 } else {
1986 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT);
1987 return -1;
1988 }
1989 }
1990
1991 int SSL_key_update(SSL *s, int updatetype)
1992 {
1993 /*
1994 * TODO(TLS1.3): How will applications know whether TLSv1.3 has been
1995 * negotiated, and that it is appropriate to call SSL_key_update() instead
1996 * of SSL_renegotiate().
1997 */
1998 if (!SSL_IS_TLS13(s)) {
1999 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_WRONG_SSL_VERSION);
2000 return 0;
2001 }
2002
2003 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED
2004 && updatetype != SSL_KEY_UPDATE_REQUESTED) {
2005 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_INVALID_KEY_UPDATE_TYPE);
2006 return 0;
2007 }
2008
2009 if (!SSL_is_init_finished(s)) {
2010 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_STILL_IN_INIT);
2011 return 0;
2012 }
2013
2014 ossl_statem_set_in_init(s, 1);
2015 s->key_update = updatetype;
2016 return 1;
2017 }
2018
2019 int SSL_get_key_update_type(SSL *s)
2020 {
2021 return s->key_update;
2022 }
2023
2024 int SSL_renegotiate(SSL *s)
2025 {
2026 if (SSL_IS_TLS13(s)) {
2027 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_WRONG_SSL_VERSION);
2028 return 0;
2029 }
2030
2031 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2032 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_NO_RENEGOTIATION);
2033 return 0;
2034 }
2035
2036 s->renegotiate = 1;
2037 s->new_session = 1;
2038
2039 return (s->method->ssl_renegotiate(s));
2040 }
2041
2042 int SSL_renegotiate_abbreviated(SSL *s)
2043 {
2044 if (SSL_IS_TLS13(s)) {
2045 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_WRONG_SSL_VERSION);
2046 return 0;
2047 }
2048
2049 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2050 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_NO_RENEGOTIATION);
2051 return 0;
2052 }
2053
2054 s->renegotiate = 1;
2055 s->new_session = 0;
2056
2057 return (s->method->ssl_renegotiate(s));
2058 }
2059
2060 int SSL_renegotiate_pending(SSL *s)
2061 {
2062 /*
2063 * becomes true when negotiation is requested; false again once a
2064 * handshake has finished
2065 */
2066 return (s->renegotiate != 0);
2067 }
2068
2069 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg)
2070 {
2071 long l;
2072
2073 switch (cmd) {
2074 case SSL_CTRL_GET_READ_AHEAD:
2075 return (RECORD_LAYER_get_read_ahead(&s->rlayer));
2076 case SSL_CTRL_SET_READ_AHEAD:
2077 l = RECORD_LAYER_get_read_ahead(&s->rlayer);
2078 RECORD_LAYER_set_read_ahead(&s->rlayer, larg);
2079 return (l);
2080
2081 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2082 s->msg_callback_arg = parg;
2083 return 1;
2084
2085 case SSL_CTRL_MODE:
2086 return (s->mode |= larg);
2087 case SSL_CTRL_CLEAR_MODE:
2088 return (s->mode &= ~larg);
2089 case SSL_CTRL_GET_MAX_CERT_LIST:
2090 return (long)(s->max_cert_list);
2091 case SSL_CTRL_SET_MAX_CERT_LIST:
2092 if (larg < 0)
2093 return 0;
2094 l = (long)s->max_cert_list;
2095 s->max_cert_list = (size_t)larg;
2096 return l;
2097 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2098 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2099 return 0;
2100 s->max_send_fragment = larg;
2101 if (s->max_send_fragment < s->split_send_fragment)
2102 s->split_send_fragment = s->max_send_fragment;
2103 return 1;
2104 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2105 if ((size_t)larg > s->max_send_fragment || larg == 0)
2106 return 0;
2107 s->split_send_fragment = larg;
2108 return 1;
2109 case SSL_CTRL_SET_MAX_PIPELINES:
2110 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2111 return 0;
2112 s->max_pipelines = larg;
2113 if (larg > 1)
2114 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
2115 return 1;
2116 case SSL_CTRL_GET_RI_SUPPORT:
2117 if (s->s3)
2118 return s->s3->send_connection_binding;
2119 else
2120 return 0;
2121 case SSL_CTRL_CERT_FLAGS:
2122 return (s->cert->cert_flags |= larg);
2123 case SSL_CTRL_CLEAR_CERT_FLAGS:
2124 return (s->cert->cert_flags &= ~larg);
2125
2126 case SSL_CTRL_GET_RAW_CIPHERLIST:
2127 if (parg) {
2128 if (s->s3->tmp.ciphers_raw == NULL)
2129 return 0;
2130 *(unsigned char **)parg = s->s3->tmp.ciphers_raw;
2131 return (int)s->s3->tmp.ciphers_rawlen;
2132 } else {
2133 return TLS_CIPHER_LEN;
2134 }
2135 case SSL_CTRL_GET_EXTMS_SUPPORT:
2136 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s))
2137 return -1;
2138 if (s->session->flags & SSL_SESS_FLAG_EXTMS)
2139 return 1;
2140 else
2141 return 0;
2142 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2143 return ssl_check_allowed_versions(larg, s->max_proto_version)
2144 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2145 &s->min_proto_version);
2146 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2147 return s->min_proto_version;
2148 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2149 return ssl_check_allowed_versions(s->min_proto_version, larg)
2150 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2151 &s->max_proto_version);
2152 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2153 return s->max_proto_version;
2154 default:
2155 return (s->method->ssl_ctrl(s, cmd, larg, parg));
2156 }
2157 }
2158
2159 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
2160 {
2161 switch (cmd) {
2162 case SSL_CTRL_SET_MSG_CALLBACK:
2163 s->msg_callback = (void (*)
2164 (int write_p, int version, int content_type,
2165 const void *buf, size_t len, SSL *ssl,
2166 void *arg))(fp);
2167 return 1;
2168
2169 default:
2170 return (s->method->ssl_callback_ctrl(s, cmd, fp));
2171 }
2172 }
2173
2174 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx)
2175 {
2176 return ctx->sessions;
2177 }
2178
2179 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
2180 {
2181 long l;
2182 /* For some cases with ctx == NULL perform syntax checks */
2183 if (ctx == NULL) {
2184 switch (cmd) {
2185 #ifndef OPENSSL_NO_EC
2186 case SSL_CTRL_SET_GROUPS_LIST:
2187 return tls1_set_groups_list(NULL, NULL, parg);
2188 #endif
2189 case SSL_CTRL_SET_SIGALGS_LIST:
2190 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST:
2191 return tls1_set_sigalgs_list(NULL, parg, 0);
2192 default:
2193 return 0;
2194 }
2195 }
2196
2197 switch (cmd) {
2198 case SSL_CTRL_GET_READ_AHEAD:
2199 return (ctx->read_ahead);
2200 case SSL_CTRL_SET_READ_AHEAD:
2201 l = ctx->read_ahead;
2202 ctx->read_ahead = larg;
2203 return (l);
2204
2205 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2206 ctx->msg_callback_arg = parg;
2207 return 1;
2208
2209 case SSL_CTRL_GET_MAX_CERT_LIST:
2210 return (long)(ctx->max_cert_list);
2211 case SSL_CTRL_SET_MAX_CERT_LIST:
2212 if (larg < 0)
2213 return 0;
2214 l = (long)ctx->max_cert_list;
2215 ctx->max_cert_list = (size_t)larg;
2216 return l;
2217
2218 case SSL_CTRL_SET_SESS_CACHE_SIZE:
2219 if (larg < 0)
2220 return 0;
2221 l = (long)ctx->session_cache_size;
2222 ctx->session_cache_size = (size_t)larg;
2223 return l;
2224 case SSL_CTRL_GET_SESS_CACHE_SIZE:
2225 return (long)(ctx->session_cache_size);
2226 case SSL_CTRL_SET_SESS_CACHE_MODE:
2227 l = ctx->session_cache_mode;
2228 ctx->session_cache_mode = larg;
2229 return (l);
2230 case SSL_CTRL_GET_SESS_CACHE_MODE:
2231 return (ctx->session_cache_mode);
2232
2233 case SSL_CTRL_SESS_NUMBER:
2234 return (lh_SSL_SESSION_num_items(ctx->sessions));
2235 case SSL_CTRL_SESS_CONNECT:
2236 return (ctx->stats.sess_connect);
2237 case SSL_CTRL_SESS_CONNECT_GOOD:
2238 return (ctx->stats.sess_connect_good);
2239 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE:
2240 return (ctx->stats.sess_connect_renegotiate);
2241 case SSL_CTRL_SESS_ACCEPT:
2242 return (ctx->stats.sess_accept);
2243 case SSL_CTRL_SESS_ACCEPT_GOOD:
2244 return (ctx->stats.sess_accept_good);
2245 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE:
2246 return (ctx->stats.sess_accept_renegotiate);
2247 case SSL_CTRL_SESS_HIT:
2248 return (ctx->stats.sess_hit);
2249 case SSL_CTRL_SESS_CB_HIT:
2250 return (ctx->stats.sess_cb_hit);
2251 case SSL_CTRL_SESS_MISSES:
2252 return (ctx->stats.sess_miss);
2253 case SSL_CTRL_SESS_TIMEOUTS:
2254 return (ctx->stats.sess_timeout);
2255 case SSL_CTRL_SESS_CACHE_FULL:
2256 return (ctx->stats.sess_cache_full);
2257 case SSL_CTRL_MODE:
2258 return (ctx->mode |= larg);
2259 case SSL_CTRL_CLEAR_MODE:
2260 return (ctx->mode &= ~larg);
2261 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2262 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2263 return 0;
2264 ctx->max_send_fragment = larg;
2265 if (ctx->max_send_fragment < ctx->split_send_fragment)
2266 ctx->split_send_fragment = ctx->max_send_fragment;
2267 return 1;
2268 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2269 if ((size_t)larg > ctx->max_send_fragment || larg == 0)
2270 return 0;
2271 ctx->split_send_fragment = larg;
2272 return 1;
2273 case SSL_CTRL_SET_MAX_PIPELINES:
2274 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2275 return 0;
2276 ctx->max_pipelines = larg;
2277 return 1;
2278 case SSL_CTRL_CERT_FLAGS:
2279 return (ctx->cert->cert_flags |= larg);
2280 case SSL_CTRL_CLEAR_CERT_FLAGS:
2281 return (ctx->cert->cert_flags &= ~larg);
2282 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2283 return ssl_check_allowed_versions(larg, ctx->max_proto_version)
2284 && ssl_set_version_bound(ctx->method->version, (int)larg,
2285 &ctx->min_proto_version);
2286 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2287 return ctx->min_proto_version;
2288 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2289 return ssl_check_allowed_versions(ctx->min_proto_version, larg)
2290 && ssl_set_version_bound(ctx->method->version, (int)larg,
2291 &ctx->max_proto_version);
2292 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2293 return ctx->max_proto_version;
2294 default:
2295 return (ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg));
2296 }
2297 }
2298
2299 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
2300 {
2301 switch (cmd) {
2302 case SSL_CTRL_SET_MSG_CALLBACK:
2303 ctx->msg_callback = (void (*)
2304 (int write_p, int version, int content_type,
2305 const void *buf, size_t len, SSL *ssl,
2306 void *arg))(fp);
2307 return 1;
2308
2309 default:
2310 return (ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp));
2311 }
2312 }
2313
2314 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b)
2315 {
2316 if (a->id > b->id)
2317 return 1;
2318 if (a->id < b->id)
2319 return -1;
2320 return 0;
2321 }
2322
2323 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap,
2324 const SSL_CIPHER *const *bp)
2325 {
2326 if ((*ap)->id > (*bp)->id)
2327 return 1;
2328 if ((*ap)->id < (*bp)->id)
2329 return -1;
2330 return 0;
2331 }
2332
2333 /** return a STACK of the ciphers available for the SSL and in order of
2334 * preference */
2335 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s)
2336 {
2337 if (s != NULL) {
2338 if (s->cipher_list != NULL) {
2339 return (s->cipher_list);
2340 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) {
2341 return (s->ctx->cipher_list);
2342 }
2343 }
2344 return (NULL);
2345 }
2346
2347 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s)
2348 {
2349 if ((s == NULL) || (s->session == NULL) || !s->server)
2350 return NULL;
2351 return s->session->ciphers;
2352 }
2353
2354 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s)
2355 {
2356 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers;
2357 int i;
2358 ciphers = SSL_get_ciphers(s);
2359 if (!ciphers)
2360 return NULL;
2361 ssl_set_client_disabled(s);
2362 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
2363 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i);
2364 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) {
2365 if (!sk)
2366 sk = sk_SSL_CIPHER_new_null();
2367 if (!sk)
2368 return NULL;
2369 if (!sk_SSL_CIPHER_push(sk, c)) {
2370 sk_SSL_CIPHER_free(sk);
2371 return NULL;
2372 }
2373 }
2374 }
2375 return sk;
2376 }
2377
2378 /** return a STACK of the ciphers available for the SSL and in order of
2379 * algorithm id */
2380 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s)
2381 {
2382 if (s != NULL) {
2383 if (s->cipher_list_by_id != NULL) {
2384 return (s->cipher_list_by_id);
2385 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) {
2386 return (s->ctx->cipher_list_by_id);
2387 }
2388 }
2389 return (NULL);
2390 }
2391
2392 /** The old interface to get the same thing as SSL_get_ciphers() */
2393 const char *SSL_get_cipher_list(const SSL *s, int n)
2394 {
2395 const SSL_CIPHER *c;
2396 STACK_OF(SSL_CIPHER) *sk;
2397
2398 if (s == NULL)
2399 return (NULL);
2400 sk = SSL_get_ciphers(s);
2401 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n))
2402 return (NULL);
2403 c = sk_SSL_CIPHER_value(sk, n);
2404 if (c == NULL)
2405 return (NULL);
2406 return (c->name);
2407 }
2408
2409 /** return a STACK of the ciphers available for the SSL_CTX and in order of
2410 * preference */
2411 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx)
2412 {
2413 if (ctx != NULL)
2414 return ctx->cipher_list;
2415 return NULL;
2416 }
2417
2418 /** specify the ciphers to be used by default by the SSL_CTX */
2419 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)
2420 {
2421 STACK_OF(SSL_CIPHER) *sk;
2422
2423 sk = ssl_create_cipher_list(ctx->method, &ctx->cipher_list,
2424 &ctx->cipher_list_by_id, str, ctx->cert);
2425 /*
2426 * ssl_create_cipher_list may return an empty stack if it was unable to
2427 * find a cipher matching the given rule string (for example if the rule
2428 * string specifies a cipher which has been disabled). This is not an
2429 * error as far as ssl_create_cipher_list is concerned, and hence
2430 * ctx->cipher_list and ctx->cipher_list_by_id has been updated.
2431 */
2432 if (sk == NULL)
2433 return 0;
2434 else if (sk_SSL_CIPHER_num(sk) == 0) {
2435 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2436 return 0;
2437 }
2438 return 1;
2439 }
2440
2441 /** specify the ciphers to be used by the SSL */
2442 int SSL_set_cipher_list(SSL *s, const char *str)
2443 {
2444 STACK_OF(SSL_CIPHER) *sk;
2445
2446 sk = ssl_create_cipher_list(s->ctx->method, &s->cipher_list,
2447 &s->cipher_list_by_id, str, s->cert);
2448 /* see comment in SSL_CTX_set_cipher_list */
2449 if (sk == NULL)
2450 return 0;
2451 else if (sk_SSL_CIPHER_num(sk) == 0) {
2452 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2453 return 0;
2454 }
2455 return 1;
2456 }
2457
2458 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int len)
2459 {
2460 char *p;
2461 STACK_OF(SSL_CIPHER) *sk;
2462 const SSL_CIPHER *c;
2463 int i;
2464
2465 if ((s->session == NULL) || (s->session->ciphers == NULL) || (len < 2))
2466 return (NULL);
2467
2468 p = buf;
2469 sk = s->session->ciphers;
2470
2471 if (sk_SSL_CIPHER_num(sk) == 0)
2472 return NULL;
2473
2474 for (i = 0; i < sk_SSL_CIPHER_num(sk); i++) {
2475 int n;
2476
2477 c = sk_SSL_CIPHER_value(sk, i);
2478 n = strlen(c->name);
2479 if (n + 1 > len) {
2480 if (p != buf)
2481 --p;
2482 *p = '\0';
2483 return buf;
2484 }
2485 strcpy(p, c->name);
2486 p += n;
2487 *(p++) = ':';
2488 len -= n + 1;
2489 }
2490 p[-1] = '\0';
2491 return (buf);
2492 }
2493
2494 /** return a servername extension value if provided in Client Hello, or NULL.
2495 * So far, only host_name types are defined (RFC 3546).
2496 */
2497
2498 const char *SSL_get_servername(const SSL *s, const int type)
2499 {
2500 if (type != TLSEXT_NAMETYPE_host_name)
2501 return NULL;
2502
2503 return s->session && !s->ext.hostname ?
2504 s->session->ext.hostname : s->ext.hostname;
2505 }
2506
2507 int SSL_get_servername_type(const SSL *s)
2508 {
2509 if (s->session
2510 && (!s->ext.hostname ? s->session->
2511 ext.hostname : s->ext.hostname))
2512 return TLSEXT_NAMETYPE_host_name;
2513 return -1;
2514 }
2515
2516 /*
2517 * SSL_select_next_proto implements the standard protocol selection. It is
2518 * expected that this function is called from the callback set by
2519 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a
2520 * vector of 8-bit, length prefixed byte strings. The length byte itself is
2521 * not included in the length. A byte string of length 0 is invalid. No byte
2522 * string may be truncated. The current, but experimental algorithm for
2523 * selecting the protocol is: 1) If the server doesn't support NPN then this
2524 * is indicated to the callback. In this case, the client application has to
2525 * abort the connection or have a default application level protocol. 2) If
2526 * the server supports NPN, but advertises an empty list then the client
2527 * selects the first protocol in its list, but indicates via the API that this
2528 * fallback case was enacted. 3) Otherwise, the client finds the first
2529 * protocol in the server's list that it supports and selects this protocol.
2530 * This is because it's assumed that the server has better information about
2531 * which protocol a client should use. 4) If the client doesn't support any
2532 * of the server's advertised protocols, then this is treated the same as
2533 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was
2534 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
2535 */
2536 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen,
2537 const unsigned char *server,
2538 unsigned int server_len,
2539 const unsigned char *client, unsigned int client_len)
2540 {
2541 unsigned int i, j;
2542 const unsigned char *result;
2543 int status = OPENSSL_NPN_UNSUPPORTED;
2544
2545 /*
2546 * For each protocol in server preference order, see if we support it.
2547 */
2548 for (i = 0; i < server_len;) {
2549 for (j = 0; j < client_len;) {
2550 if (server[i] == client[j] &&
2551 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
2552 /* We found a match */
2553 result = &server[i];
2554 status = OPENSSL_NPN_NEGOTIATED;
2555 goto found;
2556 }
2557 j += client[j];
2558 j++;
2559 }
2560 i += server[i];
2561 i++;
2562 }
2563
2564 /* There's no overlap between our protocols and the server's list. */
2565 result = client;
2566 status = OPENSSL_NPN_NO_OVERLAP;
2567
2568 found:
2569 *out = (unsigned char *)result + 1;
2570 *outlen = result[0];
2571 return status;
2572 }
2573
2574 #ifndef OPENSSL_NO_NEXTPROTONEG
2575 /*
2576 * SSL_get0_next_proto_negotiated sets *data and *len to point to the
2577 * client's requested protocol for this connection and returns 0. If the
2578 * client didn't request any protocol, then *data is set to NULL. Note that
2579 * the client can request any protocol it chooses. The value returned from
2580 * this function need not be a member of the list of supported protocols
2581 * provided by the callback.
2582 */
2583 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data,
2584 unsigned *len)
2585 {
2586 *data = s->ext.npn;
2587 if (!*data) {
2588 *len = 0;
2589 } else {
2590 *len = (unsigned int)s->ext.npn_len;
2591 }
2592 }
2593
2594 /*
2595 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when
2596 * a TLS server needs a list of supported protocols for Next Protocol
2597 * Negotiation. The returned list must be in wire format. The list is
2598 * returned by setting |out| to point to it and |outlen| to its length. This
2599 * memory will not be modified, but one should assume that the SSL* keeps a
2600 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it
2601 * wishes to advertise. Otherwise, no such extension will be included in the
2602 * ServerHello.
2603 */
2604 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx,
2605 SSL_CTX_npn_advertised_cb_func cb,
2606 void *arg)
2607 {
2608 ctx->ext.npn_advertised_cb = cb;
2609 ctx->ext.npn_advertised_cb_arg = arg;
2610 }
2611
2612 /*
2613 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
2614 * client needs to select a protocol from the server's provided list. |out|
2615 * must be set to point to the selected protocol (which may be within |in|).
2616 * The length of the protocol name must be written into |outlen|. The
2617 * server's advertised protocols are provided in |in| and |inlen|. The
2618 * callback can assume that |in| is syntactically valid. The client must
2619 * select a protocol. It is fatal to the connection if this callback returns
2620 * a value other than SSL_TLSEXT_ERR_OK.
2621 */
2622 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx,
2623 SSL_CTX_npn_select_cb_func cb,
2624 void *arg)
2625 {
2626 ctx->ext.npn_select_cb = cb;
2627 ctx->ext.npn_select_cb_arg = arg;
2628 }
2629 #endif
2630
2631 /*
2632 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|.
2633 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2634 * length-prefixed strings). Returns 0 on success.
2635 */
2636 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos,
2637 unsigned int protos_len)
2638 {
2639 OPENSSL_free(ctx->ext.alpn);
2640 ctx->ext.alpn = OPENSSL_memdup(protos, protos_len);
2641 if (ctx->ext.alpn == NULL) {
2642 SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2643 return 1;
2644 }
2645 ctx->ext.alpn_len = protos_len;
2646
2647 return 0;
2648 }
2649
2650 /*
2651 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|.
2652 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2653 * length-prefixed strings). Returns 0 on success.
2654 */
2655 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos,
2656 unsigned int protos_len)
2657 {
2658 OPENSSL_free(ssl->ext.alpn);
2659 ssl->ext.alpn = OPENSSL_memdup(protos, protos_len);
2660 if (ssl->ext.alpn == NULL) {
2661 SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2662 return 1;
2663 }
2664 ssl->ext.alpn_len = protos_len;
2665
2666 return 0;
2667 }
2668
2669 /*
2670 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is
2671 * called during ClientHello processing in order to select an ALPN protocol
2672 * from the client's list of offered protocols.
2673 */
2674 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
2675 SSL_CTX_alpn_select_cb_func cb,
2676 void *arg)
2677 {
2678 ctx->ext.alpn_select_cb = cb;
2679 ctx->ext.alpn_select_cb_arg = arg;
2680 }
2681
2682 /*
2683 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|.
2684 * On return it sets |*data| to point to |*len| bytes of protocol name
2685 * (not including the leading length-prefix byte). If the server didn't
2686 * respond with a negotiated protocol then |*len| will be zero.
2687 */
2688 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data,
2689 unsigned int *len)
2690 {
2691 *data = NULL;
2692 if (ssl->s3)
2693 *data = ssl->s3->alpn_selected;
2694 if (*data == NULL)
2695 *len = 0;
2696 else
2697 *len = (unsigned int)ssl->s3->alpn_selected_len;
2698 }
2699
2700 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
2701 const char *label, size_t llen,
2702 const unsigned char *context, size_t contextlen,
2703 int use_context)
2704 {
2705 if (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER)
2706 return -1;
2707
2708 return s->method->ssl3_enc->export_keying_material(s, out, olen, label,
2709 llen, context,
2710 contextlen, use_context);
2711 }
2712
2713 static unsigned long ssl_session_hash(const SSL_SESSION *a)
2714 {
2715 const unsigned char *session_id = a->session_id;
2716 unsigned long l;
2717 unsigned char tmp_storage[4];
2718
2719 if (a->session_id_length < sizeof(tmp_storage)) {
2720 memset(tmp_storage, 0, sizeof(tmp_storage));
2721 memcpy(tmp_storage, a->session_id, a->session_id_length);
2722 session_id = tmp_storage;
2723 }
2724
2725 l = (unsigned long)
2726 ((unsigned long)session_id[0]) |
2727 ((unsigned long)session_id[1] << 8L) |
2728 ((unsigned long)session_id[2] << 16L) |
2729 ((unsigned long)session_id[3] << 24L);
2730 return (l);
2731 }
2732
2733 /*
2734 * NB: If this function (or indeed the hash function which uses a sort of
2735 * coarser function than this one) is changed, ensure
2736 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on
2737 * being able to construct an SSL_SESSION that will collide with any existing
2738 * session with a matching session ID.
2739 */
2740 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b)
2741 {
2742 if (a->ssl_version != b->ssl_version)
2743 return (1);
2744 if (a->session_id_length != b->session_id_length)
2745 return (1);
2746 return (memcmp(a->session_id, b->session_id, a->session_id_length));
2747 }
2748
2749 /*
2750 * These wrapper functions should remain rather than redeclaring
2751 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each
2752 * variable. The reason is that the functions aren't static, they're exposed
2753 * via ssl.h.
2754 */
2755
2756 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth)
2757 {
2758 SSL_CTX *ret = NULL;
2759
2760 if (meth == NULL) {
2761 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED);
2762 return (NULL);
2763 }
2764
2765 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL))
2766 return NULL;
2767
2768 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
2769 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
2770 goto err;
2771 }
2772 ret = OPENSSL_zalloc(sizeof(*ret));
2773 if (ret == NULL)
2774 goto err;
2775
2776 ret->method = meth;
2777 ret->min_proto_version = 0;
2778 ret->max_proto_version = 0;
2779 ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
2780 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
2781 /* We take the system default. */
2782 ret->session_timeout = meth->get_timeout();
2783 ret->references = 1;
2784 ret->lock = CRYPTO_THREAD_lock_new();
2785 if (ret->lock == NULL) {
2786 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2787 OPENSSL_free(ret);
2788 return NULL;
2789 }
2790 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
2791 ret->verify_mode = SSL_VERIFY_NONE;
2792 if ((ret->cert = ssl_cert_new()) == NULL)
2793 goto err;
2794
2795 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
2796 if (ret->sessions == NULL)
2797 goto err;
2798 ret->cert_store = X509_STORE_new();
2799 if (ret->cert_store == NULL)
2800 goto err;
2801 #ifndef OPENSSL_NO_CT
2802 ret->ctlog_store = CTLOG_STORE_new();
2803 if (ret->ctlog_store == NULL)
2804 goto err;
2805 #endif
2806 if (!ssl_create_cipher_list(ret->method,
2807 &ret->cipher_list, &ret->cipher_list_by_id,
2808 SSL_DEFAULT_CIPHER_LIST, ret->cert)
2809 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) {
2810 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS);
2811 goto err2;
2812 }
2813
2814 ret->param = X509_VERIFY_PARAM_new();
2815 if (ret->param == NULL)
2816 goto err;
2817
2818 if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) {
2819 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES);
2820 goto err2;
2821 }
2822 if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) {
2823 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES);
2824 goto err2;
2825 }
2826
2827 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL)
2828 goto err;
2829
2830 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data))
2831 goto err;
2832
2833 /* No compression for DTLS */
2834 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS))
2835 ret->comp_methods = SSL_COMP_get_compression_methods();
2836
2837 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2838 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2839
2840 /* Setup RFC5077 ticket keys */
2841 if ((RAND_bytes(ret->ext.tick_key_name,
2842 sizeof(ret->ext.tick_key_name)) <= 0)
2843 || (RAND_bytes(ret->ext.tick_hmac_key,
2844 sizeof(ret->ext.tick_hmac_key)) <= 0)
2845 || (RAND_bytes(ret->ext.tick_aes_key,
2846 sizeof(ret->ext.tick_aes_key)) <= 0))
2847 ret->options |= SSL_OP_NO_TICKET;
2848
2849 #ifndef OPENSSL_NO_SRP
2850 if (!SSL_CTX_SRP_CTX_init(ret))
2851 goto err;
2852 #endif
2853 #ifndef OPENSSL_NO_ENGINE
2854 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO
2855 # define eng_strx(x) #x
2856 # define eng_str(x) eng_strx(x)
2857 /* Use specific client engine automatically... ignore errors */
2858 {
2859 ENGINE *eng;
2860 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2861 if (!eng) {
2862 ERR_clear_error();
2863 ENGINE_load_builtin_engines();
2864 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2865 }
2866 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng))
2867 ERR_clear_error();
2868 }
2869 # endif
2870 #endif
2871 /*
2872 * Default is to connect to non-RI servers. When RI is more widely
2873 * deployed might change this.
2874 */
2875 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT;
2876 /*
2877 * Disable compression by default to prevent CRIME. Applications can
2878 * re-enable compression by configuring
2879 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION);
2880 * or by using the SSL_CONF library.
2881 */
2882 ret->options |= SSL_OP_NO_COMPRESSION;
2883
2884 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing;
2885
2886 /*
2887 * Default max early data is a fully loaded single record. Could be split
2888 * across multiple records in practice
2889 */
2890 ret->max_early_data = SSL3_RT_MAX_PLAIN_LENGTH;
2891
2892 return ret;
2893 err:
2894 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2895 err2:
2896 SSL_CTX_free(ret);
2897 return NULL;
2898 }
2899
2900 int SSL_CTX_up_ref(SSL_CTX *ctx)
2901 {
2902 int i;
2903
2904 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0)
2905 return 0;
2906
2907 REF_PRINT_COUNT("SSL_CTX", ctx);
2908 REF_ASSERT_ISNT(i < 2);
2909 return ((i > 1) ? 1 : 0);
2910 }
2911
2912 void SSL_CTX_free(SSL_CTX *a)
2913 {
2914 int i;
2915
2916 if (a == NULL)
2917 return;
2918
2919 CRYPTO_DOWN_REF(&a->references, &i, a->lock);
2920 REF_PRINT_COUNT("SSL_CTX", a);
2921 if (i > 0)
2922 return;
2923 REF_ASSERT_ISNT(i < 0);
2924
2925 X509_VERIFY_PARAM_free(a->param);
2926 dane_ctx_final(&a->dane);
2927
2928 /*
2929 * Free internal session cache. However: the remove_cb() may reference
2930 * the ex_data of SSL_CTX, thus the ex_data store can only be removed
2931 * after the sessions were flushed.
2932 * As the ex_data handling routines might also touch the session cache,
2933 * the most secure solution seems to be: empty (flush) the cache, then
2934 * free ex_data, then finally free the cache.
2935 * (See ticket [openssl.org #212].)
2936 */
2937 if (a->sessions != NULL)
2938 SSL_CTX_flush_sessions(a, 0);
2939
2940 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data);
2941 lh_SSL_SESSION_free(a->sessions);
2942 X509_STORE_free(a->cert_store);
2943 #ifndef OPENSSL_NO_CT
2944 CTLOG_STORE_free(a->ctlog_store);
2945 #endif
2946 sk_SSL_CIPHER_free(a->cipher_list);
2947 sk_SSL_CIPHER_free(a->cipher_list_by_id);
2948 ssl_cert_free(a->cert);
2949 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free);
2950 sk_X509_pop_free(a->extra_certs, X509_free);
2951 a->comp_methods = NULL;
2952 #ifndef OPENSSL_NO_SRTP
2953 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles);
2954 #endif
2955 #ifndef OPENSSL_NO_SRP
2956 SSL_CTX_SRP_CTX_free(a);
2957 #endif
2958 #ifndef OPENSSL_NO_ENGINE
2959 ENGINE_finish(a->client_cert_engine);
2960 #endif
2961
2962 #ifndef OPENSSL_NO_EC
2963 OPENSSL_free(a->ext.ecpointformats);
2964 OPENSSL_free(a->ext.supportedgroups);
2965 #endif
2966 OPENSSL_free(a->ext.alpn);
2967
2968 CRYPTO_THREAD_lock_free(a->lock);
2969
2970 OPENSSL_free(a);
2971 }
2972
2973 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb)
2974 {
2975 ctx->default_passwd_callback = cb;
2976 }
2977
2978 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u)
2979 {
2980 ctx->default_passwd_callback_userdata = u;
2981 }
2982
2983 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx)
2984 {
2985 return ctx->default_passwd_callback;
2986 }
2987
2988 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx)
2989 {
2990 return ctx->default_passwd_callback_userdata;
2991 }
2992
2993 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb)
2994 {
2995 s->default_passwd_callback = cb;
2996 }
2997
2998 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u)
2999 {
3000 s->default_passwd_callback_userdata = u;
3001 }
3002
3003 pem_password_cb *SSL_get_default_passwd_cb(SSL *s)
3004 {
3005 return s->default_passwd_callback;
3006 }
3007
3008 void *SSL_get_default_passwd_cb_userdata(SSL *s)
3009 {
3010 return s->default_passwd_callback_userdata;
3011 }
3012
3013 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
3014 int (*cb) (X509_STORE_CTX *, void *),
3015 void *arg)
3016 {
3017 ctx->app_verify_callback = cb;
3018 ctx->app_verify_arg = arg;
3019 }
3020
3021 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
3022 int (*cb) (int, X509_STORE_CTX *))
3023 {
3024 ctx->verify_mode = mode;
3025 ctx->default_verify_callback = cb;
3026 }
3027
3028 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth)
3029 {
3030 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
3031 }
3032
3033 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg)
3034 {
3035 ssl_cert_set_cert_cb(c->cert, cb, arg);
3036 }
3037
3038 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg)
3039 {
3040 ssl_cert_set_cert_cb(s->cert, cb, arg);
3041 }
3042
3043 void ssl_set_masks(SSL *s)
3044 {
3045 CERT *c = s->cert;
3046 uint32_t *pvalid = s->s3->tmp.valid_flags;
3047 int rsa_enc, rsa_sign, dh_tmp, dsa_sign;
3048 unsigned long mask_k, mask_a;
3049 #ifndef OPENSSL_NO_EC
3050 int have_ecc_cert, ecdsa_ok;
3051 #endif
3052 if (c == NULL)
3053 return;
3054
3055 #ifndef OPENSSL_NO_DH
3056 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto);
3057 #else
3058 dh_tmp = 0;
3059 #endif
3060
3061 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3062 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3063 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID;
3064 #ifndef OPENSSL_NO_EC
3065 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID;
3066 #endif
3067 mask_k = 0;
3068 mask_a = 0;
3069
3070 #ifdef CIPHER_DEBUG
3071 fprintf(stderr, "dht=%d re=%d rs=%d ds=%d\n",
3072 dh_tmp, rsa_enc, rsa_sign, dsa_sign);
3073 #endif
3074
3075 #ifndef OPENSSL_NO_GOST
3076 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) {
3077 mask_k |= SSL_kGOST;
3078 mask_a |= SSL_aGOST12;
3079 }
3080 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) {
3081 mask_k |= SSL_kGOST;
3082 mask_a |= SSL_aGOST12;
3083 }
3084 if (ssl_has_cert(s, SSL_PKEY_GOST01)) {
3085 mask_k |= SSL_kGOST;
3086 mask_a |= SSL_aGOST01;
3087 }
3088 #endif
3089
3090 if (rsa_enc)
3091 mask_k |= SSL_kRSA;
3092
3093 if (dh_tmp)
3094 mask_k |= SSL_kDHE;
3095
3096 /*
3097 * If we only have an RSA-PSS certificate allow RSA authentication
3098 * if TLS 1.2 and peer supports it.
3099 */
3100
3101 if (rsa_enc || rsa_sign || (ssl_has_cert(s, SSL_PKEY_RSA_PSS_SIGN)
3102 && pvalid[SSL_PKEY_RSA_PSS_SIGN] & CERT_PKEY_EXPLICIT_SIGN
3103 && TLS1_get_version(s) == TLS1_2_VERSION))
3104 mask_a |= SSL_aRSA;
3105
3106 if (dsa_sign) {
3107 mask_a |= SSL_aDSS;
3108 }
3109
3110 mask_a |= SSL_aNULL;
3111
3112 /*
3113 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites
3114 * depending on the key usage extension.
3115 */
3116 #ifndef OPENSSL_NO_EC
3117 if (have_ecc_cert) {
3118 uint32_t ex_kusage;
3119 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509);
3120 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE;
3121 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN))
3122 ecdsa_ok = 0;
3123 if (ecdsa_ok)
3124 mask_a |= SSL_aECDSA;
3125 }
3126 /* Allow Ed25519 for TLS 1.2 if peer supports it */
3127 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED25519)
3128 && pvalid[SSL_PKEY_ED25519] & CERT_PKEY_EXPLICIT_SIGN
3129 && TLS1_get_version(s) == TLS1_2_VERSION)
3130 mask_a |= SSL_aECDSA;
3131 #endif
3132
3133 #ifndef OPENSSL_NO_EC
3134 mask_k |= SSL_kECDHE;
3135 #endif
3136
3137 #ifndef OPENSSL_NO_PSK
3138 mask_k |= SSL_kPSK;
3139 mask_a |= SSL_aPSK;
3140 if (mask_k & SSL_kRSA)
3141 mask_k |= SSL_kRSAPSK;
3142 if (mask_k & SSL_kDHE)
3143 mask_k |= SSL_kDHEPSK;
3144 if (mask_k & SSL_kECDHE)
3145 mask_k |= SSL_kECDHEPSK;
3146 #endif
3147
3148 s->s3->tmp.mask_k = mask_k;
3149 s->s3->tmp.mask_a = mask_a;
3150 }
3151
3152 #ifndef OPENSSL_NO_EC
3153
3154 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s)
3155 {
3156 if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aECDSA) {
3157 /* key usage, if present, must allow signing */
3158 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) {
3159 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG,
3160 SSL_R_ECC_CERT_NOT_FOR_SIGNING);
3161 return 0;
3162 }
3163 }
3164 return 1; /* all checks are ok */
3165 }
3166
3167 #endif
3168
3169 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo,
3170 size_t *serverinfo_length)
3171 {
3172 CERT_PKEY *cpk = s->s3->tmp.cert;
3173 *serverinfo_length = 0;
3174
3175 if (cpk == NULL || cpk->serverinfo == NULL)
3176 return 0;
3177
3178 *serverinfo = cpk->serverinfo;
3179 *serverinfo_length = cpk->serverinfo_length;
3180 return 1;
3181 }
3182
3183 void ssl_update_cache(SSL *s, int mode)
3184 {
3185 int i;
3186
3187 /*
3188 * If the session_id_length is 0, we are not supposed to cache it, and it
3189 * would be rather hard to do anyway :-)
3190 */
3191 if (s->session->session_id_length == 0)
3192 return;
3193
3194 i = s->session_ctx->session_cache_mode;
3195 if ((i & mode) != 0
3196 && (!s->hit || SSL_IS_TLS13(s))
3197 && ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) != 0
3198 || SSL_CTX_add_session(s->session_ctx, s->session))
3199 && s->session_ctx->new_session_cb != NULL) {
3200 SSL_SESSION_up_ref(s->session);
3201 if (!s->session_ctx->new_session_cb(s, s->session))
3202 SSL_SESSION_free(s->session);
3203 }
3204
3205 /* auto flush every 255 connections */
3206 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) {
3207 if ((((mode & SSL_SESS_CACHE_CLIENT)
3208 ? s->session_ctx->stats.sess_connect_good
3209 : s->session_ctx->stats.sess_accept_good) & 0xff) == 0xff) {
3210 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL));
3211 }
3212 }
3213 }
3214
3215 const SSL_METHOD *SSL_CTX_get_ssl_method(SSL_CTX *ctx)
3216 {
3217 return ctx->method;
3218 }
3219
3220 const SSL_METHOD *SSL_get_ssl_method(SSL *s)
3221 {
3222 return (s->method);
3223 }
3224
3225 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth)
3226 {
3227 int ret = 1;
3228
3229 if (s->method != meth) {
3230 const SSL_METHOD *sm = s->method;
3231 int (*hf) (SSL *) = s->handshake_func;
3232
3233 if (sm->version == meth->version)
3234 s->method = meth;
3235 else {
3236 sm->ssl_free(s);
3237 s->method = meth;
3238 ret = s->method->ssl_new(s);
3239 }
3240
3241 if (hf == sm->ssl_connect)
3242 s->handshake_func = meth->ssl_connect;
3243 else if (hf == sm->ssl_accept)
3244 s->handshake_func = meth->ssl_accept;
3245 }
3246 return (ret);
3247 }
3248
3249 int SSL_get_error(const SSL *s, int i)
3250 {
3251 int reason;
3252 unsigned long l;
3253 BIO *bio;
3254
3255 if (i > 0)
3256 return (SSL_ERROR_NONE);
3257
3258 /*
3259 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
3260 * where we do encode the error
3261 */
3262 if ((l = ERR_peek_error()) != 0) {
3263 if (ERR_GET_LIB(l) == ERR_LIB_SYS)
3264 return (SSL_ERROR_SYSCALL);
3265 else
3266 return (SSL_ERROR_SSL);
3267 }
3268
3269 if (SSL_want_read(s)) {
3270 bio = SSL_get_rbio(s);
3271 if (BIO_should_read(bio))
3272 return (SSL_ERROR_WANT_READ);
3273 else if (BIO_should_write(bio))
3274 /*
3275 * This one doesn't make too much sense ... We never try to write
3276 * to the rbio, and an application program where rbio and wbio
3277 * are separate couldn't even know what it should wait for.
3278 * However if we ever set s->rwstate incorrectly (so that we have
3279 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and
3280 * wbio *are* the same, this test works around that bug; so it
3281 * might be safer to keep it.
3282 */
3283 return (SSL_ERROR_WANT_WRITE);
3284 else if (BIO_should_io_special(bio)) {
3285 reason = BIO_get_retry_reason(bio);
3286 if (reason == BIO_RR_CONNECT)
3287 return (SSL_ERROR_WANT_CONNECT);
3288 else if (reason == BIO_RR_ACCEPT)
3289 return (SSL_ERROR_WANT_ACCEPT);
3290 else
3291 return (SSL_ERROR_SYSCALL); /* unknown */
3292 }
3293 }
3294
3295 if (SSL_want_write(s)) {
3296 /* Access wbio directly - in order to use the buffered bio if present */
3297 bio = s->wbio;
3298 if (BIO_should_write(bio))
3299 return (SSL_ERROR_WANT_WRITE);
3300 else if (BIO_should_read(bio))
3301 /*
3302 * See above (SSL_want_read(s) with BIO_should_write(bio))
3303 */
3304 return (SSL_ERROR_WANT_READ);
3305 else if (BIO_should_io_special(bio)) {
3306 reason = BIO_get_retry_reason(bio);
3307 if (reason == BIO_RR_CONNECT)
3308 return (SSL_ERROR_WANT_CONNECT);
3309 else if (reason == BIO_RR_ACCEPT)
3310 return (SSL_ERROR_WANT_ACCEPT);
3311 else
3312 return (SSL_ERROR_SYSCALL);
3313 }
3314 }
3315 if (SSL_want_x509_lookup(s))
3316 return (SSL_ERROR_WANT_X509_LOOKUP);
3317 if (SSL_want_async(s))
3318 return SSL_ERROR_WANT_ASYNC;
3319 if (SSL_want_async_job(s))
3320 return SSL_ERROR_WANT_ASYNC_JOB;
3321 if (SSL_want_client_hello_cb(s))
3322 return SSL_ERROR_WANT_CLIENT_HELLO_CB;
3323
3324 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
3325 (s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY))
3326 return (SSL_ERROR_ZERO_RETURN);
3327
3328 return (SSL_ERROR_SYSCALL);
3329 }
3330
3331 static int ssl_do_handshake_intern(void *vargs)
3332 {
3333 struct ssl_async_args *args;
3334 SSL *s;
3335
3336 args = (struct ssl_async_args *)vargs;
3337 s = args->s;
3338
3339 return s->handshake_func(s);
3340 }
3341
3342 int SSL_do_handshake(SSL *s)
3343 {
3344 int ret = 1;
3345
3346 if (s->handshake_func == NULL) {
3347 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET);
3348 return -1;
3349 }
3350
3351 ossl_statem_check_finish_init(s, -1);
3352
3353 s->method->ssl_renegotiate_check(s, 0);
3354
3355 if (SSL_is_server(s)) {
3356 /* clear SNI settings at server-side */
3357 OPENSSL_free(s->ext.hostname);
3358 s->ext.hostname = NULL;
3359 }
3360
3361 if (SSL_in_init(s) || SSL_in_before(s)) {
3362 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
3363 struct ssl_async_args args;
3364
3365 args.s = s;
3366
3367 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern);
3368 } else {
3369 ret = s->handshake_func(s);
3370 }
3371 }
3372 return ret;
3373 }
3374
3375 void SSL_set_accept_state(SSL *s)
3376 {
3377 s->server = 1;
3378 s->shutdown = 0;
3379 ossl_statem_clear(s);
3380 s->handshake_func = s->method->ssl_accept;
3381 clear_ciphers(s);
3382 }
3383
3384 void SSL_set_connect_state(SSL *s)
3385 {
3386 s->server = 0;
3387 s->shutdown = 0;
3388 ossl_statem_clear(s);
3389 s->handshake_func = s->method->ssl_connect;
3390 clear_ciphers(s);
3391 }
3392
3393 int ssl_undefined_function(SSL *s)
3394 {
3395 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3396 return (0);
3397 }
3398
3399 int ssl_undefined_void_function(void)
3400 {
3401 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION,
3402 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3403 return (0);
3404 }
3405
3406 int ssl_undefined_const_function(const SSL *s)
3407 {
3408 return (0);
3409 }
3410
3411 const SSL_METHOD *ssl_bad_method(int ver)
3412 {
3413 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3414 return (NULL);
3415 }
3416
3417 const char *ssl_protocol_to_string(int version)
3418 {
3419 switch(version)
3420 {
3421 case TLS1_3_VERSION:
3422 return "TLSv1.3";
3423
3424 case TLS1_2_VERSION:
3425 return "TLSv1.2";
3426
3427 case TLS1_1_VERSION:
3428 return "TLSv1.1";
3429
3430 case TLS1_VERSION:
3431 return "TLSv1";
3432
3433 case SSL3_VERSION:
3434 return "SSLv3";
3435
3436 case DTLS1_BAD_VER:
3437 return "DTLSv0.9";
3438
3439 case DTLS1_VERSION:
3440 return "DTLSv1";
3441
3442 case DTLS1_2_VERSION:
3443 return "DTLSv1.2";
3444
3445 default:
3446 return "unknown";
3447 }
3448 }
3449
3450 const char *SSL_get_version(const SSL *s)
3451 {
3452 return ssl_protocol_to_string(s->version);
3453 }
3454
3455 SSL *SSL_dup(SSL *s)
3456 {
3457 STACK_OF(X509_NAME) *sk;
3458 X509_NAME *xn;
3459 SSL *ret;
3460 int i;
3461
3462 /* If we're not quiescent, just up_ref! */
3463 if (!SSL_in_init(s) || !SSL_in_before(s)) {
3464 CRYPTO_UP_REF(&s->references, &i, s->lock);
3465 return s;
3466 }
3467
3468 /*
3469 * Otherwise, copy configuration state, and session if set.
3470 */
3471 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL)
3472 return (NULL);
3473
3474 if (s->session != NULL) {
3475 /*
3476 * Arranges to share the same session via up_ref. This "copies"
3477 * session-id, SSL_METHOD, sid_ctx, and 'cert'
3478 */
3479 if (!SSL_copy_session_id(ret, s))
3480 goto err;
3481 } else {
3482 /*
3483 * No session has been established yet, so we have to expect that
3484 * s->cert or ret->cert will be changed later -- they should not both
3485 * point to the same object, and thus we can't use
3486 * SSL_copy_session_id.
3487 */
3488 if (!SSL_set_ssl_method(ret, s->method))
3489 goto err;
3490
3491 if (s->cert != NULL) {
3492 ssl_cert_free(ret->cert);
3493 ret->cert = ssl_cert_dup(s->cert);
3494 if (ret->cert == NULL)
3495 goto err;
3496 }
3497
3498 if (!SSL_set_session_id_context(ret, s->sid_ctx,
3499 (int)s->sid_ctx_length))
3500 goto err;
3501 }
3502
3503 if (!ssl_dane_dup(ret, s))
3504 goto err;
3505 ret->version = s->version;
3506 ret->options = s->options;
3507 ret->mode = s->mode;
3508 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s));
3509 SSL_set_read_ahead(ret, SSL_get_read_ahead(s));
3510 ret->msg_callback = s->msg_callback;
3511 ret->msg_callback_arg = s->msg_callback_arg;
3512 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s));
3513 SSL_set_verify_depth(ret, SSL_get_verify_depth(s));
3514 ret->generate_session_id = s->generate_session_id;
3515
3516 SSL_set_info_callback(ret, SSL_get_info_callback(s));
3517
3518 /* copy app data, a little dangerous perhaps */
3519 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data))
3520 goto err;
3521
3522 /* setup rbio, and wbio */
3523 if (s->rbio != NULL) {
3524 if (!BIO_dup_state(s->rbio, (char *)&ret->rbio))
3525 goto err;
3526 }
3527 if (s->wbio != NULL) {
3528 if (s->wbio != s->rbio) {
3529 if (!BIO_dup_state(s->wbio, (char *)&ret->wbio))
3530 goto err;
3531 } else {
3532 BIO_up_ref(ret->rbio);
3533 ret->wbio = ret->rbio;
3534 }
3535 }
3536
3537 ret->server = s->server;
3538 if (s->handshake_func) {
3539 if (s->server)
3540 SSL_set_accept_state(ret);
3541 else
3542 SSL_set_connect_state(ret);
3543 }
3544 ret->shutdown = s->shutdown;
3545 ret->hit = s->hit;
3546
3547 ret->default_passwd_callback = s->default_passwd_callback;
3548 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata;
3549
3550 X509_VERIFY_PARAM_inherit(ret->param, s->param);
3551
3552 /* dup the cipher_list and cipher_list_by_id stacks */
3553 if (s->cipher_list != NULL) {
3554 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL)
3555 goto err;
3556 }
3557 if (s->cipher_list_by_id != NULL)
3558 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id))
3559 == NULL)
3560 goto err;
3561
3562 /* Dup the client_CA list */
3563 if (s->ca_names != NULL) {
3564 if ((sk = sk_X509_NAME_dup(s->ca_names)) == NULL)
3565 goto err;
3566 ret->ca_names = sk;
3567 for (i = 0; i < sk_X509_NAME_num(sk); i++) {
3568 xn = sk_X509_NAME_value(sk, i);
3569 if (sk_X509_NAME_set(sk, i, X509_NAME_dup(xn)) == NULL) {
3570 X509_NAME_free(xn);
3571 goto err;
3572 }
3573 }
3574 }
3575 return ret;
3576
3577 err:
3578 SSL_free(ret);
3579 return NULL;
3580 }
3581
3582 void ssl_clear_cipher_ctx(SSL *s)
3583 {
3584 if (s->enc_read_ctx != NULL) {
3585 EVP_CIPHER_CTX_free(s->enc_read_ctx);
3586 s->enc_read_ctx = NULL;
3587 }
3588 if (s->enc_write_ctx != NULL) {
3589 EVP_CIPHER_CTX_free(s->enc_write_ctx);
3590 s->enc_write_ctx = NULL;
3591 }
3592 #ifndef OPENSSL_NO_COMP
3593 COMP_CTX_free(s->expand);
3594 s->expand = NULL;
3595 COMP_CTX_free(s->compress);
3596 s->compress = NULL;
3597 #endif
3598 }
3599
3600 X509 *SSL_get_certificate(const SSL *s)
3601 {
3602 if (s->cert != NULL)
3603 return (s->cert->key->x509);
3604 else
3605 return (NULL);
3606 }
3607
3608 EVP_PKEY *SSL_get_privatekey(const SSL *s)
3609 {
3610 if (s->cert != NULL)
3611 return (s->cert->key->privatekey);
3612 else
3613 return (NULL);
3614 }
3615
3616 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx)
3617 {
3618 if (ctx->cert != NULL)
3619 return ctx->cert->key->x509;
3620 else
3621 return NULL;
3622 }
3623
3624 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx)
3625 {
3626 if (ctx->cert != NULL)
3627 return ctx->cert->key->privatekey;
3628 else
3629 return NULL;
3630 }
3631
3632 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s)
3633 {
3634 if ((s->session != NULL) && (s->session->cipher != NULL))
3635 return (s->session->cipher);
3636 return (NULL);
3637 }
3638
3639 const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s)
3640 {
3641 return s->s3->tmp.new_cipher;
3642 }
3643
3644 const COMP_METHOD *SSL_get_current_compression(SSL *s)
3645 {
3646 #ifndef OPENSSL_NO_COMP
3647 return s->compress ? COMP_CTX_get_method(s->compress) : NULL;
3648 #else
3649 return NULL;
3650 #endif
3651 }
3652
3653 const COMP_METHOD *SSL_get_current_expansion(SSL *s)
3654 {
3655 #ifndef OPENSSL_NO_COMP
3656 return s->expand ? COMP_CTX_get_method(s->expand) : NULL;
3657 #else
3658 return NULL;
3659 #endif
3660 }
3661
3662 int ssl_init_wbio_buffer(SSL *s)
3663 {
3664 BIO *bbio;
3665
3666 if (s->bbio != NULL) {
3667 /* Already buffered. */
3668 return 1;
3669 }
3670
3671 bbio = BIO_new(BIO_f_buffer());
3672 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) {
3673 BIO_free(bbio);
3674 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB);
3675 return 0;
3676 }
3677 s->bbio = bbio;
3678 s->wbio = BIO_push(bbio, s->wbio);
3679
3680 return 1;
3681 }
3682
3683 int ssl_free_wbio_buffer(SSL *s)
3684 {
3685 /* callers ensure s is never null */
3686 if (s->bbio == NULL)
3687 return 1;
3688
3689 s->wbio = BIO_pop(s->wbio);
3690 if (!ossl_assert(s->wbio != NULL))
3691 return 0;
3692 BIO_free(s->bbio);
3693 s->bbio = NULL;
3694
3695 return 1;
3696 }
3697
3698 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode)
3699 {
3700 ctx->quiet_shutdown = mode;
3701 }
3702
3703 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx)
3704 {
3705 return (ctx->quiet_shutdown);
3706 }
3707
3708 void SSL_set_quiet_shutdown(SSL *s, int mode)
3709 {
3710 s->quiet_shutdown = mode;
3711 }
3712
3713 int SSL_get_quiet_shutdown(const SSL *s)
3714 {
3715 return (s->quiet_shutdown);
3716 }
3717
3718 void SSL_set_shutdown(SSL *s, int mode)
3719 {
3720 s->shutdown = mode;
3721 }
3722
3723 int SSL_get_shutdown(const SSL *s)
3724 {
3725 return s->shutdown;
3726 }
3727
3728 int SSL_version(const SSL *s)
3729 {
3730 return s->version;
3731 }
3732
3733 int SSL_client_version(const SSL *s)
3734 {
3735 return s->client_version;
3736 }
3737
3738 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl)
3739 {
3740 return ssl->ctx;
3741 }
3742
3743 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx)
3744 {
3745 CERT *new_cert;
3746 if (ssl->ctx == ctx)
3747 return ssl->ctx;
3748 if (ctx == NULL)
3749 ctx = ssl->session_ctx;
3750 new_cert = ssl_cert_dup(ctx->cert);
3751 if (new_cert == NULL) {
3752 return NULL;
3753 }
3754
3755 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) {
3756 ssl_cert_free(new_cert);
3757 return NULL;
3758 }
3759
3760 ssl_cert_free(ssl->cert);
3761 ssl->cert = new_cert;
3762
3763 /*
3764 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH),
3765 * so setter APIs must prevent invalid lengths from entering the system.
3766 */
3767 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx)))
3768 return NULL;
3769
3770 /*
3771 * If the session ID context matches that of the parent SSL_CTX,
3772 * inherit it from the new SSL_CTX as well. If however the context does
3773 * not match (i.e., it was set per-ssl with SSL_set_session_id_context),
3774 * leave it unchanged.
3775 */
3776 if ((ssl->ctx != NULL) &&
3777 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) &&
3778 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) {
3779 ssl->sid_ctx_length = ctx->sid_ctx_length;
3780 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx));
3781 }
3782
3783 SSL_CTX_up_ref(ctx);
3784 SSL_CTX_free(ssl->ctx); /* decrement reference count */
3785 ssl->ctx = ctx;
3786
3787 return ssl->ctx;
3788 }
3789
3790 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx)
3791 {
3792 return (X509_STORE_set_default_paths(ctx->cert_store));
3793 }
3794
3795 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx)
3796 {
3797 X509_LOOKUP *lookup;
3798
3799 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir());
3800 if (lookup == NULL)
3801 return 0;
3802 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
3803
3804 /* Clear any errors if the default directory does not exist */
3805 ERR_clear_error();
3806
3807 return 1;
3808 }
3809
3810 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx)
3811 {
3812 X509_LOOKUP *lookup;
3813
3814 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file());
3815 if (lookup == NULL)
3816 return 0;
3817
3818 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT);
3819
3820 /* Clear any errors if the default file does not exist */
3821 ERR_clear_error();
3822
3823 return 1;
3824 }
3825
3826 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
3827 const char *CApath)
3828 {
3829 return (X509_STORE_load_locations(ctx->cert_store, CAfile, CApath));
3830 }
3831
3832 void SSL_set_info_callback(SSL *ssl,
3833 void (*cb) (const SSL *ssl, int type, int val))
3834 {
3835 ssl->info_callback = cb;
3836 }
3837
3838 /*
3839 * One compiler (Diab DCC) doesn't like argument names in returned function
3840 * pointer.
3841 */
3842 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ ,
3843 int /* type */ ,
3844 int /* val */ ) {
3845 return ssl->info_callback;
3846 }
3847
3848 void SSL_set_verify_result(SSL *ssl, long arg)
3849 {
3850 ssl->verify_result = arg;
3851 }
3852
3853 long SSL_get_verify_result(const SSL *ssl)
3854 {
3855 return (ssl->verify_result);
3856 }
3857
3858 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen)
3859 {
3860 if (outlen == 0)
3861 return sizeof(ssl->s3->client_random);
3862 if (outlen > sizeof(ssl->s3->client_random))
3863 outlen = sizeof(ssl->s3->client_random);
3864 memcpy(out, ssl->s3->client_random, outlen);
3865 return outlen;
3866 }
3867
3868 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen)
3869 {
3870 if (outlen == 0)
3871 return sizeof(ssl->s3->server_random);
3872 if (outlen > sizeof(ssl->s3->server_random))
3873 outlen = sizeof(ssl->s3->server_random);
3874 memcpy(out, ssl->s3->server_random, outlen);
3875 return outlen;
3876 }
3877
3878 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session,
3879 unsigned char *out, size_t outlen)
3880 {
3881 if (outlen == 0)
3882 return session->master_key_length;
3883 if (outlen > session->master_key_length)
3884 outlen = session->master_key_length;
3885 memcpy(out, session->master_key, outlen);
3886 return outlen;
3887 }
3888
3889 int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in,
3890 size_t len)
3891 {
3892 if (len > sizeof(sess->master_key))
3893 return 0;
3894
3895 memcpy(sess->master_key, in, len);
3896 sess->master_key_length = len;
3897 return 1;
3898 }
3899
3900
3901 int SSL_set_ex_data(SSL *s, int idx, void *arg)
3902 {
3903 return (CRYPTO_set_ex_data(&s->ex_data, idx, arg));
3904 }
3905
3906 void *SSL_get_ex_data(const SSL *s, int idx)
3907 {
3908 return (CRYPTO_get_ex_data(&s->ex_data, idx));
3909 }
3910
3911 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg)
3912 {
3913 return (CRYPTO_set_ex_data(&s->ex_data, idx, arg));
3914 }
3915
3916 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx)
3917 {
3918 return (CRYPTO_get_ex_data(&s->ex_data, idx));
3919 }
3920
3921 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx)
3922 {
3923 return (ctx->cert_store);
3924 }
3925
3926 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store)
3927 {
3928 X509_STORE_free(ctx->cert_store);
3929 ctx->cert_store = store;
3930 }
3931
3932 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store)
3933 {
3934 if (store != NULL)
3935 X509_STORE_up_ref(store);
3936 SSL_CTX_set_cert_store(ctx, store);
3937 }
3938
3939 int SSL_want(const SSL *s)
3940 {
3941 return (s->rwstate);
3942 }
3943
3944 /**
3945 * \brief Set the callback for generating temporary DH keys.
3946 * \param ctx the SSL context.
3947 * \param dh the callback
3948 */
3949
3950 #ifndef OPENSSL_NO_DH
3951 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
3952 DH *(*dh) (SSL *ssl, int is_export,
3953 int keylength))
3954 {
3955 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
3956 }
3957
3958 void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export,
3959 int keylength))
3960 {
3961 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
3962 }
3963 #endif
3964
3965 #ifndef OPENSSL_NO_PSK
3966 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint)
3967 {
3968 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
3969 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
3970 return 0;
3971 }
3972 OPENSSL_free(ctx->cert->psk_identity_hint);
3973 if (identity_hint != NULL) {
3974 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
3975 if (ctx->cert->psk_identity_hint == NULL)
3976 return 0;
3977 } else
3978 ctx->cert->psk_identity_hint = NULL;
3979 return 1;
3980 }
3981
3982 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint)
3983 {
3984 if (s == NULL)
3985 return 0;
3986
3987 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
3988 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
3989 return 0;
3990 }
3991 OPENSSL_free(s->cert->psk_identity_hint);
3992 if (identity_hint != NULL) {
3993 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
3994 if (s->cert->psk_identity_hint == NULL)
3995 return 0;
3996 } else
3997 s->cert->psk_identity_hint = NULL;
3998 return 1;
3999 }
4000
4001 const char *SSL_get_psk_identity_hint(const SSL *s)
4002 {
4003 if (s == NULL || s->session == NULL)
4004 return NULL;
4005 return (s->session->psk_identity_hint);
4006 }
4007
4008 const char *SSL_get_psk_identity(const SSL *s)
4009 {
4010 if (s == NULL || s->session == NULL)
4011 return NULL;
4012 return (s->session->psk_identity);
4013 }
4014
4015 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb)
4016 {
4017 s->psk_client_callback = cb;
4018 }
4019
4020 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb)
4021 {
4022 ctx->psk_client_callback = cb;
4023 }
4024
4025 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb)
4026 {
4027 s->psk_server_callback = cb;
4028 }
4029
4030 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb)
4031 {
4032 ctx->psk_server_callback = cb;
4033 }
4034 #endif
4035
4036 void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb)
4037 {
4038 s->psk_find_session_cb = cb;
4039 }
4040
4041 void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx,
4042 SSL_psk_find_session_cb_func cb)
4043 {
4044 ctx->psk_find_session_cb = cb;
4045 }
4046
4047 void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb)
4048 {
4049 s->psk_use_session_cb = cb;
4050 }
4051
4052 void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx,
4053 SSL_psk_use_session_cb_func cb)
4054 {
4055 ctx->psk_use_session_cb = cb;
4056 }
4057
4058 void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
4059 void (*cb) (int write_p, int version,
4060 int content_type, const void *buf,
4061 size_t len, SSL *ssl, void *arg))
4062 {
4063 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4064 }
4065
4066 void SSL_set_msg_callback(SSL *ssl,
4067 void (*cb) (int write_p, int version,
4068 int content_type, const void *buf,
4069 size_t len, SSL *ssl, void *arg))
4070 {
4071 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4072 }
4073
4074 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx,
4075 int (*cb) (SSL *ssl,
4076 int
4077 is_forward_secure))
4078 {
4079 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4080 (void (*)(void))cb);
4081 }
4082
4083 void SSL_set_not_resumable_session_callback(SSL *ssl,
4084 int (*cb) (SSL *ssl,
4085 int is_forward_secure))
4086 {
4087 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4088 (void (*)(void))cb);
4089 }
4090
4091 void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx,
4092 size_t (*cb) (SSL *ssl, int type,
4093 size_t len, void *arg))
4094 {
4095 ctx->record_padding_cb = cb;
4096 }
4097
4098 void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg)
4099 {
4100 ctx->record_padding_arg = arg;
4101 }
4102
4103 void *SSL_CTX_get_record_padding_callback_arg(SSL_CTX *ctx)
4104 {
4105 return ctx->record_padding_arg;
4106 }
4107
4108 int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size)
4109 {
4110 /* block size of 0 or 1 is basically no padding */
4111 if (block_size == 1)
4112 ctx->block_padding = 0;
4113 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4114 ctx->block_padding = block_size;
4115 else
4116 return 0;
4117 return 1;
4118 }
4119
4120 void SSL_set_record_padding_callback(SSL *ssl,
4121 size_t (*cb) (SSL *ssl, int type,
4122 size_t len, void *arg))
4123 {
4124 ssl->record_padding_cb = cb;
4125 }
4126
4127 void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg)
4128 {
4129 ssl->record_padding_arg = arg;
4130 }
4131
4132 void *SSL_get_record_padding_callback_arg(SSL *ssl)
4133 {
4134 return ssl->record_padding_arg;
4135 }
4136
4137 int SSL_set_block_padding(SSL *ssl, size_t block_size)
4138 {
4139 /* block size of 0 or 1 is basically no padding */
4140 if (block_size == 1)
4141 ssl->block_padding = 0;
4142 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4143 ssl->block_padding = block_size;
4144 else
4145 return 0;
4146 return 1;
4147 }
4148
4149 /*
4150 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer
4151 * variable, freeing EVP_MD_CTX previously stored in that variable, if any.
4152 * If EVP_MD pointer is passed, initializes ctx with this |md|.
4153 * Returns the newly allocated ctx;
4154 */
4155
4156 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md)
4157 {
4158 ssl_clear_hash_ctx(hash);
4159 *hash = EVP_MD_CTX_new();
4160 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) {
4161 EVP_MD_CTX_free(*hash);
4162 *hash = NULL;
4163 return NULL;
4164 }
4165 return *hash;
4166 }
4167
4168 void ssl_clear_hash_ctx(EVP_MD_CTX **hash)
4169 {
4170
4171 EVP_MD_CTX_free(*hash);
4172 *hash = NULL;
4173 }
4174
4175 /* Retrieve handshake hashes */
4176 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen,
4177 size_t *hashlen)
4178 {
4179 EVP_MD_CTX *ctx = NULL;
4180 EVP_MD_CTX *hdgst = s->s3->handshake_dgst;
4181 int hashleni = EVP_MD_CTX_size(hdgst);
4182 int ret = 0;
4183
4184 if (hashleni < 0 || (size_t)hashleni > outlen)
4185 goto err;
4186
4187 ctx = EVP_MD_CTX_new();
4188 if (ctx == NULL)
4189 goto err;
4190
4191 if (!EVP_MD_CTX_copy_ex(ctx, hdgst)
4192 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0)
4193 goto err;
4194
4195 *hashlen = hashleni;
4196
4197 ret = 1;
4198 err:
4199 EVP_MD_CTX_free(ctx);
4200 return ret;
4201 }
4202
4203 int SSL_session_reused(SSL *s)
4204 {
4205 return s->hit;
4206 }
4207
4208 int SSL_is_server(const SSL *s)
4209 {
4210 return s->server;
4211 }
4212
4213 #if OPENSSL_API_COMPAT < 0x10100000L
4214 void SSL_set_debug(SSL *s, int debug)
4215 {
4216 /* Old function was do-nothing anyway... */
4217 (void)s;
4218 (void)debug;
4219 }
4220 #endif
4221
4222 void SSL_set_security_level(SSL *s, int level)
4223 {
4224 s->cert->sec_level = level;
4225 }
4226
4227 int SSL_get_security_level(const SSL *s)
4228 {
4229 return s->cert->sec_level;
4230 }
4231
4232 void SSL_set_security_callback(SSL *s,
4233 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4234 int op, int bits, int nid,
4235 void *other, void *ex))
4236 {
4237 s->cert->sec_cb = cb;
4238 }
4239
4240 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s,
4241 const SSL_CTX *ctx, int op,
4242 int bits, int nid, void *other,
4243 void *ex) {
4244 return s->cert->sec_cb;
4245 }
4246
4247 void SSL_set0_security_ex_data(SSL *s, void *ex)
4248 {
4249 s->cert->sec_ex = ex;
4250 }
4251
4252 void *SSL_get0_security_ex_data(const SSL *s)
4253 {
4254 return s->cert->sec_ex;
4255 }
4256
4257 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level)
4258 {
4259 ctx->cert->sec_level = level;
4260 }
4261
4262 int SSL_CTX_get_security_level(const SSL_CTX *ctx)
4263 {
4264 return ctx->cert->sec_level;
4265 }
4266
4267 void SSL_CTX_set_security_callback(SSL_CTX *ctx,
4268 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4269 int op, int bits, int nid,
4270 void *other, void *ex))
4271 {
4272 ctx->cert->sec_cb = cb;
4273 }
4274
4275 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s,
4276 const SSL_CTX *ctx,
4277 int op, int bits,
4278 int nid,
4279 void *other,
4280 void *ex) {
4281 return ctx->cert->sec_cb;
4282 }
4283
4284 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex)
4285 {
4286 ctx->cert->sec_ex = ex;
4287 }
4288
4289 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx)
4290 {
4291 return ctx->cert->sec_ex;
4292 }
4293
4294 /*
4295 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that
4296 * can return unsigned long, instead of the generic long return value from the
4297 * control interface.
4298 */
4299 unsigned long SSL_CTX_get_options(const SSL_CTX *ctx)
4300 {
4301 return ctx->options;
4302 }
4303
4304 unsigned long SSL_get_options(const SSL *s)
4305 {
4306 return s->options;
4307 }
4308
4309 unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op)
4310 {
4311 return ctx->options |= op;
4312 }
4313
4314 unsigned long SSL_set_options(SSL *s, unsigned long op)
4315 {
4316 return s->options |= op;
4317 }
4318
4319 unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op)
4320 {
4321 return ctx->options &= ~op;
4322 }
4323
4324 unsigned long SSL_clear_options(SSL *s, unsigned long op)
4325 {
4326 return s->options &= ~op;
4327 }
4328
4329 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s)
4330 {
4331 return s->verified_chain;
4332 }
4333
4334 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id);
4335
4336 #ifndef OPENSSL_NO_CT
4337
4338 /*
4339 * Moves SCTs from the |src| stack to the |dst| stack.
4340 * The source of each SCT will be set to |origin|.
4341 * If |dst| points to a NULL pointer, a new stack will be created and owned by
4342 * the caller.
4343 * Returns the number of SCTs moved, or a negative integer if an error occurs.
4344 */
4345 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src,
4346 sct_source_t origin)
4347 {
4348 int scts_moved = 0;
4349 SCT *sct = NULL;
4350
4351 if (*dst == NULL) {
4352 *dst = sk_SCT_new_null();
4353 if (*dst == NULL) {
4354 SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE);
4355 goto err;
4356 }
4357 }
4358
4359 while ((sct = sk_SCT_pop(src)) != NULL) {
4360 if (SCT_set_source(sct, origin) != 1)
4361 goto err;
4362
4363 if (sk_SCT_push(*dst, sct) <= 0)
4364 goto err;
4365 scts_moved += 1;
4366 }
4367
4368 return scts_moved;
4369 err:
4370 if (sct != NULL)
4371 sk_SCT_push(src, sct); /* Put the SCT back */
4372 return -1;
4373 }
4374
4375 /*
4376 * Look for data collected during ServerHello and parse if found.
4377 * Returns the number of SCTs extracted.
4378 */
4379 static int ct_extract_tls_extension_scts(SSL *s)
4380 {
4381 int scts_extracted = 0;
4382
4383 if (s->ext.scts != NULL) {
4384 const unsigned char *p = s->ext.scts;
4385 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len);
4386
4387 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION);
4388
4389 SCT_LIST_free(scts);
4390 }
4391
4392 return scts_extracted;
4393 }
4394
4395 /*
4396 * Checks for an OCSP response and then attempts to extract any SCTs found if it
4397 * contains an SCT X509 extension. They will be stored in |s->scts|.
4398 * Returns:
4399 * - The number of SCTs extracted, assuming an OCSP response exists.
4400 * - 0 if no OCSP response exists or it contains no SCTs.
4401 * - A negative integer if an error occurs.
4402 */
4403 static int ct_extract_ocsp_response_scts(SSL *s)
4404 {
4405 # ifndef OPENSSL_NO_OCSP
4406 int scts_extracted = 0;
4407 const unsigned char *p;
4408 OCSP_BASICRESP *br = NULL;
4409 OCSP_RESPONSE *rsp = NULL;
4410 STACK_OF(SCT) *scts = NULL;
4411 int i;
4412
4413 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0)
4414 goto err;
4415
4416 p = s->ext.ocsp.resp;
4417 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len);
4418 if (rsp == NULL)
4419 goto err;
4420
4421 br = OCSP_response_get1_basic(rsp);
4422 if (br == NULL)
4423 goto err;
4424
4425 for (i = 0; i < OCSP_resp_count(br); ++i) {
4426 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i);
4427
4428 if (single == NULL)
4429 continue;
4430
4431 scts =
4432 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL);
4433 scts_extracted =
4434 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE);
4435 if (scts_extracted < 0)
4436 goto err;
4437 }
4438 err:
4439 SCT_LIST_free(scts);
4440 OCSP_BASICRESP_free(br);
4441 OCSP_RESPONSE_free(rsp);
4442 return scts_extracted;
4443 # else
4444 /* Behave as if no OCSP response exists */
4445 return 0;
4446 # endif
4447 }
4448
4449 /*
4450 * Attempts to extract SCTs from the peer certificate.
4451 * Return the number of SCTs extracted, or a negative integer if an error
4452 * occurs.
4453 */
4454 static int ct_extract_x509v3_extension_scts(SSL *s)
4455 {
4456 int scts_extracted = 0;
4457 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4458
4459 if (cert != NULL) {
4460 STACK_OF(SCT) *scts =
4461 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL);
4462
4463 scts_extracted =
4464 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION);
4465
4466 SCT_LIST_free(scts);
4467 }
4468
4469 return scts_extracted;
4470 }
4471
4472 /*
4473 * Attempts to find all received SCTs by checking TLS extensions, the OCSP
4474 * response (if it exists) and X509v3 extensions in the certificate.
4475 * Returns NULL if an error occurs.
4476 */
4477 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s)
4478 {
4479 if (!s->scts_parsed) {
4480 if (ct_extract_tls_extension_scts(s) < 0 ||
4481 ct_extract_ocsp_response_scts(s) < 0 ||
4482 ct_extract_x509v3_extension_scts(s) < 0)
4483 goto err;
4484
4485 s->scts_parsed = 1;
4486 }
4487 return s->scts;
4488 err:
4489 return NULL;
4490 }
4491
4492 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx,
4493 const STACK_OF(SCT) *scts, void *unused_arg)
4494 {
4495 return 1;
4496 }
4497
4498 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx,
4499 const STACK_OF(SCT) *scts, void *unused_arg)
4500 {
4501 int count = scts != NULL ? sk_SCT_num(scts) : 0;
4502 int i;
4503
4504 for (i = 0; i < count; ++i) {
4505 SCT *sct = sk_SCT_value(scts, i);
4506 int status = SCT_get_validation_status(sct);
4507
4508 if (status == SCT_VALIDATION_STATUS_VALID)
4509 return 1;
4510 }
4511 SSLerr(SSL_F_CT_STRICT, SSL_R_NO_VALID_SCTS);
4512 return 0;
4513 }
4514
4515 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback,
4516 void *arg)
4517 {
4518 /*
4519 * Since code exists that uses the custom extension handler for CT, look
4520 * for this and throw an error if they have already registered to use CT.
4521 */
4522 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx,
4523 TLSEXT_TYPE_signed_certificate_timestamp))
4524 {
4525 SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK,
4526 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4527 return 0;
4528 }
4529
4530 if (callback != NULL) {
4531 /*
4532 * If we are validating CT, then we MUST accept SCTs served via OCSP
4533 */
4534 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp))
4535 return 0;
4536 }
4537
4538 s->ct_validation_callback = callback;
4539 s->ct_validation_callback_arg = arg;
4540
4541 return 1;
4542 }
4543
4544 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx,
4545 ssl_ct_validation_cb callback, void *arg)
4546 {
4547 /*
4548 * Since code exists that uses the custom extension handler for CT, look for
4549 * this and throw an error if they have already registered to use CT.
4550 */
4551 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx,
4552 TLSEXT_TYPE_signed_certificate_timestamp))
4553 {
4554 SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK,
4555 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4556 return 0;
4557 }
4558
4559 ctx->ct_validation_callback = callback;
4560 ctx->ct_validation_callback_arg = arg;
4561 return 1;
4562 }
4563
4564 int SSL_ct_is_enabled(const SSL *s)
4565 {
4566 return s->ct_validation_callback != NULL;
4567 }
4568
4569 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx)
4570 {
4571 return ctx->ct_validation_callback != NULL;
4572 }
4573
4574 int ssl_validate_ct(SSL *s)
4575 {
4576 int ret = 0;
4577 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4578 X509 *issuer;
4579 SSL_DANE *dane = &s->dane;
4580 CT_POLICY_EVAL_CTX *ctx = NULL;
4581 const STACK_OF(SCT) *scts;
4582
4583 /*
4584 * If no callback is set, the peer is anonymous, or its chain is invalid,
4585 * skip SCT validation - just return success. Applications that continue
4586 * handshakes without certificates, with unverified chains, or pinned leaf
4587 * certificates are outside the scope of the WebPKI and CT.
4588 *
4589 * The above exclusions notwithstanding the vast majority of peers will
4590 * have rather ordinary certificate chains validated by typical
4591 * applications that perform certificate verification and therefore will
4592 * process SCTs when enabled.
4593 */
4594 if (s->ct_validation_callback == NULL || cert == NULL ||
4595 s->verify_result != X509_V_OK ||
4596 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1)
4597 return 1;
4598
4599 /*
4600 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3)
4601 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2
4602 */
4603 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) {
4604 switch (dane->mtlsa->usage) {
4605 case DANETLS_USAGE_DANE_TA:
4606 case DANETLS_USAGE_DANE_EE:
4607 return 1;
4608 }
4609 }
4610
4611 ctx = CT_POLICY_EVAL_CTX_new();
4612 if (ctx == NULL) {
4613 SSLerr(SSL_F_SSL_VALIDATE_CT, ERR_R_MALLOC_FAILURE);
4614 goto end;
4615 }
4616
4617 issuer = sk_X509_value(s->verified_chain, 1);
4618 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert);
4619 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer);
4620 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store);
4621 CT_POLICY_EVAL_CTX_set_time(
4622 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000);
4623
4624 scts = SSL_get0_peer_scts(s);
4625
4626 /*
4627 * This function returns success (> 0) only when all the SCTs are valid, 0
4628 * when some are invalid, and < 0 on various internal errors (out of
4629 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient
4630 * reason to abort the handshake, that decision is up to the callback.
4631 * Therefore, we error out only in the unexpected case that the return
4632 * value is negative.
4633 *
4634 * XXX: One might well argue that the return value of this function is an
4635 * unfortunate design choice. Its job is only to determine the validation
4636 * status of each of the provided SCTs. So long as it correctly separates
4637 * the wheat from the chaff it should return success. Failure in this case
4638 * ought to correspond to an inability to carry out its duties.
4639 */
4640 if (SCT_LIST_validate(scts, ctx) < 0) {
4641 SSLerr(SSL_F_SSL_VALIDATE_CT, SSL_R_SCT_VERIFICATION_FAILED);
4642 goto end;
4643 }
4644
4645 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg);
4646 if (ret < 0)
4647 ret = 0; /* This function returns 0 on failure */
4648
4649 end:
4650 CT_POLICY_EVAL_CTX_free(ctx);
4651 /*
4652 * With SSL_VERIFY_NONE the session may be cached and re-used despite a
4653 * failure return code here. Also the application may wish the complete
4654 * the handshake, and then disconnect cleanly at a higher layer, after
4655 * checking the verification status of the completed connection.
4656 *
4657 * We therefore force a certificate verification failure which will be
4658 * visible via SSL_get_verify_result() and cached as part of any resumed
4659 * session.
4660 *
4661 * Note: the permissive callback is for information gathering only, always
4662 * returns success, and does not affect verification status. Only the
4663 * strict callback or a custom application-specified callback can trigger
4664 * connection failure or record a verification error.
4665 */
4666 if (ret <= 0)
4667 s->verify_result = X509_V_ERR_NO_VALID_SCTS;
4668 return ret;
4669 }
4670
4671 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode)
4672 {
4673 switch (validation_mode) {
4674 default:
4675 SSLerr(SSL_F_SSL_CTX_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4676 return 0;
4677 case SSL_CT_VALIDATION_PERMISSIVE:
4678 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL);
4679 case SSL_CT_VALIDATION_STRICT:
4680 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL);
4681 }
4682 }
4683
4684 int SSL_enable_ct(SSL *s, int validation_mode)
4685 {
4686 switch (validation_mode) {
4687 default:
4688 SSLerr(SSL_F_SSL_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4689 return 0;
4690 case SSL_CT_VALIDATION_PERMISSIVE:
4691 return SSL_set_ct_validation_callback(s, ct_permissive, NULL);
4692 case SSL_CT_VALIDATION_STRICT:
4693 return SSL_set_ct_validation_callback(s, ct_strict, NULL);
4694 }
4695 }
4696
4697 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx)
4698 {
4699 return CTLOG_STORE_load_default_file(ctx->ctlog_store);
4700 }
4701
4702 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path)
4703 {
4704 return CTLOG_STORE_load_file(ctx->ctlog_store, path);
4705 }
4706
4707 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs)
4708 {
4709 CTLOG_STORE_free(ctx->ctlog_store);
4710 ctx->ctlog_store = logs;
4711 }
4712
4713 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx)
4714 {
4715 return ctx->ctlog_store;
4716 }
4717
4718 #endif /* OPENSSL_NO_CT */
4719
4720 void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb,
4721 void *arg)
4722 {
4723 c->client_hello_cb = cb;
4724 c->client_hello_cb_arg = arg;
4725 }
4726
4727 int SSL_client_hello_isv2(SSL *s)
4728 {
4729 if (s->clienthello == NULL)
4730 return 0;
4731 return s->clienthello->isv2;
4732 }
4733
4734 unsigned int SSL_client_hello_get0_legacy_version(SSL *s)
4735 {
4736 if (s->clienthello == NULL)
4737 return 0;
4738 return s->clienthello->legacy_version;
4739 }
4740
4741 size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out)
4742 {
4743 if (s->clienthello == NULL)
4744 return 0;
4745 if (out != NULL)
4746 *out = s->clienthello->random;
4747 return SSL3_RANDOM_SIZE;
4748 }
4749
4750 size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out)
4751 {
4752 if (s->clienthello == NULL)
4753 return 0;
4754 if (out != NULL)
4755 *out = s->clienthello->session_id;
4756 return s->clienthello->session_id_len;
4757 }
4758
4759 size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out)
4760 {
4761 if (s->clienthello == NULL)
4762 return 0;
4763 if (out != NULL)
4764 *out = PACKET_data(&s->clienthello->ciphersuites);
4765 return PACKET_remaining(&s->clienthello->ciphersuites);
4766 }
4767
4768 size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out)
4769 {
4770 if (s->clienthello == NULL)
4771 return 0;
4772 if (out != NULL)
4773 *out = s->clienthello->compressions;
4774 return s->clienthello->compressions_len;
4775 }
4776
4777 int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen)
4778 {
4779 RAW_EXTENSION *ext;
4780 int *present;
4781 size_t num = 0, i;
4782
4783 if (s->clienthello == NULL || out == NULL || outlen == NULL)
4784 return 0;
4785 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
4786 ext = s->clienthello->pre_proc_exts + i;
4787 if (ext->present)
4788 num++;
4789 }
4790 present = OPENSSL_malloc(sizeof(*present) * num);
4791 if (present == NULL)
4792 return 0;
4793 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
4794 ext = s->clienthello->pre_proc_exts + i;
4795 if (ext->present) {
4796 if (ext->received_order >= num)
4797 goto err;
4798 present[ext->received_order] = ext->type;
4799 }
4800 }
4801 *out = present;
4802 *outlen = num;
4803 return 1;
4804 err:
4805 OPENSSL_free(present);
4806 return 0;
4807 }
4808
4809 int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out,
4810 size_t *outlen)
4811 {
4812 size_t i;
4813 RAW_EXTENSION *r;
4814
4815 if (s->clienthello == NULL)
4816 return 0;
4817 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) {
4818 r = s->clienthello->pre_proc_exts + i;
4819 if (r->present && r->type == type) {
4820 if (out != NULL)
4821 *out = PACKET_data(&r->data);
4822 if (outlen != NULL)
4823 *outlen = PACKET_remaining(&r->data);
4824 return 1;
4825 }
4826 }
4827 return 0;
4828 }
4829
4830 int SSL_free_buffers(SSL *ssl)
4831 {
4832 RECORD_LAYER *rl = &ssl->rlayer;
4833
4834 if (RECORD_LAYER_read_pending(rl) || RECORD_LAYER_write_pending(rl))
4835 return 0;
4836
4837 RECORD_LAYER_release(rl);
4838 return 1;
4839 }
4840
4841 int SSL_alloc_buffers(SSL *ssl)
4842 {
4843 return ssl3_setup_buffers(ssl);
4844 }
4845
4846 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb)
4847 {
4848 ctx->keylog_callback = cb;
4849 }
4850
4851 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx)
4852 {
4853 return ctx->keylog_callback;
4854 }
4855
4856 static int nss_keylog_int(const char *prefix,
4857 SSL *ssl,
4858 const uint8_t *parameter_1,
4859 size_t parameter_1_len,
4860 const uint8_t *parameter_2,
4861 size_t parameter_2_len)
4862 {
4863 char *out = NULL;
4864 char *cursor = NULL;
4865 size_t out_len = 0;
4866 size_t i;
4867 size_t prefix_len;
4868
4869 if (ssl->ctx->keylog_callback == NULL) return 1;
4870
4871 /*
4872 * Our output buffer will contain the following strings, rendered with
4873 * space characters in between, terminated by a NULL character: first the
4874 * prefix, then the first parameter, then the second parameter. The
4875 * meaning of each parameter depends on the specific key material being
4876 * logged. Note that the first and second parameters are encoded in
4877 * hexadecimal, so we need a buffer that is twice their lengths.
4878 */
4879 prefix_len = strlen(prefix);
4880 out_len = prefix_len + (2*parameter_1_len) + (2*parameter_2_len) + 3;
4881 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) {
4882 SSLerr(SSL_F_NSS_KEYLOG_INT, ERR_R_MALLOC_FAILURE);
4883 return 0;
4884 }
4885
4886 strcpy(cursor, prefix);
4887 cursor += prefix_len;
4888 *cursor++ = ' ';
4889
4890 for (i = 0; i < parameter_1_len; i++) {
4891 sprintf(cursor, "%02x", parameter_1[i]);
4892 cursor += 2;
4893 }
4894 *cursor++ = ' ';
4895
4896 for (i = 0; i < parameter_2_len; i++) {
4897 sprintf(cursor, "%02x", parameter_2[i]);
4898 cursor += 2;
4899 }
4900 *cursor = '\0';
4901
4902 ssl->ctx->keylog_callback(ssl, (const char *)out);
4903 OPENSSL_free(out);
4904 return 1;
4905
4906 }
4907
4908 int ssl_log_rsa_client_key_exchange(SSL *ssl,
4909 const uint8_t *encrypted_premaster,
4910 size_t encrypted_premaster_len,
4911 const uint8_t *premaster,
4912 size_t premaster_len)
4913 {
4914 if (encrypted_premaster_len < 8) {
4915 SSLerr(SSL_F_SSL_LOG_RSA_CLIENT_KEY_EXCHANGE, ERR_R_INTERNAL_ERROR);
4916 return 0;
4917 }
4918
4919 /* We only want the first 8 bytes of the encrypted premaster as a tag. */
4920 return nss_keylog_int("RSA",
4921 ssl,
4922 encrypted_premaster,
4923 8,
4924 premaster,
4925 premaster_len);
4926 }
4927
4928 int ssl_log_secret(SSL *ssl,
4929 const char *label,
4930 const uint8_t *secret,
4931 size_t secret_len)
4932 {
4933 return nss_keylog_int(label,
4934 ssl,
4935 ssl->s3->client_random,
4936 SSL3_RANDOM_SIZE,
4937 secret,
4938 secret_len);
4939 }
4940
4941 #define SSLV2_CIPHER_LEN 3
4942
4943 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format,
4944 int *al)
4945 {
4946 int n;
4947
4948 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
4949
4950 if (PACKET_remaining(cipher_suites) == 0) {
4951 SSLerr(SSL_F_SSL_CACHE_CIPHERLIST, SSL_R_NO_CIPHERS_SPECIFIED);
4952 *al = SSL_AD_ILLEGAL_PARAMETER;
4953 return 0;
4954 }
4955
4956 if (PACKET_remaining(cipher_suites) % n != 0) {
4957 SSLerr(SSL_F_SSL_CACHE_CIPHERLIST,
4958 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
4959 *al = SSL_AD_DECODE_ERROR;
4960 return 0;
4961 }
4962
4963 OPENSSL_free(s->s3->tmp.ciphers_raw);
4964 s->s3->tmp.ciphers_raw = NULL;
4965 s->s3->tmp.ciphers_rawlen = 0;
4966
4967 if (sslv2format) {
4968 size_t numciphers = PACKET_remaining(cipher_suites) / n;
4969 PACKET sslv2ciphers = *cipher_suites;
4970 unsigned int leadbyte;
4971 unsigned char *raw;
4972
4973 /*
4974 * We store the raw ciphers list in SSLv3+ format so we need to do some
4975 * preprocessing to convert the list first. If there are any SSLv2 only
4976 * ciphersuites with a non-zero leading byte then we are going to
4977 * slightly over allocate because we won't store those. But that isn't a
4978 * problem.
4979 */
4980 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN);
4981 s->s3->tmp.ciphers_raw = raw;
4982 if (raw == NULL) {
4983 *al = SSL_AD_INTERNAL_ERROR;
4984 goto err;
4985 }
4986 for (s->s3->tmp.ciphers_rawlen = 0;
4987 PACKET_remaining(&sslv2ciphers) > 0;
4988 raw += TLS_CIPHER_LEN) {
4989 if (!PACKET_get_1(&sslv2ciphers, &leadbyte)
4990 || (leadbyte == 0
4991 && !PACKET_copy_bytes(&sslv2ciphers, raw,
4992 TLS_CIPHER_LEN))
4993 || (leadbyte != 0
4994 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) {
4995 *al = SSL_AD_DECODE_ERROR;
4996 OPENSSL_free(s->s3->tmp.ciphers_raw);
4997 s->s3->tmp.ciphers_raw = NULL;
4998 s->s3->tmp.ciphers_rawlen = 0;
4999 goto err;
5000 }
5001 if (leadbyte == 0)
5002 s->s3->tmp.ciphers_rawlen += TLS_CIPHER_LEN;
5003 }
5004 } else if (!PACKET_memdup(cipher_suites, &s->s3->tmp.ciphers_raw,
5005 &s->s3->tmp.ciphers_rawlen)) {
5006 *al = SSL_AD_INTERNAL_ERROR;
5007 goto err;
5008 }
5009 return 1;
5010 err:
5011 return 0;
5012 }
5013
5014 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len,
5015 int isv2format, STACK_OF(SSL_CIPHER) **sk,
5016 STACK_OF(SSL_CIPHER) **scsvs)
5017 {
5018 int alert;
5019 PACKET pkt;
5020
5021 if (!PACKET_buf_init(&pkt, bytes, len))
5022 return 0;
5023 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, &alert);
5024 }
5025
5026 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites,
5027 STACK_OF(SSL_CIPHER) **skp,
5028 STACK_OF(SSL_CIPHER) **scsvs_out,
5029 int sslv2format, int *al)
5030 {
5031 const SSL_CIPHER *c;
5032 STACK_OF(SSL_CIPHER) *sk = NULL;
5033 STACK_OF(SSL_CIPHER) *scsvs = NULL;
5034 int n;
5035 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */
5036 unsigned char cipher[SSLV2_CIPHER_LEN];
5037
5038 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5039
5040 if (PACKET_remaining(cipher_suites) == 0) {
5041 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_NO_CIPHERS_SPECIFIED);
5042 *al = SSL_AD_ILLEGAL_PARAMETER;
5043 return 0;
5044 }
5045
5046 if (PACKET_remaining(cipher_suites) % n != 0) {
5047 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST,
5048 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5049 *al = SSL_AD_DECODE_ERROR;
5050 return 0;
5051 }
5052
5053 sk = sk_SSL_CIPHER_new_null();
5054 scsvs = sk_SSL_CIPHER_new_null();
5055 if (sk == NULL || scsvs == NULL) {
5056 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5057 *al = SSL_AD_INTERNAL_ERROR;
5058 goto err;
5059 }
5060
5061 while (PACKET_copy_bytes(cipher_suites, cipher, n)) {
5062 /*
5063 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the
5064 * first byte set to zero, while true SSLv2 ciphers have a non-zero
5065 * first byte. We don't support any true SSLv2 ciphers, so skip them.
5066 */
5067 if (sslv2format && cipher[0] != '\0')
5068 continue;
5069
5070 /* For SSLv2-compat, ignore leading 0-byte. */
5071 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1);
5072 if (c != NULL) {
5073 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) ||
5074 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) {
5075 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5076 *al = SSL_AD_INTERNAL_ERROR;
5077 goto err;
5078 }
5079 }
5080 }
5081 if (PACKET_remaining(cipher_suites) > 0) {
5082 *al = SSL_AD_DECODE_ERROR;
5083 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_BAD_LENGTH);
5084 goto err;
5085 }
5086
5087 if (skp != NULL)
5088 *skp = sk;
5089 else
5090 sk_SSL_CIPHER_free(sk);
5091 if (scsvs_out != NULL)
5092 *scsvs_out = scsvs;
5093 else
5094 sk_SSL_CIPHER_free(scsvs);
5095 return 1;
5096 err:
5097 sk_SSL_CIPHER_free(sk);
5098 sk_SSL_CIPHER_free(scsvs);
5099 return 0;
5100 }
5101
5102 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data)
5103 {
5104 ctx->max_early_data = max_early_data;
5105
5106 return 1;
5107 }
5108
5109 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx)
5110 {
5111 return ctx->max_early_data;
5112 }
5113
5114 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data)
5115 {
5116 s->max_early_data = max_early_data;
5117
5118 return 1;
5119 }
5120
5121 uint32_t SSL_get_max_early_data(const SSL *s)
5122 {
5123 return s->max_early_data;
5124 }
5125
5126 int ssl_randbytes(SSL *s, unsigned char *rnd, size_t size)
5127 {
5128 if (s->drbg != NULL)
5129 return RAND_DRBG_generate(s->drbg, rnd, size, 0, NULL, 0);
5130 return RAND_bytes(rnd, (int)size);
5131 }