]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/t1_lib.c
conn_is_closed should return 1 if get_last_sys_error is WSAECONNRESET
[thirdparty/openssl.git] / ssl / t1_lib.c
1 /*
2 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <openssl/objects.h>
13 #include <openssl/evp.h>
14 #include <openssl/hmac.h>
15 #include <openssl/ocsp.h>
16 #include <openssl/conf.h>
17 #include <openssl/x509v3.h>
18 #include <openssl/dh.h>
19 #include <openssl/bn.h>
20 #include "internal/nelem.h"
21 #include "ssl_locl.h"
22 #include <openssl/ct.h>
23
24 SSL3_ENC_METHOD const TLSv1_enc_data = {
25 tls1_enc,
26 tls1_mac,
27 tls1_setup_key_block,
28 tls1_generate_master_secret,
29 tls1_change_cipher_state,
30 tls1_final_finish_mac,
31 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
32 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
33 tls1_alert_code,
34 tls1_export_keying_material,
35 0,
36 ssl3_set_handshake_header,
37 tls_close_construct_packet,
38 ssl3_handshake_write
39 };
40
41 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
42 tls1_enc,
43 tls1_mac,
44 tls1_setup_key_block,
45 tls1_generate_master_secret,
46 tls1_change_cipher_state,
47 tls1_final_finish_mac,
48 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
49 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
50 tls1_alert_code,
51 tls1_export_keying_material,
52 SSL_ENC_FLAG_EXPLICIT_IV,
53 ssl3_set_handshake_header,
54 tls_close_construct_packet,
55 ssl3_handshake_write
56 };
57
58 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
59 tls1_enc,
60 tls1_mac,
61 tls1_setup_key_block,
62 tls1_generate_master_secret,
63 tls1_change_cipher_state,
64 tls1_final_finish_mac,
65 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
66 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
67 tls1_alert_code,
68 tls1_export_keying_material,
69 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
70 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
71 ssl3_set_handshake_header,
72 tls_close_construct_packet,
73 ssl3_handshake_write
74 };
75
76 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
77 tls13_enc,
78 tls1_mac,
79 tls13_setup_key_block,
80 tls13_generate_master_secret,
81 tls13_change_cipher_state,
82 tls13_final_finish_mac,
83 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
84 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
85 tls13_alert_code,
86 tls13_export_keying_material,
87 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
88 ssl3_set_handshake_header,
89 tls_close_construct_packet,
90 ssl3_handshake_write
91 };
92
93 long tls1_default_timeout(void)
94 {
95 /*
96 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
97 * http, the cache would over fill
98 */
99 return (60 * 60 * 2);
100 }
101
102 int tls1_new(SSL *s)
103 {
104 if (!ssl3_new(s))
105 return 0;
106 if (!s->method->ssl_clear(s))
107 return 0;
108
109 return 1;
110 }
111
112 void tls1_free(SSL *s)
113 {
114 OPENSSL_free(s->ext.session_ticket);
115 ssl3_free(s);
116 }
117
118 int tls1_clear(SSL *s)
119 {
120 if (!ssl3_clear(s))
121 return 0;
122
123 if (s->method->version == TLS_ANY_VERSION)
124 s->version = TLS_MAX_VERSION_INTERNAL;
125 else
126 s->version = s->method->version;
127
128 return 1;
129 }
130
131 #ifndef OPENSSL_NO_EC
132
133 /*
134 * Table of curve information.
135 * Do not delete entries or reorder this array! It is used as a lookup
136 * table: the index of each entry is one less than the TLS curve id.
137 */
138 static const TLS_GROUP_INFO nid_list[] = {
139 {NID_sect163k1, 80, TLS_CURVE_CHAR2}, /* sect163k1 (1) */
140 {NID_sect163r1, 80, TLS_CURVE_CHAR2}, /* sect163r1 (2) */
141 {NID_sect163r2, 80, TLS_CURVE_CHAR2}, /* sect163r2 (3) */
142 {NID_sect193r1, 80, TLS_CURVE_CHAR2}, /* sect193r1 (4) */
143 {NID_sect193r2, 80, TLS_CURVE_CHAR2}, /* sect193r2 (5) */
144 {NID_sect233k1, 112, TLS_CURVE_CHAR2}, /* sect233k1 (6) */
145 {NID_sect233r1, 112, TLS_CURVE_CHAR2}, /* sect233r1 (7) */
146 {NID_sect239k1, 112, TLS_CURVE_CHAR2}, /* sect239k1 (8) */
147 {NID_sect283k1, 128, TLS_CURVE_CHAR2}, /* sect283k1 (9) */
148 {NID_sect283r1, 128, TLS_CURVE_CHAR2}, /* sect283r1 (10) */
149 {NID_sect409k1, 192, TLS_CURVE_CHAR2}, /* sect409k1 (11) */
150 {NID_sect409r1, 192, TLS_CURVE_CHAR2}, /* sect409r1 (12) */
151 {NID_sect571k1, 256, TLS_CURVE_CHAR2}, /* sect571k1 (13) */
152 {NID_sect571r1, 256, TLS_CURVE_CHAR2}, /* sect571r1 (14) */
153 {NID_secp160k1, 80, TLS_CURVE_PRIME}, /* secp160k1 (15) */
154 {NID_secp160r1, 80, TLS_CURVE_PRIME}, /* secp160r1 (16) */
155 {NID_secp160r2, 80, TLS_CURVE_PRIME}, /* secp160r2 (17) */
156 {NID_secp192k1, 80, TLS_CURVE_PRIME}, /* secp192k1 (18) */
157 {NID_X9_62_prime192v1, 80, TLS_CURVE_PRIME}, /* secp192r1 (19) */
158 {NID_secp224k1, 112, TLS_CURVE_PRIME}, /* secp224k1 (20) */
159 {NID_secp224r1, 112, TLS_CURVE_PRIME}, /* secp224r1 (21) */
160 {NID_secp256k1, 128, TLS_CURVE_PRIME}, /* secp256k1 (22) */
161 {NID_X9_62_prime256v1, 128, TLS_CURVE_PRIME}, /* secp256r1 (23) */
162 {NID_secp384r1, 192, TLS_CURVE_PRIME}, /* secp384r1 (24) */
163 {NID_secp521r1, 256, TLS_CURVE_PRIME}, /* secp521r1 (25) */
164 {NID_brainpoolP256r1, 128, TLS_CURVE_PRIME}, /* brainpoolP256r1 (26) */
165 {NID_brainpoolP384r1, 192, TLS_CURVE_PRIME}, /* brainpoolP384r1 (27) */
166 {NID_brainpoolP512r1, 256, TLS_CURVE_PRIME}, /* brainpool512r1 (28) */
167 {EVP_PKEY_X25519, 128, TLS_CURVE_CUSTOM}, /* X25519 (29) */
168 {EVP_PKEY_X448, 224, TLS_CURVE_CUSTOM}, /* X448 (30) */
169 };
170
171 static const unsigned char ecformats_default[] = {
172 TLSEXT_ECPOINTFORMAT_uncompressed,
173 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
174 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
175 };
176
177 /* The default curves */
178 static const uint16_t eccurves_default[] = {
179 29, /* X25519 (29) */
180 23, /* secp256r1 (23) */
181 30, /* X448 (30) */
182 25, /* secp521r1 (25) */
183 24, /* secp384r1 (24) */
184 };
185
186 static const uint16_t suiteb_curves[] = {
187 TLSEXT_curve_P_256,
188 TLSEXT_curve_P_384
189 };
190
191 const TLS_GROUP_INFO *tls1_group_id_lookup(uint16_t group_id)
192 {
193 /* ECC curves from RFC 4492 and RFC 7027 */
194 if (group_id < 1 || group_id > OSSL_NELEM(nid_list))
195 return NULL;
196 return &nid_list[group_id - 1];
197 }
198
199 static uint16_t tls1_nid2group_id(int nid)
200 {
201 size_t i;
202 for (i = 0; i < OSSL_NELEM(nid_list); i++) {
203 if (nid_list[i].nid == nid)
204 return (uint16_t)(i + 1);
205 }
206 return 0;
207 }
208
209 /*
210 * Set *pgroups to the supported groups list and *pgroupslen to
211 * the number of groups supported.
212 */
213 void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups,
214 size_t *pgroupslen)
215 {
216
217 /* For Suite B mode only include P-256, P-384 */
218 switch (tls1_suiteb(s)) {
219 case SSL_CERT_FLAG_SUITEB_128_LOS:
220 *pgroups = suiteb_curves;
221 *pgroupslen = OSSL_NELEM(suiteb_curves);
222 break;
223
224 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
225 *pgroups = suiteb_curves;
226 *pgroupslen = 1;
227 break;
228
229 case SSL_CERT_FLAG_SUITEB_192_LOS:
230 *pgroups = suiteb_curves + 1;
231 *pgroupslen = 1;
232 break;
233
234 default:
235 if (s->ext.supportedgroups == NULL) {
236 *pgroups = eccurves_default;
237 *pgroupslen = OSSL_NELEM(eccurves_default);
238 } else {
239 *pgroups = s->ext.supportedgroups;
240 *pgroupslen = s->ext.supportedgroups_len;
241 }
242 break;
243 }
244 }
245
246 /* See if curve is allowed by security callback */
247 int tls_curve_allowed(SSL *s, uint16_t curve, int op)
248 {
249 const TLS_GROUP_INFO *cinfo = tls1_group_id_lookup(curve);
250 unsigned char ctmp[2];
251
252 if (cinfo == NULL)
253 return 0;
254 # ifdef OPENSSL_NO_EC2M
255 if (cinfo->flags & TLS_CURVE_CHAR2)
256 return 0;
257 # endif
258 ctmp[0] = curve >> 8;
259 ctmp[1] = curve & 0xff;
260 return ssl_security(s, op, cinfo->secbits, cinfo->nid, (void *)ctmp);
261 }
262
263 /* Return 1 if "id" is in "list" */
264 static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
265 {
266 size_t i;
267 for (i = 0; i < listlen; i++)
268 if (list[i] == id)
269 return 1;
270 return 0;
271 }
272
273 /*-
274 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
275 * if there is no match.
276 * For nmatch == -1, return number of matches
277 * For nmatch == -2, return the id of the group to use for
278 * a tmp key, or 0 if there is no match.
279 */
280 uint16_t tls1_shared_group(SSL *s, int nmatch)
281 {
282 const uint16_t *pref, *supp;
283 size_t num_pref, num_supp, i;
284 int k;
285
286 /* Can't do anything on client side */
287 if (s->server == 0)
288 return 0;
289 if (nmatch == -2) {
290 if (tls1_suiteb(s)) {
291 /*
292 * For Suite B ciphersuite determines curve: we already know
293 * these are acceptable due to previous checks.
294 */
295 unsigned long cid = s->s3->tmp.new_cipher->id;
296
297 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
298 return TLSEXT_curve_P_256;
299 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
300 return TLSEXT_curve_P_384;
301 /* Should never happen */
302 return 0;
303 }
304 /* If not Suite B just return first preference shared curve */
305 nmatch = 0;
306 }
307 /*
308 * If server preference set, our groups are the preference order
309 * otherwise peer decides.
310 */
311 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
312 tls1_get_supported_groups(s, &pref, &num_pref);
313 tls1_get_peer_groups(s, &supp, &num_supp);
314 } else {
315 tls1_get_peer_groups(s, &pref, &num_pref);
316 tls1_get_supported_groups(s, &supp, &num_supp);
317 }
318
319 for (k = 0, i = 0; i < num_pref; i++) {
320 uint16_t id = pref[i];
321
322 if (!tls1_in_list(id, supp, num_supp)
323 || !tls_curve_allowed(s, id, SSL_SECOP_CURVE_SHARED))
324 continue;
325 if (nmatch == k)
326 return id;
327 k++;
328 }
329 if (nmatch == -1)
330 return k;
331 /* Out of range (nmatch > k). */
332 return 0;
333 }
334
335 int tls1_set_groups(uint16_t **pext, size_t *pextlen,
336 int *groups, size_t ngroups)
337 {
338 uint16_t *glist;
339 size_t i;
340 /*
341 * Bitmap of groups included to detect duplicates: only works while group
342 * ids < 32
343 */
344 unsigned long dup_list = 0;
345
346 if (ngroups == 0) {
347 SSLerr(SSL_F_TLS1_SET_GROUPS, SSL_R_BAD_LENGTH);
348 return 0;
349 }
350 if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) {
351 SSLerr(SSL_F_TLS1_SET_GROUPS, ERR_R_MALLOC_FAILURE);
352 return 0;
353 }
354 for (i = 0; i < ngroups; i++) {
355 unsigned long idmask;
356 uint16_t id;
357 /* TODO(TLS1.3): Convert for DH groups */
358 id = tls1_nid2group_id(groups[i]);
359 idmask = 1L << id;
360 if (!id || (dup_list & idmask)) {
361 OPENSSL_free(glist);
362 return 0;
363 }
364 dup_list |= idmask;
365 glist[i] = id;
366 }
367 OPENSSL_free(*pext);
368 *pext = glist;
369 *pextlen = ngroups;
370 return 1;
371 }
372
373 # define MAX_CURVELIST OSSL_NELEM(nid_list)
374
375 typedef struct {
376 size_t nidcnt;
377 int nid_arr[MAX_CURVELIST];
378 } nid_cb_st;
379
380 static int nid_cb(const char *elem, int len, void *arg)
381 {
382 nid_cb_st *narg = arg;
383 size_t i;
384 int nid;
385 char etmp[20];
386 if (elem == NULL)
387 return 0;
388 if (narg->nidcnt == MAX_CURVELIST)
389 return 0;
390 if (len > (int)(sizeof(etmp) - 1))
391 return 0;
392 memcpy(etmp, elem, len);
393 etmp[len] = 0;
394 nid = EC_curve_nist2nid(etmp);
395 if (nid == NID_undef)
396 nid = OBJ_sn2nid(etmp);
397 if (nid == NID_undef)
398 nid = OBJ_ln2nid(etmp);
399 if (nid == NID_undef)
400 return 0;
401 for (i = 0; i < narg->nidcnt; i++)
402 if (narg->nid_arr[i] == nid)
403 return 0;
404 narg->nid_arr[narg->nidcnt++] = nid;
405 return 1;
406 }
407
408 /* Set groups based on a colon separate list */
409 int tls1_set_groups_list(uint16_t **pext, size_t *pextlen, const char *str)
410 {
411 nid_cb_st ncb;
412 ncb.nidcnt = 0;
413 if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb))
414 return 0;
415 if (pext == NULL)
416 return 1;
417 return tls1_set_groups(pext, pextlen, ncb.nid_arr, ncb.nidcnt);
418 }
419 /* Return group id of a key */
420 static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
421 {
422 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey);
423 const EC_GROUP *grp;
424
425 if (ec == NULL)
426 return 0;
427 grp = EC_KEY_get0_group(ec);
428 return tls1_nid2group_id(EC_GROUP_get_curve_name(grp));
429 }
430
431 /* Check a key is compatible with compression extension */
432 static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey)
433 {
434 const EC_KEY *ec;
435 const EC_GROUP *grp;
436 unsigned char comp_id;
437 size_t i;
438
439 /* If not an EC key nothing to check */
440 if (EVP_PKEY_id(pkey) != EVP_PKEY_EC)
441 return 1;
442 ec = EVP_PKEY_get0_EC_KEY(pkey);
443 grp = EC_KEY_get0_group(ec);
444
445 /* Get required compression id */
446 if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_UNCOMPRESSED) {
447 comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
448 } else if (SSL_IS_TLS13(s)) {
449 /*
450 * ec_point_formats extension is not used in TLSv1.3 so we ignore
451 * this check.
452 */
453 return 1;
454 } else {
455 int field_type = EC_METHOD_get_field_type(EC_GROUP_method_of(grp));
456
457 if (field_type == NID_X9_62_prime_field)
458 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
459 else if (field_type == NID_X9_62_characteristic_two_field)
460 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
461 else
462 return 0;
463 }
464 /*
465 * If point formats extension present check it, otherwise everything is
466 * supported (see RFC4492).
467 */
468 if (s->session->ext.ecpointformats == NULL)
469 return 1;
470
471 for (i = 0; i < s->session->ext.ecpointformats_len; i++) {
472 if (s->session->ext.ecpointformats[i] == comp_id)
473 return 1;
474 }
475 return 0;
476 }
477
478 /* Check a group id matches preferences */
479 int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)
480 {
481 const uint16_t *groups;
482 size_t groups_len;
483
484 if (group_id == 0)
485 return 0;
486
487 /* Check for Suite B compliance */
488 if (tls1_suiteb(s) && s->s3->tmp.new_cipher != NULL) {
489 unsigned long cid = s->s3->tmp.new_cipher->id;
490
491 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
492 if (group_id != TLSEXT_curve_P_256)
493 return 0;
494 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
495 if (group_id != TLSEXT_curve_P_384)
496 return 0;
497 } else {
498 /* Should never happen */
499 return 0;
500 }
501 }
502
503 if (check_own_groups) {
504 /* Check group is one of our preferences */
505 tls1_get_supported_groups(s, &groups, &groups_len);
506 if (!tls1_in_list(group_id, groups, groups_len))
507 return 0;
508 }
509
510 if (!tls_curve_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
511 return 0;
512
513 /* For clients, nothing more to check */
514 if (!s->server)
515 return 1;
516
517 /* Check group is one of peers preferences */
518 tls1_get_peer_groups(s, &groups, &groups_len);
519
520 /*
521 * RFC 4492 does not require the supported elliptic curves extension
522 * so if it is not sent we can just choose any curve.
523 * It is invalid to send an empty list in the supported groups
524 * extension, so groups_len == 0 always means no extension.
525 */
526 if (groups_len == 0)
527 return 1;
528 return tls1_in_list(group_id, groups, groups_len);
529 }
530
531 void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
532 size_t *num_formats)
533 {
534 /*
535 * If we have a custom point format list use it otherwise use default
536 */
537 if (s->ext.ecpointformats) {
538 *pformats = s->ext.ecpointformats;
539 *num_formats = s->ext.ecpointformats_len;
540 } else {
541 *pformats = ecformats_default;
542 /* For Suite B we don't support char2 fields */
543 if (tls1_suiteb(s))
544 *num_formats = sizeof(ecformats_default) - 1;
545 else
546 *num_formats = sizeof(ecformats_default);
547 }
548 }
549
550 /*
551 * Check cert parameters compatible with extensions: currently just checks EC
552 * certificates have compatible curves and compression.
553 */
554 static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
555 {
556 uint16_t group_id;
557 EVP_PKEY *pkey;
558 pkey = X509_get0_pubkey(x);
559 if (pkey == NULL)
560 return 0;
561 /* If not EC nothing to do */
562 if (EVP_PKEY_id(pkey) != EVP_PKEY_EC)
563 return 1;
564 /* Check compression */
565 if (!tls1_check_pkey_comp(s, pkey))
566 return 0;
567 group_id = tls1_get_group_id(pkey);
568 /*
569 * For a server we allow the certificate to not be in our list of supported
570 * groups.
571 */
572 if (!tls1_check_group_id(s, group_id, !s->server))
573 return 0;
574 /*
575 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
576 * SHA384+P-384.
577 */
578 if (check_ee_md && tls1_suiteb(s)) {
579 int check_md;
580 size_t i;
581 CERT *c = s->cert;
582
583 /* Check to see we have necessary signing algorithm */
584 if (group_id == TLSEXT_curve_P_256)
585 check_md = NID_ecdsa_with_SHA256;
586 else if (group_id == TLSEXT_curve_P_384)
587 check_md = NID_ecdsa_with_SHA384;
588 else
589 return 0; /* Should never happen */
590 for (i = 0; i < c->shared_sigalgslen; i++) {
591 if (check_md == c->shared_sigalgs[i]->sigandhash)
592 return 1;;
593 }
594 return 0;
595 }
596 return 1;
597 }
598
599 /*
600 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
601 * @s: SSL connection
602 * @cid: Cipher ID we're considering using
603 *
604 * Checks that the kECDHE cipher suite we're considering using
605 * is compatible with the client extensions.
606 *
607 * Returns 0 when the cipher can't be used or 1 when it can.
608 */
609 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
610 {
611 /* If not Suite B just need a shared group */
612 if (!tls1_suiteb(s))
613 return tls1_shared_group(s, 0) != 0;
614 /*
615 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
616 * curves permitted.
617 */
618 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
619 return tls1_check_group_id(s, TLSEXT_curve_P_256, 1);
620 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
621 return tls1_check_group_id(s, TLSEXT_curve_P_384, 1);
622
623 return 0;
624 }
625
626 #else
627
628 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
629 {
630 return 1;
631 }
632
633 #endif /* OPENSSL_NO_EC */
634
635 /* Default sigalg schemes */
636 static const uint16_t tls12_sigalgs[] = {
637 #ifndef OPENSSL_NO_EC
638 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
639 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
640 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
641 TLSEXT_SIGALG_ed25519,
642 TLSEXT_SIGALG_ed448,
643 #endif
644
645 TLSEXT_SIGALG_rsa_pss_pss_sha256,
646 TLSEXT_SIGALG_rsa_pss_pss_sha384,
647 TLSEXT_SIGALG_rsa_pss_pss_sha512,
648 TLSEXT_SIGALG_rsa_pss_rsae_sha256,
649 TLSEXT_SIGALG_rsa_pss_rsae_sha384,
650 TLSEXT_SIGALG_rsa_pss_rsae_sha512,
651
652 TLSEXT_SIGALG_rsa_pkcs1_sha256,
653 TLSEXT_SIGALG_rsa_pkcs1_sha384,
654 TLSEXT_SIGALG_rsa_pkcs1_sha512,
655
656 #ifndef OPENSSL_NO_EC
657 TLSEXT_SIGALG_ecdsa_sha224,
658 TLSEXT_SIGALG_ecdsa_sha1,
659 #endif
660 TLSEXT_SIGALG_rsa_pkcs1_sha224,
661 TLSEXT_SIGALG_rsa_pkcs1_sha1,
662 #ifndef OPENSSL_NO_DSA
663 TLSEXT_SIGALG_dsa_sha224,
664 TLSEXT_SIGALG_dsa_sha1,
665
666 TLSEXT_SIGALG_dsa_sha256,
667 TLSEXT_SIGALG_dsa_sha384,
668 TLSEXT_SIGALG_dsa_sha512,
669 #endif
670 #ifndef OPENSSL_NO_GOST
671 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
672 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
673 TLSEXT_SIGALG_gostr34102001_gostr3411,
674 #endif
675 };
676
677 #ifndef OPENSSL_NO_EC
678 static const uint16_t suiteb_sigalgs[] = {
679 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
680 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
681 };
682 #endif
683
684 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
685 #ifndef OPENSSL_NO_EC
686 {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
687 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
688 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1},
689 {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
690 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
691 NID_ecdsa_with_SHA384, NID_secp384r1},
692 {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
693 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
694 NID_ecdsa_with_SHA512, NID_secp521r1},
695 {"ed25519", TLSEXT_SIGALG_ed25519,
696 NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
697 NID_undef, NID_undef},
698 {"ed448", TLSEXT_SIGALG_ed448,
699 NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
700 NID_undef, NID_undef},
701 {NULL, TLSEXT_SIGALG_ecdsa_sha224,
702 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
703 NID_ecdsa_with_SHA224, NID_undef},
704 {NULL, TLSEXT_SIGALG_ecdsa_sha1,
705 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
706 NID_ecdsa_with_SHA1, NID_undef},
707 #endif
708 {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
709 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
710 NID_undef, NID_undef},
711 {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
712 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
713 NID_undef, NID_undef},
714 {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
715 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
716 NID_undef, NID_undef},
717 {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
718 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
719 NID_undef, NID_undef},
720 {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
721 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
722 NID_undef, NID_undef},
723 {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
724 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
725 NID_undef, NID_undef},
726 {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
727 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
728 NID_sha256WithRSAEncryption, NID_undef},
729 {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
730 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
731 NID_sha384WithRSAEncryption, NID_undef},
732 {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
733 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
734 NID_sha512WithRSAEncryption, NID_undef},
735 {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
736 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
737 NID_sha224WithRSAEncryption, NID_undef},
738 {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
739 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
740 NID_sha1WithRSAEncryption, NID_undef},
741 #ifndef OPENSSL_NO_DSA
742 {NULL, TLSEXT_SIGALG_dsa_sha256,
743 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
744 NID_dsa_with_SHA256, NID_undef},
745 {NULL, TLSEXT_SIGALG_dsa_sha384,
746 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
747 NID_undef, NID_undef},
748 {NULL, TLSEXT_SIGALG_dsa_sha512,
749 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
750 NID_undef, NID_undef},
751 {NULL, TLSEXT_SIGALG_dsa_sha224,
752 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
753 NID_undef, NID_undef},
754 {NULL, TLSEXT_SIGALG_dsa_sha1,
755 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
756 NID_dsaWithSHA1, NID_undef},
757 #endif
758 #ifndef OPENSSL_NO_GOST
759 {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
760 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
761 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
762 NID_undef, NID_undef},
763 {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
764 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
765 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
766 NID_undef, NID_undef},
767 {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
768 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
769 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
770 NID_undef, NID_undef}
771 #endif
772 };
773 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
774 static const SIGALG_LOOKUP legacy_rsa_sigalg = {
775 "rsa_pkcs1_md5_sha1", 0,
776 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
777 EVP_PKEY_RSA, SSL_PKEY_RSA,
778 NID_undef, NID_undef
779 };
780
781 /*
782 * Default signature algorithm values used if signature algorithms not present.
783 * From RFC5246. Note: order must match certificate index order.
784 */
785 static const uint16_t tls_default_sigalg[] = {
786 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
787 0, /* SSL_PKEY_RSA_PSS_SIGN */
788 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
789 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
790 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
791 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, /* SSL_PKEY_GOST12_256 */
792 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, /* SSL_PKEY_GOST12_512 */
793 0, /* SSL_PKEY_ED25519 */
794 0, /* SSL_PKEY_ED448 */
795 };
796
797 /* Lookup TLS signature algorithm */
798 static const SIGALG_LOOKUP *tls1_lookup_sigalg(uint16_t sigalg)
799 {
800 size_t i;
801 const SIGALG_LOOKUP *s;
802
803 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
804 i++, s++) {
805 if (s->sigalg == sigalg)
806 return s;
807 }
808 return NULL;
809 }
810 /* Lookup hash: return 0 if invalid or not enabled */
811 int tls1_lookup_md(const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
812 {
813 const EVP_MD *md;
814 if (lu == NULL)
815 return 0;
816 /* lu->hash == NID_undef means no associated digest */
817 if (lu->hash == NID_undef) {
818 md = NULL;
819 } else {
820 md = ssl_md(lu->hash_idx);
821 if (md == NULL)
822 return 0;
823 }
824 if (pmd)
825 *pmd = md;
826 return 1;
827 }
828
829 /*
830 * Check if key is large enough to generate RSA-PSS signature.
831 *
832 * The key must greater than or equal to 2 * hash length + 2.
833 * SHA512 has a hash length of 64 bytes, which is incompatible
834 * with a 128 byte (1024 bit) key.
835 */
836 #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_size(md) + 2)
837 static int rsa_pss_check_min_key_size(const RSA *rsa, const SIGALG_LOOKUP *lu)
838 {
839 const EVP_MD *md;
840
841 if (rsa == NULL)
842 return 0;
843 if (!tls1_lookup_md(lu, &md) || md == NULL)
844 return 0;
845 if (RSA_size(rsa) < RSA_PSS_MINIMUM_KEY_SIZE(md))
846 return 0;
847 return 1;
848 }
849
850 /*
851 * Return a signature algorithm for TLS < 1.2 where the signature type
852 * is fixed by the certificate type.
853 */
854 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
855 {
856 if (idx == -1) {
857 if (s->server) {
858 size_t i;
859
860 /* Work out index corresponding to ciphersuite */
861 for (i = 0; i < SSL_PKEY_NUM; i++) {
862 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);
863
864 if (clu->amask & s->s3->tmp.new_cipher->algorithm_auth) {
865 idx = i;
866 break;
867 }
868 }
869
870 /*
871 * Some GOST ciphersuites allow more than one signature algorithms
872 * */
873 if (idx == SSL_PKEY_GOST01 && s->s3->tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
874 int real_idx;
875
876 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
877 real_idx--) {
878 if (s->cert->pkeys[real_idx].privatekey != NULL) {
879 idx = real_idx;
880 break;
881 }
882 }
883 }
884 } else {
885 idx = s->cert->key - s->cert->pkeys;
886 }
887 }
888 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
889 return NULL;
890 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
891 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(tls_default_sigalg[idx]);
892
893 if (!tls1_lookup_md(lu, NULL))
894 return NULL;
895 return lu;
896 }
897 return &legacy_rsa_sigalg;
898 }
899 /* Set peer sigalg based key type */
900 int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
901 {
902 size_t idx;
903 const SIGALG_LOOKUP *lu;
904
905 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
906 return 0;
907 lu = tls1_get_legacy_sigalg(s, idx);
908 if (lu == NULL)
909 return 0;
910 s->s3->tmp.peer_sigalg = lu;
911 return 1;
912 }
913
914 size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
915 {
916 /*
917 * If Suite B mode use Suite B sigalgs only, ignore any other
918 * preferences.
919 */
920 #ifndef OPENSSL_NO_EC
921 switch (tls1_suiteb(s)) {
922 case SSL_CERT_FLAG_SUITEB_128_LOS:
923 *psigs = suiteb_sigalgs;
924 return OSSL_NELEM(suiteb_sigalgs);
925
926 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
927 *psigs = suiteb_sigalgs;
928 return 1;
929
930 case SSL_CERT_FLAG_SUITEB_192_LOS:
931 *psigs = suiteb_sigalgs + 1;
932 return 1;
933 }
934 #endif
935 /*
936 * We use client_sigalgs (if not NULL) if we're a server
937 * and sending a certificate request or if we're a client and
938 * determining which shared algorithm to use.
939 */
940 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
941 *psigs = s->cert->client_sigalgs;
942 return s->cert->client_sigalgslen;
943 } else if (s->cert->conf_sigalgs) {
944 *psigs = s->cert->conf_sigalgs;
945 return s->cert->conf_sigalgslen;
946 } else {
947 *psigs = tls12_sigalgs;
948 return OSSL_NELEM(tls12_sigalgs);
949 }
950 }
951
952 #ifndef OPENSSL_NO_EC
953 /*
954 * Called by servers only. Checks that we have a sig alg that supports the
955 * specified EC curve.
956 */
957 int tls_check_sigalg_curve(const SSL *s, int curve)
958 {
959 const uint16_t *sigs;
960 size_t siglen, i;
961
962 if (s->cert->conf_sigalgs) {
963 sigs = s->cert->conf_sigalgs;
964 siglen = s->cert->conf_sigalgslen;
965 } else {
966 sigs = tls12_sigalgs;
967 siglen = OSSL_NELEM(tls12_sigalgs);
968 }
969
970 for (i = 0; i < siglen; i++) {
971 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(sigs[i]);
972
973 if (lu == NULL)
974 continue;
975 if (lu->sig == EVP_PKEY_EC
976 && lu->curve != NID_undef
977 && curve == lu->curve)
978 return 1;
979 }
980
981 return 0;
982 }
983 #endif
984
985 /*
986 * Check signature algorithm is consistent with sent supported signature
987 * algorithms and if so set relevant digest and signature scheme in
988 * s.
989 */
990 int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
991 {
992 const uint16_t *sent_sigs;
993 const EVP_MD *md = NULL;
994 char sigalgstr[2];
995 size_t sent_sigslen, i, cidx;
996 int pkeyid = EVP_PKEY_id(pkey);
997 const SIGALG_LOOKUP *lu;
998
999 /* Should never happen */
1000 if (pkeyid == -1)
1001 return -1;
1002 if (SSL_IS_TLS13(s)) {
1003 /* Disallow DSA for TLS 1.3 */
1004 if (pkeyid == EVP_PKEY_DSA) {
1005 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1006 SSL_R_WRONG_SIGNATURE_TYPE);
1007 return 0;
1008 }
1009 /* Only allow PSS for TLS 1.3 */
1010 if (pkeyid == EVP_PKEY_RSA)
1011 pkeyid = EVP_PKEY_RSA_PSS;
1012 }
1013 lu = tls1_lookup_sigalg(sig);
1014 /*
1015 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1016 * is consistent with signature: RSA keys can be used for RSA-PSS
1017 */
1018 if (lu == NULL
1019 || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1020 || (pkeyid != lu->sig
1021 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1022 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1023 SSL_R_WRONG_SIGNATURE_TYPE);
1024 return 0;
1025 }
1026 /* Check the sigalg is consistent with the key OID */
1027 if (!ssl_cert_lookup_by_nid(EVP_PKEY_id(pkey), &cidx)
1028 || lu->sig_idx != (int)cidx) {
1029 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1030 SSL_R_WRONG_SIGNATURE_TYPE);
1031 return 0;
1032 }
1033
1034 #ifndef OPENSSL_NO_EC
1035 if (pkeyid == EVP_PKEY_EC) {
1036
1037 /* Check point compression is permitted */
1038 if (!tls1_check_pkey_comp(s, pkey)) {
1039 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1040 SSL_F_TLS12_CHECK_PEER_SIGALG,
1041 SSL_R_ILLEGAL_POINT_COMPRESSION);
1042 return 0;
1043 }
1044
1045 /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1046 if (SSL_IS_TLS13(s) || tls1_suiteb(s)) {
1047 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey);
1048 int curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
1049
1050 if (lu->curve != NID_undef && curve != lu->curve) {
1051 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1052 SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
1053 return 0;
1054 }
1055 }
1056 if (!SSL_IS_TLS13(s)) {
1057 /* Check curve matches extensions */
1058 if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1059 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1060 SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
1061 return 0;
1062 }
1063 if (tls1_suiteb(s)) {
1064 /* Check sigalg matches a permissible Suite B value */
1065 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1066 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1067 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1068 SSL_F_TLS12_CHECK_PEER_SIGALG,
1069 SSL_R_WRONG_SIGNATURE_TYPE);
1070 return 0;
1071 }
1072 }
1073 }
1074 } else if (tls1_suiteb(s)) {
1075 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1076 SSL_R_WRONG_SIGNATURE_TYPE);
1077 return 0;
1078 }
1079 #endif
1080
1081 /* Check signature matches a type we sent */
1082 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1083 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1084 if (sig == *sent_sigs)
1085 break;
1086 }
1087 /* Allow fallback to SHA1 if not strict mode */
1088 if (i == sent_sigslen && (lu->hash != NID_sha1
1089 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1090 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1091 SSL_R_WRONG_SIGNATURE_TYPE);
1092 return 0;
1093 }
1094 if (!tls1_lookup_md(lu, &md)) {
1095 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1096 SSL_R_UNKNOWN_DIGEST);
1097 return 0;
1098 }
1099 if (md != NULL) {
1100 /*
1101 * Make sure security callback allows algorithm. For historical
1102 * reasons we have to pass the sigalg as a two byte char array.
1103 */
1104 sigalgstr[0] = (sig >> 8) & 0xff;
1105 sigalgstr[1] = sig & 0xff;
1106 if (!ssl_security(s, SSL_SECOP_SIGALG_CHECK,
1107 EVP_MD_size(md) * 4, EVP_MD_type(md),
1108 (void *)sigalgstr)) {
1109 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1110 SSL_R_WRONG_SIGNATURE_TYPE);
1111 return 0;
1112 }
1113 }
1114 /* Store the sigalg the peer uses */
1115 s->s3->tmp.peer_sigalg = lu;
1116 return 1;
1117 }
1118
1119 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1120 {
1121 if (s->s3->tmp.peer_sigalg == NULL)
1122 return 0;
1123 *pnid = s->s3->tmp.peer_sigalg->sig;
1124 return 1;
1125 }
1126
1127 int SSL_get_signature_type_nid(const SSL *s, int *pnid)
1128 {
1129 if (s->s3->tmp.sigalg == NULL)
1130 return 0;
1131 *pnid = s->s3->tmp.sigalg->sig;
1132 return 1;
1133 }
1134
1135 /*
1136 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
1137 * supported, doesn't appear in supported signature algorithms, isn't supported
1138 * by the enabled protocol versions or by the security level.
1139 *
1140 * This function should only be used for checking which ciphers are supported
1141 * by the client.
1142 *
1143 * Call ssl_cipher_disabled() to check that it's enabled or not.
1144 */
1145 int ssl_set_client_disabled(SSL *s)
1146 {
1147 s->s3->tmp.mask_a = 0;
1148 s->s3->tmp.mask_k = 0;
1149 ssl_set_sig_mask(&s->s3->tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
1150 if (ssl_get_min_max_version(s, &s->s3->tmp.min_ver,
1151 &s->s3->tmp.max_ver, NULL) != 0)
1152 return 0;
1153 #ifndef OPENSSL_NO_PSK
1154 /* with PSK there must be client callback set */
1155 if (!s->psk_client_callback) {
1156 s->s3->tmp.mask_a |= SSL_aPSK;
1157 s->s3->tmp.mask_k |= SSL_PSK;
1158 }
1159 #endif /* OPENSSL_NO_PSK */
1160 #ifndef OPENSSL_NO_SRP
1161 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1162 s->s3->tmp.mask_a |= SSL_aSRP;
1163 s->s3->tmp.mask_k |= SSL_kSRP;
1164 }
1165 #endif
1166 return 1;
1167 }
1168
1169 /*
1170 * ssl_cipher_disabled - check that a cipher is disabled or not
1171 * @s: SSL connection that you want to use the cipher on
1172 * @c: cipher to check
1173 * @op: Security check that you want to do
1174 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
1175 *
1176 * Returns 1 when it's disabled, 0 when enabled.
1177 */
1178 int ssl_cipher_disabled(SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
1179 {
1180 if (c->algorithm_mkey & s->s3->tmp.mask_k
1181 || c->algorithm_auth & s->s3->tmp.mask_a)
1182 return 1;
1183 if (s->s3->tmp.max_ver == 0)
1184 return 1;
1185 if (!SSL_IS_DTLS(s)) {
1186 int min_tls = c->min_tls;
1187
1188 /*
1189 * For historical reasons we will allow ECHDE to be selected by a server
1190 * in SSLv3 if we are a client
1191 */
1192 if (min_tls == TLS1_VERSION && ecdhe
1193 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
1194 min_tls = SSL3_VERSION;
1195
1196 if ((min_tls > s->s3->tmp.max_ver) || (c->max_tls < s->s3->tmp.min_ver))
1197 return 1;
1198 }
1199 if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3->tmp.max_ver)
1200 || DTLS_VERSION_LT(c->max_dtls, s->s3->tmp.min_ver)))
1201 return 1;
1202
1203 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1204 }
1205
1206 int tls_use_ticket(SSL *s)
1207 {
1208 if ((s->options & SSL_OP_NO_TICKET))
1209 return 0;
1210 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1211 }
1212
1213 int tls1_set_server_sigalgs(SSL *s)
1214 {
1215 size_t i;
1216
1217 /* Clear any shared signature algorithms */
1218 OPENSSL_free(s->cert->shared_sigalgs);
1219 s->cert->shared_sigalgs = NULL;
1220 s->cert->shared_sigalgslen = 0;
1221 /* Clear certificate validity flags */
1222 for (i = 0; i < SSL_PKEY_NUM; i++)
1223 s->s3->tmp.valid_flags[i] = 0;
1224 /*
1225 * If peer sent no signature algorithms check to see if we support
1226 * the default algorithm for each certificate type
1227 */
1228 if (s->s3->tmp.peer_cert_sigalgs == NULL
1229 && s->s3->tmp.peer_sigalgs == NULL) {
1230 const uint16_t *sent_sigs;
1231 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1232
1233 for (i = 0; i < SSL_PKEY_NUM; i++) {
1234 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
1235 size_t j;
1236
1237 if (lu == NULL)
1238 continue;
1239 /* Check default matches a type we sent */
1240 for (j = 0; j < sent_sigslen; j++) {
1241 if (lu->sigalg == sent_sigs[j]) {
1242 s->s3->tmp.valid_flags[i] = CERT_PKEY_SIGN;
1243 break;
1244 }
1245 }
1246 }
1247 return 1;
1248 }
1249
1250 if (!tls1_process_sigalgs(s)) {
1251 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
1252 SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_INTERNAL_ERROR);
1253 return 0;
1254 }
1255 if (s->cert->shared_sigalgs != NULL)
1256 return 1;
1257
1258 /* Fatal error if no shared signature algorithms */
1259 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS1_SET_SERVER_SIGALGS,
1260 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1261 return 0;
1262 }
1263
1264 /*-
1265 * Gets the ticket information supplied by the client if any.
1266 *
1267 * hello: The parsed ClientHello data
1268 * ret: (output) on return, if a ticket was decrypted, then this is set to
1269 * point to the resulting session.
1270 */
1271 SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1272 SSL_SESSION **ret)
1273 {
1274 size_t size;
1275 RAW_EXTENSION *ticketext;
1276
1277 *ret = NULL;
1278 s->ext.ticket_expected = 0;
1279
1280 /*
1281 * If tickets disabled or not supported by the protocol version
1282 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1283 * resumption.
1284 */
1285 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1286 return SSL_TICKET_NONE;
1287
1288 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1289 if (!ticketext->present)
1290 return SSL_TICKET_NONE;
1291
1292 size = PACKET_remaining(&ticketext->data);
1293
1294 return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1295 hello->session_id, hello->session_id_len, ret);
1296 }
1297
1298 /*-
1299 * tls_decrypt_ticket attempts to decrypt a session ticket.
1300 *
1301 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
1302 * expecting a pre-shared key ciphersuite, in which case we have no use for
1303 * session tickets and one will never be decrypted, nor will
1304 * s->ext.ticket_expected be set to 1.
1305 *
1306 * Side effects:
1307 * Sets s->ext.ticket_expected to 1 if the server will have to issue
1308 * a new session ticket to the client because the client indicated support
1309 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1310 * a session ticket or we couldn't use the one it gave us, or if
1311 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1312 * Otherwise, s->ext.ticket_expected is set to 0.
1313 *
1314 * etick: points to the body of the session ticket extension.
1315 * eticklen: the length of the session tickets extension.
1316 * sess_id: points at the session ID.
1317 * sesslen: the length of the session ID.
1318 * psess: (output) on return, if a ticket was decrypted, then this is set to
1319 * point to the resulting session.
1320 */
1321 SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1322 size_t eticklen, const unsigned char *sess_id,
1323 size_t sesslen, SSL_SESSION **psess)
1324 {
1325 SSL_SESSION *sess = NULL;
1326 unsigned char *sdec;
1327 const unsigned char *p;
1328 int slen, renew_ticket = 0, declen;
1329 SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
1330 size_t mlen;
1331 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1332 HMAC_CTX *hctx = NULL;
1333 EVP_CIPHER_CTX *ctx = NULL;
1334 SSL_CTX *tctx = s->session_ctx;
1335
1336 if (eticklen == 0) {
1337 /*
1338 * The client will accept a ticket but doesn't currently have
1339 * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
1340 */
1341 ret = SSL_TICKET_EMPTY;
1342 goto end;
1343 }
1344 if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) {
1345 /*
1346 * Indicate that the ticket couldn't be decrypted rather than
1347 * generating the session from ticket now, trigger
1348 * abbreviated handshake based on external mechanism to
1349 * calculate the master secret later.
1350 */
1351 ret = SSL_TICKET_NO_DECRYPT;
1352 goto end;
1353 }
1354
1355 /* Need at least keyname + iv */
1356 if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
1357 ret = SSL_TICKET_NO_DECRYPT;
1358 goto end;
1359 }
1360
1361 /* Initialize session ticket encryption and HMAC contexts */
1362 hctx = HMAC_CTX_new();
1363 if (hctx == NULL) {
1364 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1365 goto end;
1366 }
1367 ctx = EVP_CIPHER_CTX_new();
1368 if (ctx == NULL) {
1369 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1370 goto end;
1371 }
1372 if (tctx->ext.ticket_key_cb) {
1373 unsigned char *nctick = (unsigned char *)etick;
1374 int rv = tctx->ext.ticket_key_cb(s, nctick,
1375 nctick + TLSEXT_KEYNAME_LENGTH,
1376 ctx, hctx, 0);
1377 if (rv < 0) {
1378 ret = SSL_TICKET_FATAL_ERR_OTHER;
1379 goto end;
1380 }
1381 if (rv == 0) {
1382 ret = SSL_TICKET_NO_DECRYPT;
1383 goto end;
1384 }
1385 if (rv == 2)
1386 renew_ticket = 1;
1387 } else {
1388 /* Check key name matches */
1389 if (memcmp(etick, tctx->ext.tick_key_name,
1390 TLSEXT_KEYNAME_LENGTH) != 0) {
1391 ret = SSL_TICKET_NO_DECRYPT;
1392 goto end;
1393 }
1394 if (HMAC_Init_ex(hctx, tctx->ext.secure->tick_hmac_key,
1395 sizeof(tctx->ext.secure->tick_hmac_key),
1396 EVP_sha256(), NULL) <= 0
1397 || EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), NULL,
1398 tctx->ext.secure->tick_aes_key,
1399 etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
1400 ret = SSL_TICKET_FATAL_ERR_OTHER;
1401 goto end;
1402 }
1403 if (SSL_IS_TLS13(s))
1404 renew_ticket = 1;
1405 }
1406 /*
1407 * Attempt to process session ticket, first conduct sanity and integrity
1408 * checks on ticket.
1409 */
1410 mlen = HMAC_size(hctx);
1411 if (mlen == 0) {
1412 ret = SSL_TICKET_FATAL_ERR_OTHER;
1413 goto end;
1414 }
1415
1416 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1417 if (eticklen <=
1418 TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx) + mlen) {
1419 ret = SSL_TICKET_NO_DECRYPT;
1420 goto end;
1421 }
1422 eticklen -= mlen;
1423 /* Check HMAC of encrypted ticket */
1424 if (HMAC_Update(hctx, etick, eticklen) <= 0
1425 || HMAC_Final(hctx, tick_hmac, NULL) <= 0) {
1426 ret = SSL_TICKET_FATAL_ERR_OTHER;
1427 goto end;
1428 }
1429
1430 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1431 ret = SSL_TICKET_NO_DECRYPT;
1432 goto end;
1433 }
1434 /* Attempt to decrypt session data */
1435 /* Move p after IV to start of encrypted ticket, update length */
1436 p = etick + TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1437 eticklen -= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1438 sdec = OPENSSL_malloc(eticklen);
1439 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1440 (int)eticklen) <= 0) {
1441 OPENSSL_free(sdec);
1442 ret = SSL_TICKET_FATAL_ERR_OTHER;
1443 goto end;
1444 }
1445 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1446 OPENSSL_free(sdec);
1447 ret = SSL_TICKET_NO_DECRYPT;
1448 goto end;
1449 }
1450 slen += declen;
1451 p = sdec;
1452
1453 sess = d2i_SSL_SESSION(NULL, &p, slen);
1454 slen -= p - sdec;
1455 OPENSSL_free(sdec);
1456 if (sess) {
1457 /* Some additional consistency checks */
1458 if (slen != 0) {
1459 SSL_SESSION_free(sess);
1460 sess = NULL;
1461 ret = SSL_TICKET_NO_DECRYPT;
1462 goto end;
1463 }
1464 /*
1465 * The session ID, if non-empty, is used by some clients to detect
1466 * that the ticket has been accepted. So we copy it to the session
1467 * structure. If it is empty set length to zero as required by
1468 * standard.
1469 */
1470 if (sesslen) {
1471 memcpy(sess->session_id, sess_id, sesslen);
1472 sess->session_id_length = sesslen;
1473 }
1474 if (renew_ticket)
1475 ret = SSL_TICKET_SUCCESS_RENEW;
1476 else
1477 ret = SSL_TICKET_SUCCESS;
1478 goto end;
1479 }
1480 ERR_clear_error();
1481 /*
1482 * For session parse failure, indicate that we need to send a new ticket.
1483 */
1484 ret = SSL_TICKET_NO_DECRYPT;
1485
1486 end:
1487 EVP_CIPHER_CTX_free(ctx);
1488 HMAC_CTX_free(hctx);
1489
1490 /*
1491 * If set, the decrypt_ticket_cb() is called unless a fatal error was
1492 * detected above. The callback is responsible for checking |ret| before it
1493 * performs any action
1494 */
1495 if (s->session_ctx->decrypt_ticket_cb != NULL
1496 && (ret == SSL_TICKET_EMPTY
1497 || ret == SSL_TICKET_NO_DECRYPT
1498 || ret == SSL_TICKET_SUCCESS
1499 || ret == SSL_TICKET_SUCCESS_RENEW)) {
1500 size_t keyname_len = eticklen;
1501 int retcb;
1502
1503 if (keyname_len > TLSEXT_KEYNAME_LENGTH)
1504 keyname_len = TLSEXT_KEYNAME_LENGTH;
1505 retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len,
1506 ret,
1507 s->session_ctx->ticket_cb_data);
1508 switch (retcb) {
1509 case SSL_TICKET_RETURN_ABORT:
1510 ret = SSL_TICKET_FATAL_ERR_OTHER;
1511 break;
1512
1513 case SSL_TICKET_RETURN_IGNORE:
1514 ret = SSL_TICKET_NONE;
1515 SSL_SESSION_free(sess);
1516 sess = NULL;
1517 break;
1518
1519 case SSL_TICKET_RETURN_IGNORE_RENEW:
1520 if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
1521 ret = SSL_TICKET_NO_DECRYPT;
1522 /* else the value of |ret| will already do the right thing */
1523 SSL_SESSION_free(sess);
1524 sess = NULL;
1525 break;
1526
1527 case SSL_TICKET_RETURN_USE:
1528 case SSL_TICKET_RETURN_USE_RENEW:
1529 if (ret != SSL_TICKET_SUCCESS
1530 && ret != SSL_TICKET_SUCCESS_RENEW)
1531 ret = SSL_TICKET_FATAL_ERR_OTHER;
1532 else if (retcb == SSL_TICKET_RETURN_USE)
1533 ret = SSL_TICKET_SUCCESS;
1534 else
1535 ret = SSL_TICKET_SUCCESS_RENEW;
1536 break;
1537
1538 default:
1539 ret = SSL_TICKET_FATAL_ERR_OTHER;
1540 }
1541 }
1542
1543 if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) {
1544 switch (ret) {
1545 case SSL_TICKET_NO_DECRYPT:
1546 case SSL_TICKET_SUCCESS_RENEW:
1547 case SSL_TICKET_EMPTY:
1548 s->ext.ticket_expected = 1;
1549 }
1550 }
1551
1552 *psess = sess;
1553
1554 return ret;
1555 }
1556
1557 /* Check to see if a signature algorithm is allowed */
1558 static int tls12_sigalg_allowed(SSL *s, int op, const SIGALG_LOOKUP *lu)
1559 {
1560 unsigned char sigalgstr[2];
1561 int secbits;
1562
1563 /* See if sigalgs is recognised and if hash is enabled */
1564 if (!tls1_lookup_md(lu, NULL))
1565 return 0;
1566 /* DSA is not allowed in TLS 1.3 */
1567 if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
1568 return 0;
1569 /* TODO(OpenSSL1.2) fully axe DSA/etc. in ClientHello per TLS 1.3 spec */
1570 if (!s->server && !SSL_IS_DTLS(s) && s->s3->tmp.min_ver >= TLS1_3_VERSION
1571 && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
1572 || lu->hash_idx == SSL_MD_MD5_IDX
1573 || lu->hash_idx == SSL_MD_SHA224_IDX))
1574 return 0;
1575
1576 /* See if public key algorithm allowed */
1577 if (ssl_cert_is_disabled(lu->sig_idx))
1578 return 0;
1579
1580 if (lu->sig == NID_id_GostR3410_2012_256
1581 || lu->sig == NID_id_GostR3410_2012_512
1582 || lu->sig == NID_id_GostR3410_2001) {
1583 /* We never allow GOST sig algs on the server with TLSv1.3 */
1584 if (s->server && SSL_IS_TLS13(s))
1585 return 0;
1586 if (!s->server
1587 && s->method->version == TLS_ANY_VERSION
1588 && s->s3->tmp.max_ver >= TLS1_3_VERSION) {
1589 int i, num;
1590 STACK_OF(SSL_CIPHER) *sk;
1591
1592 /*
1593 * We're a client that could negotiate TLSv1.3. We only allow GOST
1594 * sig algs if we could negotiate TLSv1.2 or below and we have GOST
1595 * ciphersuites enabled.
1596 */
1597
1598 if (s->s3->tmp.min_ver >= TLS1_3_VERSION)
1599 return 0;
1600
1601 sk = SSL_get_ciphers(s);
1602 num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
1603 for (i = 0; i < num; i++) {
1604 const SSL_CIPHER *c;
1605
1606 c = sk_SSL_CIPHER_value(sk, i);
1607 /* Skip disabled ciphers */
1608 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
1609 continue;
1610
1611 if ((c->algorithm_mkey & SSL_kGOST) != 0)
1612 break;
1613 }
1614 if (i == num)
1615 return 0;
1616 }
1617 }
1618
1619 if (lu->hash == NID_undef)
1620 return 1;
1621 /* Security bits: half digest bits */
1622 secbits = EVP_MD_size(ssl_md(lu->hash_idx)) * 4;
1623 /* Finally see if security callback allows it */
1624 sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
1625 sigalgstr[1] = lu->sigalg & 0xff;
1626 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
1627 }
1628
1629 /*
1630 * Get a mask of disabled public key algorithms based on supported signature
1631 * algorithms. For example if no signature algorithm supports RSA then RSA is
1632 * disabled.
1633 */
1634
1635 void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
1636 {
1637 const uint16_t *sigalgs;
1638 size_t i, sigalgslen;
1639 uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
1640 /*
1641 * Go through all signature algorithms seeing if we support any
1642 * in disabled_mask.
1643 */
1644 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
1645 for (i = 0; i < sigalgslen; i++, sigalgs++) {
1646 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*sigalgs);
1647 const SSL_CERT_LOOKUP *clu;
1648
1649 if (lu == NULL)
1650 continue;
1651
1652 clu = ssl_cert_lookup_by_idx(lu->sig_idx);
1653 if (clu == NULL)
1654 continue;
1655
1656 /* If algorithm is disabled see if we can enable it */
1657 if ((clu->amask & disabled_mask) != 0
1658 && tls12_sigalg_allowed(s, op, lu))
1659 disabled_mask &= ~clu->amask;
1660 }
1661 *pmask_a |= disabled_mask;
1662 }
1663
1664 int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
1665 const uint16_t *psig, size_t psiglen)
1666 {
1667 size_t i;
1668 int rv = 0;
1669
1670 for (i = 0; i < psiglen; i++, psig++) {
1671 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*psig);
1672
1673 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1674 continue;
1675 if (!WPACKET_put_bytes_u16(pkt, *psig))
1676 return 0;
1677 /*
1678 * If TLS 1.3 must have at least one valid TLS 1.3 message
1679 * signing algorithm: i.e. neither RSA nor SHA1/SHA224
1680 */
1681 if (rv == 0 && (!SSL_IS_TLS13(s)
1682 || (lu->sig != EVP_PKEY_RSA
1683 && lu->hash != NID_sha1
1684 && lu->hash != NID_sha224)))
1685 rv = 1;
1686 }
1687 if (rv == 0)
1688 SSLerr(SSL_F_TLS12_COPY_SIGALGS, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
1689 return rv;
1690 }
1691
1692 /* Given preference and allowed sigalgs set shared sigalgs */
1693 static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
1694 const uint16_t *pref, size_t preflen,
1695 const uint16_t *allow, size_t allowlen)
1696 {
1697 const uint16_t *ptmp, *atmp;
1698 size_t i, j, nmatch = 0;
1699 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
1700 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*ptmp);
1701
1702 /* Skip disabled hashes or signature algorithms */
1703 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
1704 continue;
1705 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
1706 if (*ptmp == *atmp) {
1707 nmatch++;
1708 if (shsig)
1709 *shsig++ = lu;
1710 break;
1711 }
1712 }
1713 }
1714 return nmatch;
1715 }
1716
1717 /* Set shared signature algorithms for SSL structures */
1718 static int tls1_set_shared_sigalgs(SSL *s)
1719 {
1720 const uint16_t *pref, *allow, *conf;
1721 size_t preflen, allowlen, conflen;
1722 size_t nmatch;
1723 const SIGALG_LOOKUP **salgs = NULL;
1724 CERT *c = s->cert;
1725 unsigned int is_suiteb = tls1_suiteb(s);
1726
1727 OPENSSL_free(c->shared_sigalgs);
1728 c->shared_sigalgs = NULL;
1729 c->shared_sigalgslen = 0;
1730 /* If client use client signature algorithms if not NULL */
1731 if (!s->server && c->client_sigalgs && !is_suiteb) {
1732 conf = c->client_sigalgs;
1733 conflen = c->client_sigalgslen;
1734 } else if (c->conf_sigalgs && !is_suiteb) {
1735 conf = c->conf_sigalgs;
1736 conflen = c->conf_sigalgslen;
1737 } else
1738 conflen = tls12_get_psigalgs(s, 0, &conf);
1739 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
1740 pref = conf;
1741 preflen = conflen;
1742 allow = s->s3->tmp.peer_sigalgs;
1743 allowlen = s->s3->tmp.peer_sigalgslen;
1744 } else {
1745 allow = conf;
1746 allowlen = conflen;
1747 pref = s->s3->tmp.peer_sigalgs;
1748 preflen = s->s3->tmp.peer_sigalgslen;
1749 }
1750 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
1751 if (nmatch) {
1752 if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) {
1753 SSLerr(SSL_F_TLS1_SET_SHARED_SIGALGS, ERR_R_MALLOC_FAILURE);
1754 return 0;
1755 }
1756 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
1757 } else {
1758 salgs = NULL;
1759 }
1760 c->shared_sigalgs = salgs;
1761 c->shared_sigalgslen = nmatch;
1762 return 1;
1763 }
1764
1765 int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
1766 {
1767 unsigned int stmp;
1768 size_t size, i;
1769 uint16_t *buf;
1770
1771 size = PACKET_remaining(pkt);
1772
1773 /* Invalid data length */
1774 if (size == 0 || (size & 1) != 0)
1775 return 0;
1776
1777 size >>= 1;
1778
1779 if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) {
1780 SSLerr(SSL_F_TLS1_SAVE_U16, ERR_R_MALLOC_FAILURE);
1781 return 0;
1782 }
1783 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
1784 buf[i] = stmp;
1785
1786 if (i != size) {
1787 OPENSSL_free(buf);
1788 return 0;
1789 }
1790
1791 OPENSSL_free(*pdest);
1792 *pdest = buf;
1793 *pdestlen = size;
1794
1795 return 1;
1796 }
1797
1798 int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert)
1799 {
1800 /* Extension ignored for inappropriate versions */
1801 if (!SSL_USE_SIGALGS(s))
1802 return 1;
1803 /* Should never happen */
1804 if (s->cert == NULL)
1805 return 0;
1806
1807 if (cert)
1808 return tls1_save_u16(pkt, &s->s3->tmp.peer_cert_sigalgs,
1809 &s->s3->tmp.peer_cert_sigalgslen);
1810 else
1811 return tls1_save_u16(pkt, &s->s3->tmp.peer_sigalgs,
1812 &s->s3->tmp.peer_sigalgslen);
1813
1814 }
1815
1816 /* Set preferred digest for each key type */
1817
1818 int tls1_process_sigalgs(SSL *s)
1819 {
1820 size_t i;
1821 uint32_t *pvalid = s->s3->tmp.valid_flags;
1822 CERT *c = s->cert;
1823
1824 if (!tls1_set_shared_sigalgs(s))
1825 return 0;
1826
1827 for (i = 0; i < SSL_PKEY_NUM; i++)
1828 pvalid[i] = 0;
1829
1830 for (i = 0; i < c->shared_sigalgslen; i++) {
1831 const SIGALG_LOOKUP *sigptr = c->shared_sigalgs[i];
1832 int idx = sigptr->sig_idx;
1833
1834 /* Ignore PKCS1 based sig algs in TLSv1.3 */
1835 if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
1836 continue;
1837 /* If not disabled indicate we can explicitly sign */
1838 if (pvalid[idx] == 0 && !ssl_cert_is_disabled(idx))
1839 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
1840 }
1841 return 1;
1842 }
1843
1844 int SSL_get_sigalgs(SSL *s, int idx,
1845 int *psign, int *phash, int *psignhash,
1846 unsigned char *rsig, unsigned char *rhash)
1847 {
1848 uint16_t *psig = s->s3->tmp.peer_sigalgs;
1849 size_t numsigalgs = s->s3->tmp.peer_sigalgslen;
1850 if (psig == NULL || numsigalgs > INT_MAX)
1851 return 0;
1852 if (idx >= 0) {
1853 const SIGALG_LOOKUP *lu;
1854
1855 if (idx >= (int)numsigalgs)
1856 return 0;
1857 psig += idx;
1858 if (rhash != NULL)
1859 *rhash = (unsigned char)((*psig >> 8) & 0xff);
1860 if (rsig != NULL)
1861 *rsig = (unsigned char)(*psig & 0xff);
1862 lu = tls1_lookup_sigalg(*psig);
1863 if (psign != NULL)
1864 *psign = lu != NULL ? lu->sig : NID_undef;
1865 if (phash != NULL)
1866 *phash = lu != NULL ? lu->hash : NID_undef;
1867 if (psignhash != NULL)
1868 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
1869 }
1870 return (int)numsigalgs;
1871 }
1872
1873 int SSL_get_shared_sigalgs(SSL *s, int idx,
1874 int *psign, int *phash, int *psignhash,
1875 unsigned char *rsig, unsigned char *rhash)
1876 {
1877 const SIGALG_LOOKUP *shsigalgs;
1878 if (s->cert->shared_sigalgs == NULL
1879 || idx < 0
1880 || idx >= (int)s->cert->shared_sigalgslen
1881 || s->cert->shared_sigalgslen > INT_MAX)
1882 return 0;
1883 shsigalgs = s->cert->shared_sigalgs[idx];
1884 if (phash != NULL)
1885 *phash = shsigalgs->hash;
1886 if (psign != NULL)
1887 *psign = shsigalgs->sig;
1888 if (psignhash != NULL)
1889 *psignhash = shsigalgs->sigandhash;
1890 if (rsig != NULL)
1891 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
1892 if (rhash != NULL)
1893 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
1894 return (int)s->cert->shared_sigalgslen;
1895 }
1896
1897 /* Maximum possible number of unique entries in sigalgs array */
1898 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
1899
1900 typedef struct {
1901 size_t sigalgcnt;
1902 /* TLSEXT_SIGALG_XXX values */
1903 uint16_t sigalgs[TLS_MAX_SIGALGCNT];
1904 } sig_cb_st;
1905
1906 static void get_sigorhash(int *psig, int *phash, const char *str)
1907 {
1908 if (strcmp(str, "RSA") == 0) {
1909 *psig = EVP_PKEY_RSA;
1910 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
1911 *psig = EVP_PKEY_RSA_PSS;
1912 } else if (strcmp(str, "DSA") == 0) {
1913 *psig = EVP_PKEY_DSA;
1914 } else if (strcmp(str, "ECDSA") == 0) {
1915 *psig = EVP_PKEY_EC;
1916 } else {
1917 *phash = OBJ_sn2nid(str);
1918 if (*phash == NID_undef)
1919 *phash = OBJ_ln2nid(str);
1920 }
1921 }
1922 /* Maximum length of a signature algorithm string component */
1923 #define TLS_MAX_SIGSTRING_LEN 40
1924
1925 static int sig_cb(const char *elem, int len, void *arg)
1926 {
1927 sig_cb_st *sarg = arg;
1928 size_t i;
1929 const SIGALG_LOOKUP *s;
1930 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
1931 int sig_alg = NID_undef, hash_alg = NID_undef;
1932 if (elem == NULL)
1933 return 0;
1934 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
1935 return 0;
1936 if (len > (int)(sizeof(etmp) - 1))
1937 return 0;
1938 memcpy(etmp, elem, len);
1939 etmp[len] = 0;
1940 p = strchr(etmp, '+');
1941 /*
1942 * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
1943 * if there's no '+' in the provided name, look for the new-style combined
1944 * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
1945 * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
1946 * rsa_pss_rsae_* that differ only by public key OID; in such cases
1947 * we will pick the _rsae_ variant, by virtue of them appearing earlier
1948 * in the table.
1949 */
1950 if (p == NULL) {
1951 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
1952 i++, s++) {
1953 if (s->name != NULL && strcmp(etmp, s->name) == 0) {
1954 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
1955 break;
1956 }
1957 }
1958 if (i == OSSL_NELEM(sigalg_lookup_tbl))
1959 return 0;
1960 } else {
1961 *p = 0;
1962 p++;
1963 if (*p == 0)
1964 return 0;
1965 get_sigorhash(&sig_alg, &hash_alg, etmp);
1966 get_sigorhash(&sig_alg, &hash_alg, p);
1967 if (sig_alg == NID_undef || hash_alg == NID_undef)
1968 return 0;
1969 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
1970 i++, s++) {
1971 if (s->hash == hash_alg && s->sig == sig_alg) {
1972 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
1973 break;
1974 }
1975 }
1976 if (i == OSSL_NELEM(sigalg_lookup_tbl))
1977 return 0;
1978 }
1979
1980 /* Reject duplicates */
1981 for (i = 0; i < sarg->sigalgcnt - 1; i++) {
1982 if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
1983 sarg->sigalgcnt--;
1984 return 0;
1985 }
1986 }
1987 return 1;
1988 }
1989
1990 /*
1991 * Set supported signature algorithms based on a colon separated list of the
1992 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
1993 */
1994 int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
1995 {
1996 sig_cb_st sig;
1997 sig.sigalgcnt = 0;
1998 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
1999 return 0;
2000 if (c == NULL)
2001 return 1;
2002 return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2003 }
2004
2005 int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2006 int client)
2007 {
2008 uint16_t *sigalgs;
2009
2010 if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) {
2011 SSLerr(SSL_F_TLS1_SET_RAW_SIGALGS, ERR_R_MALLOC_FAILURE);
2012 return 0;
2013 }
2014 memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
2015
2016 if (client) {
2017 OPENSSL_free(c->client_sigalgs);
2018 c->client_sigalgs = sigalgs;
2019 c->client_sigalgslen = salglen;
2020 } else {
2021 OPENSSL_free(c->conf_sigalgs);
2022 c->conf_sigalgs = sigalgs;
2023 c->conf_sigalgslen = salglen;
2024 }
2025
2026 return 1;
2027 }
2028
2029 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
2030 {
2031 uint16_t *sigalgs, *sptr;
2032 size_t i;
2033
2034 if (salglen & 1)
2035 return 0;
2036 if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) {
2037 SSLerr(SSL_F_TLS1_SET_SIGALGS, ERR_R_MALLOC_FAILURE);
2038 return 0;
2039 }
2040 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
2041 size_t j;
2042 const SIGALG_LOOKUP *curr;
2043 int md_id = *psig_nids++;
2044 int sig_id = *psig_nids++;
2045
2046 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
2047 j++, curr++) {
2048 if (curr->hash == md_id && curr->sig == sig_id) {
2049 *sptr++ = curr->sigalg;
2050 break;
2051 }
2052 }
2053
2054 if (j == OSSL_NELEM(sigalg_lookup_tbl))
2055 goto err;
2056 }
2057
2058 if (client) {
2059 OPENSSL_free(c->client_sigalgs);
2060 c->client_sigalgs = sigalgs;
2061 c->client_sigalgslen = salglen / 2;
2062 } else {
2063 OPENSSL_free(c->conf_sigalgs);
2064 c->conf_sigalgs = sigalgs;
2065 c->conf_sigalgslen = salglen / 2;
2066 }
2067
2068 return 1;
2069
2070 err:
2071 OPENSSL_free(sigalgs);
2072 return 0;
2073 }
2074
2075 static int tls1_check_sig_alg(CERT *c, X509 *x, int default_nid)
2076 {
2077 int sig_nid;
2078 size_t i;
2079 if (default_nid == -1)
2080 return 1;
2081 sig_nid = X509_get_signature_nid(x);
2082 if (default_nid)
2083 return sig_nid == default_nid ? 1 : 0;
2084 for (i = 0; i < c->shared_sigalgslen; i++)
2085 if (sig_nid == c->shared_sigalgs[i]->sigandhash)
2086 return 1;
2087 return 0;
2088 }
2089
2090 /* Check to see if a certificate issuer name matches list of CA names */
2091 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
2092 {
2093 X509_NAME *nm;
2094 int i;
2095 nm = X509_get_issuer_name(x);
2096 for (i = 0; i < sk_X509_NAME_num(names); i++) {
2097 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
2098 return 1;
2099 }
2100 return 0;
2101 }
2102
2103 /*
2104 * Check certificate chain is consistent with TLS extensions and is usable by
2105 * server. This servers two purposes: it allows users to check chains before
2106 * passing them to the server and it allows the server to check chains before
2107 * attempting to use them.
2108 */
2109
2110 /* Flags which need to be set for a certificate when strict mode not set */
2111
2112 #define CERT_PKEY_VALID_FLAGS \
2113 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
2114 /* Strict mode flags */
2115 #define CERT_PKEY_STRICT_FLAGS \
2116 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
2117 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
2118
2119 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
2120 int idx)
2121 {
2122 int i;
2123 int rv = 0;
2124 int check_flags = 0, strict_mode;
2125 CERT_PKEY *cpk = NULL;
2126 CERT *c = s->cert;
2127 uint32_t *pvalid;
2128 unsigned int suiteb_flags = tls1_suiteb(s);
2129 /* idx == -1 means checking server chains */
2130 if (idx != -1) {
2131 /* idx == -2 means checking client certificate chains */
2132 if (idx == -2) {
2133 cpk = c->key;
2134 idx = (int)(cpk - c->pkeys);
2135 } else
2136 cpk = c->pkeys + idx;
2137 pvalid = s->s3->tmp.valid_flags + idx;
2138 x = cpk->x509;
2139 pk = cpk->privatekey;
2140 chain = cpk->chain;
2141 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
2142 /* If no cert or key, forget it */
2143 if (!x || !pk)
2144 goto end;
2145 } else {
2146 size_t certidx;
2147
2148 if (!x || !pk)
2149 return 0;
2150
2151 if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)
2152 return 0;
2153 idx = certidx;
2154 pvalid = s->s3->tmp.valid_flags + idx;
2155
2156 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
2157 check_flags = CERT_PKEY_STRICT_FLAGS;
2158 else
2159 check_flags = CERT_PKEY_VALID_FLAGS;
2160 strict_mode = 1;
2161 }
2162
2163 if (suiteb_flags) {
2164 int ok;
2165 if (check_flags)
2166 check_flags |= CERT_PKEY_SUITEB;
2167 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
2168 if (ok == X509_V_OK)
2169 rv |= CERT_PKEY_SUITEB;
2170 else if (!check_flags)
2171 goto end;
2172 }
2173
2174 /*
2175 * Check all signature algorithms are consistent with signature
2176 * algorithms extension if TLS 1.2 or later and strict mode.
2177 */
2178 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
2179 int default_nid;
2180 int rsign = 0;
2181 if (s->s3->tmp.peer_cert_sigalgs != NULL
2182 || s->s3->tmp.peer_sigalgs != NULL) {
2183 default_nid = 0;
2184 /* If no sigalgs extension use defaults from RFC5246 */
2185 } else {
2186 switch (idx) {
2187 case SSL_PKEY_RSA:
2188 rsign = EVP_PKEY_RSA;
2189 default_nid = NID_sha1WithRSAEncryption;
2190 break;
2191
2192 case SSL_PKEY_DSA_SIGN:
2193 rsign = EVP_PKEY_DSA;
2194 default_nid = NID_dsaWithSHA1;
2195 break;
2196
2197 case SSL_PKEY_ECC:
2198 rsign = EVP_PKEY_EC;
2199 default_nid = NID_ecdsa_with_SHA1;
2200 break;
2201
2202 case SSL_PKEY_GOST01:
2203 rsign = NID_id_GostR3410_2001;
2204 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
2205 break;
2206
2207 case SSL_PKEY_GOST12_256:
2208 rsign = NID_id_GostR3410_2012_256;
2209 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
2210 break;
2211
2212 case SSL_PKEY_GOST12_512:
2213 rsign = NID_id_GostR3410_2012_512;
2214 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
2215 break;
2216
2217 default:
2218 default_nid = -1;
2219 break;
2220 }
2221 }
2222 /*
2223 * If peer sent no signature algorithms extension and we have set
2224 * preferred signature algorithms check we support sha1.
2225 */
2226 if (default_nid > 0 && c->conf_sigalgs) {
2227 size_t j;
2228 const uint16_t *p = c->conf_sigalgs;
2229 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
2230 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*p);
2231
2232 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
2233 break;
2234 }
2235 if (j == c->conf_sigalgslen) {
2236 if (check_flags)
2237 goto skip_sigs;
2238 else
2239 goto end;
2240 }
2241 }
2242 /* Check signature algorithm of each cert in chain */
2243 if (!tls1_check_sig_alg(c, x, default_nid)) {
2244 if (!check_flags)
2245 goto end;
2246 } else
2247 rv |= CERT_PKEY_EE_SIGNATURE;
2248 rv |= CERT_PKEY_CA_SIGNATURE;
2249 for (i = 0; i < sk_X509_num(chain); i++) {
2250 if (!tls1_check_sig_alg(c, sk_X509_value(chain, i), default_nid)) {
2251 if (check_flags) {
2252 rv &= ~CERT_PKEY_CA_SIGNATURE;
2253 break;
2254 } else
2255 goto end;
2256 }
2257 }
2258 }
2259 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2260 else if (check_flags)
2261 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2262 skip_sigs:
2263 /* Check cert parameters are consistent */
2264 if (tls1_check_cert_param(s, x, 1))
2265 rv |= CERT_PKEY_EE_PARAM;
2266 else if (!check_flags)
2267 goto end;
2268 if (!s->server)
2269 rv |= CERT_PKEY_CA_PARAM;
2270 /* In strict mode check rest of chain too */
2271 else if (strict_mode) {
2272 rv |= CERT_PKEY_CA_PARAM;
2273 for (i = 0; i < sk_X509_num(chain); i++) {
2274 X509 *ca = sk_X509_value(chain, i);
2275 if (!tls1_check_cert_param(s, ca, 0)) {
2276 if (check_flags) {
2277 rv &= ~CERT_PKEY_CA_PARAM;
2278 break;
2279 } else
2280 goto end;
2281 }
2282 }
2283 }
2284 if (!s->server && strict_mode) {
2285 STACK_OF(X509_NAME) *ca_dn;
2286 int check_type = 0;
2287 switch (EVP_PKEY_id(pk)) {
2288 case EVP_PKEY_RSA:
2289 check_type = TLS_CT_RSA_SIGN;
2290 break;
2291 case EVP_PKEY_DSA:
2292 check_type = TLS_CT_DSS_SIGN;
2293 break;
2294 case EVP_PKEY_EC:
2295 check_type = TLS_CT_ECDSA_SIGN;
2296 break;
2297 }
2298 if (check_type) {
2299 const uint8_t *ctypes = s->s3->tmp.ctype;
2300 size_t j;
2301
2302 for (j = 0; j < s->s3->tmp.ctype_len; j++, ctypes++) {
2303 if (*ctypes == check_type) {
2304 rv |= CERT_PKEY_CERT_TYPE;
2305 break;
2306 }
2307 }
2308 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2309 goto end;
2310 } else {
2311 rv |= CERT_PKEY_CERT_TYPE;
2312 }
2313
2314 ca_dn = s->s3->tmp.peer_ca_names;
2315
2316 if (!sk_X509_NAME_num(ca_dn))
2317 rv |= CERT_PKEY_ISSUER_NAME;
2318
2319 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2320 if (ssl_check_ca_name(ca_dn, x))
2321 rv |= CERT_PKEY_ISSUER_NAME;
2322 }
2323 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2324 for (i = 0; i < sk_X509_num(chain); i++) {
2325 X509 *xtmp = sk_X509_value(chain, i);
2326 if (ssl_check_ca_name(ca_dn, xtmp)) {
2327 rv |= CERT_PKEY_ISSUER_NAME;
2328 break;
2329 }
2330 }
2331 }
2332 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2333 goto end;
2334 } else
2335 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2336
2337 if (!check_flags || (rv & check_flags) == check_flags)
2338 rv |= CERT_PKEY_VALID;
2339
2340 end:
2341
2342 if (TLS1_get_version(s) >= TLS1_2_VERSION)
2343 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
2344 else
2345 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2346
2347 /*
2348 * When checking a CERT_PKEY structure all flags are irrelevant if the
2349 * chain is invalid.
2350 */
2351 if (!check_flags) {
2352 if (rv & CERT_PKEY_VALID) {
2353 *pvalid = rv;
2354 } else {
2355 /* Preserve sign and explicit sign flag, clear rest */
2356 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2357 return 0;
2358 }
2359 }
2360 return rv;
2361 }
2362
2363 /* Set validity of certificates in an SSL structure */
2364 void tls1_set_cert_validity(SSL *s)
2365 {
2366 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
2367 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
2368 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2369 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2370 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2371 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2372 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2373 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
2374 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
2375 }
2376
2377 /* User level utility function to check a chain is suitable */
2378 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2379 {
2380 return tls1_check_chain(s, x, pk, chain, -1);
2381 }
2382
2383 #ifndef OPENSSL_NO_DH
2384 DH *ssl_get_auto_dh(SSL *s)
2385 {
2386 int dh_secbits = 80;
2387 if (s->cert->dh_tmp_auto == 2)
2388 return DH_get_1024_160();
2389 if (s->s3->tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2390 if (s->s3->tmp.new_cipher->strength_bits == 256)
2391 dh_secbits = 128;
2392 else
2393 dh_secbits = 80;
2394 } else {
2395 if (s->s3->tmp.cert == NULL)
2396 return NULL;
2397 dh_secbits = EVP_PKEY_security_bits(s->s3->tmp.cert->privatekey);
2398 }
2399
2400 if (dh_secbits >= 128) {
2401 DH *dhp = DH_new();
2402 BIGNUM *p, *g;
2403 if (dhp == NULL)
2404 return NULL;
2405 g = BN_new();
2406 if (g == NULL || !BN_set_word(g, 2)) {
2407 DH_free(dhp);
2408 BN_free(g);
2409 return NULL;
2410 }
2411 if (dh_secbits >= 192)
2412 p = BN_get_rfc3526_prime_8192(NULL);
2413 else
2414 p = BN_get_rfc3526_prime_3072(NULL);
2415 if (p == NULL || !DH_set0_pqg(dhp, p, NULL, g)) {
2416 DH_free(dhp);
2417 BN_free(p);
2418 BN_free(g);
2419 return NULL;
2420 }
2421 return dhp;
2422 }
2423 if (dh_secbits >= 112)
2424 return DH_get_2048_224();
2425 return DH_get_1024_160();
2426 }
2427 #endif
2428
2429 static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2430 {
2431 int secbits = -1;
2432 EVP_PKEY *pkey = X509_get0_pubkey(x);
2433 if (pkey) {
2434 /*
2435 * If no parameters this will return -1 and fail using the default
2436 * security callback for any non-zero security level. This will
2437 * reject keys which omit parameters but this only affects DSA and
2438 * omission of parameters is never (?) done in practice.
2439 */
2440 secbits = EVP_PKEY_security_bits(pkey);
2441 }
2442 if (s)
2443 return ssl_security(s, op, secbits, 0, x);
2444 else
2445 return ssl_ctx_security(ctx, op, secbits, 0, x);
2446 }
2447
2448 static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2449 {
2450 /* Lookup signature algorithm digest */
2451 int secbits, nid, pknid;
2452 /* Don't check signature if self signed */
2453 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
2454 return 1;
2455 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
2456 secbits = -1;
2457 /* If digest NID not defined use signature NID */
2458 if (nid == NID_undef)
2459 nid = pknid;
2460 if (s)
2461 return ssl_security(s, op, secbits, nid, x);
2462 else
2463 return ssl_ctx_security(ctx, op, secbits, nid, x);
2464 }
2465
2466 int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
2467 {
2468 if (vfy)
2469 vfy = SSL_SECOP_PEER;
2470 if (is_ee) {
2471 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
2472 return SSL_R_EE_KEY_TOO_SMALL;
2473 } else {
2474 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
2475 return SSL_R_CA_KEY_TOO_SMALL;
2476 }
2477 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
2478 return SSL_R_CA_MD_TOO_WEAK;
2479 return 1;
2480 }
2481
2482 /*
2483 * Check security of a chain, if |sk| includes the end entity certificate then
2484 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
2485 * one to the peer. Return values: 1 if ok otherwise error code to use
2486 */
2487
2488 int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
2489 {
2490 int rv, start_idx, i;
2491 if (x == NULL) {
2492 x = sk_X509_value(sk, 0);
2493 start_idx = 1;
2494 } else
2495 start_idx = 0;
2496
2497 rv = ssl_security_cert(s, NULL, x, vfy, 1);
2498 if (rv != 1)
2499 return rv;
2500
2501 for (i = start_idx; i < sk_X509_num(sk); i++) {
2502 x = sk_X509_value(sk, i);
2503 rv = ssl_security_cert(s, NULL, x, vfy, 0);
2504 if (rv != 1)
2505 return rv;
2506 }
2507 return 1;
2508 }
2509
2510 /*
2511 * For TLS 1.2 servers check if we have a certificate which can be used
2512 * with the signature algorithm "lu" and return index of certificate.
2513 */
2514
2515 static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)
2516 {
2517 int sig_idx = lu->sig_idx;
2518 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx);
2519
2520 /* If not recognised or not supported by cipher mask it is not suitable */
2521 if (clu == NULL
2522 || (clu->amask & s->s3->tmp.new_cipher->algorithm_auth) == 0
2523 || (clu->nid == EVP_PKEY_RSA_PSS
2524 && (s->s3->tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
2525 return -1;
2526
2527 return s->s3->tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
2528 }
2529
2530 /*
2531 * Returns true if |s| has a usable certificate configured for use
2532 * with signature scheme |sig|.
2533 * "Usable" includes a check for presence as well as applying
2534 * the signature_algorithm_cert restrictions sent by the peer (if any).
2535 * Returns false if no usable certificate is found.
2536 */
2537 static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx)
2538 {
2539 const SIGALG_LOOKUP *lu;
2540 int mdnid, pknid, supported;
2541 size_t i;
2542
2543 /* TLS 1.2 callers can override lu->sig_idx, but not TLS 1.3 callers. */
2544 if (idx == -1)
2545 idx = sig->sig_idx;
2546 if (!ssl_has_cert(s, idx))
2547 return 0;
2548 if (s->s3->tmp.peer_cert_sigalgs != NULL) {
2549 for (i = 0; i < s->s3->tmp.peer_cert_sigalgslen; i++) {
2550 lu = tls1_lookup_sigalg(s->s3->tmp.peer_cert_sigalgs[i]);
2551 if (lu == NULL
2552 || !X509_get_signature_info(s->cert->pkeys[idx].x509, &mdnid,
2553 &pknid, NULL, NULL)
2554 /*
2555 * TODO this does not differentiate between the
2556 * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
2557 * have a chain here that lets us look at the key OID in the
2558 * signing certificate.
2559 */
2560 || mdnid != lu->hash
2561 || pknid != lu->sig)
2562 continue;
2563
2564 ERR_set_mark();
2565 supported = EVP_PKEY_supports_digest_nid(s->cert->pkeys[idx].privatekey,
2566 mdnid);
2567 if (supported == 0)
2568 continue;
2569 else if (supported < 0)
2570 {
2571 /* If it didn't report a mandatory NID, for whatever reasons,
2572 * just clear the error and allow all hashes to be used. */
2573 ERR_pop_to_mark();
2574 }
2575 return 1;
2576 }
2577 return 0;
2578 }
2579 supported = EVP_PKEY_supports_digest_nid(s->cert->pkeys[idx].privatekey,
2580 sig->hash);
2581 if (supported == 0)
2582 return 0;
2583 else if (supported < 0)
2584 ERR_clear_error();
2585
2586 return 1;
2587 }
2588
2589 /*
2590 * Choose an appropriate signature algorithm based on available certificates
2591 * Sets chosen certificate and signature algorithm.
2592 *
2593 * For servers if we fail to find a required certificate it is a fatal error,
2594 * an appropriate error code is set and a TLS alert is sent.
2595 *
2596 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
2597 * a fatal error: we will either try another certificate or not present one
2598 * to the server. In this case no error is set.
2599 */
2600 int tls_choose_sigalg(SSL *s, int fatalerrs)
2601 {
2602 const SIGALG_LOOKUP *lu = NULL;
2603 int sig_idx = -1;
2604
2605 s->s3->tmp.cert = NULL;
2606 s->s3->tmp.sigalg = NULL;
2607
2608 if (SSL_IS_TLS13(s)) {
2609 size_t i;
2610 #ifndef OPENSSL_NO_EC
2611 int curve = -1;
2612 #endif
2613
2614 /* Look for a certificate matching shared sigalgs */
2615 for (i = 0; i < s->cert->shared_sigalgslen; i++) {
2616 lu = s->cert->shared_sigalgs[i];
2617 sig_idx = -1;
2618
2619 /* Skip SHA1, SHA224, DSA and RSA if not PSS */
2620 if (lu->hash == NID_sha1
2621 || lu->hash == NID_sha224
2622 || lu->sig == EVP_PKEY_DSA
2623 || lu->sig == EVP_PKEY_RSA)
2624 continue;
2625 /* Check that we have a cert, and signature_algorithms_cert */
2626 if (!tls1_lookup_md(lu, NULL) || !has_usable_cert(s, lu, -1))
2627 continue;
2628 if (lu->sig == EVP_PKEY_EC) {
2629 #ifndef OPENSSL_NO_EC
2630 if (curve == -1) {
2631 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(s->cert->pkeys[SSL_PKEY_ECC].privatekey);
2632
2633 curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
2634 }
2635 if (lu->curve != NID_undef && curve != lu->curve)
2636 continue;
2637 #else
2638 continue;
2639 #endif
2640 } else if (lu->sig == EVP_PKEY_RSA_PSS) {
2641 /* validate that key is large enough for the signature algorithm */
2642 EVP_PKEY *pkey;
2643
2644 pkey = s->cert->pkeys[lu->sig_idx].privatekey;
2645 if (!rsa_pss_check_min_key_size(EVP_PKEY_get0(pkey), lu))
2646 continue;
2647 }
2648 break;
2649 }
2650 if (i == s->cert->shared_sigalgslen) {
2651 if (!fatalerrs)
2652 return 1;
2653 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS_CHOOSE_SIGALG,
2654 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2655 return 0;
2656 }
2657 } else {
2658 /* If ciphersuite doesn't require a cert nothing to do */
2659 if (!(s->s3->tmp.new_cipher->algorithm_auth & SSL_aCERT))
2660 return 1;
2661 if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
2662 return 1;
2663
2664 if (SSL_USE_SIGALGS(s)) {
2665 size_t i;
2666 if (s->s3->tmp.peer_sigalgs != NULL) {
2667 #ifndef OPENSSL_NO_EC
2668 int curve;
2669
2670 /* For Suite B need to match signature algorithm to curve */
2671 if (tls1_suiteb(s)) {
2672 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(s->cert->pkeys[SSL_PKEY_ECC].privatekey);
2673 curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
2674 } else {
2675 curve = -1;
2676 }
2677 #endif
2678
2679 /*
2680 * Find highest preference signature algorithm matching
2681 * cert type
2682 */
2683 for (i = 0; i < s->cert->shared_sigalgslen; i++) {
2684 lu = s->cert->shared_sigalgs[i];
2685
2686 if (s->server) {
2687 if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
2688 continue;
2689 } else {
2690 int cc_idx = s->cert->key - s->cert->pkeys;
2691
2692 sig_idx = lu->sig_idx;
2693 if (cc_idx != sig_idx)
2694 continue;
2695 }
2696 /* Check that we have a cert, and sig_algs_cert */
2697 if (!has_usable_cert(s, lu, sig_idx))
2698 continue;
2699 if (lu->sig == EVP_PKEY_RSA_PSS) {
2700 /* validate that key is large enough for the signature algorithm */
2701 EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
2702
2703 if (!rsa_pss_check_min_key_size(EVP_PKEY_get0(pkey), lu))
2704 continue;
2705 }
2706 #ifndef OPENSSL_NO_EC
2707 if (curve == -1 || lu->curve == curve)
2708 #endif
2709 break;
2710 }
2711 if (i == s->cert->shared_sigalgslen) {
2712 if (!fatalerrs)
2713 return 1;
2714 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2715 SSL_F_TLS_CHOOSE_SIGALG,
2716 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2717 return 0;
2718 }
2719 } else {
2720 /*
2721 * If we have no sigalg use defaults
2722 */
2723 const uint16_t *sent_sigs;
2724 size_t sent_sigslen;
2725
2726 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
2727 if (!fatalerrs)
2728 return 1;
2729 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG,
2730 ERR_R_INTERNAL_ERROR);
2731 return 0;
2732 }
2733
2734 /* Check signature matches a type we sent */
2735 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2736 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2737 if (lu->sigalg == *sent_sigs
2738 && has_usable_cert(s, lu, lu->sig_idx))
2739 break;
2740 }
2741 if (i == sent_sigslen) {
2742 if (!fatalerrs)
2743 return 1;
2744 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
2745 SSL_F_TLS_CHOOSE_SIGALG,
2746 SSL_R_WRONG_SIGNATURE_TYPE);
2747 return 0;
2748 }
2749 }
2750 } else {
2751 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
2752 if (!fatalerrs)
2753 return 1;
2754 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG,
2755 ERR_R_INTERNAL_ERROR);
2756 return 0;
2757 }
2758 }
2759 }
2760 if (sig_idx == -1)
2761 sig_idx = lu->sig_idx;
2762 s->s3->tmp.cert = &s->cert->pkeys[sig_idx];
2763 s->cert->key = s->s3->tmp.cert;
2764 s->s3->tmp.sigalg = lu;
2765 return 1;
2766 }
2767
2768 int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
2769 {
2770 if (mode != TLSEXT_max_fragment_length_DISABLED
2771 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
2772 SSLerr(SSL_F_SSL_CTX_SET_TLSEXT_MAX_FRAGMENT_LENGTH,
2773 SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
2774 return 0;
2775 }
2776
2777 ctx->ext.max_fragment_len_mode = mode;
2778 return 1;
2779 }
2780
2781 int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
2782 {
2783 if (mode != TLSEXT_max_fragment_length_DISABLED
2784 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
2785 SSLerr(SSL_F_SSL_SET_TLSEXT_MAX_FRAGMENT_LENGTH,
2786 SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
2787 return 0;
2788 }
2789
2790 ssl->ext.max_fragment_len_mode = mode;
2791 return 1;
2792 }
2793
2794 uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
2795 {
2796 return session->ext.max_fragment_len_mode;
2797 }