]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/t1_lib.c
Check that ed25519 and ed448 are allowed by the security level
[thirdparty/openssl.git] / ssl / t1_lib.c
1 /*
2 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /* We need access to the deprecated low level HMAC APIs */
11 #define OPENSSL_SUPPRESS_DEPRECATED
12
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include <openssl/objects.h>
16 #include <openssl/evp.h>
17 #include <openssl/hmac.h>
18 #include <openssl/core_names.h>
19 #include <openssl/ocsp.h>
20 #include <openssl/conf.h>
21 #include <openssl/x509v3.h>
22 #include <openssl/dh.h>
23 #include <openssl/bn.h>
24 #include "internal/nelem.h"
25 #include "ssl_local.h"
26 #include <openssl/ct.h>
27
28 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey);
29 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu);
30
31 SSL3_ENC_METHOD const TLSv1_enc_data = {
32 tls1_enc,
33 tls1_mac,
34 tls1_setup_key_block,
35 tls1_generate_master_secret,
36 tls1_change_cipher_state,
37 tls1_final_finish_mac,
38 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
39 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
40 tls1_alert_code,
41 tls1_export_keying_material,
42 0,
43 ssl3_set_handshake_header,
44 tls_close_construct_packet,
45 ssl3_handshake_write
46 };
47
48 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
49 tls1_enc,
50 tls1_mac,
51 tls1_setup_key_block,
52 tls1_generate_master_secret,
53 tls1_change_cipher_state,
54 tls1_final_finish_mac,
55 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
56 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
57 tls1_alert_code,
58 tls1_export_keying_material,
59 SSL_ENC_FLAG_EXPLICIT_IV,
60 ssl3_set_handshake_header,
61 tls_close_construct_packet,
62 ssl3_handshake_write
63 };
64
65 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
66 tls1_enc,
67 tls1_mac,
68 tls1_setup_key_block,
69 tls1_generate_master_secret,
70 tls1_change_cipher_state,
71 tls1_final_finish_mac,
72 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
73 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
74 tls1_alert_code,
75 tls1_export_keying_material,
76 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
77 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
78 ssl3_set_handshake_header,
79 tls_close_construct_packet,
80 ssl3_handshake_write
81 };
82
83 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
84 tls13_enc,
85 tls1_mac,
86 tls13_setup_key_block,
87 tls13_generate_master_secret,
88 tls13_change_cipher_state,
89 tls13_final_finish_mac,
90 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
91 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
92 tls13_alert_code,
93 tls13_export_keying_material,
94 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
95 ssl3_set_handshake_header,
96 tls_close_construct_packet,
97 ssl3_handshake_write
98 };
99
100 long tls1_default_timeout(void)
101 {
102 /*
103 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
104 * http, the cache would over fill
105 */
106 return (60 * 60 * 2);
107 }
108
109 int tls1_new(SSL *s)
110 {
111 if (!ssl3_new(s))
112 return 0;
113 if (!s->method->ssl_clear(s))
114 return 0;
115
116 return 1;
117 }
118
119 void tls1_free(SSL *s)
120 {
121 OPENSSL_free(s->ext.session_ticket);
122 ssl3_free(s);
123 }
124
125 int tls1_clear(SSL *s)
126 {
127 if (!ssl3_clear(s))
128 return 0;
129
130 if (s->method->version == TLS_ANY_VERSION)
131 s->version = TLS_MAX_VERSION_INTERNAL;
132 else
133 s->version = s->method->version;
134
135 return 1;
136 }
137
138 /*
139 * Table of group information.
140 */
141 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC)
142 static const TLS_GROUP_INFO nid_list[] = {
143 # ifndef OPENSSL_NO_EC
144 {NID_sect163k1, 80, TLS_GROUP_CURVE_CHAR2, 0x0001}, /* sect163k1 (1) */
145 {NID_sect163r1, 80, TLS_GROUP_CURVE_CHAR2, 0x0002}, /* sect163r1 (2) */
146 {NID_sect163r2, 80, TLS_GROUP_CURVE_CHAR2, 0x0003}, /* sect163r2 (3) */
147 {NID_sect193r1, 80, TLS_GROUP_CURVE_CHAR2, 0x0004}, /* sect193r1 (4) */
148 {NID_sect193r2, 80, TLS_GROUP_CURVE_CHAR2, 0x0005}, /* sect193r2 (5) */
149 {NID_sect233k1, 112, TLS_GROUP_CURVE_CHAR2, 0x0006}, /* sect233k1 (6) */
150 {NID_sect233r1, 112, TLS_GROUP_CURVE_CHAR2, 0x0007}, /* sect233r1 (7) */
151 {NID_sect239k1, 112, TLS_GROUP_CURVE_CHAR2, 0x0008}, /* sect239k1 (8) */
152 {NID_sect283k1, 128, TLS_GROUP_CURVE_CHAR2, 0x0009}, /* sect283k1 (9) */
153 {NID_sect283r1, 128, TLS_GROUP_CURVE_CHAR2, 0x000A}, /* sect283r1 (10) */
154 {NID_sect409k1, 192, TLS_GROUP_CURVE_CHAR2, 0x000B}, /* sect409k1 (11) */
155 {NID_sect409r1, 192, TLS_GROUP_CURVE_CHAR2, 0x000C}, /* sect409r1 (12) */
156 {NID_sect571k1, 256, TLS_GROUP_CURVE_CHAR2, 0x000D}, /* sect571k1 (13) */
157 {NID_sect571r1, 256, TLS_GROUP_CURVE_CHAR2, 0x000E}, /* sect571r1 (14) */
158 {NID_secp160k1, 80, TLS_GROUP_CURVE_PRIME, 0x000F}, /* secp160k1 (15) */
159 {NID_secp160r1, 80, TLS_GROUP_CURVE_PRIME, 0x0010}, /* secp160r1 (16) */
160 {NID_secp160r2, 80, TLS_GROUP_CURVE_PRIME, 0x0011}, /* secp160r2 (17) */
161 {NID_secp192k1, 80, TLS_GROUP_CURVE_PRIME, 0x0012}, /* secp192k1 (18) */
162 {NID_X9_62_prime192v1, 80, TLS_GROUP_CURVE_PRIME, 0x0013}, /* secp192r1 (19) */
163 {NID_secp224k1, 112, TLS_GROUP_CURVE_PRIME, 0x0014}, /* secp224k1 (20) */
164 {NID_secp224r1, 112, TLS_GROUP_CURVE_PRIME, 0x0015}, /* secp224r1 (21) */
165 {NID_secp256k1, 128, TLS_GROUP_CURVE_PRIME, 0x0016}, /* secp256k1 (22) */
166 {NID_X9_62_prime256v1, 128, TLS_GROUP_CURVE_PRIME, 0x0017}, /* secp256r1 (23) */
167 {NID_secp384r1, 192, TLS_GROUP_CURVE_PRIME, 0x0018}, /* secp384r1 (24) */
168 {NID_secp521r1, 256, TLS_GROUP_CURVE_PRIME, 0x0019}, /* secp521r1 (25) */
169 {NID_brainpoolP256r1, 128, TLS_GROUP_CURVE_PRIME, 0x001A}, /* brainpoolP256r1 (26) */
170 {NID_brainpoolP384r1, 192, TLS_GROUP_CURVE_PRIME, 0x001B}, /* brainpoolP384r1 (27) */
171 {NID_brainpoolP512r1, 256, TLS_GROUP_CURVE_PRIME, 0x001C}, /* brainpool512r1 (28) */
172 {EVP_PKEY_X25519, 128, TLS_GROUP_CURVE_CUSTOM, 0x001D}, /* X25519 (29) */
173 {EVP_PKEY_X448, 224, TLS_GROUP_CURVE_CUSTOM, 0x001E}, /* X448 (30) */
174 # endif /* OPENSSL_NO_EC */
175 # ifndef OPENSSL_NO_DH
176 /* Security bit values for FFDHE groups are updated as per RFC 7919 */
177 {NID_ffdhe2048, 103, TLS_GROUP_FFDHE_FOR_TLS1_3, 0x0100}, /* ffdhe2048 (0x0100) */
178 {NID_ffdhe3072, 125, TLS_GROUP_FFDHE_FOR_TLS1_3, 0x0101}, /* ffdhe3072 (0x0101) */
179 {NID_ffdhe4096, 150, TLS_GROUP_FFDHE_FOR_TLS1_3, 0x0102}, /* ffdhe4096 (0x0102) */
180 {NID_ffdhe6144, 175, TLS_GROUP_FFDHE_FOR_TLS1_3, 0x0103}, /* ffdhe6144 (0x0103) */
181 {NID_ffdhe8192, 192, TLS_GROUP_FFDHE_FOR_TLS1_3, 0x0104}, /* ffdhe8192 (0x0104) */
182 # endif /* OPENSSL_NO_DH */
183 };
184 #endif
185
186 #ifndef OPENSSL_NO_EC
187 static const unsigned char ecformats_default[] = {
188 TLSEXT_ECPOINTFORMAT_uncompressed,
189 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
190 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
191 };
192 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
193
194 /* The default curves */
195 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC)
196 static const uint16_t supported_groups_default[] = {
197 # ifndef OPENSSL_NO_EC
198 29, /* X25519 (29) */
199 23, /* secp256r1 (23) */
200 30, /* X448 (30) */
201 25, /* secp521r1 (25) */
202 24, /* secp384r1 (24) */
203 # endif
204 # ifndef OPENSSL_NO_DH
205 0x100, /* ffdhe2048 (0x100) */
206 0x101, /* ffdhe3072 (0x101) */
207 0x102, /* ffdhe4096 (0x102) */
208 0x103, /* ffdhe6144 (0x103) */
209 0x104, /* ffdhe8192 (0x104) */
210 # endif
211 };
212 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
213
214 #ifndef OPENSSL_NO_EC
215 static const uint16_t suiteb_curves[] = {
216 TLSEXT_curve_P_256,
217 TLSEXT_curve_P_384
218 };
219 #endif
220
221 const TLS_GROUP_INFO *tls1_group_id_lookup(uint16_t group_id)
222 {
223 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC)
224 size_t i;
225
226 /* ECC curves from RFC 4492 and RFC 7027 FFDHE group from RFC 8446 */
227 for (i = 0; i < OSSL_NELEM(nid_list); i++) {
228 if (nid_list[i].group_id == group_id)
229 return &nid_list[i];
230 }
231 #endif /* !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC) */
232 return NULL;
233 }
234
235 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC)
236 int tls1_group_id2nid(uint16_t group_id)
237 {
238 const TLS_GROUP_INFO *ginf = tls1_group_id_lookup(group_id);
239
240 return ginf == NULL ? NID_undef : ginf->nid;
241 }
242
243 static uint16_t tls1_nid2group_id(int nid)
244 {
245 size_t i;
246
247 for (i = 0; i < OSSL_NELEM(nid_list); i++) {
248 if (nid_list[i].nid == nid)
249 return nid_list[i].group_id;
250 }
251 return 0;
252 }
253 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
254
255 /*
256 * Set *pgroups to the supported groups list and *pgroupslen to
257 * the number of groups supported.
258 */
259 void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups,
260 size_t *pgroupslen)
261 {
262 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH)
263 /* For Suite B mode only include P-256, P-384 */
264 switch (tls1_suiteb(s)) {
265 # ifndef OPENSSL_NO_EC
266 case SSL_CERT_FLAG_SUITEB_128_LOS:
267 *pgroups = suiteb_curves;
268 *pgroupslen = OSSL_NELEM(suiteb_curves);
269 break;
270
271 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
272 *pgroups = suiteb_curves;
273 *pgroupslen = 1;
274 break;
275
276 case SSL_CERT_FLAG_SUITEB_192_LOS:
277 *pgroups = suiteb_curves + 1;
278 *pgroupslen = 1;
279 break;
280 # endif
281
282 default:
283 if (s->ext.supportedgroups == NULL) {
284 *pgroups = supported_groups_default;
285 *pgroupslen = OSSL_NELEM(supported_groups_default);
286 } else {
287 *pgroups = s->ext.supportedgroups;
288 *pgroupslen = s->ext.supportedgroups_len;
289 }
290 break;
291 }
292 #else
293 *pgroups = NULL;
294 *pgroupslen = 0;
295 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
296 }
297
298 int tls_valid_group(SSL *s, uint16_t group_id, int version)
299 {
300 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(group_id);
301
302 if (version < TLS1_3_VERSION) {
303 if ((ginfo->flags & TLS_GROUP_ONLY_FOR_TLS1_3) != 0)
304 return 0;
305 }
306 return 1;
307 }
308
309 /* See if group is allowed by security callback */
310 int tls_group_allowed(SSL *s, uint16_t group, int op)
311 {
312 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(group);
313 unsigned char gtmp[2];
314
315 if (ginfo == NULL)
316 return 0;
317 #ifdef OPENSSL_NO_EC2M
318 if (ginfo->flags & TLS_GROUP_CURVE_CHAR2)
319 return 0;
320 #endif
321 #ifdef OPENSSL_NO_DH
322 if (ginfo->flags & TLS_GROUP_FFDHE)
323 return 0;
324 #endif
325 gtmp[0] = group >> 8;
326 gtmp[1] = group & 0xff;
327 return ssl_security(s, op, ginfo->secbits, ginfo->nid, (void *)gtmp);
328 }
329
330 /* Return 1 if "id" is in "list" */
331 static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
332 {
333 size_t i;
334 for (i = 0; i < listlen; i++)
335 if (list[i] == id)
336 return 1;
337 return 0;
338 }
339
340 /*-
341 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
342 * if there is no match.
343 * For nmatch == -1, return number of matches
344 * For nmatch == -2, return the id of the group to use for
345 * a tmp key, or 0 if there is no match.
346 */
347 uint16_t tls1_shared_group(SSL *s, int nmatch)
348 {
349 const uint16_t *pref, *supp;
350 size_t num_pref, num_supp, i;
351 int k;
352
353 /* Can't do anything on client side */
354 if (s->server == 0)
355 return 0;
356 if (nmatch == -2) {
357 if (tls1_suiteb(s)) {
358 /*
359 * For Suite B ciphersuite determines curve: we already know
360 * these are acceptable due to previous checks.
361 */
362 unsigned long cid = s->s3.tmp.new_cipher->id;
363
364 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
365 return TLSEXT_curve_P_256;
366 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
367 return TLSEXT_curve_P_384;
368 /* Should never happen */
369 return 0;
370 }
371 /* If not Suite B just return first preference shared curve */
372 nmatch = 0;
373 }
374 /*
375 * If server preference set, our groups are the preference order
376 * otherwise peer decides.
377 */
378 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
379 tls1_get_supported_groups(s, &pref, &num_pref);
380 tls1_get_peer_groups(s, &supp, &num_supp);
381 } else {
382 tls1_get_peer_groups(s, &pref, &num_pref);
383 tls1_get_supported_groups(s, &supp, &num_supp);
384 }
385
386 for (k = 0, i = 0; i < num_pref; i++) {
387 uint16_t id = pref[i];
388
389 if (!tls1_in_list(id, supp, num_supp)
390 || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
391 continue;
392 if (nmatch == k)
393 return id;
394 k++;
395 }
396 if (nmatch == -1)
397 return k;
398 /* Out of range (nmatch > k). */
399 return 0;
400 }
401
402 int tls1_set_groups(uint16_t **pext, size_t *pextlen,
403 int *groups, size_t ngroups)
404 {
405 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH)
406 uint16_t *glist;
407 size_t i;
408 /*
409 * Bitmap of groups included to detect duplicates: two variables are added
410 * to detect duplicates as some values are more than 32.
411 */
412 unsigned long *dup_list = NULL;
413 unsigned long dup_list_egrp = 0;
414 unsigned long dup_list_dhgrp = 0;
415
416 if (ngroups == 0) {
417 SSLerr(SSL_F_TLS1_SET_GROUPS, SSL_R_BAD_LENGTH);
418 return 0;
419 }
420 if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) {
421 SSLerr(SSL_F_TLS1_SET_GROUPS, ERR_R_MALLOC_FAILURE);
422 return 0;
423 }
424 for (i = 0; i < ngroups; i++) {
425 unsigned long idmask;
426 uint16_t id;
427 id = tls1_nid2group_id(groups[i]);
428 if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
429 goto err;
430 idmask = 1L << (id & 0x00FF);
431 dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
432 if (!id || ((*dup_list) & idmask))
433 goto err;
434 *dup_list |= idmask;
435 glist[i] = id;
436 }
437 OPENSSL_free(*pext);
438 *pext = glist;
439 *pextlen = ngroups;
440 return 1;
441 err:
442 OPENSSL_free(glist);
443 return 0;
444 #else
445 return 0;
446 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
447 }
448
449 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH)
450 # define MAX_GROUPLIST OSSL_NELEM(nid_list)
451
452 typedef struct {
453 size_t nidcnt;
454 int nid_arr[MAX_GROUPLIST];
455 } nid_cb_st;
456
457 static int nid_cb(const char *elem, int len, void *arg)
458 {
459 nid_cb_st *narg = arg;
460 size_t i;
461 int nid = NID_undef;
462 char etmp[20];
463 if (elem == NULL)
464 return 0;
465 if (narg->nidcnt == MAX_GROUPLIST)
466 return 0;
467 if (len > (int)(sizeof(etmp) - 1))
468 return 0;
469 memcpy(etmp, elem, len);
470 etmp[len] = 0;
471 # ifndef OPENSSL_NO_EC
472 nid = EC_curve_nist2nid(etmp);
473 # endif
474 if (nid == NID_undef)
475 nid = OBJ_sn2nid(etmp);
476 if (nid == NID_undef)
477 nid = OBJ_ln2nid(etmp);
478 if (nid == NID_undef)
479 return 0;
480 for (i = 0; i < narg->nidcnt; i++)
481 if (narg->nid_arr[i] == nid)
482 return 0;
483 narg->nid_arr[narg->nidcnt++] = nid;
484 return 1;
485 }
486 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
487
488 /* Set groups based on a colon separate list */
489 int tls1_set_groups_list(uint16_t **pext, size_t *pextlen, const char *str)
490 {
491 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH)
492 nid_cb_st ncb;
493 ncb.nidcnt = 0;
494 if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb))
495 return 0;
496 if (pext == NULL)
497 return 1;
498 return tls1_set_groups(pext, pextlen, ncb.nid_arr, ncb.nidcnt);
499 #else
500 return 0;
501 #endif
502 }
503
504 /* Check a group id matches preferences */
505 int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)
506 {
507 const uint16_t *groups;
508 size_t groups_len;
509
510 if (group_id == 0)
511 return 0;
512
513 /* Check for Suite B compliance */
514 if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
515 unsigned long cid = s->s3.tmp.new_cipher->id;
516
517 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
518 if (group_id != TLSEXT_curve_P_256)
519 return 0;
520 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
521 if (group_id != TLSEXT_curve_P_384)
522 return 0;
523 } else {
524 /* Should never happen */
525 return 0;
526 }
527 }
528
529 if (check_own_groups) {
530 /* Check group is one of our preferences */
531 tls1_get_supported_groups(s, &groups, &groups_len);
532 if (!tls1_in_list(group_id, groups, groups_len))
533 return 0;
534 }
535
536 if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
537 return 0;
538
539 /* For clients, nothing more to check */
540 if (!s->server)
541 return 1;
542
543 /* Check group is one of peers preferences */
544 tls1_get_peer_groups(s, &groups, &groups_len);
545
546 /*
547 * RFC 4492 does not require the supported elliptic curves extension
548 * so if it is not sent we can just choose any curve.
549 * It is invalid to send an empty list in the supported groups
550 * extension, so groups_len == 0 always means no extension.
551 */
552 if (groups_len == 0)
553 return 1;
554 return tls1_in_list(group_id, groups, groups_len);
555 }
556
557 #ifndef OPENSSL_NO_EC
558 void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
559 size_t *num_formats)
560 {
561 /*
562 * If we have a custom point format list use it otherwise use default
563 */
564 if (s->ext.ecpointformats) {
565 *pformats = s->ext.ecpointformats;
566 *num_formats = s->ext.ecpointformats_len;
567 } else {
568 *pformats = ecformats_default;
569 /* For Suite B we don't support char2 fields */
570 if (tls1_suiteb(s))
571 *num_formats = sizeof(ecformats_default) - 1;
572 else
573 *num_formats = sizeof(ecformats_default);
574 }
575 }
576
577 /* Check a key is compatible with compression extension */
578 static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey)
579 {
580 const EC_KEY *ec;
581 const EC_GROUP *grp;
582 unsigned char comp_id;
583 size_t i;
584
585 /* If not an EC key nothing to check */
586 if (EVP_PKEY_id(pkey) != EVP_PKEY_EC)
587 return 1;
588 ec = EVP_PKEY_get0_EC_KEY(pkey);
589 grp = EC_KEY_get0_group(ec);
590
591 /* Get required compression id */
592 if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_UNCOMPRESSED) {
593 comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
594 } else if (SSL_IS_TLS13(s)) {
595 /*
596 * ec_point_formats extension is not used in TLSv1.3 so we ignore
597 * this check.
598 */
599 return 1;
600 } else {
601 int field_type = EC_METHOD_get_field_type(EC_GROUP_method_of(grp));
602
603 if (field_type == NID_X9_62_prime_field)
604 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
605 else if (field_type == NID_X9_62_characteristic_two_field)
606 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
607 else
608 return 0;
609 }
610 /*
611 * If point formats extension present check it, otherwise everything is
612 * supported (see RFC4492).
613 */
614 if (s->ext.peer_ecpointformats == NULL)
615 return 1;
616
617 for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
618 if (s->ext.peer_ecpointformats[i] == comp_id)
619 return 1;
620 }
621 return 0;
622 }
623
624 /* Return group id of a key */
625 static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
626 {
627 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey);
628 const EC_GROUP *grp;
629
630 if (ec == NULL)
631 return 0;
632 grp = EC_KEY_get0_group(ec);
633 return tls1_nid2group_id(EC_GROUP_get_curve_name(grp));
634 }
635
636 /*
637 * Check cert parameters compatible with extensions: currently just checks EC
638 * certificates have compatible curves and compression.
639 */
640 static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
641 {
642 uint16_t group_id;
643 EVP_PKEY *pkey;
644 pkey = X509_get0_pubkey(x);
645 if (pkey == NULL)
646 return 0;
647 /* If not EC nothing to do */
648 if (EVP_PKEY_id(pkey) != EVP_PKEY_EC)
649 return 1;
650 /* Check compression */
651 if (!tls1_check_pkey_comp(s, pkey))
652 return 0;
653 group_id = tls1_get_group_id(pkey);
654 /*
655 * For a server we allow the certificate to not be in our list of supported
656 * groups.
657 */
658 if (!tls1_check_group_id(s, group_id, !s->server))
659 return 0;
660 /*
661 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
662 * SHA384+P-384.
663 */
664 if (check_ee_md && tls1_suiteb(s)) {
665 int check_md;
666 size_t i;
667
668 /* Check to see we have necessary signing algorithm */
669 if (group_id == TLSEXT_curve_P_256)
670 check_md = NID_ecdsa_with_SHA256;
671 else if (group_id == TLSEXT_curve_P_384)
672 check_md = NID_ecdsa_with_SHA384;
673 else
674 return 0; /* Should never happen */
675 for (i = 0; i < s->shared_sigalgslen; i++) {
676 if (check_md == s->shared_sigalgs[i]->sigandhash)
677 return 1;;
678 }
679 return 0;
680 }
681 return 1;
682 }
683
684 /*
685 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
686 * @s: SSL connection
687 * @cid: Cipher ID we're considering using
688 *
689 * Checks that the kECDHE cipher suite we're considering using
690 * is compatible with the client extensions.
691 *
692 * Returns 0 when the cipher can't be used or 1 when it can.
693 */
694 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
695 {
696 /* If not Suite B just need a shared group */
697 if (!tls1_suiteb(s))
698 return tls1_shared_group(s, 0) != 0;
699 /*
700 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
701 * curves permitted.
702 */
703 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
704 return tls1_check_group_id(s, TLSEXT_curve_P_256, 1);
705 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
706 return tls1_check_group_id(s, TLSEXT_curve_P_384, 1);
707
708 return 0;
709 }
710
711 #else
712
713 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
714 {
715 return 1;
716 }
717
718 #endif /* OPENSSL_NO_EC */
719
720 /* Default sigalg schemes */
721 static const uint16_t tls12_sigalgs[] = {
722 #ifndef OPENSSL_NO_EC
723 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
724 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
725 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
726 TLSEXT_SIGALG_ed25519,
727 TLSEXT_SIGALG_ed448,
728 #endif
729
730 TLSEXT_SIGALG_rsa_pss_pss_sha256,
731 TLSEXT_SIGALG_rsa_pss_pss_sha384,
732 TLSEXT_SIGALG_rsa_pss_pss_sha512,
733 TLSEXT_SIGALG_rsa_pss_rsae_sha256,
734 TLSEXT_SIGALG_rsa_pss_rsae_sha384,
735 TLSEXT_SIGALG_rsa_pss_rsae_sha512,
736
737 TLSEXT_SIGALG_rsa_pkcs1_sha256,
738 TLSEXT_SIGALG_rsa_pkcs1_sha384,
739 TLSEXT_SIGALG_rsa_pkcs1_sha512,
740
741 #ifndef OPENSSL_NO_EC
742 TLSEXT_SIGALG_ecdsa_sha224,
743 TLSEXT_SIGALG_ecdsa_sha1,
744 #endif
745 TLSEXT_SIGALG_rsa_pkcs1_sha224,
746 TLSEXT_SIGALG_rsa_pkcs1_sha1,
747 #ifndef OPENSSL_NO_DSA
748 TLSEXT_SIGALG_dsa_sha224,
749 TLSEXT_SIGALG_dsa_sha1,
750
751 TLSEXT_SIGALG_dsa_sha256,
752 TLSEXT_SIGALG_dsa_sha384,
753 TLSEXT_SIGALG_dsa_sha512,
754 #endif
755 #ifndef OPENSSL_NO_GOST
756 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
757 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
758 TLSEXT_SIGALG_gostr34102001_gostr3411,
759 #endif
760 };
761
762 #ifndef OPENSSL_NO_EC
763 static const uint16_t suiteb_sigalgs[] = {
764 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
765 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
766 };
767 #endif
768
769 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
770 #ifndef OPENSSL_NO_EC
771 {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
772 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
773 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1},
774 {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
775 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
776 NID_ecdsa_with_SHA384, NID_secp384r1},
777 {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
778 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
779 NID_ecdsa_with_SHA512, NID_secp521r1},
780 {"ed25519", TLSEXT_SIGALG_ed25519,
781 NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
782 NID_undef, NID_undef},
783 {"ed448", TLSEXT_SIGALG_ed448,
784 NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
785 NID_undef, NID_undef},
786 {NULL, TLSEXT_SIGALG_ecdsa_sha224,
787 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
788 NID_ecdsa_with_SHA224, NID_undef},
789 {NULL, TLSEXT_SIGALG_ecdsa_sha1,
790 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
791 NID_ecdsa_with_SHA1, NID_undef},
792 #endif
793 {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
794 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
795 NID_undef, NID_undef},
796 {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
797 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
798 NID_undef, NID_undef},
799 {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
800 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
801 NID_undef, NID_undef},
802 {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
803 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
804 NID_undef, NID_undef},
805 {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
806 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
807 NID_undef, NID_undef},
808 {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
809 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
810 NID_undef, NID_undef},
811 {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
812 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
813 NID_sha256WithRSAEncryption, NID_undef},
814 {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
815 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
816 NID_sha384WithRSAEncryption, NID_undef},
817 {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
818 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
819 NID_sha512WithRSAEncryption, NID_undef},
820 {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
821 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
822 NID_sha224WithRSAEncryption, NID_undef},
823 {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
824 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
825 NID_sha1WithRSAEncryption, NID_undef},
826 #ifndef OPENSSL_NO_DSA
827 {NULL, TLSEXT_SIGALG_dsa_sha256,
828 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
829 NID_dsa_with_SHA256, NID_undef},
830 {NULL, TLSEXT_SIGALG_dsa_sha384,
831 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
832 NID_undef, NID_undef},
833 {NULL, TLSEXT_SIGALG_dsa_sha512,
834 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
835 NID_undef, NID_undef},
836 {NULL, TLSEXT_SIGALG_dsa_sha224,
837 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
838 NID_undef, NID_undef},
839 {NULL, TLSEXT_SIGALG_dsa_sha1,
840 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
841 NID_dsaWithSHA1, NID_undef},
842 #endif
843 #ifndef OPENSSL_NO_GOST
844 {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
845 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
846 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
847 NID_undef, NID_undef},
848 {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
849 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
850 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
851 NID_undef, NID_undef},
852 {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
853 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
854 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
855 NID_undef, NID_undef}
856 #endif
857 };
858 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
859 static const SIGALG_LOOKUP legacy_rsa_sigalg = {
860 "rsa_pkcs1_md5_sha1", 0,
861 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
862 EVP_PKEY_RSA, SSL_PKEY_RSA,
863 NID_undef, NID_undef
864 };
865
866 /*
867 * Default signature algorithm values used if signature algorithms not present.
868 * From RFC5246. Note: order must match certificate index order.
869 */
870 static const uint16_t tls_default_sigalg[] = {
871 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
872 0, /* SSL_PKEY_RSA_PSS_SIGN */
873 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
874 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
875 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
876 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, /* SSL_PKEY_GOST12_256 */
877 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, /* SSL_PKEY_GOST12_512 */
878 0, /* SSL_PKEY_ED25519 */
879 0, /* SSL_PKEY_ED448 */
880 };
881
882 /* Lookup TLS signature algorithm */
883 static const SIGALG_LOOKUP *tls1_lookup_sigalg(uint16_t sigalg)
884 {
885 size_t i;
886 const SIGALG_LOOKUP *s;
887
888 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
889 i++, s++) {
890 if (s->sigalg == sigalg)
891 return s;
892 }
893 return NULL;
894 }
895 /* Lookup hash: return 0 if invalid or not enabled */
896 int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
897 {
898 const EVP_MD *md;
899 if (lu == NULL)
900 return 0;
901 /* lu->hash == NID_undef means no associated digest */
902 if (lu->hash == NID_undef) {
903 md = NULL;
904 } else {
905 md = ssl_md(ctx, lu->hash_idx);
906 if (md == NULL)
907 return 0;
908 }
909 if (pmd)
910 *pmd = md;
911 return 1;
912 }
913
914 /*
915 * Check if key is large enough to generate RSA-PSS signature.
916 *
917 * The key must greater than or equal to 2 * hash length + 2.
918 * SHA512 has a hash length of 64 bytes, which is incompatible
919 * with a 128 byte (1024 bit) key.
920 */
921 #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_size(md) + 2)
922 static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const RSA *rsa,
923 const SIGALG_LOOKUP *lu)
924 {
925 const EVP_MD *md;
926
927 if (rsa == NULL)
928 return 0;
929 if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
930 return 0;
931 if (RSA_size(rsa) < RSA_PSS_MINIMUM_KEY_SIZE(md))
932 return 0;
933 return 1;
934 }
935
936 /*
937 * Returns a signature algorithm when the peer did not send a list of supported
938 * signature algorithms. The signature algorithm is fixed for the certificate
939 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
940 * certificate type from |s| will be used.
941 * Returns the signature algorithm to use, or NULL on error.
942 */
943 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
944 {
945 if (idx == -1) {
946 if (s->server) {
947 size_t i;
948
949 /* Work out index corresponding to ciphersuite */
950 for (i = 0; i < SSL_PKEY_NUM; i++) {
951 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);
952
953 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
954 idx = i;
955 break;
956 }
957 }
958
959 /*
960 * Some GOST ciphersuites allow more than one signature algorithms
961 * */
962 if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
963 int real_idx;
964
965 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
966 real_idx--) {
967 if (s->cert->pkeys[real_idx].privatekey != NULL) {
968 idx = real_idx;
969 break;
970 }
971 }
972 }
973 } else {
974 idx = s->cert->key - s->cert->pkeys;
975 }
976 }
977 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
978 return NULL;
979 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
980 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(tls_default_sigalg[idx]);
981
982 if (!tls1_lookup_md(s->ctx, lu, NULL))
983 return NULL;
984 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
985 return NULL;
986 return lu;
987 }
988 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
989 return NULL;
990 return &legacy_rsa_sigalg;
991 }
992 /* Set peer sigalg based key type */
993 int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
994 {
995 size_t idx;
996 const SIGALG_LOOKUP *lu;
997
998 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
999 return 0;
1000 lu = tls1_get_legacy_sigalg(s, idx);
1001 if (lu == NULL)
1002 return 0;
1003 s->s3.tmp.peer_sigalg = lu;
1004 return 1;
1005 }
1006
1007 size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
1008 {
1009 /*
1010 * If Suite B mode use Suite B sigalgs only, ignore any other
1011 * preferences.
1012 */
1013 #ifndef OPENSSL_NO_EC
1014 switch (tls1_suiteb(s)) {
1015 case SSL_CERT_FLAG_SUITEB_128_LOS:
1016 *psigs = suiteb_sigalgs;
1017 return OSSL_NELEM(suiteb_sigalgs);
1018
1019 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1020 *psigs = suiteb_sigalgs;
1021 return 1;
1022
1023 case SSL_CERT_FLAG_SUITEB_192_LOS:
1024 *psigs = suiteb_sigalgs + 1;
1025 return 1;
1026 }
1027 #endif
1028 /*
1029 * We use client_sigalgs (if not NULL) if we're a server
1030 * and sending a certificate request or if we're a client and
1031 * determining which shared algorithm to use.
1032 */
1033 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1034 *psigs = s->cert->client_sigalgs;
1035 return s->cert->client_sigalgslen;
1036 } else if (s->cert->conf_sigalgs) {
1037 *psigs = s->cert->conf_sigalgs;
1038 return s->cert->conf_sigalgslen;
1039 } else {
1040 *psigs = tls12_sigalgs;
1041 return OSSL_NELEM(tls12_sigalgs);
1042 }
1043 }
1044
1045 #ifndef OPENSSL_NO_EC
1046 /*
1047 * Called by servers only. Checks that we have a sig alg that supports the
1048 * specified EC curve.
1049 */
1050 int tls_check_sigalg_curve(const SSL *s, int curve)
1051 {
1052 const uint16_t *sigs;
1053 size_t siglen, i;
1054
1055 if (s->cert->conf_sigalgs) {
1056 sigs = s->cert->conf_sigalgs;
1057 siglen = s->cert->conf_sigalgslen;
1058 } else {
1059 sigs = tls12_sigalgs;
1060 siglen = OSSL_NELEM(tls12_sigalgs);
1061 }
1062
1063 for (i = 0; i < siglen; i++) {
1064 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(sigs[i]);
1065
1066 if (lu == NULL)
1067 continue;
1068 if (lu->sig == EVP_PKEY_EC
1069 && lu->curve != NID_undef
1070 && curve == lu->curve)
1071 return 1;
1072 }
1073
1074 return 0;
1075 }
1076 #endif
1077
1078 /*
1079 * Return the number of security bits for the signature algorithm, or 0 on
1080 * error.
1081 */
1082 static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1083 {
1084 const EVP_MD *md = NULL;
1085 int secbits = 0;
1086
1087 if (!tls1_lookup_md(ctx, lu, &md))
1088 return 0;
1089 if (md != NULL)
1090 {
1091 /* Security bits: half digest bits */
1092 secbits = EVP_MD_size(md) * 4;
1093 } else {
1094 /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1095 if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1096 secbits = 128;
1097 else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1098 secbits = 224;
1099 }
1100 return secbits;
1101 }
1102
1103 /*
1104 * Check signature algorithm is consistent with sent supported signature
1105 * algorithms and if so set relevant digest and signature scheme in
1106 * s.
1107 */
1108 int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
1109 {
1110 const uint16_t *sent_sigs;
1111 const EVP_MD *md = NULL;
1112 char sigalgstr[2];
1113 size_t sent_sigslen, i, cidx;
1114 int pkeyid = EVP_PKEY_id(pkey);
1115 const SIGALG_LOOKUP *lu;
1116 int secbits = 0;
1117
1118 /* Should never happen */
1119 if (pkeyid == -1)
1120 return -1;
1121 if (SSL_IS_TLS13(s)) {
1122 /* Disallow DSA for TLS 1.3 */
1123 if (pkeyid == EVP_PKEY_DSA) {
1124 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1125 SSL_R_WRONG_SIGNATURE_TYPE);
1126 return 0;
1127 }
1128 /* Only allow PSS for TLS 1.3 */
1129 if (pkeyid == EVP_PKEY_RSA)
1130 pkeyid = EVP_PKEY_RSA_PSS;
1131 }
1132 lu = tls1_lookup_sigalg(sig);
1133 /*
1134 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1135 * is consistent with signature: RSA keys can be used for RSA-PSS
1136 */
1137 if (lu == NULL
1138 || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1139 || (pkeyid != lu->sig
1140 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1141 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1142 SSL_R_WRONG_SIGNATURE_TYPE);
1143 return 0;
1144 }
1145 /* Check the sigalg is consistent with the key OID */
1146 if (!ssl_cert_lookup_by_nid(EVP_PKEY_id(pkey), &cidx)
1147 || lu->sig_idx != (int)cidx) {
1148 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1149 SSL_R_WRONG_SIGNATURE_TYPE);
1150 return 0;
1151 }
1152
1153 #ifndef OPENSSL_NO_EC
1154 if (pkeyid == EVP_PKEY_EC) {
1155
1156 /* Check point compression is permitted */
1157 if (!tls1_check_pkey_comp(s, pkey)) {
1158 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1159 SSL_F_TLS12_CHECK_PEER_SIGALG,
1160 SSL_R_ILLEGAL_POINT_COMPRESSION);
1161 return 0;
1162 }
1163
1164 /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1165 if (SSL_IS_TLS13(s) || tls1_suiteb(s)) {
1166 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey);
1167 int curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
1168
1169 if (lu->curve != NID_undef && curve != lu->curve) {
1170 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1171 SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
1172 return 0;
1173 }
1174 }
1175 if (!SSL_IS_TLS13(s)) {
1176 /* Check curve matches extensions */
1177 if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1178 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1179 SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
1180 return 0;
1181 }
1182 if (tls1_suiteb(s)) {
1183 /* Check sigalg matches a permissible Suite B value */
1184 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1185 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1186 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1187 SSL_F_TLS12_CHECK_PEER_SIGALG,
1188 SSL_R_WRONG_SIGNATURE_TYPE);
1189 return 0;
1190 }
1191 }
1192 }
1193 } else if (tls1_suiteb(s)) {
1194 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1195 SSL_R_WRONG_SIGNATURE_TYPE);
1196 return 0;
1197 }
1198 #endif
1199
1200 /* Check signature matches a type we sent */
1201 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1202 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1203 if (sig == *sent_sigs)
1204 break;
1205 }
1206 /* Allow fallback to SHA1 if not strict mode */
1207 if (i == sent_sigslen && (lu->hash != NID_sha1
1208 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1209 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1210 SSL_R_WRONG_SIGNATURE_TYPE);
1211 return 0;
1212 }
1213 if (!tls1_lookup_md(s->ctx, lu, &md)) {
1214 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1215 SSL_R_UNKNOWN_DIGEST);
1216 return 0;
1217 }
1218 /*
1219 * Make sure security callback allows algorithm. For historical
1220 * reasons we have to pass the sigalg as a two byte char array.
1221 */
1222 sigalgstr[0] = (sig >> 8) & 0xff;
1223 sigalgstr[1] = sig & 0xff;
1224 secbits = sigalg_security_bits(s->ctx, lu);
1225 if (secbits == 0 ||
1226 !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
1227 md != NULL ? EVP_MD_type(md) : NID_undef,
1228 (void *)sigalgstr)) {
1229 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1230 SSL_R_WRONG_SIGNATURE_TYPE);
1231 return 0;
1232 }
1233 /* Store the sigalg the peer uses */
1234 s->s3.tmp.peer_sigalg = lu;
1235 return 1;
1236 }
1237
1238 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1239 {
1240 if (s->s3.tmp.peer_sigalg == NULL)
1241 return 0;
1242 *pnid = s->s3.tmp.peer_sigalg->sig;
1243 return 1;
1244 }
1245
1246 int SSL_get_signature_type_nid(const SSL *s, int *pnid)
1247 {
1248 if (s->s3.tmp.sigalg == NULL)
1249 return 0;
1250 *pnid = s->s3.tmp.sigalg->sig;
1251 return 1;
1252 }
1253
1254 /*
1255 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
1256 * supported, doesn't appear in supported signature algorithms, isn't supported
1257 * by the enabled protocol versions or by the security level.
1258 *
1259 * This function should only be used for checking which ciphers are supported
1260 * by the client.
1261 *
1262 * Call ssl_cipher_disabled() to check that it's enabled or not.
1263 */
1264 int ssl_set_client_disabled(SSL *s)
1265 {
1266 s->s3.tmp.mask_a = 0;
1267 s->s3.tmp.mask_k = 0;
1268 ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
1269 if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
1270 &s->s3.tmp.max_ver, NULL) != 0)
1271 return 0;
1272 #ifndef OPENSSL_NO_PSK
1273 /* with PSK there must be client callback set */
1274 if (!s->psk_client_callback) {
1275 s->s3.tmp.mask_a |= SSL_aPSK;
1276 s->s3.tmp.mask_k |= SSL_PSK;
1277 }
1278 #endif /* OPENSSL_NO_PSK */
1279 #ifndef OPENSSL_NO_SRP
1280 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1281 s->s3.tmp.mask_a |= SSL_aSRP;
1282 s->s3.tmp.mask_k |= SSL_kSRP;
1283 }
1284 #endif
1285 return 1;
1286 }
1287
1288 /*
1289 * ssl_cipher_disabled - check that a cipher is disabled or not
1290 * @s: SSL connection that you want to use the cipher on
1291 * @c: cipher to check
1292 * @op: Security check that you want to do
1293 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
1294 *
1295 * Returns 1 when it's disabled, 0 when enabled.
1296 */
1297 int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
1298 {
1299 if (c->algorithm_mkey & s->s3.tmp.mask_k
1300 || c->algorithm_auth & s->s3.tmp.mask_a)
1301 return 1;
1302 if (s->s3.tmp.max_ver == 0)
1303 return 1;
1304 if (!SSL_IS_DTLS(s)) {
1305 int min_tls = c->min_tls;
1306
1307 /*
1308 * For historical reasons we will allow ECHDE to be selected by a server
1309 * in SSLv3 if we are a client
1310 */
1311 if (min_tls == TLS1_VERSION && ecdhe
1312 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
1313 min_tls = SSL3_VERSION;
1314
1315 if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver))
1316 return 1;
1317 }
1318 if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver)
1319 || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver)))
1320 return 1;
1321
1322 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1323 }
1324
1325 int tls_use_ticket(SSL *s)
1326 {
1327 if ((s->options & SSL_OP_NO_TICKET))
1328 return 0;
1329 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1330 }
1331
1332 int tls1_set_server_sigalgs(SSL *s)
1333 {
1334 size_t i;
1335
1336 /* Clear any shared signature algorithms */
1337 OPENSSL_free(s->shared_sigalgs);
1338 s->shared_sigalgs = NULL;
1339 s->shared_sigalgslen = 0;
1340 /* Clear certificate validity flags */
1341 for (i = 0; i < SSL_PKEY_NUM; i++)
1342 s->s3.tmp.valid_flags[i] = 0;
1343 /*
1344 * If peer sent no signature algorithms check to see if we support
1345 * the default algorithm for each certificate type
1346 */
1347 if (s->s3.tmp.peer_cert_sigalgs == NULL
1348 && s->s3.tmp.peer_sigalgs == NULL) {
1349 const uint16_t *sent_sigs;
1350 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1351
1352 for (i = 0; i < SSL_PKEY_NUM; i++) {
1353 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
1354 size_t j;
1355
1356 if (lu == NULL)
1357 continue;
1358 /* Check default matches a type we sent */
1359 for (j = 0; j < sent_sigslen; j++) {
1360 if (lu->sigalg == sent_sigs[j]) {
1361 s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
1362 break;
1363 }
1364 }
1365 }
1366 return 1;
1367 }
1368
1369 if (!tls1_process_sigalgs(s)) {
1370 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
1371 SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_INTERNAL_ERROR);
1372 return 0;
1373 }
1374 if (s->shared_sigalgs != NULL)
1375 return 1;
1376
1377 /* Fatal error if no shared signature algorithms */
1378 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS1_SET_SERVER_SIGALGS,
1379 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1380 return 0;
1381 }
1382
1383 /*-
1384 * Gets the ticket information supplied by the client if any.
1385 *
1386 * hello: The parsed ClientHello data
1387 * ret: (output) on return, if a ticket was decrypted, then this is set to
1388 * point to the resulting session.
1389 */
1390 SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1391 SSL_SESSION **ret)
1392 {
1393 size_t size;
1394 RAW_EXTENSION *ticketext;
1395
1396 *ret = NULL;
1397 s->ext.ticket_expected = 0;
1398
1399 /*
1400 * If tickets disabled or not supported by the protocol version
1401 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1402 * resumption.
1403 */
1404 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1405 return SSL_TICKET_NONE;
1406
1407 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1408 if (!ticketext->present)
1409 return SSL_TICKET_NONE;
1410
1411 size = PACKET_remaining(&ticketext->data);
1412
1413 return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1414 hello->session_id, hello->session_id_len, ret);
1415 }
1416
1417 /*-
1418 * tls_decrypt_ticket attempts to decrypt a session ticket.
1419 *
1420 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
1421 * expecting a pre-shared key ciphersuite, in which case we have no use for
1422 * session tickets and one will never be decrypted, nor will
1423 * s->ext.ticket_expected be set to 1.
1424 *
1425 * Side effects:
1426 * Sets s->ext.ticket_expected to 1 if the server will have to issue
1427 * a new session ticket to the client because the client indicated support
1428 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1429 * a session ticket or we couldn't use the one it gave us, or if
1430 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1431 * Otherwise, s->ext.ticket_expected is set to 0.
1432 *
1433 * etick: points to the body of the session ticket extension.
1434 * eticklen: the length of the session tickets extension.
1435 * sess_id: points at the session ID.
1436 * sesslen: the length of the session ID.
1437 * psess: (output) on return, if a ticket was decrypted, then this is set to
1438 * point to the resulting session.
1439 */
1440 SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1441 size_t eticklen, const unsigned char *sess_id,
1442 size_t sesslen, SSL_SESSION **psess)
1443 {
1444 SSL_SESSION *sess = NULL;
1445 unsigned char *sdec;
1446 const unsigned char *p;
1447 int slen, renew_ticket = 0, declen;
1448 SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
1449 size_t mlen;
1450 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1451 SSL_HMAC *hctx = NULL;
1452 EVP_CIPHER_CTX *ctx = NULL;
1453 SSL_CTX *tctx = s->session_ctx;
1454
1455 if (eticklen == 0) {
1456 /*
1457 * The client will accept a ticket but doesn't currently have
1458 * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
1459 */
1460 ret = SSL_TICKET_EMPTY;
1461 goto end;
1462 }
1463 if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) {
1464 /*
1465 * Indicate that the ticket couldn't be decrypted rather than
1466 * generating the session from ticket now, trigger
1467 * abbreviated handshake based on external mechanism to
1468 * calculate the master secret later.
1469 */
1470 ret = SSL_TICKET_NO_DECRYPT;
1471 goto end;
1472 }
1473
1474 /* Need at least keyname + iv */
1475 if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
1476 ret = SSL_TICKET_NO_DECRYPT;
1477 goto end;
1478 }
1479
1480 /* Initialize session ticket encryption and HMAC contexts */
1481 hctx = ssl_hmac_new(tctx);
1482 if (hctx == NULL) {
1483 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1484 goto end;
1485 }
1486 ctx = EVP_CIPHER_CTX_new();
1487 if (ctx == NULL) {
1488 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1489 goto end;
1490 }
1491 #ifndef OPENSSL_NO_DEPRECATED_3_0
1492 if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
1493 #else
1494 if (tctx->ext.ticket_key_evp_cb != NULL)
1495 #endif
1496 {
1497 unsigned char *nctick = (unsigned char *)etick;
1498 int rv = 0;
1499
1500 if (tctx->ext.ticket_key_evp_cb != NULL)
1501 rv = tctx->ext.ticket_key_evp_cb(s, nctick,
1502 nctick + TLSEXT_KEYNAME_LENGTH,
1503 ctx,
1504 ssl_hmac_get0_EVP_MAC_CTX(hctx),
1505 0);
1506 #ifndef OPENSSL_NO_DEPRECATED_3_0
1507 else if (tctx->ext.ticket_key_cb != NULL)
1508 /* if 0 is returned, write an empty ticket */
1509 rv = tctx->ext.ticket_key_cb(s, nctick,
1510 nctick + TLSEXT_KEYNAME_LENGTH,
1511 ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
1512 #endif
1513 if (rv < 0) {
1514 ret = SSL_TICKET_FATAL_ERR_OTHER;
1515 goto end;
1516 }
1517 if (rv == 0) {
1518 ret = SSL_TICKET_NO_DECRYPT;
1519 goto end;
1520 }
1521 if (rv == 2)
1522 renew_ticket = 1;
1523 } else {
1524 /* Check key name matches */
1525 if (memcmp(etick, tctx->ext.tick_key_name,
1526 TLSEXT_KEYNAME_LENGTH) != 0) {
1527 ret = SSL_TICKET_NO_DECRYPT;
1528 goto end;
1529 }
1530 if (ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
1531 sizeof(tctx->ext.secure->tick_hmac_key),
1532 "SHA256") <= 0
1533 || EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), NULL,
1534 tctx->ext.secure->tick_aes_key,
1535 etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
1536 ret = SSL_TICKET_FATAL_ERR_OTHER;
1537 goto end;
1538 }
1539 if (SSL_IS_TLS13(s))
1540 renew_ticket = 1;
1541 }
1542 /*
1543 * Attempt to process session ticket, first conduct sanity and integrity
1544 * checks on ticket.
1545 */
1546 mlen = ssl_hmac_size(hctx);
1547 if (mlen == 0) {
1548 ret = SSL_TICKET_FATAL_ERR_OTHER;
1549 goto end;
1550 }
1551
1552 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1553 if (eticklen <=
1554 TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx) + mlen) {
1555 ret = SSL_TICKET_NO_DECRYPT;
1556 goto end;
1557 }
1558 eticklen -= mlen;
1559 /* Check HMAC of encrypted ticket */
1560 if (ssl_hmac_update(hctx, etick, eticklen) <= 0
1561 || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
1562 ret = SSL_TICKET_FATAL_ERR_OTHER;
1563 goto end;
1564 }
1565
1566 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1567 ret = SSL_TICKET_NO_DECRYPT;
1568 goto end;
1569 }
1570 /* Attempt to decrypt session data */
1571 /* Move p after IV to start of encrypted ticket, update length */
1572 p = etick + TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1573 eticklen -= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1574 sdec = OPENSSL_malloc(eticklen);
1575 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1576 (int)eticklen) <= 0) {
1577 OPENSSL_free(sdec);
1578 ret = SSL_TICKET_FATAL_ERR_OTHER;
1579 goto end;
1580 }
1581 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1582 OPENSSL_free(sdec);
1583 ret = SSL_TICKET_NO_DECRYPT;
1584 goto end;
1585 }
1586 slen += declen;
1587 p = sdec;
1588
1589 sess = d2i_SSL_SESSION(NULL, &p, slen);
1590 slen -= p - sdec;
1591 OPENSSL_free(sdec);
1592 if (sess) {
1593 /* Some additional consistency checks */
1594 if (slen != 0) {
1595 SSL_SESSION_free(sess);
1596 sess = NULL;
1597 ret = SSL_TICKET_NO_DECRYPT;
1598 goto end;
1599 }
1600 /*
1601 * The session ID, if non-empty, is used by some clients to detect
1602 * that the ticket has been accepted. So we copy it to the session
1603 * structure. If it is empty set length to zero as required by
1604 * standard.
1605 */
1606 if (sesslen) {
1607 memcpy(sess->session_id, sess_id, sesslen);
1608 sess->session_id_length = sesslen;
1609 }
1610 if (renew_ticket)
1611 ret = SSL_TICKET_SUCCESS_RENEW;
1612 else
1613 ret = SSL_TICKET_SUCCESS;
1614 goto end;
1615 }
1616 ERR_clear_error();
1617 /*
1618 * For session parse failure, indicate that we need to send a new ticket.
1619 */
1620 ret = SSL_TICKET_NO_DECRYPT;
1621
1622 end:
1623 EVP_CIPHER_CTX_free(ctx);
1624 ssl_hmac_free(hctx);
1625
1626 /*
1627 * If set, the decrypt_ticket_cb() is called unless a fatal error was
1628 * detected above. The callback is responsible for checking |ret| before it
1629 * performs any action
1630 */
1631 if (s->session_ctx->decrypt_ticket_cb != NULL
1632 && (ret == SSL_TICKET_EMPTY
1633 || ret == SSL_TICKET_NO_DECRYPT
1634 || ret == SSL_TICKET_SUCCESS
1635 || ret == SSL_TICKET_SUCCESS_RENEW)) {
1636 size_t keyname_len = eticklen;
1637 int retcb;
1638
1639 if (keyname_len > TLSEXT_KEYNAME_LENGTH)
1640 keyname_len = TLSEXT_KEYNAME_LENGTH;
1641 retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len,
1642 ret,
1643 s->session_ctx->ticket_cb_data);
1644 switch (retcb) {
1645 case SSL_TICKET_RETURN_ABORT:
1646 ret = SSL_TICKET_FATAL_ERR_OTHER;
1647 break;
1648
1649 case SSL_TICKET_RETURN_IGNORE:
1650 ret = SSL_TICKET_NONE;
1651 SSL_SESSION_free(sess);
1652 sess = NULL;
1653 break;
1654
1655 case SSL_TICKET_RETURN_IGNORE_RENEW:
1656 if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
1657 ret = SSL_TICKET_NO_DECRYPT;
1658 /* else the value of |ret| will already do the right thing */
1659 SSL_SESSION_free(sess);
1660 sess = NULL;
1661 break;
1662
1663 case SSL_TICKET_RETURN_USE:
1664 case SSL_TICKET_RETURN_USE_RENEW:
1665 if (ret != SSL_TICKET_SUCCESS
1666 && ret != SSL_TICKET_SUCCESS_RENEW)
1667 ret = SSL_TICKET_FATAL_ERR_OTHER;
1668 else if (retcb == SSL_TICKET_RETURN_USE)
1669 ret = SSL_TICKET_SUCCESS;
1670 else
1671 ret = SSL_TICKET_SUCCESS_RENEW;
1672 break;
1673
1674 default:
1675 ret = SSL_TICKET_FATAL_ERR_OTHER;
1676 }
1677 }
1678
1679 if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) {
1680 switch (ret) {
1681 case SSL_TICKET_NO_DECRYPT:
1682 case SSL_TICKET_SUCCESS_RENEW:
1683 case SSL_TICKET_EMPTY:
1684 s->ext.ticket_expected = 1;
1685 }
1686 }
1687
1688 *psess = sess;
1689
1690 return ret;
1691 }
1692
1693 /* Check to see if a signature algorithm is allowed */
1694 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)
1695 {
1696 unsigned char sigalgstr[2];
1697 int secbits;
1698
1699 /* See if sigalgs is recognised and if hash is enabled */
1700 if (!tls1_lookup_md(s->ctx, lu, NULL))
1701 return 0;
1702 /* DSA is not allowed in TLS 1.3 */
1703 if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
1704 return 0;
1705 /* TODO(OpenSSL1.2) fully axe DSA/etc. in ClientHello per TLS 1.3 spec */
1706 if (!s->server && !SSL_IS_DTLS(s) && s->s3.tmp.min_ver >= TLS1_3_VERSION
1707 && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
1708 || lu->hash_idx == SSL_MD_MD5_IDX
1709 || lu->hash_idx == SSL_MD_SHA224_IDX))
1710 return 0;
1711
1712 /* See if public key algorithm allowed */
1713 if (ssl_cert_is_disabled(lu->sig_idx))
1714 return 0;
1715
1716 if (lu->sig == NID_id_GostR3410_2012_256
1717 || lu->sig == NID_id_GostR3410_2012_512
1718 || lu->sig == NID_id_GostR3410_2001) {
1719 /* We never allow GOST sig algs on the server with TLSv1.3 */
1720 if (s->server && SSL_IS_TLS13(s))
1721 return 0;
1722 if (!s->server
1723 && s->method->version == TLS_ANY_VERSION
1724 && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
1725 int i, num;
1726 STACK_OF(SSL_CIPHER) *sk;
1727
1728 /*
1729 * We're a client that could negotiate TLSv1.3. We only allow GOST
1730 * sig algs if we could negotiate TLSv1.2 or below and we have GOST
1731 * ciphersuites enabled.
1732 */
1733
1734 if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
1735 return 0;
1736
1737 sk = SSL_get_ciphers(s);
1738 num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
1739 for (i = 0; i < num; i++) {
1740 const SSL_CIPHER *c;
1741
1742 c = sk_SSL_CIPHER_value(sk, i);
1743 /* Skip disabled ciphers */
1744 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
1745 continue;
1746
1747 if ((c->algorithm_mkey & SSL_kGOST) != 0)
1748 break;
1749 }
1750 if (i == num)
1751 return 0;
1752 }
1753 }
1754
1755 /* Finally see if security callback allows it */
1756 secbits = sigalg_security_bits(s->ctx, lu);
1757 sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
1758 sigalgstr[1] = lu->sigalg & 0xff;
1759 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
1760 }
1761
1762 /*
1763 * Get a mask of disabled public key algorithms based on supported signature
1764 * algorithms. For example if no signature algorithm supports RSA then RSA is
1765 * disabled.
1766 */
1767
1768 void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
1769 {
1770 const uint16_t *sigalgs;
1771 size_t i, sigalgslen;
1772 uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
1773 /*
1774 * Go through all signature algorithms seeing if we support any
1775 * in disabled_mask.
1776 */
1777 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
1778 for (i = 0; i < sigalgslen; i++, sigalgs++) {
1779 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*sigalgs);
1780 const SSL_CERT_LOOKUP *clu;
1781
1782 if (lu == NULL)
1783 continue;
1784
1785 clu = ssl_cert_lookup_by_idx(lu->sig_idx);
1786 if (clu == NULL)
1787 continue;
1788
1789 /* If algorithm is disabled see if we can enable it */
1790 if ((clu->amask & disabled_mask) != 0
1791 && tls12_sigalg_allowed(s, op, lu))
1792 disabled_mask &= ~clu->amask;
1793 }
1794 *pmask_a |= disabled_mask;
1795 }
1796
1797 int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
1798 const uint16_t *psig, size_t psiglen)
1799 {
1800 size_t i;
1801 int rv = 0;
1802
1803 for (i = 0; i < psiglen; i++, psig++) {
1804 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*psig);
1805
1806 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1807 continue;
1808 if (!WPACKET_put_bytes_u16(pkt, *psig))
1809 return 0;
1810 /*
1811 * If TLS 1.3 must have at least one valid TLS 1.3 message
1812 * signing algorithm: i.e. neither RSA nor SHA1/SHA224
1813 */
1814 if (rv == 0 && (!SSL_IS_TLS13(s)
1815 || (lu->sig != EVP_PKEY_RSA
1816 && lu->hash != NID_sha1
1817 && lu->hash != NID_sha224)))
1818 rv = 1;
1819 }
1820 if (rv == 0)
1821 SSLerr(SSL_F_TLS12_COPY_SIGALGS, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
1822 return rv;
1823 }
1824
1825 /* Given preference and allowed sigalgs set shared sigalgs */
1826 static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
1827 const uint16_t *pref, size_t preflen,
1828 const uint16_t *allow, size_t allowlen)
1829 {
1830 const uint16_t *ptmp, *atmp;
1831 size_t i, j, nmatch = 0;
1832 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
1833 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*ptmp);
1834
1835 /* Skip disabled hashes or signature algorithms */
1836 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
1837 continue;
1838 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
1839 if (*ptmp == *atmp) {
1840 nmatch++;
1841 if (shsig)
1842 *shsig++ = lu;
1843 break;
1844 }
1845 }
1846 }
1847 return nmatch;
1848 }
1849
1850 /* Set shared signature algorithms for SSL structures */
1851 static int tls1_set_shared_sigalgs(SSL *s)
1852 {
1853 const uint16_t *pref, *allow, *conf;
1854 size_t preflen, allowlen, conflen;
1855 size_t nmatch;
1856 const SIGALG_LOOKUP **salgs = NULL;
1857 CERT *c = s->cert;
1858 unsigned int is_suiteb = tls1_suiteb(s);
1859
1860 OPENSSL_free(s->shared_sigalgs);
1861 s->shared_sigalgs = NULL;
1862 s->shared_sigalgslen = 0;
1863 /* If client use client signature algorithms if not NULL */
1864 if (!s->server && c->client_sigalgs && !is_suiteb) {
1865 conf = c->client_sigalgs;
1866 conflen = c->client_sigalgslen;
1867 } else if (c->conf_sigalgs && !is_suiteb) {
1868 conf = c->conf_sigalgs;
1869 conflen = c->conf_sigalgslen;
1870 } else
1871 conflen = tls12_get_psigalgs(s, 0, &conf);
1872 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
1873 pref = conf;
1874 preflen = conflen;
1875 allow = s->s3.tmp.peer_sigalgs;
1876 allowlen = s->s3.tmp.peer_sigalgslen;
1877 } else {
1878 allow = conf;
1879 allowlen = conflen;
1880 pref = s->s3.tmp.peer_sigalgs;
1881 preflen = s->s3.tmp.peer_sigalgslen;
1882 }
1883 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
1884 if (nmatch) {
1885 if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) {
1886 SSLerr(SSL_F_TLS1_SET_SHARED_SIGALGS, ERR_R_MALLOC_FAILURE);
1887 return 0;
1888 }
1889 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
1890 } else {
1891 salgs = NULL;
1892 }
1893 s->shared_sigalgs = salgs;
1894 s->shared_sigalgslen = nmatch;
1895 return 1;
1896 }
1897
1898 int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
1899 {
1900 unsigned int stmp;
1901 size_t size, i;
1902 uint16_t *buf;
1903
1904 size = PACKET_remaining(pkt);
1905
1906 /* Invalid data length */
1907 if (size == 0 || (size & 1) != 0)
1908 return 0;
1909
1910 size >>= 1;
1911
1912 if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) {
1913 SSLerr(SSL_F_TLS1_SAVE_U16, ERR_R_MALLOC_FAILURE);
1914 return 0;
1915 }
1916 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
1917 buf[i] = stmp;
1918
1919 if (i != size) {
1920 OPENSSL_free(buf);
1921 return 0;
1922 }
1923
1924 OPENSSL_free(*pdest);
1925 *pdest = buf;
1926 *pdestlen = size;
1927
1928 return 1;
1929 }
1930
1931 int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert)
1932 {
1933 /* Extension ignored for inappropriate versions */
1934 if (!SSL_USE_SIGALGS(s))
1935 return 1;
1936 /* Should never happen */
1937 if (s->cert == NULL)
1938 return 0;
1939
1940 if (cert)
1941 return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
1942 &s->s3.tmp.peer_cert_sigalgslen);
1943 else
1944 return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
1945 &s->s3.tmp.peer_sigalgslen);
1946
1947 }
1948
1949 /* Set preferred digest for each key type */
1950
1951 int tls1_process_sigalgs(SSL *s)
1952 {
1953 size_t i;
1954 uint32_t *pvalid = s->s3.tmp.valid_flags;
1955
1956 if (!tls1_set_shared_sigalgs(s))
1957 return 0;
1958
1959 for (i = 0; i < SSL_PKEY_NUM; i++)
1960 pvalid[i] = 0;
1961
1962 for (i = 0; i < s->shared_sigalgslen; i++) {
1963 const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
1964 int idx = sigptr->sig_idx;
1965
1966 /* Ignore PKCS1 based sig algs in TLSv1.3 */
1967 if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
1968 continue;
1969 /* If not disabled indicate we can explicitly sign */
1970 if (pvalid[idx] == 0 && !ssl_cert_is_disabled(idx))
1971 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
1972 }
1973 return 1;
1974 }
1975
1976 int SSL_get_sigalgs(SSL *s, int idx,
1977 int *psign, int *phash, int *psignhash,
1978 unsigned char *rsig, unsigned char *rhash)
1979 {
1980 uint16_t *psig = s->s3.tmp.peer_sigalgs;
1981 size_t numsigalgs = s->s3.tmp.peer_sigalgslen;
1982 if (psig == NULL || numsigalgs > INT_MAX)
1983 return 0;
1984 if (idx >= 0) {
1985 const SIGALG_LOOKUP *lu;
1986
1987 if (idx >= (int)numsigalgs)
1988 return 0;
1989 psig += idx;
1990 if (rhash != NULL)
1991 *rhash = (unsigned char)((*psig >> 8) & 0xff);
1992 if (rsig != NULL)
1993 *rsig = (unsigned char)(*psig & 0xff);
1994 lu = tls1_lookup_sigalg(*psig);
1995 if (psign != NULL)
1996 *psign = lu != NULL ? lu->sig : NID_undef;
1997 if (phash != NULL)
1998 *phash = lu != NULL ? lu->hash : NID_undef;
1999 if (psignhash != NULL)
2000 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2001 }
2002 return (int)numsigalgs;
2003 }
2004
2005 int SSL_get_shared_sigalgs(SSL *s, int idx,
2006 int *psign, int *phash, int *psignhash,
2007 unsigned char *rsig, unsigned char *rhash)
2008 {
2009 const SIGALG_LOOKUP *shsigalgs;
2010 if (s->shared_sigalgs == NULL
2011 || idx < 0
2012 || idx >= (int)s->shared_sigalgslen
2013 || s->shared_sigalgslen > INT_MAX)
2014 return 0;
2015 shsigalgs = s->shared_sigalgs[idx];
2016 if (phash != NULL)
2017 *phash = shsigalgs->hash;
2018 if (psign != NULL)
2019 *psign = shsigalgs->sig;
2020 if (psignhash != NULL)
2021 *psignhash = shsigalgs->sigandhash;
2022 if (rsig != NULL)
2023 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2024 if (rhash != NULL)
2025 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2026 return (int)s->shared_sigalgslen;
2027 }
2028
2029 /* Maximum possible number of unique entries in sigalgs array */
2030 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2031
2032 typedef struct {
2033 size_t sigalgcnt;
2034 /* TLSEXT_SIGALG_XXX values */
2035 uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2036 } sig_cb_st;
2037
2038 static void get_sigorhash(int *psig, int *phash, const char *str)
2039 {
2040 if (strcmp(str, "RSA") == 0) {
2041 *psig = EVP_PKEY_RSA;
2042 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2043 *psig = EVP_PKEY_RSA_PSS;
2044 } else if (strcmp(str, "DSA") == 0) {
2045 *psig = EVP_PKEY_DSA;
2046 } else if (strcmp(str, "ECDSA") == 0) {
2047 *psig = EVP_PKEY_EC;
2048 } else {
2049 *phash = OBJ_sn2nid(str);
2050 if (*phash == NID_undef)
2051 *phash = OBJ_ln2nid(str);
2052 }
2053 }
2054 /* Maximum length of a signature algorithm string component */
2055 #define TLS_MAX_SIGSTRING_LEN 40
2056
2057 static int sig_cb(const char *elem, int len, void *arg)
2058 {
2059 sig_cb_st *sarg = arg;
2060 size_t i;
2061 const SIGALG_LOOKUP *s;
2062 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2063 int sig_alg = NID_undef, hash_alg = NID_undef;
2064 if (elem == NULL)
2065 return 0;
2066 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2067 return 0;
2068 if (len > (int)(sizeof(etmp) - 1))
2069 return 0;
2070 memcpy(etmp, elem, len);
2071 etmp[len] = 0;
2072 p = strchr(etmp, '+');
2073 /*
2074 * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2075 * if there's no '+' in the provided name, look for the new-style combined
2076 * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2077 * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2078 * rsa_pss_rsae_* that differ only by public key OID; in such cases
2079 * we will pick the _rsae_ variant, by virtue of them appearing earlier
2080 * in the table.
2081 */
2082 if (p == NULL) {
2083 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2084 i++, s++) {
2085 if (s->name != NULL && strcmp(etmp, s->name) == 0) {
2086 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2087 break;
2088 }
2089 }
2090 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2091 return 0;
2092 } else {
2093 *p = 0;
2094 p++;
2095 if (*p == 0)
2096 return 0;
2097 get_sigorhash(&sig_alg, &hash_alg, etmp);
2098 get_sigorhash(&sig_alg, &hash_alg, p);
2099 if (sig_alg == NID_undef || hash_alg == NID_undef)
2100 return 0;
2101 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2102 i++, s++) {
2103 if (s->hash == hash_alg && s->sig == sig_alg) {
2104 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2105 break;
2106 }
2107 }
2108 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2109 return 0;
2110 }
2111
2112 /* Reject duplicates */
2113 for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2114 if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2115 sarg->sigalgcnt--;
2116 return 0;
2117 }
2118 }
2119 return 1;
2120 }
2121
2122 /*
2123 * Set supported signature algorithms based on a colon separated list of the
2124 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2125 */
2126 int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
2127 {
2128 sig_cb_st sig;
2129 sig.sigalgcnt = 0;
2130 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2131 return 0;
2132 if (c == NULL)
2133 return 1;
2134 return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2135 }
2136
2137 int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2138 int client)
2139 {
2140 uint16_t *sigalgs;
2141
2142 if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) {
2143 SSLerr(SSL_F_TLS1_SET_RAW_SIGALGS, ERR_R_MALLOC_FAILURE);
2144 return 0;
2145 }
2146 memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
2147
2148 if (client) {
2149 OPENSSL_free(c->client_sigalgs);
2150 c->client_sigalgs = sigalgs;
2151 c->client_sigalgslen = salglen;
2152 } else {
2153 OPENSSL_free(c->conf_sigalgs);
2154 c->conf_sigalgs = sigalgs;
2155 c->conf_sigalgslen = salglen;
2156 }
2157
2158 return 1;
2159 }
2160
2161 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
2162 {
2163 uint16_t *sigalgs, *sptr;
2164 size_t i;
2165
2166 if (salglen & 1)
2167 return 0;
2168 if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) {
2169 SSLerr(SSL_F_TLS1_SET_SIGALGS, ERR_R_MALLOC_FAILURE);
2170 return 0;
2171 }
2172 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
2173 size_t j;
2174 const SIGALG_LOOKUP *curr;
2175 int md_id = *psig_nids++;
2176 int sig_id = *psig_nids++;
2177
2178 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
2179 j++, curr++) {
2180 if (curr->hash == md_id && curr->sig == sig_id) {
2181 *sptr++ = curr->sigalg;
2182 break;
2183 }
2184 }
2185
2186 if (j == OSSL_NELEM(sigalg_lookup_tbl))
2187 goto err;
2188 }
2189
2190 if (client) {
2191 OPENSSL_free(c->client_sigalgs);
2192 c->client_sigalgs = sigalgs;
2193 c->client_sigalgslen = salglen / 2;
2194 } else {
2195 OPENSSL_free(c->conf_sigalgs);
2196 c->conf_sigalgs = sigalgs;
2197 c->conf_sigalgslen = salglen / 2;
2198 }
2199
2200 return 1;
2201
2202 err:
2203 OPENSSL_free(sigalgs);
2204 return 0;
2205 }
2206
2207 static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid)
2208 {
2209 int sig_nid, use_pc_sigalgs = 0;
2210 size_t i;
2211 const SIGALG_LOOKUP *sigalg;
2212 size_t sigalgslen;
2213 if (default_nid == -1)
2214 return 1;
2215 sig_nid = X509_get_signature_nid(x);
2216 if (default_nid)
2217 return sig_nid == default_nid ? 1 : 0;
2218
2219 if (SSL_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
2220 /*
2221 * If we're in TLSv1.3 then we only get here if we're checking the
2222 * chain. If the peer has specified peer_cert_sigalgs then we use them
2223 * otherwise we default to normal sigalgs.
2224 */
2225 sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
2226 use_pc_sigalgs = 1;
2227 } else {
2228 sigalgslen = s->shared_sigalgslen;
2229 }
2230 for (i = 0; i < sigalgslen; i++) {
2231 sigalg = use_pc_sigalgs
2232 ? tls1_lookup_sigalg(s->s3.tmp.peer_cert_sigalgs[i])
2233 : s->shared_sigalgs[i];
2234 if (sig_nid == sigalg->sigandhash)
2235 return 1;
2236 }
2237 return 0;
2238 }
2239
2240 /* Check to see if a certificate issuer name matches list of CA names */
2241 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
2242 {
2243 X509_NAME *nm;
2244 int i;
2245 nm = X509_get_issuer_name(x);
2246 for (i = 0; i < sk_X509_NAME_num(names); i++) {
2247 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
2248 return 1;
2249 }
2250 return 0;
2251 }
2252
2253 /*
2254 * Check certificate chain is consistent with TLS extensions and is usable by
2255 * server. This servers two purposes: it allows users to check chains before
2256 * passing them to the server and it allows the server to check chains before
2257 * attempting to use them.
2258 */
2259
2260 /* Flags which need to be set for a certificate when strict mode not set */
2261
2262 #define CERT_PKEY_VALID_FLAGS \
2263 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
2264 /* Strict mode flags */
2265 #define CERT_PKEY_STRICT_FLAGS \
2266 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
2267 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
2268
2269 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
2270 int idx)
2271 {
2272 int i;
2273 int rv = 0;
2274 int check_flags = 0, strict_mode;
2275 CERT_PKEY *cpk = NULL;
2276 CERT *c = s->cert;
2277 uint32_t *pvalid;
2278 unsigned int suiteb_flags = tls1_suiteb(s);
2279 /* idx == -1 means checking server chains */
2280 if (idx != -1) {
2281 /* idx == -2 means checking client certificate chains */
2282 if (idx == -2) {
2283 cpk = c->key;
2284 idx = (int)(cpk - c->pkeys);
2285 } else
2286 cpk = c->pkeys + idx;
2287 pvalid = s->s3.tmp.valid_flags + idx;
2288 x = cpk->x509;
2289 pk = cpk->privatekey;
2290 chain = cpk->chain;
2291 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
2292 /* If no cert or key, forget it */
2293 if (!x || !pk)
2294 goto end;
2295 } else {
2296 size_t certidx;
2297
2298 if (!x || !pk)
2299 return 0;
2300
2301 if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)
2302 return 0;
2303 idx = certidx;
2304 pvalid = s->s3.tmp.valid_flags + idx;
2305
2306 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
2307 check_flags = CERT_PKEY_STRICT_FLAGS;
2308 else
2309 check_flags = CERT_PKEY_VALID_FLAGS;
2310 strict_mode = 1;
2311 }
2312
2313 if (suiteb_flags) {
2314 int ok;
2315 if (check_flags)
2316 check_flags |= CERT_PKEY_SUITEB;
2317 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
2318 if (ok == X509_V_OK)
2319 rv |= CERT_PKEY_SUITEB;
2320 else if (!check_flags)
2321 goto end;
2322 }
2323
2324 /*
2325 * Check all signature algorithms are consistent with signature
2326 * algorithms extension if TLS 1.2 or later and strict mode.
2327 */
2328 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
2329 int default_nid;
2330 int rsign = 0;
2331 if (s->s3.tmp.peer_cert_sigalgs != NULL
2332 || s->s3.tmp.peer_sigalgs != NULL) {
2333 default_nid = 0;
2334 /* If no sigalgs extension use defaults from RFC5246 */
2335 } else {
2336 switch (idx) {
2337 case SSL_PKEY_RSA:
2338 rsign = EVP_PKEY_RSA;
2339 default_nid = NID_sha1WithRSAEncryption;
2340 break;
2341
2342 case SSL_PKEY_DSA_SIGN:
2343 rsign = EVP_PKEY_DSA;
2344 default_nid = NID_dsaWithSHA1;
2345 break;
2346
2347 case SSL_PKEY_ECC:
2348 rsign = EVP_PKEY_EC;
2349 default_nid = NID_ecdsa_with_SHA1;
2350 break;
2351
2352 case SSL_PKEY_GOST01:
2353 rsign = NID_id_GostR3410_2001;
2354 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
2355 break;
2356
2357 case SSL_PKEY_GOST12_256:
2358 rsign = NID_id_GostR3410_2012_256;
2359 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
2360 break;
2361
2362 case SSL_PKEY_GOST12_512:
2363 rsign = NID_id_GostR3410_2012_512;
2364 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
2365 break;
2366
2367 default:
2368 default_nid = -1;
2369 break;
2370 }
2371 }
2372 /*
2373 * If peer sent no signature algorithms extension and we have set
2374 * preferred signature algorithms check we support sha1.
2375 */
2376 if (default_nid > 0 && c->conf_sigalgs) {
2377 size_t j;
2378 const uint16_t *p = c->conf_sigalgs;
2379 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
2380 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*p);
2381
2382 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
2383 break;
2384 }
2385 if (j == c->conf_sigalgslen) {
2386 if (check_flags)
2387 goto skip_sigs;
2388 else
2389 goto end;
2390 }
2391 }
2392 /* Check signature algorithm of each cert in chain */
2393 if (SSL_IS_TLS13(s)) {
2394 /*
2395 * We only get here if the application has called SSL_check_chain(),
2396 * so check_flags is always set.
2397 */
2398 if (find_sig_alg(s, x, pk) != NULL)
2399 rv |= CERT_PKEY_EE_SIGNATURE;
2400 } else if (!tls1_check_sig_alg(s, x, default_nid)) {
2401 if (!check_flags)
2402 goto end;
2403 } else
2404 rv |= CERT_PKEY_EE_SIGNATURE;
2405 rv |= CERT_PKEY_CA_SIGNATURE;
2406 for (i = 0; i < sk_X509_num(chain); i++) {
2407 if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
2408 if (check_flags) {
2409 rv &= ~CERT_PKEY_CA_SIGNATURE;
2410 break;
2411 } else
2412 goto end;
2413 }
2414 }
2415 }
2416 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2417 else if (check_flags)
2418 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2419 skip_sigs:
2420 /* Check cert parameters are consistent */
2421 if (tls1_check_cert_param(s, x, 1))
2422 rv |= CERT_PKEY_EE_PARAM;
2423 else if (!check_flags)
2424 goto end;
2425 if (!s->server)
2426 rv |= CERT_PKEY_CA_PARAM;
2427 /* In strict mode check rest of chain too */
2428 else if (strict_mode) {
2429 rv |= CERT_PKEY_CA_PARAM;
2430 for (i = 0; i < sk_X509_num(chain); i++) {
2431 X509 *ca = sk_X509_value(chain, i);
2432 if (!tls1_check_cert_param(s, ca, 0)) {
2433 if (check_flags) {
2434 rv &= ~CERT_PKEY_CA_PARAM;
2435 break;
2436 } else
2437 goto end;
2438 }
2439 }
2440 }
2441 if (!s->server && strict_mode) {
2442 STACK_OF(X509_NAME) *ca_dn;
2443 int check_type = 0;
2444 switch (EVP_PKEY_id(pk)) {
2445 case EVP_PKEY_RSA:
2446 check_type = TLS_CT_RSA_SIGN;
2447 break;
2448 case EVP_PKEY_DSA:
2449 check_type = TLS_CT_DSS_SIGN;
2450 break;
2451 case EVP_PKEY_EC:
2452 check_type = TLS_CT_ECDSA_SIGN;
2453 break;
2454 }
2455 if (check_type) {
2456 const uint8_t *ctypes = s->s3.tmp.ctype;
2457 size_t j;
2458
2459 for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
2460 if (*ctypes == check_type) {
2461 rv |= CERT_PKEY_CERT_TYPE;
2462 break;
2463 }
2464 }
2465 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2466 goto end;
2467 } else {
2468 rv |= CERT_PKEY_CERT_TYPE;
2469 }
2470
2471 ca_dn = s->s3.tmp.peer_ca_names;
2472
2473 if (!sk_X509_NAME_num(ca_dn))
2474 rv |= CERT_PKEY_ISSUER_NAME;
2475
2476 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2477 if (ssl_check_ca_name(ca_dn, x))
2478 rv |= CERT_PKEY_ISSUER_NAME;
2479 }
2480 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2481 for (i = 0; i < sk_X509_num(chain); i++) {
2482 X509 *xtmp = sk_X509_value(chain, i);
2483 if (ssl_check_ca_name(ca_dn, xtmp)) {
2484 rv |= CERT_PKEY_ISSUER_NAME;
2485 break;
2486 }
2487 }
2488 }
2489 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2490 goto end;
2491 } else
2492 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2493
2494 if (!check_flags || (rv & check_flags) == check_flags)
2495 rv |= CERT_PKEY_VALID;
2496
2497 end:
2498
2499 if (TLS1_get_version(s) >= TLS1_2_VERSION)
2500 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
2501 else
2502 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2503
2504 /*
2505 * When checking a CERT_PKEY structure all flags are irrelevant if the
2506 * chain is invalid.
2507 */
2508 if (!check_flags) {
2509 if (rv & CERT_PKEY_VALID) {
2510 *pvalid = rv;
2511 } else {
2512 /* Preserve sign and explicit sign flag, clear rest */
2513 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2514 return 0;
2515 }
2516 }
2517 return rv;
2518 }
2519
2520 /* Set validity of certificates in an SSL structure */
2521 void tls1_set_cert_validity(SSL *s)
2522 {
2523 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
2524 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
2525 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2526 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2527 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2528 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2529 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2530 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
2531 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
2532 }
2533
2534 /* User level utility function to check a chain is suitable */
2535 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2536 {
2537 return tls1_check_chain(s, x, pk, chain, -1);
2538 }
2539
2540 #ifndef OPENSSL_NO_DH
2541 DH *ssl_get_auto_dh(SSL *s)
2542 {
2543 int dh_secbits = 80;
2544 if (s->cert->dh_tmp_auto == 2)
2545 return DH_get_1024_160();
2546 if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2547 if (s->s3.tmp.new_cipher->strength_bits == 256)
2548 dh_secbits = 128;
2549 else
2550 dh_secbits = 80;
2551 } else {
2552 if (s->s3.tmp.cert == NULL)
2553 return NULL;
2554 dh_secbits = EVP_PKEY_security_bits(s->s3.tmp.cert->privatekey);
2555 }
2556
2557 if (dh_secbits >= 128) {
2558 DH *dhp = DH_new();
2559 BIGNUM *p, *g;
2560 if (dhp == NULL)
2561 return NULL;
2562 g = BN_new();
2563 if (g == NULL || !BN_set_word(g, 2)) {
2564 DH_free(dhp);
2565 BN_free(g);
2566 return NULL;
2567 }
2568 if (dh_secbits >= 192)
2569 p = BN_get_rfc3526_prime_8192(NULL);
2570 else
2571 p = BN_get_rfc3526_prime_3072(NULL);
2572 if (p == NULL || !DH_set0_pqg(dhp, p, NULL, g)) {
2573 DH_free(dhp);
2574 BN_free(p);
2575 BN_free(g);
2576 return NULL;
2577 }
2578 return dhp;
2579 }
2580 if (dh_secbits >= 112)
2581 return DH_get_2048_224();
2582 return DH_get_1024_160();
2583 }
2584 #endif
2585
2586 static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2587 {
2588 int secbits = -1;
2589 EVP_PKEY *pkey = X509_get0_pubkey(x);
2590 if (pkey) {
2591 /*
2592 * If no parameters this will return -1 and fail using the default
2593 * security callback for any non-zero security level. This will
2594 * reject keys which omit parameters but this only affects DSA and
2595 * omission of parameters is never (?) done in practice.
2596 */
2597 secbits = EVP_PKEY_security_bits(pkey);
2598 }
2599 if (s)
2600 return ssl_security(s, op, secbits, 0, x);
2601 else
2602 return ssl_ctx_security(ctx, op, secbits, 0, x);
2603 }
2604
2605 static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2606 {
2607 /* Lookup signature algorithm digest */
2608 int secbits, nid, pknid;
2609 /* Don't check signature if self signed */
2610 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
2611 return 1;
2612 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
2613 secbits = -1;
2614 /* If digest NID not defined use signature NID */
2615 if (nid == NID_undef)
2616 nid = pknid;
2617 if (s)
2618 return ssl_security(s, op, secbits, nid, x);
2619 else
2620 return ssl_ctx_security(ctx, op, secbits, nid, x);
2621 }
2622
2623 int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
2624 {
2625 if (vfy)
2626 vfy = SSL_SECOP_PEER;
2627 if (is_ee) {
2628 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
2629 return SSL_R_EE_KEY_TOO_SMALL;
2630 } else {
2631 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
2632 return SSL_R_CA_KEY_TOO_SMALL;
2633 }
2634 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
2635 return SSL_R_CA_MD_TOO_WEAK;
2636 return 1;
2637 }
2638
2639 /*
2640 * Check security of a chain, if |sk| includes the end entity certificate then
2641 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
2642 * one to the peer. Return values: 1 if ok otherwise error code to use
2643 */
2644
2645 int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
2646 {
2647 int rv, start_idx, i;
2648 if (x == NULL) {
2649 x = sk_X509_value(sk, 0);
2650 start_idx = 1;
2651 } else
2652 start_idx = 0;
2653
2654 rv = ssl_security_cert(s, NULL, x, vfy, 1);
2655 if (rv != 1)
2656 return rv;
2657
2658 for (i = start_idx; i < sk_X509_num(sk); i++) {
2659 x = sk_X509_value(sk, i);
2660 rv = ssl_security_cert(s, NULL, x, vfy, 0);
2661 if (rv != 1)
2662 return rv;
2663 }
2664 return 1;
2665 }
2666
2667 /*
2668 * For TLS 1.2 servers check if we have a certificate which can be used
2669 * with the signature algorithm "lu" and return index of certificate.
2670 */
2671
2672 static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)
2673 {
2674 int sig_idx = lu->sig_idx;
2675 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx);
2676
2677 /* If not recognised or not supported by cipher mask it is not suitable */
2678 if (clu == NULL
2679 || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
2680 || (clu->nid == EVP_PKEY_RSA_PSS
2681 && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
2682 return -1;
2683
2684 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
2685 }
2686
2687 /*
2688 * Checks the given cert against signature_algorithm_cert restrictions sent by
2689 * the peer (if any) as well as whether the hash from the sigalg is usable with
2690 * the key.
2691 * Returns true if the cert is usable and false otherwise.
2692 */
2693 static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
2694 EVP_PKEY *pkey)
2695 {
2696 const SIGALG_LOOKUP *lu;
2697 int mdnid, pknid, supported;
2698 size_t i;
2699
2700 /*
2701 * If the given EVP_PKEY cannot supporting signing with this sigalg,
2702 * the answer is simply 'no'.
2703 */
2704 ERR_set_mark();
2705 supported = EVP_PKEY_supports_digest_nid(pkey, sig->hash);
2706 ERR_pop_to_mark();
2707 if (supported == 0)
2708 return 0;
2709
2710 /*
2711 * The TLS 1.3 signature_algorithms_cert extension places restrictions
2712 * on the sigalg with which the certificate was signed (by its issuer).
2713 */
2714 if (s->s3.tmp.peer_cert_sigalgs != NULL) {
2715 if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
2716 return 0;
2717 for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
2718 lu = tls1_lookup_sigalg(s->s3.tmp.peer_cert_sigalgs[i]);
2719 if (lu == NULL)
2720 continue;
2721
2722 /*
2723 * TODO this does not differentiate between the
2724 * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
2725 * have a chain here that lets us look at the key OID in the
2726 * signing certificate.
2727 */
2728 if (mdnid == lu->hash && pknid == lu->sig)
2729 return 1;
2730 }
2731 return 0;
2732 }
2733
2734 /*
2735 * Without signat_algorithms_cert, any certificate for which we have
2736 * a viable public key is permitted.
2737 */
2738 return 1;
2739 }
2740
2741 /*
2742 * Returns true if |s| has a usable certificate configured for use
2743 * with signature scheme |sig|.
2744 * "Usable" includes a check for presence as well as applying
2745 * the signature_algorithm_cert restrictions sent by the peer (if any).
2746 * Returns false if no usable certificate is found.
2747 */
2748 static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx)
2749 {
2750 /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
2751 if (idx == -1)
2752 idx = sig->sig_idx;
2753 if (!ssl_has_cert(s, idx))
2754 return 0;
2755
2756 return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
2757 s->cert->pkeys[idx].privatekey);
2758 }
2759
2760 /*
2761 * Returns true if the supplied cert |x| and key |pkey| is usable with the
2762 * specified signature scheme |sig|, or false otherwise.
2763 */
2764 static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
2765 EVP_PKEY *pkey)
2766 {
2767 size_t idx;
2768
2769 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
2770 return 0;
2771
2772 /* Check the key is consistent with the sig alg */
2773 if ((int)idx != sig->sig_idx)
2774 return 0;
2775
2776 return check_cert_usable(s, sig, x, pkey);
2777 }
2778
2779 /*
2780 * Find a signature scheme that works with the supplied certificate |x| and key
2781 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
2782 * available certs/keys to find one that works.
2783 */
2784 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey)
2785 {
2786 const SIGALG_LOOKUP *lu = NULL;
2787 size_t i;
2788 #ifndef OPENSSL_NO_EC
2789 int curve = -1;
2790 #endif
2791 EVP_PKEY *tmppkey;
2792
2793 /* Look for a shared sigalgs matching possible certificates */
2794 for (i = 0; i < s->shared_sigalgslen; i++) {
2795 lu = s->shared_sigalgs[i];
2796
2797 /* Skip SHA1, SHA224, DSA and RSA if not PSS */
2798 if (lu->hash == NID_sha1
2799 || lu->hash == NID_sha224
2800 || lu->sig == EVP_PKEY_DSA
2801 || lu->sig == EVP_PKEY_RSA)
2802 continue;
2803 /* Check that we have a cert, and signature_algorithms_cert */
2804 if (!tls1_lookup_md(s->ctx, lu, NULL))
2805 continue;
2806 if ((pkey == NULL && !has_usable_cert(s, lu, -1))
2807 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
2808 continue;
2809
2810 tmppkey = (pkey != NULL) ? pkey
2811 : s->cert->pkeys[lu->sig_idx].privatekey;
2812
2813 if (lu->sig == EVP_PKEY_EC) {
2814 #ifndef OPENSSL_NO_EC
2815 if (curve == -1) {
2816 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(tmppkey);
2817 curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
2818 }
2819 if (lu->curve != NID_undef && curve != lu->curve)
2820 continue;
2821 #else
2822 continue;
2823 #endif
2824 } else if (lu->sig == EVP_PKEY_RSA_PSS) {
2825 /* validate that key is large enough for the signature algorithm */
2826 if (!rsa_pss_check_min_key_size(s->ctx, EVP_PKEY_get0(tmppkey), lu))
2827 continue;
2828 }
2829 break;
2830 }
2831
2832 if (i == s->shared_sigalgslen)
2833 return NULL;
2834
2835 return lu;
2836 }
2837
2838 /*
2839 * Choose an appropriate signature algorithm based on available certificates
2840 * Sets chosen certificate and signature algorithm.
2841 *
2842 * For servers if we fail to find a required certificate it is a fatal error,
2843 * an appropriate error code is set and a TLS alert is sent.
2844 *
2845 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
2846 * a fatal error: we will either try another certificate or not present one
2847 * to the server. In this case no error is set.
2848 */
2849 int tls_choose_sigalg(SSL *s, int fatalerrs)
2850 {
2851 const SIGALG_LOOKUP *lu = NULL;
2852 int sig_idx = -1;
2853
2854 s->s3.tmp.cert = NULL;
2855 s->s3.tmp.sigalg = NULL;
2856
2857 if (SSL_IS_TLS13(s)) {
2858 lu = find_sig_alg(s, NULL, NULL);
2859 if (lu == NULL) {
2860 if (!fatalerrs)
2861 return 1;
2862 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS_CHOOSE_SIGALG,
2863 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2864 return 0;
2865 }
2866 } else {
2867 /* If ciphersuite doesn't require a cert nothing to do */
2868 if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
2869 return 1;
2870 if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
2871 return 1;
2872
2873 if (SSL_USE_SIGALGS(s)) {
2874 size_t i;
2875 if (s->s3.tmp.peer_sigalgs != NULL) {
2876 #ifndef OPENSSL_NO_EC
2877 int curve;
2878
2879 /* For Suite B need to match signature algorithm to curve */
2880 if (tls1_suiteb(s)) {
2881 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(s->cert->pkeys[SSL_PKEY_ECC].privatekey);
2882 curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
2883 } else {
2884 curve = -1;
2885 }
2886 #endif
2887
2888 /*
2889 * Find highest preference signature algorithm matching
2890 * cert type
2891 */
2892 for (i = 0; i < s->shared_sigalgslen; i++) {
2893 lu = s->shared_sigalgs[i];
2894
2895 if (s->server) {
2896 if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
2897 continue;
2898 } else {
2899 int cc_idx = s->cert->key - s->cert->pkeys;
2900
2901 sig_idx = lu->sig_idx;
2902 if (cc_idx != sig_idx)
2903 continue;
2904 }
2905 /* Check that we have a cert, and sig_algs_cert */
2906 if (!has_usable_cert(s, lu, sig_idx))
2907 continue;
2908 if (lu->sig == EVP_PKEY_RSA_PSS) {
2909 /* validate that key is large enough for the signature algorithm */
2910 EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
2911
2912 if (!rsa_pss_check_min_key_size(s->ctx,
2913 EVP_PKEY_get0(pkey),
2914 lu))
2915 continue;
2916 }
2917 #ifndef OPENSSL_NO_EC
2918 if (curve == -1 || lu->curve == curve)
2919 #endif
2920 break;
2921 }
2922 #ifndef OPENSSL_NO_GOST
2923 /*
2924 * Some Windows-based implementations do not send GOST algorithms indication
2925 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
2926 * we have to assume GOST support.
2927 */
2928 if (i == s->shared_sigalgslen && s->s3.tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) {
2929 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
2930 if (!fatalerrs)
2931 return 1;
2932 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2933 SSL_F_TLS_CHOOSE_SIGALG,
2934 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2935 return 0;
2936 } else {
2937 i = 0;
2938 sig_idx = lu->sig_idx;
2939 }
2940 }
2941 #endif
2942 if (i == s->shared_sigalgslen) {
2943 if (!fatalerrs)
2944 return 1;
2945 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2946 SSL_F_TLS_CHOOSE_SIGALG,
2947 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2948 return 0;
2949 }
2950 } else {
2951 /*
2952 * If we have no sigalg use defaults
2953 */
2954 const uint16_t *sent_sigs;
2955 size_t sent_sigslen;
2956
2957 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
2958 if (!fatalerrs)
2959 return 1;
2960 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG,
2961 ERR_R_INTERNAL_ERROR);
2962 return 0;
2963 }
2964
2965 /* Check signature matches a type we sent */
2966 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2967 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2968 if (lu->sigalg == *sent_sigs
2969 && has_usable_cert(s, lu, lu->sig_idx))
2970 break;
2971 }
2972 if (i == sent_sigslen) {
2973 if (!fatalerrs)
2974 return 1;
2975 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
2976 SSL_F_TLS_CHOOSE_SIGALG,
2977 SSL_R_WRONG_SIGNATURE_TYPE);
2978 return 0;
2979 }
2980 }
2981 } else {
2982 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
2983 if (!fatalerrs)
2984 return 1;
2985 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG,
2986 ERR_R_INTERNAL_ERROR);
2987 return 0;
2988 }
2989 }
2990 }
2991 if (sig_idx == -1)
2992 sig_idx = lu->sig_idx;
2993 s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
2994 s->cert->key = s->s3.tmp.cert;
2995 s->s3.tmp.sigalg = lu;
2996 return 1;
2997 }
2998
2999 int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3000 {
3001 if (mode != TLSEXT_max_fragment_length_DISABLED
3002 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3003 SSLerr(SSL_F_SSL_CTX_SET_TLSEXT_MAX_FRAGMENT_LENGTH,
3004 SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3005 return 0;
3006 }
3007
3008 ctx->ext.max_fragment_len_mode = mode;
3009 return 1;
3010 }
3011
3012 int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3013 {
3014 if (mode != TLSEXT_max_fragment_length_DISABLED
3015 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3016 SSLerr(SSL_F_SSL_SET_TLSEXT_MAX_FRAGMENT_LENGTH,
3017 SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3018 return 0;
3019 }
3020
3021 ssl->ext.max_fragment_len_mode = mode;
3022 return 1;
3023 }
3024
3025 uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
3026 {
3027 return session->ext.max_fragment_len_mode;
3028 }
3029
3030 /*
3031 * Helper functions for HMAC access with legacy support included.
3032 */
3033 SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
3034 {
3035 SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
3036 EVP_MAC *mac = NULL;
3037
3038 if (ret == NULL)
3039 return NULL;
3040 #ifndef OPENSSL_NO_DEPRECATED_3_0
3041 if (ctx->ext.ticket_key_evp_cb == NULL
3042 && ctx->ext.ticket_key_cb != NULL) {
3043 ret->old_ctx = HMAC_CTX_new();
3044 if (ret->old_ctx == NULL)
3045 goto err;
3046 return ret;
3047 }
3048 #endif
3049 mac = EVP_MAC_fetch(ctx->libctx, "HMAC", NULL);
3050 if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
3051 goto err;
3052 EVP_MAC_free(mac);
3053 return ret;
3054 err:
3055 EVP_MAC_CTX_free(ret->ctx);
3056 EVP_MAC_free(mac);
3057 OPENSSL_free(ret);
3058 return NULL;
3059 }
3060
3061 void ssl_hmac_free(SSL_HMAC *ctx)
3062 {
3063 if (ctx != NULL) {
3064 EVP_MAC_CTX_free(ctx->ctx);
3065 #ifndef OPENSSL_NO_DEPRECATED_3_0
3066 HMAC_CTX_free(ctx->old_ctx);
3067 #endif
3068 OPENSSL_free(ctx);
3069 }
3070 }
3071
3072 #ifndef OPENSSL_NO_DEPRECATED_3_0
3073 HMAC_CTX *ssl_hmac_get0_HMAC_CTX(SSL_HMAC *ctx)
3074 {
3075 return ctx->old_ctx;
3076 }
3077 #endif
3078
3079 EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
3080 {
3081 return ctx->ctx;
3082 }
3083
3084 int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
3085 {
3086 OSSL_PARAM params[3], *p = params;
3087
3088 if (ctx->ctx != NULL) {
3089 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
3090 *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_KEY, key, len);
3091 *p = OSSL_PARAM_construct_end();
3092 if (EVP_MAC_CTX_set_params(ctx->ctx, params) && EVP_MAC_init(ctx->ctx))
3093 return 1;
3094 }
3095 #ifndef OPENSSL_NO_DEPRECATED_3_0
3096 if (ctx->old_ctx != NULL)
3097 return HMAC_Init_ex(ctx->old_ctx, key, len,
3098 EVP_get_digestbyname(md), NULL);
3099 #endif
3100 return 0;
3101 }
3102
3103 int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
3104 {
3105 if (ctx->ctx != NULL)
3106 return EVP_MAC_update(ctx->ctx, data, len);
3107 #ifndef OPENSSL_NO_DEPRECATED_3_0
3108 if (ctx->old_ctx != NULL)
3109 return HMAC_Update(ctx->old_ctx, data, len);
3110 #endif
3111 return 0;
3112 }
3113
3114 int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
3115 size_t max_size)
3116 {
3117 if (ctx->ctx != NULL)
3118 return EVP_MAC_final(ctx->ctx, md, len, max_size);
3119 #ifndef OPENSSL_NO_DEPRECATED_3_0
3120 if (ctx->old_ctx != NULL) {
3121 unsigned int l;
3122
3123 if (HMAC_Final(ctx->old_ctx, md, &l) > 0) {
3124 if (len != NULL)
3125 *len = l;
3126 return 1;
3127 }
3128 }
3129 #endif
3130 return 0;
3131 }
3132
3133 size_t ssl_hmac_size(const SSL_HMAC *ctx)
3134 {
3135 if (ctx->ctx != NULL)
3136 return EVP_MAC_size(ctx->ctx);
3137 #ifndef OPENSSL_NO_DEPRECATED_3_0
3138 if (ctx->old_ctx != NULL)
3139 return HMAC_size(ctx->old_ctx);
3140 #endif
3141 return 0;
3142 }
3143