]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/t1_lib.c
Explicitly fetch ciphers and digests in libssl
[thirdparty/openssl.git] / ssl / t1_lib.c
1 /*
2 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /* We need access to the deprecated low level HMAC APIs */
11 #define OPENSSL_SUPPRESS_DEPRECATED
12
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include <openssl/objects.h>
16 #include <openssl/evp.h>
17 #include <openssl/hmac.h>
18 #include <openssl/core_names.h>
19 #include <openssl/ocsp.h>
20 #include <openssl/conf.h>
21 #include <openssl/x509v3.h>
22 #include <openssl/dh.h>
23 #include <openssl/bn.h>
24 #include "internal/nelem.h"
25 #include "ssl_local.h"
26 #include <openssl/ct.h>
27
28 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey);
29 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu);
30
31 SSL3_ENC_METHOD const TLSv1_enc_data = {
32 tls1_enc,
33 tls1_mac,
34 tls1_setup_key_block,
35 tls1_generate_master_secret,
36 tls1_change_cipher_state,
37 tls1_final_finish_mac,
38 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
39 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
40 tls1_alert_code,
41 tls1_export_keying_material,
42 0,
43 ssl3_set_handshake_header,
44 tls_close_construct_packet,
45 ssl3_handshake_write
46 };
47
48 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
49 tls1_enc,
50 tls1_mac,
51 tls1_setup_key_block,
52 tls1_generate_master_secret,
53 tls1_change_cipher_state,
54 tls1_final_finish_mac,
55 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
56 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
57 tls1_alert_code,
58 tls1_export_keying_material,
59 SSL_ENC_FLAG_EXPLICIT_IV,
60 ssl3_set_handshake_header,
61 tls_close_construct_packet,
62 ssl3_handshake_write
63 };
64
65 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
66 tls1_enc,
67 tls1_mac,
68 tls1_setup_key_block,
69 tls1_generate_master_secret,
70 tls1_change_cipher_state,
71 tls1_final_finish_mac,
72 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
73 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
74 tls1_alert_code,
75 tls1_export_keying_material,
76 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
77 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
78 ssl3_set_handshake_header,
79 tls_close_construct_packet,
80 ssl3_handshake_write
81 };
82
83 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
84 tls13_enc,
85 tls1_mac,
86 tls13_setup_key_block,
87 tls13_generate_master_secret,
88 tls13_change_cipher_state,
89 tls13_final_finish_mac,
90 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
91 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
92 tls13_alert_code,
93 tls13_export_keying_material,
94 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
95 ssl3_set_handshake_header,
96 tls_close_construct_packet,
97 ssl3_handshake_write
98 };
99
100 long tls1_default_timeout(void)
101 {
102 /*
103 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
104 * http, the cache would over fill
105 */
106 return (60 * 60 * 2);
107 }
108
109 int tls1_new(SSL *s)
110 {
111 if (!ssl3_new(s))
112 return 0;
113 if (!s->method->ssl_clear(s))
114 return 0;
115
116 return 1;
117 }
118
119 void tls1_free(SSL *s)
120 {
121 OPENSSL_free(s->ext.session_ticket);
122 ssl3_free(s);
123 }
124
125 int tls1_clear(SSL *s)
126 {
127 if (!ssl3_clear(s))
128 return 0;
129
130 if (s->method->version == TLS_ANY_VERSION)
131 s->version = TLS_MAX_VERSION_INTERNAL;
132 else
133 s->version = s->method->version;
134
135 return 1;
136 }
137
138 /*
139 * Table of group information.
140 */
141 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC)
142 static const TLS_GROUP_INFO nid_list[] = {
143 # ifndef OPENSSL_NO_EC
144 {NID_sect163k1, 80, TLS_GROUP_CURVE_CHAR2, 0x0001}, /* sect163k1 (1) */
145 {NID_sect163r1, 80, TLS_GROUP_CURVE_CHAR2, 0x0002}, /* sect163r1 (2) */
146 {NID_sect163r2, 80, TLS_GROUP_CURVE_CHAR2, 0x0003}, /* sect163r2 (3) */
147 {NID_sect193r1, 80, TLS_GROUP_CURVE_CHAR2, 0x0004}, /* sect193r1 (4) */
148 {NID_sect193r2, 80, TLS_GROUP_CURVE_CHAR2, 0x0005}, /* sect193r2 (5) */
149 {NID_sect233k1, 112, TLS_GROUP_CURVE_CHAR2, 0x0006}, /* sect233k1 (6) */
150 {NID_sect233r1, 112, TLS_GROUP_CURVE_CHAR2, 0x0007}, /* sect233r1 (7) */
151 {NID_sect239k1, 112, TLS_GROUP_CURVE_CHAR2, 0x0008}, /* sect239k1 (8) */
152 {NID_sect283k1, 128, TLS_GROUP_CURVE_CHAR2, 0x0009}, /* sect283k1 (9) */
153 {NID_sect283r1, 128, TLS_GROUP_CURVE_CHAR2, 0x000A}, /* sect283r1 (10) */
154 {NID_sect409k1, 192, TLS_GROUP_CURVE_CHAR2, 0x000B}, /* sect409k1 (11) */
155 {NID_sect409r1, 192, TLS_GROUP_CURVE_CHAR2, 0x000C}, /* sect409r1 (12) */
156 {NID_sect571k1, 256, TLS_GROUP_CURVE_CHAR2, 0x000D}, /* sect571k1 (13) */
157 {NID_sect571r1, 256, TLS_GROUP_CURVE_CHAR2, 0x000E}, /* sect571r1 (14) */
158 {NID_secp160k1, 80, TLS_GROUP_CURVE_PRIME, 0x000F}, /* secp160k1 (15) */
159 {NID_secp160r1, 80, TLS_GROUP_CURVE_PRIME, 0x0010}, /* secp160r1 (16) */
160 {NID_secp160r2, 80, TLS_GROUP_CURVE_PRIME, 0x0011}, /* secp160r2 (17) */
161 {NID_secp192k1, 80, TLS_GROUP_CURVE_PRIME, 0x0012}, /* secp192k1 (18) */
162 {NID_X9_62_prime192v1, 80, TLS_GROUP_CURVE_PRIME, 0x0013}, /* secp192r1 (19) */
163 {NID_secp224k1, 112, TLS_GROUP_CURVE_PRIME, 0x0014}, /* secp224k1 (20) */
164 {NID_secp224r1, 112, TLS_GROUP_CURVE_PRIME, 0x0015}, /* secp224r1 (21) */
165 {NID_secp256k1, 128, TLS_GROUP_CURVE_PRIME, 0x0016}, /* secp256k1 (22) */
166 {NID_X9_62_prime256v1, 128, TLS_GROUP_CURVE_PRIME, 0x0017}, /* secp256r1 (23) */
167 {NID_secp384r1, 192, TLS_GROUP_CURVE_PRIME, 0x0018}, /* secp384r1 (24) */
168 {NID_secp521r1, 256, TLS_GROUP_CURVE_PRIME, 0x0019}, /* secp521r1 (25) */
169 {NID_brainpoolP256r1, 128, TLS_GROUP_CURVE_PRIME, 0x001A}, /* brainpoolP256r1 (26) */
170 {NID_brainpoolP384r1, 192, TLS_GROUP_CURVE_PRIME, 0x001B}, /* brainpoolP384r1 (27) */
171 {NID_brainpoolP512r1, 256, TLS_GROUP_CURVE_PRIME, 0x001C}, /* brainpool512r1 (28) */
172 {EVP_PKEY_X25519, 128, TLS_GROUP_CURVE_CUSTOM, 0x001D}, /* X25519 (29) */
173 {EVP_PKEY_X448, 224, TLS_GROUP_CURVE_CUSTOM, 0x001E}, /* X448 (30) */
174 # endif /* OPENSSL_NO_EC */
175 # ifndef OPENSSL_NO_DH
176 /* Security bit values for FFDHE groups are updated as per RFC 7919 */
177 {NID_ffdhe2048, 103, TLS_GROUP_FFDHE_FOR_TLS1_3, 0x0100}, /* ffdhe2048 (0x0100) */
178 {NID_ffdhe3072, 125, TLS_GROUP_FFDHE_FOR_TLS1_3, 0x0101}, /* ffdhe3072 (0x0101) */
179 {NID_ffdhe4096, 150, TLS_GROUP_FFDHE_FOR_TLS1_3, 0x0102}, /* ffdhe4096 (0x0102) */
180 {NID_ffdhe6144, 175, TLS_GROUP_FFDHE_FOR_TLS1_3, 0x0103}, /* ffdhe6144 (0x0103) */
181 {NID_ffdhe8192, 192, TLS_GROUP_FFDHE_FOR_TLS1_3, 0x0104}, /* ffdhe8192 (0x0104) */
182 # endif /* OPENSSL_NO_DH */
183 };
184 #endif
185
186 #ifndef OPENSSL_NO_EC
187 static const unsigned char ecformats_default[] = {
188 TLSEXT_ECPOINTFORMAT_uncompressed,
189 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
190 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
191 };
192 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
193
194 /* The default curves */
195 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC)
196 static const uint16_t supported_groups_default[] = {
197 # ifndef OPENSSL_NO_EC
198 29, /* X25519 (29) */
199 23, /* secp256r1 (23) */
200 30, /* X448 (30) */
201 25, /* secp521r1 (25) */
202 24, /* secp384r1 (24) */
203 # endif
204 # ifndef OPENSSL_NO_DH
205 0x100, /* ffdhe2048 (0x100) */
206 0x101, /* ffdhe3072 (0x101) */
207 0x102, /* ffdhe4096 (0x102) */
208 0x103, /* ffdhe6144 (0x103) */
209 0x104, /* ffdhe8192 (0x104) */
210 # endif
211 };
212 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
213
214 #ifndef OPENSSL_NO_EC
215 static const uint16_t suiteb_curves[] = {
216 TLSEXT_curve_P_256,
217 TLSEXT_curve_P_384
218 };
219 #endif
220
221 const TLS_GROUP_INFO *tls1_group_id_lookup(uint16_t group_id)
222 {
223 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC)
224 size_t i;
225
226 /* ECC curves from RFC 4492 and RFC 7027 FFDHE group from RFC 8446 */
227 for (i = 0; i < OSSL_NELEM(nid_list); i++) {
228 if (nid_list[i].group_id == group_id)
229 return &nid_list[i];
230 }
231 #endif /* !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC) */
232 return NULL;
233 }
234
235 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC)
236 int tls1_group_id2nid(uint16_t group_id)
237 {
238 const TLS_GROUP_INFO *ginf = tls1_group_id_lookup(group_id);
239
240 return ginf == NULL ? NID_undef : ginf->nid;
241 }
242
243 static uint16_t tls1_nid2group_id(int nid)
244 {
245 size_t i;
246
247 for (i = 0; i < OSSL_NELEM(nid_list); i++) {
248 if (nid_list[i].nid == nid)
249 return nid_list[i].group_id;
250 }
251 return 0;
252 }
253 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
254
255 /*
256 * Set *pgroups to the supported groups list and *pgroupslen to
257 * the number of groups supported.
258 */
259 void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups,
260 size_t *pgroupslen)
261 {
262 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH)
263 /* For Suite B mode only include P-256, P-384 */
264 switch (tls1_suiteb(s)) {
265 # ifndef OPENSSL_NO_EC
266 case SSL_CERT_FLAG_SUITEB_128_LOS:
267 *pgroups = suiteb_curves;
268 *pgroupslen = OSSL_NELEM(suiteb_curves);
269 break;
270
271 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
272 *pgroups = suiteb_curves;
273 *pgroupslen = 1;
274 break;
275
276 case SSL_CERT_FLAG_SUITEB_192_LOS:
277 *pgroups = suiteb_curves + 1;
278 *pgroupslen = 1;
279 break;
280 # endif
281
282 default:
283 if (s->ext.supportedgroups == NULL) {
284 *pgroups = supported_groups_default;
285 *pgroupslen = OSSL_NELEM(supported_groups_default);
286 } else {
287 *pgroups = s->ext.supportedgroups;
288 *pgroupslen = s->ext.supportedgroups_len;
289 }
290 break;
291 }
292 #else
293 *pgroups = NULL;
294 *pgroupslen = 0;
295 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
296 }
297
298 int tls_valid_group(SSL *s, uint16_t group_id, int version)
299 {
300 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(group_id);
301
302 if (version < TLS1_3_VERSION) {
303 if ((ginfo->flags & TLS_GROUP_ONLY_FOR_TLS1_3) != 0)
304 return 0;
305 }
306 return 1;
307 }
308
309 /* See if group is allowed by security callback */
310 int tls_group_allowed(SSL *s, uint16_t group, int op)
311 {
312 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(group);
313 unsigned char gtmp[2];
314
315 if (ginfo == NULL)
316 return 0;
317 #ifdef OPENSSL_NO_EC2M
318 if (ginfo->flags & TLS_GROUP_CURVE_CHAR2)
319 return 0;
320 #endif
321 #ifdef OPENSSL_NO_DH
322 if (ginfo->flags & TLS_GROUP_FFDHE)
323 return 0;
324 #endif
325 gtmp[0] = group >> 8;
326 gtmp[1] = group & 0xff;
327 return ssl_security(s, op, ginfo->secbits, ginfo->nid, (void *)gtmp);
328 }
329
330 /* Return 1 if "id" is in "list" */
331 static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
332 {
333 size_t i;
334 for (i = 0; i < listlen; i++)
335 if (list[i] == id)
336 return 1;
337 return 0;
338 }
339
340 /*-
341 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
342 * if there is no match.
343 * For nmatch == -1, return number of matches
344 * For nmatch == -2, return the id of the group to use for
345 * a tmp key, or 0 if there is no match.
346 */
347 uint16_t tls1_shared_group(SSL *s, int nmatch)
348 {
349 const uint16_t *pref, *supp;
350 size_t num_pref, num_supp, i;
351 int k;
352
353 /* Can't do anything on client side */
354 if (s->server == 0)
355 return 0;
356 if (nmatch == -2) {
357 if (tls1_suiteb(s)) {
358 /*
359 * For Suite B ciphersuite determines curve: we already know
360 * these are acceptable due to previous checks.
361 */
362 unsigned long cid = s->s3.tmp.new_cipher->id;
363
364 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
365 return TLSEXT_curve_P_256;
366 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
367 return TLSEXT_curve_P_384;
368 /* Should never happen */
369 return 0;
370 }
371 /* If not Suite B just return first preference shared curve */
372 nmatch = 0;
373 }
374 /*
375 * If server preference set, our groups are the preference order
376 * otherwise peer decides.
377 */
378 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
379 tls1_get_supported_groups(s, &pref, &num_pref);
380 tls1_get_peer_groups(s, &supp, &num_supp);
381 } else {
382 tls1_get_peer_groups(s, &pref, &num_pref);
383 tls1_get_supported_groups(s, &supp, &num_supp);
384 }
385
386 for (k = 0, i = 0; i < num_pref; i++) {
387 uint16_t id = pref[i];
388
389 if (!tls1_in_list(id, supp, num_supp)
390 || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
391 continue;
392 if (nmatch == k)
393 return id;
394 k++;
395 }
396 if (nmatch == -1)
397 return k;
398 /* Out of range (nmatch > k). */
399 return 0;
400 }
401
402 int tls1_set_groups(uint16_t **pext, size_t *pextlen,
403 int *groups, size_t ngroups)
404 {
405 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH)
406 uint16_t *glist;
407 size_t i;
408 /*
409 * Bitmap of groups included to detect duplicates: two variables are added
410 * to detect duplicates as some values are more than 32.
411 */
412 unsigned long *dup_list = NULL;
413 unsigned long dup_list_egrp = 0;
414 unsigned long dup_list_dhgrp = 0;
415
416 if (ngroups == 0) {
417 SSLerr(SSL_F_TLS1_SET_GROUPS, SSL_R_BAD_LENGTH);
418 return 0;
419 }
420 if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) {
421 SSLerr(SSL_F_TLS1_SET_GROUPS, ERR_R_MALLOC_FAILURE);
422 return 0;
423 }
424 for (i = 0; i < ngroups; i++) {
425 unsigned long idmask;
426 uint16_t id;
427 id = tls1_nid2group_id(groups[i]);
428 if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
429 goto err;
430 idmask = 1L << (id & 0x00FF);
431 dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
432 if (!id || ((*dup_list) & idmask))
433 goto err;
434 *dup_list |= idmask;
435 glist[i] = id;
436 }
437 OPENSSL_free(*pext);
438 *pext = glist;
439 *pextlen = ngroups;
440 return 1;
441 err:
442 OPENSSL_free(glist);
443 return 0;
444 #else
445 return 0;
446 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
447 }
448
449 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH)
450 # define MAX_GROUPLIST OSSL_NELEM(nid_list)
451
452 typedef struct {
453 size_t nidcnt;
454 int nid_arr[MAX_GROUPLIST];
455 } nid_cb_st;
456
457 static int nid_cb(const char *elem, int len, void *arg)
458 {
459 nid_cb_st *narg = arg;
460 size_t i;
461 int nid = NID_undef;
462 char etmp[20];
463 if (elem == NULL)
464 return 0;
465 if (narg->nidcnt == MAX_GROUPLIST)
466 return 0;
467 if (len > (int)(sizeof(etmp) - 1))
468 return 0;
469 memcpy(etmp, elem, len);
470 etmp[len] = 0;
471 # ifndef OPENSSL_NO_EC
472 nid = EC_curve_nist2nid(etmp);
473 # endif
474 if (nid == NID_undef)
475 nid = OBJ_sn2nid(etmp);
476 if (nid == NID_undef)
477 nid = OBJ_ln2nid(etmp);
478 if (nid == NID_undef)
479 return 0;
480 for (i = 0; i < narg->nidcnt; i++)
481 if (narg->nid_arr[i] == nid)
482 return 0;
483 narg->nid_arr[narg->nidcnt++] = nid;
484 return 1;
485 }
486 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
487
488 /* Set groups based on a colon separate list */
489 int tls1_set_groups_list(uint16_t **pext, size_t *pextlen, const char *str)
490 {
491 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH)
492 nid_cb_st ncb;
493 ncb.nidcnt = 0;
494 if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb))
495 return 0;
496 if (pext == NULL)
497 return 1;
498 return tls1_set_groups(pext, pextlen, ncb.nid_arr, ncb.nidcnt);
499 #else
500 return 0;
501 #endif
502 }
503
504 /* Check a group id matches preferences */
505 int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)
506 {
507 const uint16_t *groups;
508 size_t groups_len;
509
510 if (group_id == 0)
511 return 0;
512
513 /* Check for Suite B compliance */
514 if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
515 unsigned long cid = s->s3.tmp.new_cipher->id;
516
517 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
518 if (group_id != TLSEXT_curve_P_256)
519 return 0;
520 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
521 if (group_id != TLSEXT_curve_P_384)
522 return 0;
523 } else {
524 /* Should never happen */
525 return 0;
526 }
527 }
528
529 if (check_own_groups) {
530 /* Check group is one of our preferences */
531 tls1_get_supported_groups(s, &groups, &groups_len);
532 if (!tls1_in_list(group_id, groups, groups_len))
533 return 0;
534 }
535
536 if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
537 return 0;
538
539 /* For clients, nothing more to check */
540 if (!s->server)
541 return 1;
542
543 /* Check group is one of peers preferences */
544 tls1_get_peer_groups(s, &groups, &groups_len);
545
546 /*
547 * RFC 4492 does not require the supported elliptic curves extension
548 * so if it is not sent we can just choose any curve.
549 * It is invalid to send an empty list in the supported groups
550 * extension, so groups_len == 0 always means no extension.
551 */
552 if (groups_len == 0)
553 return 1;
554 return tls1_in_list(group_id, groups, groups_len);
555 }
556
557 #ifndef OPENSSL_NO_EC
558 void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
559 size_t *num_formats)
560 {
561 /*
562 * If we have a custom point format list use it otherwise use default
563 */
564 if (s->ext.ecpointformats) {
565 *pformats = s->ext.ecpointformats;
566 *num_formats = s->ext.ecpointformats_len;
567 } else {
568 *pformats = ecformats_default;
569 /* For Suite B we don't support char2 fields */
570 if (tls1_suiteb(s))
571 *num_formats = sizeof(ecformats_default) - 1;
572 else
573 *num_formats = sizeof(ecformats_default);
574 }
575 }
576
577 /* Check a key is compatible with compression extension */
578 static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey)
579 {
580 const EC_KEY *ec;
581 const EC_GROUP *grp;
582 unsigned char comp_id;
583 size_t i;
584
585 /* If not an EC key nothing to check */
586 if (EVP_PKEY_id(pkey) != EVP_PKEY_EC)
587 return 1;
588 ec = EVP_PKEY_get0_EC_KEY(pkey);
589 grp = EC_KEY_get0_group(ec);
590
591 /* Get required compression id */
592 if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_UNCOMPRESSED) {
593 comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
594 } else if (SSL_IS_TLS13(s)) {
595 /*
596 * ec_point_formats extension is not used in TLSv1.3 so we ignore
597 * this check.
598 */
599 return 1;
600 } else {
601 int field_type = EC_METHOD_get_field_type(EC_GROUP_method_of(grp));
602
603 if (field_type == NID_X9_62_prime_field)
604 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
605 else if (field_type == NID_X9_62_characteristic_two_field)
606 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
607 else
608 return 0;
609 }
610 /*
611 * If point formats extension present check it, otherwise everything is
612 * supported (see RFC4492).
613 */
614 if (s->ext.peer_ecpointformats == NULL)
615 return 1;
616
617 for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
618 if (s->ext.peer_ecpointformats[i] == comp_id)
619 return 1;
620 }
621 return 0;
622 }
623
624 /* Return group id of a key */
625 static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
626 {
627 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey);
628 const EC_GROUP *grp;
629
630 if (ec == NULL)
631 return 0;
632 grp = EC_KEY_get0_group(ec);
633 return tls1_nid2group_id(EC_GROUP_get_curve_name(grp));
634 }
635
636 /*
637 * Check cert parameters compatible with extensions: currently just checks EC
638 * certificates have compatible curves and compression.
639 */
640 static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
641 {
642 uint16_t group_id;
643 EVP_PKEY *pkey;
644 pkey = X509_get0_pubkey(x);
645 if (pkey == NULL)
646 return 0;
647 /* If not EC nothing to do */
648 if (EVP_PKEY_id(pkey) != EVP_PKEY_EC)
649 return 1;
650 /* Check compression */
651 if (!tls1_check_pkey_comp(s, pkey))
652 return 0;
653 group_id = tls1_get_group_id(pkey);
654 /*
655 * For a server we allow the certificate to not be in our list of supported
656 * groups.
657 */
658 if (!tls1_check_group_id(s, group_id, !s->server))
659 return 0;
660 /*
661 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
662 * SHA384+P-384.
663 */
664 if (check_ee_md && tls1_suiteb(s)) {
665 int check_md;
666 size_t i;
667
668 /* Check to see we have necessary signing algorithm */
669 if (group_id == TLSEXT_curve_P_256)
670 check_md = NID_ecdsa_with_SHA256;
671 else if (group_id == TLSEXT_curve_P_384)
672 check_md = NID_ecdsa_with_SHA384;
673 else
674 return 0; /* Should never happen */
675 for (i = 0; i < s->shared_sigalgslen; i++) {
676 if (check_md == s->shared_sigalgs[i]->sigandhash)
677 return 1;;
678 }
679 return 0;
680 }
681 return 1;
682 }
683
684 /*
685 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
686 * @s: SSL connection
687 * @cid: Cipher ID we're considering using
688 *
689 * Checks that the kECDHE cipher suite we're considering using
690 * is compatible with the client extensions.
691 *
692 * Returns 0 when the cipher can't be used or 1 when it can.
693 */
694 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
695 {
696 /* If not Suite B just need a shared group */
697 if (!tls1_suiteb(s))
698 return tls1_shared_group(s, 0) != 0;
699 /*
700 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
701 * curves permitted.
702 */
703 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
704 return tls1_check_group_id(s, TLSEXT_curve_P_256, 1);
705 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
706 return tls1_check_group_id(s, TLSEXT_curve_P_384, 1);
707
708 return 0;
709 }
710
711 #else
712
713 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
714 {
715 return 1;
716 }
717
718 #endif /* OPENSSL_NO_EC */
719
720 /* Default sigalg schemes */
721 static const uint16_t tls12_sigalgs[] = {
722 #ifndef OPENSSL_NO_EC
723 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
724 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
725 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
726 TLSEXT_SIGALG_ed25519,
727 TLSEXT_SIGALG_ed448,
728 #endif
729
730 TLSEXT_SIGALG_rsa_pss_pss_sha256,
731 TLSEXT_SIGALG_rsa_pss_pss_sha384,
732 TLSEXT_SIGALG_rsa_pss_pss_sha512,
733 TLSEXT_SIGALG_rsa_pss_rsae_sha256,
734 TLSEXT_SIGALG_rsa_pss_rsae_sha384,
735 TLSEXT_SIGALG_rsa_pss_rsae_sha512,
736
737 TLSEXT_SIGALG_rsa_pkcs1_sha256,
738 TLSEXT_SIGALG_rsa_pkcs1_sha384,
739 TLSEXT_SIGALG_rsa_pkcs1_sha512,
740
741 #ifndef OPENSSL_NO_EC
742 TLSEXT_SIGALG_ecdsa_sha224,
743 TLSEXT_SIGALG_ecdsa_sha1,
744 #endif
745 TLSEXT_SIGALG_rsa_pkcs1_sha224,
746 TLSEXT_SIGALG_rsa_pkcs1_sha1,
747 #ifndef OPENSSL_NO_DSA
748 TLSEXT_SIGALG_dsa_sha224,
749 TLSEXT_SIGALG_dsa_sha1,
750
751 TLSEXT_SIGALG_dsa_sha256,
752 TLSEXT_SIGALG_dsa_sha384,
753 TLSEXT_SIGALG_dsa_sha512,
754 #endif
755 #ifndef OPENSSL_NO_GOST
756 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
757 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
758 TLSEXT_SIGALG_gostr34102001_gostr3411,
759 #endif
760 };
761
762 #ifndef OPENSSL_NO_EC
763 static const uint16_t suiteb_sigalgs[] = {
764 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
765 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
766 };
767 #endif
768
769 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
770 #ifndef OPENSSL_NO_EC
771 {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
772 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
773 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1},
774 {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
775 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
776 NID_ecdsa_with_SHA384, NID_secp384r1},
777 {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
778 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
779 NID_ecdsa_with_SHA512, NID_secp521r1},
780 {"ed25519", TLSEXT_SIGALG_ed25519,
781 NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
782 NID_undef, NID_undef},
783 {"ed448", TLSEXT_SIGALG_ed448,
784 NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
785 NID_undef, NID_undef},
786 {NULL, TLSEXT_SIGALG_ecdsa_sha224,
787 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
788 NID_ecdsa_with_SHA224, NID_undef},
789 {NULL, TLSEXT_SIGALG_ecdsa_sha1,
790 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
791 NID_ecdsa_with_SHA1, NID_undef},
792 #endif
793 {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
794 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
795 NID_undef, NID_undef},
796 {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
797 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
798 NID_undef, NID_undef},
799 {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
800 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
801 NID_undef, NID_undef},
802 {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
803 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
804 NID_undef, NID_undef},
805 {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
806 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
807 NID_undef, NID_undef},
808 {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
809 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
810 NID_undef, NID_undef},
811 {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
812 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
813 NID_sha256WithRSAEncryption, NID_undef},
814 {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
815 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
816 NID_sha384WithRSAEncryption, NID_undef},
817 {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
818 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
819 NID_sha512WithRSAEncryption, NID_undef},
820 {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
821 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
822 NID_sha224WithRSAEncryption, NID_undef},
823 {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
824 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
825 NID_sha1WithRSAEncryption, NID_undef},
826 #ifndef OPENSSL_NO_DSA
827 {NULL, TLSEXT_SIGALG_dsa_sha256,
828 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
829 NID_dsa_with_SHA256, NID_undef},
830 {NULL, TLSEXT_SIGALG_dsa_sha384,
831 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
832 NID_undef, NID_undef},
833 {NULL, TLSEXT_SIGALG_dsa_sha512,
834 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
835 NID_undef, NID_undef},
836 {NULL, TLSEXT_SIGALG_dsa_sha224,
837 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
838 NID_undef, NID_undef},
839 {NULL, TLSEXT_SIGALG_dsa_sha1,
840 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
841 NID_dsaWithSHA1, NID_undef},
842 #endif
843 #ifndef OPENSSL_NO_GOST
844 {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
845 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
846 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
847 NID_undef, NID_undef},
848 {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
849 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
850 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
851 NID_undef, NID_undef},
852 {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
853 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
854 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
855 NID_undef, NID_undef}
856 #endif
857 };
858 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
859 static const SIGALG_LOOKUP legacy_rsa_sigalg = {
860 "rsa_pkcs1_md5_sha1", 0,
861 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
862 EVP_PKEY_RSA, SSL_PKEY_RSA,
863 NID_undef, NID_undef
864 };
865
866 /*
867 * Default signature algorithm values used if signature algorithms not present.
868 * From RFC5246. Note: order must match certificate index order.
869 */
870 static const uint16_t tls_default_sigalg[] = {
871 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
872 0, /* SSL_PKEY_RSA_PSS_SIGN */
873 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
874 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
875 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
876 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, /* SSL_PKEY_GOST12_256 */
877 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, /* SSL_PKEY_GOST12_512 */
878 0, /* SSL_PKEY_ED25519 */
879 0, /* SSL_PKEY_ED448 */
880 };
881
882 /* Lookup TLS signature algorithm */
883 static const SIGALG_LOOKUP *tls1_lookup_sigalg(uint16_t sigalg)
884 {
885 size_t i;
886 const SIGALG_LOOKUP *s;
887
888 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
889 i++, s++) {
890 if (s->sigalg == sigalg)
891 return s;
892 }
893 return NULL;
894 }
895 /* Lookup hash: return 0 if invalid or not enabled */
896 int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
897 {
898 const EVP_MD *md;
899 if (lu == NULL)
900 return 0;
901 /* lu->hash == NID_undef means no associated digest */
902 if (lu->hash == NID_undef) {
903 md = NULL;
904 } else {
905 md = ssl_md(ctx, lu->hash_idx);
906 if (md == NULL)
907 return 0;
908 }
909 if (pmd)
910 *pmd = md;
911 return 1;
912 }
913
914 /*
915 * Check if key is large enough to generate RSA-PSS signature.
916 *
917 * The key must greater than or equal to 2 * hash length + 2.
918 * SHA512 has a hash length of 64 bytes, which is incompatible
919 * with a 128 byte (1024 bit) key.
920 */
921 #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_size(md) + 2)
922 static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const RSA *rsa,
923 const SIGALG_LOOKUP *lu)
924 {
925 const EVP_MD *md;
926
927 if (rsa == NULL)
928 return 0;
929 if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
930 return 0;
931 if (RSA_size(rsa) < RSA_PSS_MINIMUM_KEY_SIZE(md))
932 return 0;
933 return 1;
934 }
935
936 /*
937 * Returns a signature algorithm when the peer did not send a list of supported
938 * signature algorithms. The signature algorithm is fixed for the certificate
939 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
940 * certificate type from |s| will be used.
941 * Returns the signature algorithm to use, or NULL on error.
942 */
943 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
944 {
945 if (idx == -1) {
946 if (s->server) {
947 size_t i;
948
949 /* Work out index corresponding to ciphersuite */
950 for (i = 0; i < SSL_PKEY_NUM; i++) {
951 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);
952
953 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
954 idx = i;
955 break;
956 }
957 }
958
959 /*
960 * Some GOST ciphersuites allow more than one signature algorithms
961 * */
962 if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
963 int real_idx;
964
965 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
966 real_idx--) {
967 if (s->cert->pkeys[real_idx].privatekey != NULL) {
968 idx = real_idx;
969 break;
970 }
971 }
972 }
973 } else {
974 idx = s->cert->key - s->cert->pkeys;
975 }
976 }
977 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
978 return NULL;
979 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
980 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(tls_default_sigalg[idx]);
981
982 if (!tls1_lookup_md(s->ctx, lu, NULL))
983 return NULL;
984 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
985 return NULL;
986 return lu;
987 }
988 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
989 return NULL;
990 return &legacy_rsa_sigalg;
991 }
992 /* Set peer sigalg based key type */
993 int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
994 {
995 size_t idx;
996 const SIGALG_LOOKUP *lu;
997
998 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
999 return 0;
1000 lu = tls1_get_legacy_sigalg(s, idx);
1001 if (lu == NULL)
1002 return 0;
1003 s->s3.tmp.peer_sigalg = lu;
1004 return 1;
1005 }
1006
1007 size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
1008 {
1009 /*
1010 * If Suite B mode use Suite B sigalgs only, ignore any other
1011 * preferences.
1012 */
1013 #ifndef OPENSSL_NO_EC
1014 switch (tls1_suiteb(s)) {
1015 case SSL_CERT_FLAG_SUITEB_128_LOS:
1016 *psigs = suiteb_sigalgs;
1017 return OSSL_NELEM(suiteb_sigalgs);
1018
1019 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1020 *psigs = suiteb_sigalgs;
1021 return 1;
1022
1023 case SSL_CERT_FLAG_SUITEB_192_LOS:
1024 *psigs = suiteb_sigalgs + 1;
1025 return 1;
1026 }
1027 #endif
1028 /*
1029 * We use client_sigalgs (if not NULL) if we're a server
1030 * and sending a certificate request or if we're a client and
1031 * determining which shared algorithm to use.
1032 */
1033 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1034 *psigs = s->cert->client_sigalgs;
1035 return s->cert->client_sigalgslen;
1036 } else if (s->cert->conf_sigalgs) {
1037 *psigs = s->cert->conf_sigalgs;
1038 return s->cert->conf_sigalgslen;
1039 } else {
1040 *psigs = tls12_sigalgs;
1041 return OSSL_NELEM(tls12_sigalgs);
1042 }
1043 }
1044
1045 #ifndef OPENSSL_NO_EC
1046 /*
1047 * Called by servers only. Checks that we have a sig alg that supports the
1048 * specified EC curve.
1049 */
1050 int tls_check_sigalg_curve(const SSL *s, int curve)
1051 {
1052 const uint16_t *sigs;
1053 size_t siglen, i;
1054
1055 if (s->cert->conf_sigalgs) {
1056 sigs = s->cert->conf_sigalgs;
1057 siglen = s->cert->conf_sigalgslen;
1058 } else {
1059 sigs = tls12_sigalgs;
1060 siglen = OSSL_NELEM(tls12_sigalgs);
1061 }
1062
1063 for (i = 0; i < siglen; i++) {
1064 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(sigs[i]);
1065
1066 if (lu == NULL)
1067 continue;
1068 if (lu->sig == EVP_PKEY_EC
1069 && lu->curve != NID_undef
1070 && curve == lu->curve)
1071 return 1;
1072 }
1073
1074 return 0;
1075 }
1076 #endif
1077
1078 /*
1079 * Check signature algorithm is consistent with sent supported signature
1080 * algorithms and if so set relevant digest and signature scheme in
1081 * s.
1082 */
1083 int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
1084 {
1085 const uint16_t *sent_sigs;
1086 const EVP_MD *md = NULL;
1087 char sigalgstr[2];
1088 size_t sent_sigslen, i, cidx;
1089 int pkeyid = EVP_PKEY_id(pkey);
1090 const SIGALG_LOOKUP *lu;
1091
1092 /* Should never happen */
1093 if (pkeyid == -1)
1094 return -1;
1095 if (SSL_IS_TLS13(s)) {
1096 /* Disallow DSA for TLS 1.3 */
1097 if (pkeyid == EVP_PKEY_DSA) {
1098 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1099 SSL_R_WRONG_SIGNATURE_TYPE);
1100 return 0;
1101 }
1102 /* Only allow PSS for TLS 1.3 */
1103 if (pkeyid == EVP_PKEY_RSA)
1104 pkeyid = EVP_PKEY_RSA_PSS;
1105 }
1106 lu = tls1_lookup_sigalg(sig);
1107 /*
1108 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1109 * is consistent with signature: RSA keys can be used for RSA-PSS
1110 */
1111 if (lu == NULL
1112 || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1113 || (pkeyid != lu->sig
1114 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1115 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1116 SSL_R_WRONG_SIGNATURE_TYPE);
1117 return 0;
1118 }
1119 /* Check the sigalg is consistent with the key OID */
1120 if (!ssl_cert_lookup_by_nid(EVP_PKEY_id(pkey), &cidx)
1121 || lu->sig_idx != (int)cidx) {
1122 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1123 SSL_R_WRONG_SIGNATURE_TYPE);
1124 return 0;
1125 }
1126
1127 #ifndef OPENSSL_NO_EC
1128 if (pkeyid == EVP_PKEY_EC) {
1129
1130 /* Check point compression is permitted */
1131 if (!tls1_check_pkey_comp(s, pkey)) {
1132 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1133 SSL_F_TLS12_CHECK_PEER_SIGALG,
1134 SSL_R_ILLEGAL_POINT_COMPRESSION);
1135 return 0;
1136 }
1137
1138 /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1139 if (SSL_IS_TLS13(s) || tls1_suiteb(s)) {
1140 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey);
1141 int curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
1142
1143 if (lu->curve != NID_undef && curve != lu->curve) {
1144 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1145 SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
1146 return 0;
1147 }
1148 }
1149 if (!SSL_IS_TLS13(s)) {
1150 /* Check curve matches extensions */
1151 if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1152 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1153 SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
1154 return 0;
1155 }
1156 if (tls1_suiteb(s)) {
1157 /* Check sigalg matches a permissible Suite B value */
1158 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1159 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1160 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1161 SSL_F_TLS12_CHECK_PEER_SIGALG,
1162 SSL_R_WRONG_SIGNATURE_TYPE);
1163 return 0;
1164 }
1165 }
1166 }
1167 } else if (tls1_suiteb(s)) {
1168 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1169 SSL_R_WRONG_SIGNATURE_TYPE);
1170 return 0;
1171 }
1172 #endif
1173
1174 /* Check signature matches a type we sent */
1175 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1176 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1177 if (sig == *sent_sigs)
1178 break;
1179 }
1180 /* Allow fallback to SHA1 if not strict mode */
1181 if (i == sent_sigslen && (lu->hash != NID_sha1
1182 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1183 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1184 SSL_R_WRONG_SIGNATURE_TYPE);
1185 return 0;
1186 }
1187 if (!tls1_lookup_md(s->ctx, lu, &md)) {
1188 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1189 SSL_R_UNKNOWN_DIGEST);
1190 return 0;
1191 }
1192 if (md != NULL) {
1193 /*
1194 * Make sure security callback allows algorithm. For historical
1195 * reasons we have to pass the sigalg as a two byte char array.
1196 */
1197 sigalgstr[0] = (sig >> 8) & 0xff;
1198 sigalgstr[1] = sig & 0xff;
1199 if (!ssl_security(s, SSL_SECOP_SIGALG_CHECK,
1200 EVP_MD_size(md) * 4, EVP_MD_type(md),
1201 (void *)sigalgstr)) {
1202 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1203 SSL_R_WRONG_SIGNATURE_TYPE);
1204 return 0;
1205 }
1206 }
1207 /* Store the sigalg the peer uses */
1208 s->s3.tmp.peer_sigalg = lu;
1209 return 1;
1210 }
1211
1212 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1213 {
1214 if (s->s3.tmp.peer_sigalg == NULL)
1215 return 0;
1216 *pnid = s->s3.tmp.peer_sigalg->sig;
1217 return 1;
1218 }
1219
1220 int SSL_get_signature_type_nid(const SSL *s, int *pnid)
1221 {
1222 if (s->s3.tmp.sigalg == NULL)
1223 return 0;
1224 *pnid = s->s3.tmp.sigalg->sig;
1225 return 1;
1226 }
1227
1228 /*
1229 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
1230 * supported, doesn't appear in supported signature algorithms, isn't supported
1231 * by the enabled protocol versions or by the security level.
1232 *
1233 * This function should only be used for checking which ciphers are supported
1234 * by the client.
1235 *
1236 * Call ssl_cipher_disabled() to check that it's enabled or not.
1237 */
1238 int ssl_set_client_disabled(SSL *s)
1239 {
1240 s->s3.tmp.mask_a = 0;
1241 s->s3.tmp.mask_k = 0;
1242 ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
1243 if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
1244 &s->s3.tmp.max_ver, NULL) != 0)
1245 return 0;
1246 #ifndef OPENSSL_NO_PSK
1247 /* with PSK there must be client callback set */
1248 if (!s->psk_client_callback) {
1249 s->s3.tmp.mask_a |= SSL_aPSK;
1250 s->s3.tmp.mask_k |= SSL_PSK;
1251 }
1252 #endif /* OPENSSL_NO_PSK */
1253 #ifndef OPENSSL_NO_SRP
1254 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1255 s->s3.tmp.mask_a |= SSL_aSRP;
1256 s->s3.tmp.mask_k |= SSL_kSRP;
1257 }
1258 #endif
1259 return 1;
1260 }
1261
1262 /*
1263 * ssl_cipher_disabled - check that a cipher is disabled or not
1264 * @s: SSL connection that you want to use the cipher on
1265 * @c: cipher to check
1266 * @op: Security check that you want to do
1267 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
1268 *
1269 * Returns 1 when it's disabled, 0 when enabled.
1270 */
1271 int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
1272 {
1273 if (c->algorithm_mkey & s->s3.tmp.mask_k
1274 || c->algorithm_auth & s->s3.tmp.mask_a)
1275 return 1;
1276 if (s->s3.tmp.max_ver == 0)
1277 return 1;
1278 if (!SSL_IS_DTLS(s)) {
1279 int min_tls = c->min_tls;
1280
1281 /*
1282 * For historical reasons we will allow ECHDE to be selected by a server
1283 * in SSLv3 if we are a client
1284 */
1285 if (min_tls == TLS1_VERSION && ecdhe
1286 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
1287 min_tls = SSL3_VERSION;
1288
1289 if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver))
1290 return 1;
1291 }
1292 if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver)
1293 || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver)))
1294 return 1;
1295
1296 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1297 }
1298
1299 int tls_use_ticket(SSL *s)
1300 {
1301 if ((s->options & SSL_OP_NO_TICKET))
1302 return 0;
1303 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1304 }
1305
1306 int tls1_set_server_sigalgs(SSL *s)
1307 {
1308 size_t i;
1309
1310 /* Clear any shared signature algorithms */
1311 OPENSSL_free(s->shared_sigalgs);
1312 s->shared_sigalgs = NULL;
1313 s->shared_sigalgslen = 0;
1314 /* Clear certificate validity flags */
1315 for (i = 0; i < SSL_PKEY_NUM; i++)
1316 s->s3.tmp.valid_flags[i] = 0;
1317 /*
1318 * If peer sent no signature algorithms check to see if we support
1319 * the default algorithm for each certificate type
1320 */
1321 if (s->s3.tmp.peer_cert_sigalgs == NULL
1322 && s->s3.tmp.peer_sigalgs == NULL) {
1323 const uint16_t *sent_sigs;
1324 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1325
1326 for (i = 0; i < SSL_PKEY_NUM; i++) {
1327 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
1328 size_t j;
1329
1330 if (lu == NULL)
1331 continue;
1332 /* Check default matches a type we sent */
1333 for (j = 0; j < sent_sigslen; j++) {
1334 if (lu->sigalg == sent_sigs[j]) {
1335 s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
1336 break;
1337 }
1338 }
1339 }
1340 return 1;
1341 }
1342
1343 if (!tls1_process_sigalgs(s)) {
1344 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
1345 SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_INTERNAL_ERROR);
1346 return 0;
1347 }
1348 if (s->shared_sigalgs != NULL)
1349 return 1;
1350
1351 /* Fatal error if no shared signature algorithms */
1352 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS1_SET_SERVER_SIGALGS,
1353 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1354 return 0;
1355 }
1356
1357 /*-
1358 * Gets the ticket information supplied by the client if any.
1359 *
1360 * hello: The parsed ClientHello data
1361 * ret: (output) on return, if a ticket was decrypted, then this is set to
1362 * point to the resulting session.
1363 */
1364 SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1365 SSL_SESSION **ret)
1366 {
1367 size_t size;
1368 RAW_EXTENSION *ticketext;
1369
1370 *ret = NULL;
1371 s->ext.ticket_expected = 0;
1372
1373 /*
1374 * If tickets disabled or not supported by the protocol version
1375 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1376 * resumption.
1377 */
1378 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1379 return SSL_TICKET_NONE;
1380
1381 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1382 if (!ticketext->present)
1383 return SSL_TICKET_NONE;
1384
1385 size = PACKET_remaining(&ticketext->data);
1386
1387 return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1388 hello->session_id, hello->session_id_len, ret);
1389 }
1390
1391 /*-
1392 * tls_decrypt_ticket attempts to decrypt a session ticket.
1393 *
1394 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
1395 * expecting a pre-shared key ciphersuite, in which case we have no use for
1396 * session tickets and one will never be decrypted, nor will
1397 * s->ext.ticket_expected be set to 1.
1398 *
1399 * Side effects:
1400 * Sets s->ext.ticket_expected to 1 if the server will have to issue
1401 * a new session ticket to the client because the client indicated support
1402 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1403 * a session ticket or we couldn't use the one it gave us, or if
1404 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1405 * Otherwise, s->ext.ticket_expected is set to 0.
1406 *
1407 * etick: points to the body of the session ticket extension.
1408 * eticklen: the length of the session tickets extension.
1409 * sess_id: points at the session ID.
1410 * sesslen: the length of the session ID.
1411 * psess: (output) on return, if a ticket was decrypted, then this is set to
1412 * point to the resulting session.
1413 */
1414 SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1415 size_t eticklen, const unsigned char *sess_id,
1416 size_t sesslen, SSL_SESSION **psess)
1417 {
1418 SSL_SESSION *sess = NULL;
1419 unsigned char *sdec;
1420 const unsigned char *p;
1421 int slen, renew_ticket = 0, declen;
1422 SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
1423 size_t mlen;
1424 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1425 SSL_HMAC *hctx = NULL;
1426 EVP_CIPHER_CTX *ctx = NULL;
1427 SSL_CTX *tctx = s->session_ctx;
1428
1429 if (eticklen == 0) {
1430 /*
1431 * The client will accept a ticket but doesn't currently have
1432 * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
1433 */
1434 ret = SSL_TICKET_EMPTY;
1435 goto end;
1436 }
1437 if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) {
1438 /*
1439 * Indicate that the ticket couldn't be decrypted rather than
1440 * generating the session from ticket now, trigger
1441 * abbreviated handshake based on external mechanism to
1442 * calculate the master secret later.
1443 */
1444 ret = SSL_TICKET_NO_DECRYPT;
1445 goto end;
1446 }
1447
1448 /* Need at least keyname + iv */
1449 if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
1450 ret = SSL_TICKET_NO_DECRYPT;
1451 goto end;
1452 }
1453
1454 /* Initialize session ticket encryption and HMAC contexts */
1455 hctx = ssl_hmac_new(tctx);
1456 if (hctx == NULL) {
1457 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1458 goto end;
1459 }
1460 ctx = EVP_CIPHER_CTX_new();
1461 if (ctx == NULL) {
1462 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1463 goto end;
1464 }
1465 #ifndef OPENSSL_NO_DEPRECATED_3_0
1466 if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
1467 #else
1468 if (tctx->ext.ticket_key_evp_cb != NULL)
1469 #endif
1470 {
1471 unsigned char *nctick = (unsigned char *)etick;
1472 int rv = 0;
1473
1474 if (tctx->ext.ticket_key_evp_cb != NULL)
1475 rv = tctx->ext.ticket_key_evp_cb(s, nctick,
1476 nctick + TLSEXT_KEYNAME_LENGTH,
1477 ctx,
1478 ssl_hmac_get0_EVP_MAC_CTX(hctx),
1479 0);
1480 #ifndef OPENSSL_NO_DEPRECATED_3_0
1481 else if (tctx->ext.ticket_key_cb != NULL)
1482 /* if 0 is returned, write an empty ticket */
1483 rv = tctx->ext.ticket_key_cb(s, nctick,
1484 nctick + TLSEXT_KEYNAME_LENGTH,
1485 ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
1486 #endif
1487 if (rv < 0) {
1488 ret = SSL_TICKET_FATAL_ERR_OTHER;
1489 goto end;
1490 }
1491 if (rv == 0) {
1492 ret = SSL_TICKET_NO_DECRYPT;
1493 goto end;
1494 }
1495 if (rv == 2)
1496 renew_ticket = 1;
1497 } else {
1498 /* Check key name matches */
1499 if (memcmp(etick, tctx->ext.tick_key_name,
1500 TLSEXT_KEYNAME_LENGTH) != 0) {
1501 ret = SSL_TICKET_NO_DECRYPT;
1502 goto end;
1503 }
1504 if (ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
1505 sizeof(tctx->ext.secure->tick_hmac_key),
1506 "SHA256") <= 0
1507 || EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), NULL,
1508 tctx->ext.secure->tick_aes_key,
1509 etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
1510 ret = SSL_TICKET_FATAL_ERR_OTHER;
1511 goto end;
1512 }
1513 if (SSL_IS_TLS13(s))
1514 renew_ticket = 1;
1515 }
1516 /*
1517 * Attempt to process session ticket, first conduct sanity and integrity
1518 * checks on ticket.
1519 */
1520 mlen = ssl_hmac_size(hctx);
1521 if (mlen == 0) {
1522 ret = SSL_TICKET_FATAL_ERR_OTHER;
1523 goto end;
1524 }
1525
1526 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1527 if (eticklen <=
1528 TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx) + mlen) {
1529 ret = SSL_TICKET_NO_DECRYPT;
1530 goto end;
1531 }
1532 eticklen -= mlen;
1533 /* Check HMAC of encrypted ticket */
1534 if (ssl_hmac_update(hctx, etick, eticklen) <= 0
1535 || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
1536 ret = SSL_TICKET_FATAL_ERR_OTHER;
1537 goto end;
1538 }
1539
1540 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1541 ret = SSL_TICKET_NO_DECRYPT;
1542 goto end;
1543 }
1544 /* Attempt to decrypt session data */
1545 /* Move p after IV to start of encrypted ticket, update length */
1546 p = etick + TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1547 eticklen -= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1548 sdec = OPENSSL_malloc(eticklen);
1549 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1550 (int)eticklen) <= 0) {
1551 OPENSSL_free(sdec);
1552 ret = SSL_TICKET_FATAL_ERR_OTHER;
1553 goto end;
1554 }
1555 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1556 OPENSSL_free(sdec);
1557 ret = SSL_TICKET_NO_DECRYPT;
1558 goto end;
1559 }
1560 slen += declen;
1561 p = sdec;
1562
1563 sess = d2i_SSL_SESSION(NULL, &p, slen);
1564 slen -= p - sdec;
1565 OPENSSL_free(sdec);
1566 if (sess) {
1567 /* Some additional consistency checks */
1568 if (slen != 0) {
1569 SSL_SESSION_free(sess);
1570 sess = NULL;
1571 ret = SSL_TICKET_NO_DECRYPT;
1572 goto end;
1573 }
1574 /*
1575 * The session ID, if non-empty, is used by some clients to detect
1576 * that the ticket has been accepted. So we copy it to the session
1577 * structure. If it is empty set length to zero as required by
1578 * standard.
1579 */
1580 if (sesslen) {
1581 memcpy(sess->session_id, sess_id, sesslen);
1582 sess->session_id_length = sesslen;
1583 }
1584 if (renew_ticket)
1585 ret = SSL_TICKET_SUCCESS_RENEW;
1586 else
1587 ret = SSL_TICKET_SUCCESS;
1588 goto end;
1589 }
1590 ERR_clear_error();
1591 /*
1592 * For session parse failure, indicate that we need to send a new ticket.
1593 */
1594 ret = SSL_TICKET_NO_DECRYPT;
1595
1596 end:
1597 EVP_CIPHER_CTX_free(ctx);
1598 ssl_hmac_free(hctx);
1599
1600 /*
1601 * If set, the decrypt_ticket_cb() is called unless a fatal error was
1602 * detected above. The callback is responsible for checking |ret| before it
1603 * performs any action
1604 */
1605 if (s->session_ctx->decrypt_ticket_cb != NULL
1606 && (ret == SSL_TICKET_EMPTY
1607 || ret == SSL_TICKET_NO_DECRYPT
1608 || ret == SSL_TICKET_SUCCESS
1609 || ret == SSL_TICKET_SUCCESS_RENEW)) {
1610 size_t keyname_len = eticklen;
1611 int retcb;
1612
1613 if (keyname_len > TLSEXT_KEYNAME_LENGTH)
1614 keyname_len = TLSEXT_KEYNAME_LENGTH;
1615 retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len,
1616 ret,
1617 s->session_ctx->ticket_cb_data);
1618 switch (retcb) {
1619 case SSL_TICKET_RETURN_ABORT:
1620 ret = SSL_TICKET_FATAL_ERR_OTHER;
1621 break;
1622
1623 case SSL_TICKET_RETURN_IGNORE:
1624 ret = SSL_TICKET_NONE;
1625 SSL_SESSION_free(sess);
1626 sess = NULL;
1627 break;
1628
1629 case SSL_TICKET_RETURN_IGNORE_RENEW:
1630 if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
1631 ret = SSL_TICKET_NO_DECRYPT;
1632 /* else the value of |ret| will already do the right thing */
1633 SSL_SESSION_free(sess);
1634 sess = NULL;
1635 break;
1636
1637 case SSL_TICKET_RETURN_USE:
1638 case SSL_TICKET_RETURN_USE_RENEW:
1639 if (ret != SSL_TICKET_SUCCESS
1640 && ret != SSL_TICKET_SUCCESS_RENEW)
1641 ret = SSL_TICKET_FATAL_ERR_OTHER;
1642 else if (retcb == SSL_TICKET_RETURN_USE)
1643 ret = SSL_TICKET_SUCCESS;
1644 else
1645 ret = SSL_TICKET_SUCCESS_RENEW;
1646 break;
1647
1648 default:
1649 ret = SSL_TICKET_FATAL_ERR_OTHER;
1650 }
1651 }
1652
1653 if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) {
1654 switch (ret) {
1655 case SSL_TICKET_NO_DECRYPT:
1656 case SSL_TICKET_SUCCESS_RENEW:
1657 case SSL_TICKET_EMPTY:
1658 s->ext.ticket_expected = 1;
1659 }
1660 }
1661
1662 *psess = sess;
1663
1664 return ret;
1665 }
1666
1667 /* Check to see if a signature algorithm is allowed */
1668 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)
1669 {
1670 unsigned char sigalgstr[2];
1671 int secbits;
1672
1673 /* See if sigalgs is recognised and if hash is enabled */
1674 if (!tls1_lookup_md(s->ctx, lu, NULL))
1675 return 0;
1676 /* DSA is not allowed in TLS 1.3 */
1677 if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
1678 return 0;
1679 /* TODO(OpenSSL1.2) fully axe DSA/etc. in ClientHello per TLS 1.3 spec */
1680 if (!s->server && !SSL_IS_DTLS(s) && s->s3.tmp.min_ver >= TLS1_3_VERSION
1681 && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
1682 || lu->hash_idx == SSL_MD_MD5_IDX
1683 || lu->hash_idx == SSL_MD_SHA224_IDX))
1684 return 0;
1685
1686 /* See if public key algorithm allowed */
1687 if (ssl_cert_is_disabled(lu->sig_idx))
1688 return 0;
1689
1690 if (lu->sig == NID_id_GostR3410_2012_256
1691 || lu->sig == NID_id_GostR3410_2012_512
1692 || lu->sig == NID_id_GostR3410_2001) {
1693 /* We never allow GOST sig algs on the server with TLSv1.3 */
1694 if (s->server && SSL_IS_TLS13(s))
1695 return 0;
1696 if (!s->server
1697 && s->method->version == TLS_ANY_VERSION
1698 && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
1699 int i, num;
1700 STACK_OF(SSL_CIPHER) *sk;
1701
1702 /*
1703 * We're a client that could negotiate TLSv1.3. We only allow GOST
1704 * sig algs if we could negotiate TLSv1.2 or below and we have GOST
1705 * ciphersuites enabled.
1706 */
1707
1708 if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
1709 return 0;
1710
1711 sk = SSL_get_ciphers(s);
1712 num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
1713 for (i = 0; i < num; i++) {
1714 const SSL_CIPHER *c;
1715
1716 c = sk_SSL_CIPHER_value(sk, i);
1717 /* Skip disabled ciphers */
1718 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
1719 continue;
1720
1721 if ((c->algorithm_mkey & SSL_kGOST) != 0)
1722 break;
1723 }
1724 if (i == num)
1725 return 0;
1726 }
1727 }
1728
1729 if (lu->hash == NID_undef)
1730 return 1;
1731 /* Security bits: half digest bits */
1732 secbits = EVP_MD_size(ssl_md(s->ctx, lu->hash_idx)) * 4;
1733 /* Finally see if security callback allows it */
1734 sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
1735 sigalgstr[1] = lu->sigalg & 0xff;
1736 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
1737 }
1738
1739 /*
1740 * Get a mask of disabled public key algorithms based on supported signature
1741 * algorithms. For example if no signature algorithm supports RSA then RSA is
1742 * disabled.
1743 */
1744
1745 void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
1746 {
1747 const uint16_t *sigalgs;
1748 size_t i, sigalgslen;
1749 uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
1750 /*
1751 * Go through all signature algorithms seeing if we support any
1752 * in disabled_mask.
1753 */
1754 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
1755 for (i = 0; i < sigalgslen; i++, sigalgs++) {
1756 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*sigalgs);
1757 const SSL_CERT_LOOKUP *clu;
1758
1759 if (lu == NULL)
1760 continue;
1761
1762 clu = ssl_cert_lookup_by_idx(lu->sig_idx);
1763 if (clu == NULL)
1764 continue;
1765
1766 /* If algorithm is disabled see if we can enable it */
1767 if ((clu->amask & disabled_mask) != 0
1768 && tls12_sigalg_allowed(s, op, lu))
1769 disabled_mask &= ~clu->amask;
1770 }
1771 *pmask_a |= disabled_mask;
1772 }
1773
1774 int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
1775 const uint16_t *psig, size_t psiglen)
1776 {
1777 size_t i;
1778 int rv = 0;
1779
1780 for (i = 0; i < psiglen; i++, psig++) {
1781 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*psig);
1782
1783 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1784 continue;
1785 if (!WPACKET_put_bytes_u16(pkt, *psig))
1786 return 0;
1787 /*
1788 * If TLS 1.3 must have at least one valid TLS 1.3 message
1789 * signing algorithm: i.e. neither RSA nor SHA1/SHA224
1790 */
1791 if (rv == 0 && (!SSL_IS_TLS13(s)
1792 || (lu->sig != EVP_PKEY_RSA
1793 && lu->hash != NID_sha1
1794 && lu->hash != NID_sha224)))
1795 rv = 1;
1796 }
1797 if (rv == 0)
1798 SSLerr(SSL_F_TLS12_COPY_SIGALGS, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
1799 return rv;
1800 }
1801
1802 /* Given preference and allowed sigalgs set shared sigalgs */
1803 static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
1804 const uint16_t *pref, size_t preflen,
1805 const uint16_t *allow, size_t allowlen)
1806 {
1807 const uint16_t *ptmp, *atmp;
1808 size_t i, j, nmatch = 0;
1809 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
1810 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*ptmp);
1811
1812 /* Skip disabled hashes or signature algorithms */
1813 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
1814 continue;
1815 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
1816 if (*ptmp == *atmp) {
1817 nmatch++;
1818 if (shsig)
1819 *shsig++ = lu;
1820 break;
1821 }
1822 }
1823 }
1824 return nmatch;
1825 }
1826
1827 /* Set shared signature algorithms for SSL structures */
1828 static int tls1_set_shared_sigalgs(SSL *s)
1829 {
1830 const uint16_t *pref, *allow, *conf;
1831 size_t preflen, allowlen, conflen;
1832 size_t nmatch;
1833 const SIGALG_LOOKUP **salgs = NULL;
1834 CERT *c = s->cert;
1835 unsigned int is_suiteb = tls1_suiteb(s);
1836
1837 OPENSSL_free(s->shared_sigalgs);
1838 s->shared_sigalgs = NULL;
1839 s->shared_sigalgslen = 0;
1840 /* If client use client signature algorithms if not NULL */
1841 if (!s->server && c->client_sigalgs && !is_suiteb) {
1842 conf = c->client_sigalgs;
1843 conflen = c->client_sigalgslen;
1844 } else if (c->conf_sigalgs && !is_suiteb) {
1845 conf = c->conf_sigalgs;
1846 conflen = c->conf_sigalgslen;
1847 } else
1848 conflen = tls12_get_psigalgs(s, 0, &conf);
1849 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
1850 pref = conf;
1851 preflen = conflen;
1852 allow = s->s3.tmp.peer_sigalgs;
1853 allowlen = s->s3.tmp.peer_sigalgslen;
1854 } else {
1855 allow = conf;
1856 allowlen = conflen;
1857 pref = s->s3.tmp.peer_sigalgs;
1858 preflen = s->s3.tmp.peer_sigalgslen;
1859 }
1860 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
1861 if (nmatch) {
1862 if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) {
1863 SSLerr(SSL_F_TLS1_SET_SHARED_SIGALGS, ERR_R_MALLOC_FAILURE);
1864 return 0;
1865 }
1866 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
1867 } else {
1868 salgs = NULL;
1869 }
1870 s->shared_sigalgs = salgs;
1871 s->shared_sigalgslen = nmatch;
1872 return 1;
1873 }
1874
1875 int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
1876 {
1877 unsigned int stmp;
1878 size_t size, i;
1879 uint16_t *buf;
1880
1881 size = PACKET_remaining(pkt);
1882
1883 /* Invalid data length */
1884 if (size == 0 || (size & 1) != 0)
1885 return 0;
1886
1887 size >>= 1;
1888
1889 if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) {
1890 SSLerr(SSL_F_TLS1_SAVE_U16, ERR_R_MALLOC_FAILURE);
1891 return 0;
1892 }
1893 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
1894 buf[i] = stmp;
1895
1896 if (i != size) {
1897 OPENSSL_free(buf);
1898 return 0;
1899 }
1900
1901 OPENSSL_free(*pdest);
1902 *pdest = buf;
1903 *pdestlen = size;
1904
1905 return 1;
1906 }
1907
1908 int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert)
1909 {
1910 /* Extension ignored for inappropriate versions */
1911 if (!SSL_USE_SIGALGS(s))
1912 return 1;
1913 /* Should never happen */
1914 if (s->cert == NULL)
1915 return 0;
1916
1917 if (cert)
1918 return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
1919 &s->s3.tmp.peer_cert_sigalgslen);
1920 else
1921 return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
1922 &s->s3.tmp.peer_sigalgslen);
1923
1924 }
1925
1926 /* Set preferred digest for each key type */
1927
1928 int tls1_process_sigalgs(SSL *s)
1929 {
1930 size_t i;
1931 uint32_t *pvalid = s->s3.tmp.valid_flags;
1932
1933 if (!tls1_set_shared_sigalgs(s))
1934 return 0;
1935
1936 for (i = 0; i < SSL_PKEY_NUM; i++)
1937 pvalid[i] = 0;
1938
1939 for (i = 0; i < s->shared_sigalgslen; i++) {
1940 const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
1941 int idx = sigptr->sig_idx;
1942
1943 /* Ignore PKCS1 based sig algs in TLSv1.3 */
1944 if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
1945 continue;
1946 /* If not disabled indicate we can explicitly sign */
1947 if (pvalid[idx] == 0 && !ssl_cert_is_disabled(idx))
1948 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
1949 }
1950 return 1;
1951 }
1952
1953 int SSL_get_sigalgs(SSL *s, int idx,
1954 int *psign, int *phash, int *psignhash,
1955 unsigned char *rsig, unsigned char *rhash)
1956 {
1957 uint16_t *psig = s->s3.tmp.peer_sigalgs;
1958 size_t numsigalgs = s->s3.tmp.peer_sigalgslen;
1959 if (psig == NULL || numsigalgs > INT_MAX)
1960 return 0;
1961 if (idx >= 0) {
1962 const SIGALG_LOOKUP *lu;
1963
1964 if (idx >= (int)numsigalgs)
1965 return 0;
1966 psig += idx;
1967 if (rhash != NULL)
1968 *rhash = (unsigned char)((*psig >> 8) & 0xff);
1969 if (rsig != NULL)
1970 *rsig = (unsigned char)(*psig & 0xff);
1971 lu = tls1_lookup_sigalg(*psig);
1972 if (psign != NULL)
1973 *psign = lu != NULL ? lu->sig : NID_undef;
1974 if (phash != NULL)
1975 *phash = lu != NULL ? lu->hash : NID_undef;
1976 if (psignhash != NULL)
1977 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
1978 }
1979 return (int)numsigalgs;
1980 }
1981
1982 int SSL_get_shared_sigalgs(SSL *s, int idx,
1983 int *psign, int *phash, int *psignhash,
1984 unsigned char *rsig, unsigned char *rhash)
1985 {
1986 const SIGALG_LOOKUP *shsigalgs;
1987 if (s->shared_sigalgs == NULL
1988 || idx < 0
1989 || idx >= (int)s->shared_sigalgslen
1990 || s->shared_sigalgslen > INT_MAX)
1991 return 0;
1992 shsigalgs = s->shared_sigalgs[idx];
1993 if (phash != NULL)
1994 *phash = shsigalgs->hash;
1995 if (psign != NULL)
1996 *psign = shsigalgs->sig;
1997 if (psignhash != NULL)
1998 *psignhash = shsigalgs->sigandhash;
1999 if (rsig != NULL)
2000 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2001 if (rhash != NULL)
2002 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2003 return (int)s->shared_sigalgslen;
2004 }
2005
2006 /* Maximum possible number of unique entries in sigalgs array */
2007 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2008
2009 typedef struct {
2010 size_t sigalgcnt;
2011 /* TLSEXT_SIGALG_XXX values */
2012 uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2013 } sig_cb_st;
2014
2015 static void get_sigorhash(int *psig, int *phash, const char *str)
2016 {
2017 if (strcmp(str, "RSA") == 0) {
2018 *psig = EVP_PKEY_RSA;
2019 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2020 *psig = EVP_PKEY_RSA_PSS;
2021 } else if (strcmp(str, "DSA") == 0) {
2022 *psig = EVP_PKEY_DSA;
2023 } else if (strcmp(str, "ECDSA") == 0) {
2024 *psig = EVP_PKEY_EC;
2025 } else {
2026 *phash = OBJ_sn2nid(str);
2027 if (*phash == NID_undef)
2028 *phash = OBJ_ln2nid(str);
2029 }
2030 }
2031 /* Maximum length of a signature algorithm string component */
2032 #define TLS_MAX_SIGSTRING_LEN 40
2033
2034 static int sig_cb(const char *elem, int len, void *arg)
2035 {
2036 sig_cb_st *sarg = arg;
2037 size_t i;
2038 const SIGALG_LOOKUP *s;
2039 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2040 int sig_alg = NID_undef, hash_alg = NID_undef;
2041 if (elem == NULL)
2042 return 0;
2043 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2044 return 0;
2045 if (len > (int)(sizeof(etmp) - 1))
2046 return 0;
2047 memcpy(etmp, elem, len);
2048 etmp[len] = 0;
2049 p = strchr(etmp, '+');
2050 /*
2051 * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2052 * if there's no '+' in the provided name, look for the new-style combined
2053 * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2054 * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2055 * rsa_pss_rsae_* that differ only by public key OID; in such cases
2056 * we will pick the _rsae_ variant, by virtue of them appearing earlier
2057 * in the table.
2058 */
2059 if (p == NULL) {
2060 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2061 i++, s++) {
2062 if (s->name != NULL && strcmp(etmp, s->name) == 0) {
2063 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2064 break;
2065 }
2066 }
2067 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2068 return 0;
2069 } else {
2070 *p = 0;
2071 p++;
2072 if (*p == 0)
2073 return 0;
2074 get_sigorhash(&sig_alg, &hash_alg, etmp);
2075 get_sigorhash(&sig_alg, &hash_alg, p);
2076 if (sig_alg == NID_undef || hash_alg == NID_undef)
2077 return 0;
2078 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2079 i++, s++) {
2080 if (s->hash == hash_alg && s->sig == sig_alg) {
2081 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2082 break;
2083 }
2084 }
2085 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2086 return 0;
2087 }
2088
2089 /* Reject duplicates */
2090 for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2091 if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2092 sarg->sigalgcnt--;
2093 return 0;
2094 }
2095 }
2096 return 1;
2097 }
2098
2099 /*
2100 * Set supported signature algorithms based on a colon separated list of the
2101 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2102 */
2103 int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
2104 {
2105 sig_cb_st sig;
2106 sig.sigalgcnt = 0;
2107 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2108 return 0;
2109 if (c == NULL)
2110 return 1;
2111 return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2112 }
2113
2114 int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2115 int client)
2116 {
2117 uint16_t *sigalgs;
2118
2119 if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) {
2120 SSLerr(SSL_F_TLS1_SET_RAW_SIGALGS, ERR_R_MALLOC_FAILURE);
2121 return 0;
2122 }
2123 memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
2124
2125 if (client) {
2126 OPENSSL_free(c->client_sigalgs);
2127 c->client_sigalgs = sigalgs;
2128 c->client_sigalgslen = salglen;
2129 } else {
2130 OPENSSL_free(c->conf_sigalgs);
2131 c->conf_sigalgs = sigalgs;
2132 c->conf_sigalgslen = salglen;
2133 }
2134
2135 return 1;
2136 }
2137
2138 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
2139 {
2140 uint16_t *sigalgs, *sptr;
2141 size_t i;
2142
2143 if (salglen & 1)
2144 return 0;
2145 if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) {
2146 SSLerr(SSL_F_TLS1_SET_SIGALGS, ERR_R_MALLOC_FAILURE);
2147 return 0;
2148 }
2149 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
2150 size_t j;
2151 const SIGALG_LOOKUP *curr;
2152 int md_id = *psig_nids++;
2153 int sig_id = *psig_nids++;
2154
2155 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
2156 j++, curr++) {
2157 if (curr->hash == md_id && curr->sig == sig_id) {
2158 *sptr++ = curr->sigalg;
2159 break;
2160 }
2161 }
2162
2163 if (j == OSSL_NELEM(sigalg_lookup_tbl))
2164 goto err;
2165 }
2166
2167 if (client) {
2168 OPENSSL_free(c->client_sigalgs);
2169 c->client_sigalgs = sigalgs;
2170 c->client_sigalgslen = salglen / 2;
2171 } else {
2172 OPENSSL_free(c->conf_sigalgs);
2173 c->conf_sigalgs = sigalgs;
2174 c->conf_sigalgslen = salglen / 2;
2175 }
2176
2177 return 1;
2178
2179 err:
2180 OPENSSL_free(sigalgs);
2181 return 0;
2182 }
2183
2184 static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid)
2185 {
2186 int sig_nid, use_pc_sigalgs = 0;
2187 size_t i;
2188 const SIGALG_LOOKUP *sigalg;
2189 size_t sigalgslen;
2190 if (default_nid == -1)
2191 return 1;
2192 sig_nid = X509_get_signature_nid(x);
2193 if (default_nid)
2194 return sig_nid == default_nid ? 1 : 0;
2195
2196 if (SSL_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
2197 /*
2198 * If we're in TLSv1.3 then we only get here if we're checking the
2199 * chain. If the peer has specified peer_cert_sigalgs then we use them
2200 * otherwise we default to normal sigalgs.
2201 */
2202 sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
2203 use_pc_sigalgs = 1;
2204 } else {
2205 sigalgslen = s->shared_sigalgslen;
2206 }
2207 for (i = 0; i < sigalgslen; i++) {
2208 sigalg = use_pc_sigalgs
2209 ? tls1_lookup_sigalg(s->s3.tmp.peer_cert_sigalgs[i])
2210 : s->shared_sigalgs[i];
2211 if (sig_nid == sigalg->sigandhash)
2212 return 1;
2213 }
2214 return 0;
2215 }
2216
2217 /* Check to see if a certificate issuer name matches list of CA names */
2218 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
2219 {
2220 X509_NAME *nm;
2221 int i;
2222 nm = X509_get_issuer_name(x);
2223 for (i = 0; i < sk_X509_NAME_num(names); i++) {
2224 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
2225 return 1;
2226 }
2227 return 0;
2228 }
2229
2230 /*
2231 * Check certificate chain is consistent with TLS extensions and is usable by
2232 * server. This servers two purposes: it allows users to check chains before
2233 * passing them to the server and it allows the server to check chains before
2234 * attempting to use them.
2235 */
2236
2237 /* Flags which need to be set for a certificate when strict mode not set */
2238
2239 #define CERT_PKEY_VALID_FLAGS \
2240 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
2241 /* Strict mode flags */
2242 #define CERT_PKEY_STRICT_FLAGS \
2243 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
2244 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
2245
2246 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
2247 int idx)
2248 {
2249 int i;
2250 int rv = 0;
2251 int check_flags = 0, strict_mode;
2252 CERT_PKEY *cpk = NULL;
2253 CERT *c = s->cert;
2254 uint32_t *pvalid;
2255 unsigned int suiteb_flags = tls1_suiteb(s);
2256 /* idx == -1 means checking server chains */
2257 if (idx != -1) {
2258 /* idx == -2 means checking client certificate chains */
2259 if (idx == -2) {
2260 cpk = c->key;
2261 idx = (int)(cpk - c->pkeys);
2262 } else
2263 cpk = c->pkeys + idx;
2264 pvalid = s->s3.tmp.valid_flags + idx;
2265 x = cpk->x509;
2266 pk = cpk->privatekey;
2267 chain = cpk->chain;
2268 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
2269 /* If no cert or key, forget it */
2270 if (!x || !pk)
2271 goto end;
2272 } else {
2273 size_t certidx;
2274
2275 if (!x || !pk)
2276 return 0;
2277
2278 if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)
2279 return 0;
2280 idx = certidx;
2281 pvalid = s->s3.tmp.valid_flags + idx;
2282
2283 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
2284 check_flags = CERT_PKEY_STRICT_FLAGS;
2285 else
2286 check_flags = CERT_PKEY_VALID_FLAGS;
2287 strict_mode = 1;
2288 }
2289
2290 if (suiteb_flags) {
2291 int ok;
2292 if (check_flags)
2293 check_flags |= CERT_PKEY_SUITEB;
2294 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
2295 if (ok == X509_V_OK)
2296 rv |= CERT_PKEY_SUITEB;
2297 else if (!check_flags)
2298 goto end;
2299 }
2300
2301 /*
2302 * Check all signature algorithms are consistent with signature
2303 * algorithms extension if TLS 1.2 or later and strict mode.
2304 */
2305 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
2306 int default_nid;
2307 int rsign = 0;
2308 if (s->s3.tmp.peer_cert_sigalgs != NULL
2309 || s->s3.tmp.peer_sigalgs != NULL) {
2310 default_nid = 0;
2311 /* If no sigalgs extension use defaults from RFC5246 */
2312 } else {
2313 switch (idx) {
2314 case SSL_PKEY_RSA:
2315 rsign = EVP_PKEY_RSA;
2316 default_nid = NID_sha1WithRSAEncryption;
2317 break;
2318
2319 case SSL_PKEY_DSA_SIGN:
2320 rsign = EVP_PKEY_DSA;
2321 default_nid = NID_dsaWithSHA1;
2322 break;
2323
2324 case SSL_PKEY_ECC:
2325 rsign = EVP_PKEY_EC;
2326 default_nid = NID_ecdsa_with_SHA1;
2327 break;
2328
2329 case SSL_PKEY_GOST01:
2330 rsign = NID_id_GostR3410_2001;
2331 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
2332 break;
2333
2334 case SSL_PKEY_GOST12_256:
2335 rsign = NID_id_GostR3410_2012_256;
2336 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
2337 break;
2338
2339 case SSL_PKEY_GOST12_512:
2340 rsign = NID_id_GostR3410_2012_512;
2341 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
2342 break;
2343
2344 default:
2345 default_nid = -1;
2346 break;
2347 }
2348 }
2349 /*
2350 * If peer sent no signature algorithms extension and we have set
2351 * preferred signature algorithms check we support sha1.
2352 */
2353 if (default_nid > 0 && c->conf_sigalgs) {
2354 size_t j;
2355 const uint16_t *p = c->conf_sigalgs;
2356 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
2357 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*p);
2358
2359 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
2360 break;
2361 }
2362 if (j == c->conf_sigalgslen) {
2363 if (check_flags)
2364 goto skip_sigs;
2365 else
2366 goto end;
2367 }
2368 }
2369 /* Check signature algorithm of each cert in chain */
2370 if (SSL_IS_TLS13(s)) {
2371 /*
2372 * We only get here if the application has called SSL_check_chain(),
2373 * so check_flags is always set.
2374 */
2375 if (find_sig_alg(s, x, pk) != NULL)
2376 rv |= CERT_PKEY_EE_SIGNATURE;
2377 } else if (!tls1_check_sig_alg(s, x, default_nid)) {
2378 if (!check_flags)
2379 goto end;
2380 } else
2381 rv |= CERT_PKEY_EE_SIGNATURE;
2382 rv |= CERT_PKEY_CA_SIGNATURE;
2383 for (i = 0; i < sk_X509_num(chain); i++) {
2384 if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
2385 if (check_flags) {
2386 rv &= ~CERT_PKEY_CA_SIGNATURE;
2387 break;
2388 } else
2389 goto end;
2390 }
2391 }
2392 }
2393 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2394 else if (check_flags)
2395 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2396 skip_sigs:
2397 /* Check cert parameters are consistent */
2398 if (tls1_check_cert_param(s, x, 1))
2399 rv |= CERT_PKEY_EE_PARAM;
2400 else if (!check_flags)
2401 goto end;
2402 if (!s->server)
2403 rv |= CERT_PKEY_CA_PARAM;
2404 /* In strict mode check rest of chain too */
2405 else if (strict_mode) {
2406 rv |= CERT_PKEY_CA_PARAM;
2407 for (i = 0; i < sk_X509_num(chain); i++) {
2408 X509 *ca = sk_X509_value(chain, i);
2409 if (!tls1_check_cert_param(s, ca, 0)) {
2410 if (check_flags) {
2411 rv &= ~CERT_PKEY_CA_PARAM;
2412 break;
2413 } else
2414 goto end;
2415 }
2416 }
2417 }
2418 if (!s->server && strict_mode) {
2419 STACK_OF(X509_NAME) *ca_dn;
2420 int check_type = 0;
2421 switch (EVP_PKEY_id(pk)) {
2422 case EVP_PKEY_RSA:
2423 check_type = TLS_CT_RSA_SIGN;
2424 break;
2425 case EVP_PKEY_DSA:
2426 check_type = TLS_CT_DSS_SIGN;
2427 break;
2428 case EVP_PKEY_EC:
2429 check_type = TLS_CT_ECDSA_SIGN;
2430 break;
2431 }
2432 if (check_type) {
2433 const uint8_t *ctypes = s->s3.tmp.ctype;
2434 size_t j;
2435
2436 for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
2437 if (*ctypes == check_type) {
2438 rv |= CERT_PKEY_CERT_TYPE;
2439 break;
2440 }
2441 }
2442 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2443 goto end;
2444 } else {
2445 rv |= CERT_PKEY_CERT_TYPE;
2446 }
2447
2448 ca_dn = s->s3.tmp.peer_ca_names;
2449
2450 if (!sk_X509_NAME_num(ca_dn))
2451 rv |= CERT_PKEY_ISSUER_NAME;
2452
2453 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2454 if (ssl_check_ca_name(ca_dn, x))
2455 rv |= CERT_PKEY_ISSUER_NAME;
2456 }
2457 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2458 for (i = 0; i < sk_X509_num(chain); i++) {
2459 X509 *xtmp = sk_X509_value(chain, i);
2460 if (ssl_check_ca_name(ca_dn, xtmp)) {
2461 rv |= CERT_PKEY_ISSUER_NAME;
2462 break;
2463 }
2464 }
2465 }
2466 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2467 goto end;
2468 } else
2469 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2470
2471 if (!check_flags || (rv & check_flags) == check_flags)
2472 rv |= CERT_PKEY_VALID;
2473
2474 end:
2475
2476 if (TLS1_get_version(s) >= TLS1_2_VERSION)
2477 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
2478 else
2479 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2480
2481 /*
2482 * When checking a CERT_PKEY structure all flags are irrelevant if the
2483 * chain is invalid.
2484 */
2485 if (!check_flags) {
2486 if (rv & CERT_PKEY_VALID) {
2487 *pvalid = rv;
2488 } else {
2489 /* Preserve sign and explicit sign flag, clear rest */
2490 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2491 return 0;
2492 }
2493 }
2494 return rv;
2495 }
2496
2497 /* Set validity of certificates in an SSL structure */
2498 void tls1_set_cert_validity(SSL *s)
2499 {
2500 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
2501 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
2502 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2503 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2504 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2505 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2506 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2507 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
2508 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
2509 }
2510
2511 /* User level utility function to check a chain is suitable */
2512 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2513 {
2514 return tls1_check_chain(s, x, pk, chain, -1);
2515 }
2516
2517 #ifndef OPENSSL_NO_DH
2518 DH *ssl_get_auto_dh(SSL *s)
2519 {
2520 int dh_secbits = 80;
2521 if (s->cert->dh_tmp_auto == 2)
2522 return DH_get_1024_160();
2523 if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2524 if (s->s3.tmp.new_cipher->strength_bits == 256)
2525 dh_secbits = 128;
2526 else
2527 dh_secbits = 80;
2528 } else {
2529 if (s->s3.tmp.cert == NULL)
2530 return NULL;
2531 dh_secbits = EVP_PKEY_security_bits(s->s3.tmp.cert->privatekey);
2532 }
2533
2534 if (dh_secbits >= 128) {
2535 DH *dhp = DH_new();
2536 BIGNUM *p, *g;
2537 if (dhp == NULL)
2538 return NULL;
2539 g = BN_new();
2540 if (g == NULL || !BN_set_word(g, 2)) {
2541 DH_free(dhp);
2542 BN_free(g);
2543 return NULL;
2544 }
2545 if (dh_secbits >= 192)
2546 p = BN_get_rfc3526_prime_8192(NULL);
2547 else
2548 p = BN_get_rfc3526_prime_3072(NULL);
2549 if (p == NULL || !DH_set0_pqg(dhp, p, NULL, g)) {
2550 DH_free(dhp);
2551 BN_free(p);
2552 BN_free(g);
2553 return NULL;
2554 }
2555 return dhp;
2556 }
2557 if (dh_secbits >= 112)
2558 return DH_get_2048_224();
2559 return DH_get_1024_160();
2560 }
2561 #endif
2562
2563 static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2564 {
2565 int secbits = -1;
2566 EVP_PKEY *pkey = X509_get0_pubkey(x);
2567 if (pkey) {
2568 /*
2569 * If no parameters this will return -1 and fail using the default
2570 * security callback for any non-zero security level. This will
2571 * reject keys which omit parameters but this only affects DSA and
2572 * omission of parameters is never (?) done in practice.
2573 */
2574 secbits = EVP_PKEY_security_bits(pkey);
2575 }
2576 if (s)
2577 return ssl_security(s, op, secbits, 0, x);
2578 else
2579 return ssl_ctx_security(ctx, op, secbits, 0, x);
2580 }
2581
2582 static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2583 {
2584 /* Lookup signature algorithm digest */
2585 int secbits, nid, pknid;
2586 /* Don't check signature if self signed */
2587 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
2588 return 1;
2589 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
2590 secbits = -1;
2591 /* If digest NID not defined use signature NID */
2592 if (nid == NID_undef)
2593 nid = pknid;
2594 if (s)
2595 return ssl_security(s, op, secbits, nid, x);
2596 else
2597 return ssl_ctx_security(ctx, op, secbits, nid, x);
2598 }
2599
2600 int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
2601 {
2602 if (vfy)
2603 vfy = SSL_SECOP_PEER;
2604 if (is_ee) {
2605 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
2606 return SSL_R_EE_KEY_TOO_SMALL;
2607 } else {
2608 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
2609 return SSL_R_CA_KEY_TOO_SMALL;
2610 }
2611 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
2612 return SSL_R_CA_MD_TOO_WEAK;
2613 return 1;
2614 }
2615
2616 /*
2617 * Check security of a chain, if |sk| includes the end entity certificate then
2618 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
2619 * one to the peer. Return values: 1 if ok otherwise error code to use
2620 */
2621
2622 int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
2623 {
2624 int rv, start_idx, i;
2625 if (x == NULL) {
2626 x = sk_X509_value(sk, 0);
2627 start_idx = 1;
2628 } else
2629 start_idx = 0;
2630
2631 rv = ssl_security_cert(s, NULL, x, vfy, 1);
2632 if (rv != 1)
2633 return rv;
2634
2635 for (i = start_idx; i < sk_X509_num(sk); i++) {
2636 x = sk_X509_value(sk, i);
2637 rv = ssl_security_cert(s, NULL, x, vfy, 0);
2638 if (rv != 1)
2639 return rv;
2640 }
2641 return 1;
2642 }
2643
2644 /*
2645 * For TLS 1.2 servers check if we have a certificate which can be used
2646 * with the signature algorithm "lu" and return index of certificate.
2647 */
2648
2649 static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)
2650 {
2651 int sig_idx = lu->sig_idx;
2652 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx);
2653
2654 /* If not recognised or not supported by cipher mask it is not suitable */
2655 if (clu == NULL
2656 || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
2657 || (clu->nid == EVP_PKEY_RSA_PSS
2658 && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
2659 return -1;
2660
2661 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
2662 }
2663
2664 /*
2665 * Checks the given cert against signature_algorithm_cert restrictions sent by
2666 * the peer (if any) as well as whether the hash from the sigalg is usable with
2667 * the key.
2668 * Returns true if the cert is usable and false otherwise.
2669 */
2670 static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
2671 EVP_PKEY *pkey)
2672 {
2673 const SIGALG_LOOKUP *lu;
2674 int mdnid, pknid, supported;
2675 size_t i;
2676
2677 /*
2678 * If the given EVP_PKEY cannot supporting signing with this sigalg,
2679 * the answer is simply 'no'.
2680 */
2681 ERR_set_mark();
2682 supported = EVP_PKEY_supports_digest_nid(pkey, sig->hash);
2683 ERR_pop_to_mark();
2684 if (supported == 0)
2685 return 0;
2686
2687 /*
2688 * The TLS 1.3 signature_algorithms_cert extension places restrictions
2689 * on the sigalg with which the certificate was signed (by its issuer).
2690 */
2691 if (s->s3.tmp.peer_cert_sigalgs != NULL) {
2692 if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
2693 return 0;
2694 for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
2695 lu = tls1_lookup_sigalg(s->s3.tmp.peer_cert_sigalgs[i]);
2696 if (lu == NULL)
2697 continue;
2698
2699 /*
2700 * TODO this does not differentiate between the
2701 * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
2702 * have a chain here that lets us look at the key OID in the
2703 * signing certificate.
2704 */
2705 if (mdnid == lu->hash && pknid == lu->sig)
2706 return 1;
2707 }
2708 return 0;
2709 }
2710
2711 /*
2712 * Without signat_algorithms_cert, any certificate for which we have
2713 * a viable public key is permitted.
2714 */
2715 return 1;
2716 }
2717
2718 /*
2719 * Returns true if |s| has a usable certificate configured for use
2720 * with signature scheme |sig|.
2721 * "Usable" includes a check for presence as well as applying
2722 * the signature_algorithm_cert restrictions sent by the peer (if any).
2723 * Returns false if no usable certificate is found.
2724 */
2725 static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx)
2726 {
2727 /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
2728 if (idx == -1)
2729 idx = sig->sig_idx;
2730 if (!ssl_has_cert(s, idx))
2731 return 0;
2732
2733 return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
2734 s->cert->pkeys[idx].privatekey);
2735 }
2736
2737 /*
2738 * Returns true if the supplied cert |x| and key |pkey| is usable with the
2739 * specified signature scheme |sig|, or false otherwise.
2740 */
2741 static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
2742 EVP_PKEY *pkey)
2743 {
2744 size_t idx;
2745
2746 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
2747 return 0;
2748
2749 /* Check the key is consistent with the sig alg */
2750 if ((int)idx != sig->sig_idx)
2751 return 0;
2752
2753 return check_cert_usable(s, sig, x, pkey);
2754 }
2755
2756 /*
2757 * Find a signature scheme that works with the supplied certificate |x| and key
2758 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
2759 * available certs/keys to find one that works.
2760 */
2761 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey)
2762 {
2763 const SIGALG_LOOKUP *lu = NULL;
2764 size_t i;
2765 #ifndef OPENSSL_NO_EC
2766 int curve = -1;
2767 #endif
2768 EVP_PKEY *tmppkey;
2769
2770 /* Look for a shared sigalgs matching possible certificates */
2771 for (i = 0; i < s->shared_sigalgslen; i++) {
2772 lu = s->shared_sigalgs[i];
2773
2774 /* Skip SHA1, SHA224, DSA and RSA if not PSS */
2775 if (lu->hash == NID_sha1
2776 || lu->hash == NID_sha224
2777 || lu->sig == EVP_PKEY_DSA
2778 || lu->sig == EVP_PKEY_RSA)
2779 continue;
2780 /* Check that we have a cert, and signature_algorithms_cert */
2781 if (!tls1_lookup_md(s->ctx, lu, NULL))
2782 continue;
2783 if ((pkey == NULL && !has_usable_cert(s, lu, -1))
2784 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
2785 continue;
2786
2787 tmppkey = (pkey != NULL) ? pkey
2788 : s->cert->pkeys[lu->sig_idx].privatekey;
2789
2790 if (lu->sig == EVP_PKEY_EC) {
2791 #ifndef OPENSSL_NO_EC
2792 if (curve == -1) {
2793 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(tmppkey);
2794 curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
2795 }
2796 if (lu->curve != NID_undef && curve != lu->curve)
2797 continue;
2798 #else
2799 continue;
2800 #endif
2801 } else if (lu->sig == EVP_PKEY_RSA_PSS) {
2802 /* validate that key is large enough for the signature algorithm */
2803 if (!rsa_pss_check_min_key_size(s->ctx, EVP_PKEY_get0(tmppkey), lu))
2804 continue;
2805 }
2806 break;
2807 }
2808
2809 if (i == s->shared_sigalgslen)
2810 return NULL;
2811
2812 return lu;
2813 }
2814
2815 /*
2816 * Choose an appropriate signature algorithm based on available certificates
2817 * Sets chosen certificate and signature algorithm.
2818 *
2819 * For servers if we fail to find a required certificate it is a fatal error,
2820 * an appropriate error code is set and a TLS alert is sent.
2821 *
2822 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
2823 * a fatal error: we will either try another certificate or not present one
2824 * to the server. In this case no error is set.
2825 */
2826 int tls_choose_sigalg(SSL *s, int fatalerrs)
2827 {
2828 const SIGALG_LOOKUP *lu = NULL;
2829 int sig_idx = -1;
2830
2831 s->s3.tmp.cert = NULL;
2832 s->s3.tmp.sigalg = NULL;
2833
2834 if (SSL_IS_TLS13(s)) {
2835 lu = find_sig_alg(s, NULL, NULL);
2836 if (lu == NULL) {
2837 if (!fatalerrs)
2838 return 1;
2839 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS_CHOOSE_SIGALG,
2840 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2841 return 0;
2842 }
2843 } else {
2844 /* If ciphersuite doesn't require a cert nothing to do */
2845 if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
2846 return 1;
2847 if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
2848 return 1;
2849
2850 if (SSL_USE_SIGALGS(s)) {
2851 size_t i;
2852 if (s->s3.tmp.peer_sigalgs != NULL) {
2853 #ifndef OPENSSL_NO_EC
2854 int curve;
2855
2856 /* For Suite B need to match signature algorithm to curve */
2857 if (tls1_suiteb(s)) {
2858 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(s->cert->pkeys[SSL_PKEY_ECC].privatekey);
2859 curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
2860 } else {
2861 curve = -1;
2862 }
2863 #endif
2864
2865 /*
2866 * Find highest preference signature algorithm matching
2867 * cert type
2868 */
2869 for (i = 0; i < s->shared_sigalgslen; i++) {
2870 lu = s->shared_sigalgs[i];
2871
2872 if (s->server) {
2873 if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
2874 continue;
2875 } else {
2876 int cc_idx = s->cert->key - s->cert->pkeys;
2877
2878 sig_idx = lu->sig_idx;
2879 if (cc_idx != sig_idx)
2880 continue;
2881 }
2882 /* Check that we have a cert, and sig_algs_cert */
2883 if (!has_usable_cert(s, lu, sig_idx))
2884 continue;
2885 if (lu->sig == EVP_PKEY_RSA_PSS) {
2886 /* validate that key is large enough for the signature algorithm */
2887 EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
2888
2889 if (!rsa_pss_check_min_key_size(s->ctx,
2890 EVP_PKEY_get0(pkey),
2891 lu))
2892 continue;
2893 }
2894 #ifndef OPENSSL_NO_EC
2895 if (curve == -1 || lu->curve == curve)
2896 #endif
2897 break;
2898 }
2899 #ifndef OPENSSL_NO_GOST
2900 /*
2901 * Some Windows-based implementations do not send GOST algorithms indication
2902 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
2903 * we have to assume GOST support.
2904 */
2905 if (i == s->shared_sigalgslen && s->s3.tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) {
2906 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
2907 if (!fatalerrs)
2908 return 1;
2909 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2910 SSL_F_TLS_CHOOSE_SIGALG,
2911 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2912 return 0;
2913 } else {
2914 i = 0;
2915 sig_idx = lu->sig_idx;
2916 }
2917 }
2918 #endif
2919 if (i == s->shared_sigalgslen) {
2920 if (!fatalerrs)
2921 return 1;
2922 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2923 SSL_F_TLS_CHOOSE_SIGALG,
2924 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2925 return 0;
2926 }
2927 } else {
2928 /*
2929 * If we have no sigalg use defaults
2930 */
2931 const uint16_t *sent_sigs;
2932 size_t sent_sigslen;
2933
2934 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
2935 if (!fatalerrs)
2936 return 1;
2937 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG,
2938 ERR_R_INTERNAL_ERROR);
2939 return 0;
2940 }
2941
2942 /* Check signature matches a type we sent */
2943 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2944 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2945 if (lu->sigalg == *sent_sigs
2946 && has_usable_cert(s, lu, lu->sig_idx))
2947 break;
2948 }
2949 if (i == sent_sigslen) {
2950 if (!fatalerrs)
2951 return 1;
2952 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
2953 SSL_F_TLS_CHOOSE_SIGALG,
2954 SSL_R_WRONG_SIGNATURE_TYPE);
2955 return 0;
2956 }
2957 }
2958 } else {
2959 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
2960 if (!fatalerrs)
2961 return 1;
2962 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG,
2963 ERR_R_INTERNAL_ERROR);
2964 return 0;
2965 }
2966 }
2967 }
2968 if (sig_idx == -1)
2969 sig_idx = lu->sig_idx;
2970 s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
2971 s->cert->key = s->s3.tmp.cert;
2972 s->s3.tmp.sigalg = lu;
2973 return 1;
2974 }
2975
2976 int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
2977 {
2978 if (mode != TLSEXT_max_fragment_length_DISABLED
2979 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
2980 SSLerr(SSL_F_SSL_CTX_SET_TLSEXT_MAX_FRAGMENT_LENGTH,
2981 SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
2982 return 0;
2983 }
2984
2985 ctx->ext.max_fragment_len_mode = mode;
2986 return 1;
2987 }
2988
2989 int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
2990 {
2991 if (mode != TLSEXT_max_fragment_length_DISABLED
2992 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
2993 SSLerr(SSL_F_SSL_SET_TLSEXT_MAX_FRAGMENT_LENGTH,
2994 SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
2995 return 0;
2996 }
2997
2998 ssl->ext.max_fragment_len_mode = mode;
2999 return 1;
3000 }
3001
3002 uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
3003 {
3004 return session->ext.max_fragment_len_mode;
3005 }
3006
3007 /*
3008 * Helper functions for HMAC access with legacy support included.
3009 */
3010 SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
3011 {
3012 SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
3013 EVP_MAC *mac = NULL;
3014
3015 if (ret == NULL)
3016 return NULL;
3017 #ifndef OPENSSL_NO_DEPRECATED_3_0
3018 if (ctx->ext.ticket_key_evp_cb == NULL
3019 && ctx->ext.ticket_key_cb != NULL) {
3020 ret->old_ctx = HMAC_CTX_new();
3021 if (ret->old_ctx == NULL)
3022 goto err;
3023 return ret;
3024 }
3025 #endif
3026 mac = EVP_MAC_fetch(ctx->libctx, "HMAC", NULL);
3027 if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
3028 goto err;
3029 EVP_MAC_free(mac);
3030 return ret;
3031 err:
3032 EVP_MAC_CTX_free(ret->ctx);
3033 EVP_MAC_free(mac);
3034 OPENSSL_free(ret);
3035 return NULL;
3036 }
3037
3038 void ssl_hmac_free(SSL_HMAC *ctx)
3039 {
3040 if (ctx != NULL) {
3041 EVP_MAC_CTX_free(ctx->ctx);
3042 #ifndef OPENSSL_NO_DEPRECATED_3_0
3043 HMAC_CTX_free(ctx->old_ctx);
3044 #endif
3045 OPENSSL_free(ctx);
3046 }
3047 }
3048
3049 #ifndef OPENSSL_NO_DEPRECATED_3_0
3050 HMAC_CTX *ssl_hmac_get0_HMAC_CTX(SSL_HMAC *ctx)
3051 {
3052 return ctx->old_ctx;
3053 }
3054 #endif
3055
3056 EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
3057 {
3058 return ctx->ctx;
3059 }
3060
3061 int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
3062 {
3063 OSSL_PARAM params[3], *p = params;
3064
3065 if (ctx->ctx != NULL) {
3066 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
3067 *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_KEY, key, len);
3068 *p = OSSL_PARAM_construct_end();
3069 if (EVP_MAC_CTX_set_params(ctx->ctx, params) && EVP_MAC_init(ctx->ctx))
3070 return 1;
3071 }
3072 #ifndef OPENSSL_NO_DEPRECATED_3_0
3073 if (ctx->old_ctx != NULL)
3074 return HMAC_Init_ex(ctx->old_ctx, key, len,
3075 EVP_get_digestbyname(md), NULL);
3076 #endif
3077 return 0;
3078 }
3079
3080 int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
3081 {
3082 if (ctx->ctx != NULL)
3083 return EVP_MAC_update(ctx->ctx, data, len);
3084 #ifndef OPENSSL_NO_DEPRECATED_3_0
3085 if (ctx->old_ctx != NULL)
3086 return HMAC_Update(ctx->old_ctx, data, len);
3087 #endif
3088 return 0;
3089 }
3090
3091 int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
3092 size_t max_size)
3093 {
3094 if (ctx->ctx != NULL)
3095 return EVP_MAC_final(ctx->ctx, md, len, max_size);
3096 #ifndef OPENSSL_NO_DEPRECATED_3_0
3097 if (ctx->old_ctx != NULL) {
3098 unsigned int l;
3099
3100 if (HMAC_Final(ctx->old_ctx, md, &l) > 0) {
3101 if (len != NULL)
3102 *len = l;
3103 return 1;
3104 }
3105 }
3106 #endif
3107 return 0;
3108 }
3109
3110 size_t ssl_hmac_size(const SSL_HMAC *ctx)
3111 {
3112 if (ctx->ctx != NULL)
3113 return EVP_MAC_size(ctx->ctx);
3114 #ifndef OPENSSL_NO_DEPRECATED_3_0
3115 if (ctx->old_ctx != NULL)
3116 return HMAC_size(ctx->old_ctx);
3117 #endif
3118 return 0;
3119 }
3120