]> git.ipfire.org Git - thirdparty/qemu.git/blame - exec.c
linux-user, s390x: remove syscall definitions for !TARGET_S390X
[thirdparty/qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
14a48c1d 19
7b31bbc2 20#include "qemu/osdep.h"
a8d25326 21#include "qemu-common.h"
da34e65c 22#include "qapi/error.h"
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
51180423 27#include "exec/target_page.h"
dcb32f1d 28#include "tcg/tcg.h"
741da0d3 29#include "hw/qdev-core.h"
c7e002c5 30#include "hw/qdev-properties.h"
4485bd26 31#if !defined(CONFIG_USER_ONLY)
47c8ca53 32#include "hw/boards.h"
33c11879 33#include "hw/xen/xen.h"
4485bd26 34#endif
9c17d615 35#include "sysemu/kvm.h"
2ff3de68 36#include "sysemu/sysemu.h"
14a48c1d 37#include "sysemu/tcg.h"
a028edea 38#include "sysemu/qtest.h"
1de7afc9
PB
39#include "qemu/timer.h"
40#include "qemu/config-file.h"
75a34036 41#include "qemu/error-report.h"
b6b71cb5 42#include "qemu/qemu-print.h"
53a5960a 43#if defined(CONFIG_USER_ONLY)
a9c94277 44#include "qemu.h"
432d268c 45#else /* !CONFIG_USER_ONLY */
741da0d3 46#include "exec/memory.h"
df43d49c 47#include "exec/ioport.h"
741da0d3 48#include "sysemu/dma.h"
b58c5c2d 49#include "sysemu/hostmem.h"
79ca7a1b 50#include "sysemu/hw_accel.h"
741da0d3 51#include "exec/address-spaces.h"
9c17d615 52#include "sysemu/xen-mapcache.h"
0ab8ed18 53#include "trace-root.h"
d3a5038c 54
e2fa71f5 55#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
e2fa71f5
DDAG
56#include <linux/falloc.h>
57#endif
58
53a5960a 59#endif
0dc3f44a 60#include "qemu/rcu_queue.h"
4840f10e 61#include "qemu/main-loop.h"
5b6dd868 62#include "translate-all.h"
7615936e 63#include "sysemu/replay.h"
0cac1b66 64
022c62cb 65#include "exec/memory-internal.h"
220c3ebd 66#include "exec/ram_addr.h"
508127e2 67#include "exec/log.h"
67d95c15 68
61c490e2
BM
69#include "qemu/pmem.h"
70
9dfeca7c
BR
71#include "migration/vmstate.h"
72
b35ba30f 73#include "qemu/range.h"
794e8f30
MT
74#ifndef _WIN32
75#include "qemu/mmap-alloc.h"
76#endif
b35ba30f 77
be9b23c4
PX
78#include "monitor/monitor.h"
79
db7b5426 80//#define DEBUG_SUBPAGE
1196be37 81
e2eef170 82#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
83/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
84 * are protected by the ramlist lock.
85 */
0d53d9fe 86RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
87
88static MemoryRegion *system_memory;
309cb471 89static MemoryRegion *system_io;
62152b8a 90
f6790af6
AK
91AddressSpace address_space_io;
92AddressSpace address_space_memory;
2673a5da 93
acc9d80b 94static MemoryRegion io_mem_unassigned;
e2eef170 95#endif
9fa3e853 96
f481ee2d
PB
97CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
98
6a00d601
FB
99/* current CPU in the current thread. It is only valid inside
100 cpu_exec() */
f240eb6f 101__thread CPUState *current_cpu;
6a00d601 102
a0be0c58
YZ
103uintptr_t qemu_host_page_size;
104intptr_t qemu_host_page_mask;
a0be0c58 105
e2eef170 106#if !defined(CONFIG_USER_ONLY)
fe3dada3
PB
107/* 0 = Do not count executed instructions.
108 1 = Precise instruction counting.
109 2 = Adaptive rate instruction counting. */
110int use_icount;
4346ae3e 111
1db8abb1
PB
112typedef struct PhysPageEntry PhysPageEntry;
113
114struct PhysPageEntry {
9736e55b 115 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 116 uint32_t skip : 6;
9736e55b 117 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 118 uint32_t ptr : 26;
1db8abb1
PB
119};
120
8b795765
MT
121#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
122
03f49957 123/* Size of the L2 (and L3, etc) page tables. */
57271d63 124#define ADDR_SPACE_BITS 64
03f49957 125
026736ce 126#define P_L2_BITS 9
03f49957
PB
127#define P_L2_SIZE (1 << P_L2_BITS)
128
129#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
130
131typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 132
53cb28cb 133typedef struct PhysPageMap {
79e2b9ae
PB
134 struct rcu_head rcu;
135
53cb28cb
MA
136 unsigned sections_nb;
137 unsigned sections_nb_alloc;
138 unsigned nodes_nb;
139 unsigned nodes_nb_alloc;
140 Node *nodes;
141 MemoryRegionSection *sections;
142} PhysPageMap;
143
1db8abb1 144struct AddressSpaceDispatch {
729633c2 145 MemoryRegionSection *mru_section;
1db8abb1
PB
146 /* This is a multi-level map on the physical address space.
147 * The bottom level has pointers to MemoryRegionSections.
148 */
149 PhysPageEntry phys_map;
53cb28cb 150 PhysPageMap map;
1db8abb1
PB
151};
152
90260c6c
JK
153#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
154typedef struct subpage_t {
155 MemoryRegion iomem;
16620684 156 FlatView *fv;
90260c6c 157 hwaddr base;
2615fabd 158 uint16_t sub_section[];
90260c6c
JK
159} subpage_t;
160
b41aac4f 161#define PHYS_SECTION_UNASSIGNED 0
5312bd8b 162
e2eef170 163static void io_mem_init(void);
62152b8a 164static void memory_map_init(void);
9458a9a1 165static void tcg_log_global_after_sync(MemoryListener *listener);
09daed84 166static void tcg_commit(MemoryListener *listener);
e2eef170 167
32857f4d
PM
168/**
169 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
170 * @cpu: the CPU whose AddressSpace this is
171 * @as: the AddressSpace itself
172 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
173 * @tcg_as_listener: listener for tracking changes to the AddressSpace
174 */
175struct CPUAddressSpace {
176 CPUState *cpu;
177 AddressSpace *as;
178 struct AddressSpaceDispatch *memory_dispatch;
179 MemoryListener tcg_as_listener;
180};
181
8deaf12c
GH
182struct DirtyBitmapSnapshot {
183 ram_addr_t start;
184 ram_addr_t end;
185 unsigned long dirty[];
186};
187
6658ffb8 188#endif
fd6ce8f6 189
6d9a1304 190#if !defined(CONFIG_USER_ONLY)
d6f2ea22 191
53cb28cb 192static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 193{
101420b8 194 static unsigned alloc_hint = 16;
53cb28cb 195 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
c95cfd04 196 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
53cb28cb 197 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 198 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 199 }
f7bf5461
AK
200}
201
db94604b 202static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
203{
204 unsigned i;
8b795765 205 uint32_t ret;
db94604b
PB
206 PhysPageEntry e;
207 PhysPageEntry *p;
f7bf5461 208
53cb28cb 209 ret = map->nodes_nb++;
db94604b 210 p = map->nodes[ret];
f7bf5461 211 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 212 assert(ret != map->nodes_nb_alloc);
db94604b
PB
213
214 e.skip = leaf ? 0 : 1;
215 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 216 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 217 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 218 }
f7bf5461 219 return ret;
d6f2ea22
AK
220}
221
53cb28cb 222static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
56b15076 223 hwaddr *index, uint64_t *nb, uint16_t leaf,
2999097b 224 int level)
f7bf5461
AK
225{
226 PhysPageEntry *p;
03f49957 227 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 228
9736e55b 229 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 230 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 231 }
db94604b 232 p = map->nodes[lp->ptr];
03f49957 233 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 234
03f49957 235 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 236 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 237 lp->skip = 0;
c19e8800 238 lp->ptr = leaf;
07f07b31
AK
239 *index += step;
240 *nb -= step;
2999097b 241 } else {
53cb28cb 242 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
243 }
244 ++lp;
f7bf5461
AK
245 }
246}
247
ac1970fb 248static void phys_page_set(AddressSpaceDispatch *d,
56b15076 249 hwaddr index, uint64_t nb,
2999097b 250 uint16_t leaf)
f7bf5461 251{
2999097b 252 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 253 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 254
53cb28cb 255 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
256}
257
b35ba30f
MT
258/* Compact a non leaf page entry. Simply detect that the entry has a single child,
259 * and update our entry so we can skip it and go directly to the destination.
260 */
efee678d 261static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
262{
263 unsigned valid_ptr = P_L2_SIZE;
264 int valid = 0;
265 PhysPageEntry *p;
266 int i;
267
268 if (lp->ptr == PHYS_MAP_NODE_NIL) {
269 return;
270 }
271
272 p = nodes[lp->ptr];
273 for (i = 0; i < P_L2_SIZE; i++) {
274 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
275 continue;
276 }
277
278 valid_ptr = i;
279 valid++;
280 if (p[i].skip) {
efee678d 281 phys_page_compact(&p[i], nodes);
b35ba30f
MT
282 }
283 }
284
285 /* We can only compress if there's only one child. */
286 if (valid != 1) {
287 return;
288 }
289
290 assert(valid_ptr < P_L2_SIZE);
291
292 /* Don't compress if it won't fit in the # of bits we have. */
526ca236
WY
293 if (P_L2_LEVELS >= (1 << 6) &&
294 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
b35ba30f
MT
295 return;
296 }
297
298 lp->ptr = p[valid_ptr].ptr;
299 if (!p[valid_ptr].skip) {
300 /* If our only child is a leaf, make this a leaf. */
301 /* By design, we should have made this node a leaf to begin with so we
302 * should never reach here.
303 * But since it's so simple to handle this, let's do it just in case we
304 * change this rule.
305 */
306 lp->skip = 0;
307 } else {
308 lp->skip += p[valid_ptr].skip;
309 }
310}
311
8629d3fc 312void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 313{
b35ba30f 314 if (d->phys_map.skip) {
efee678d 315 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
316 }
317}
318
29cb533d
FZ
319static inline bool section_covers_addr(const MemoryRegionSection *section,
320 hwaddr addr)
321{
322 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
323 * the section must cover the entire address space.
324 */
258dfaaa 325 return int128_gethi(section->size) ||
29cb533d 326 range_covers_byte(section->offset_within_address_space,
258dfaaa 327 int128_getlo(section->size), addr);
29cb533d
FZ
328}
329
003a0cf2 330static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 331{
003a0cf2
PX
332 PhysPageEntry lp = d->phys_map, *p;
333 Node *nodes = d->map.nodes;
334 MemoryRegionSection *sections = d->map.sections;
97115a8d 335 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 336 int i;
f1f6e3b8 337
9736e55b 338 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 339 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 340 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 341 }
9affd6fc 342 p = nodes[lp.ptr];
03f49957 343 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 344 }
b35ba30f 345
29cb533d 346 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
347 return &sections[lp.ptr];
348 } else {
349 return &sections[PHYS_SECTION_UNASSIGNED];
350 }
f3705d53
AK
351}
352
79e2b9ae 353/* Called from RCU critical section */
c7086b4a 354static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
355 hwaddr addr,
356 bool resolve_subpage)
9f029603 357{
729633c2 358 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c
JK
359 subpage_t *subpage;
360
07c114bb
PB
361 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
362 !section_covers_addr(section, addr)) {
003a0cf2 363 section = phys_page_find(d, addr);
07c114bb 364 atomic_set(&d->mru_section, section);
729633c2 365 }
90260c6c
JK
366 if (resolve_subpage && section->mr->subpage) {
367 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 368 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
369 }
370 return section;
9f029603
JK
371}
372
79e2b9ae 373/* Called from RCU critical section */
90260c6c 374static MemoryRegionSection *
c7086b4a 375address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 376 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
377{
378 MemoryRegionSection *section;
965eb2fc 379 MemoryRegion *mr;
a87f3954 380 Int128 diff;
149f54b5 381
c7086b4a 382 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
383 /* Compute offset within MemoryRegionSection */
384 addr -= section->offset_within_address_space;
385
386 /* Compute offset within MemoryRegion */
387 *xlat = addr + section->offset_within_region;
388
965eb2fc 389 mr = section->mr;
b242e0e0
PB
390
391 /* MMIO registers can be expected to perform full-width accesses based only
392 * on their address, without considering adjacent registers that could
393 * decode to completely different MemoryRegions. When such registers
394 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
395 * regions overlap wildly. For this reason we cannot clamp the accesses
396 * here.
397 *
398 * If the length is small (as is the case for address_space_ldl/stl),
399 * everything works fine. If the incoming length is large, however,
400 * the caller really has to do the clamping through memory_access_size.
401 */
965eb2fc 402 if (memory_region_is_ram(mr)) {
e4a511f8 403 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
404 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
405 }
149f54b5
PB
406 return section;
407}
90260c6c 408
a411c84b
PB
409/**
410 * address_space_translate_iommu - translate an address through an IOMMU
411 * memory region and then through the target address space.
412 *
413 * @iommu_mr: the IOMMU memory region that we start the translation from
414 * @addr: the address to be translated through the MMU
415 * @xlat: the translated address offset within the destination memory region.
416 * It cannot be %NULL.
417 * @plen_out: valid read/write length of the translated address. It
418 * cannot be %NULL.
419 * @page_mask_out: page mask for the translated address. This
420 * should only be meaningful for IOMMU translated
421 * addresses, since there may be huge pages that this bit
422 * would tell. It can be %NULL if we don't care about it.
423 * @is_write: whether the translation operation is for write
424 * @is_mmio: whether this can be MMIO, set true if it can
425 * @target_as: the address space targeted by the IOMMU
2f7b009c 426 * @attrs: transaction attributes
a411c84b
PB
427 *
428 * This function is called from RCU critical section. It is the common
429 * part of flatview_do_translate and address_space_translate_cached.
430 */
431static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
432 hwaddr *xlat,
433 hwaddr *plen_out,
434 hwaddr *page_mask_out,
435 bool is_write,
436 bool is_mmio,
2f7b009c
PM
437 AddressSpace **target_as,
438 MemTxAttrs attrs)
a411c84b
PB
439{
440 MemoryRegionSection *section;
441 hwaddr page_mask = (hwaddr)-1;
442
443 do {
444 hwaddr addr = *xlat;
445 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
2c91bcf2
PM
446 int iommu_idx = 0;
447 IOMMUTLBEntry iotlb;
448
449 if (imrc->attrs_to_index) {
450 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
451 }
452
453 iotlb = imrc->translate(iommu_mr, addr, is_write ?
454 IOMMU_WO : IOMMU_RO, iommu_idx);
a411c84b
PB
455
456 if (!(iotlb.perm & (1 << is_write))) {
457 goto unassigned;
458 }
459
460 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
461 | (addr & iotlb.addr_mask));
462 page_mask &= iotlb.addr_mask;
463 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
464 *target_as = iotlb.target_as;
465
466 section = address_space_translate_internal(
467 address_space_to_dispatch(iotlb.target_as), addr, xlat,
468 plen_out, is_mmio);
469
470 iommu_mr = memory_region_get_iommu(section->mr);
471 } while (unlikely(iommu_mr));
472
473 if (page_mask_out) {
474 *page_mask_out = page_mask;
475 }
476 return *section;
477
478unassigned:
479 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
480}
481
d5e5fafd
PX
482/**
483 * flatview_do_translate - translate an address in FlatView
484 *
485 * @fv: the flat view that we want to translate on
486 * @addr: the address to be translated in above address space
487 * @xlat: the translated address offset within memory region. It
488 * cannot be @NULL.
489 * @plen_out: valid read/write length of the translated address. It
490 * can be @NULL when we don't care about it.
491 * @page_mask_out: page mask for the translated address. This
492 * should only be meaningful for IOMMU translated
493 * addresses, since there may be huge pages that this bit
494 * would tell. It can be @NULL if we don't care about it.
495 * @is_write: whether the translation operation is for write
496 * @is_mmio: whether this can be MMIO, set true if it can
ad2804d9 497 * @target_as: the address space targeted by the IOMMU
49e14aa8 498 * @attrs: memory transaction attributes
d5e5fafd
PX
499 *
500 * This function is called from RCU critical section
501 */
16620684
AK
502static MemoryRegionSection flatview_do_translate(FlatView *fv,
503 hwaddr addr,
504 hwaddr *xlat,
d5e5fafd
PX
505 hwaddr *plen_out,
506 hwaddr *page_mask_out,
16620684
AK
507 bool is_write,
508 bool is_mmio,
49e14aa8
PM
509 AddressSpace **target_as,
510 MemTxAttrs attrs)
052c8fa9 511{
052c8fa9 512 MemoryRegionSection *section;
3df9d748 513 IOMMUMemoryRegion *iommu_mr;
d5e5fafd
PX
514 hwaddr plen = (hwaddr)(-1);
515
ad2804d9
PB
516 if (!plen_out) {
517 plen_out = &plen;
d5e5fafd 518 }
052c8fa9 519
a411c84b
PB
520 section = address_space_translate_internal(
521 flatview_to_dispatch(fv), addr, xlat,
522 plen_out, is_mmio);
052c8fa9 523
a411c84b
PB
524 iommu_mr = memory_region_get_iommu(section->mr);
525 if (unlikely(iommu_mr)) {
526 return address_space_translate_iommu(iommu_mr, xlat,
527 plen_out, page_mask_out,
528 is_write, is_mmio,
2f7b009c 529 target_as, attrs);
052c8fa9 530 }
d5e5fafd 531 if (page_mask_out) {
a411c84b
PB
532 /* Not behind an IOMMU, use default page size. */
533 *page_mask_out = ~TARGET_PAGE_MASK;
d5e5fafd
PX
534 }
535
a764040c 536 return *section;
052c8fa9
JW
537}
538
539/* Called from RCU critical section */
a764040c 540IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
7446eb07 541 bool is_write, MemTxAttrs attrs)
90260c6c 542{
a764040c 543 MemoryRegionSection section;
076a93d7 544 hwaddr xlat, page_mask;
30951157 545
076a93d7
PX
546 /*
547 * This can never be MMIO, and we don't really care about plen,
548 * but page mask.
549 */
550 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
49e14aa8
PM
551 NULL, &page_mask, is_write, false, &as,
552 attrs);
30951157 553
a764040c
PX
554 /* Illegal translation */
555 if (section.mr == &io_mem_unassigned) {
556 goto iotlb_fail;
557 }
30951157 558
a764040c
PX
559 /* Convert memory region offset into address space offset */
560 xlat += section.offset_within_address_space -
561 section.offset_within_region;
562
a764040c 563 return (IOMMUTLBEntry) {
e76bb18f 564 .target_as = as,
076a93d7
PX
565 .iova = addr & ~page_mask,
566 .translated_addr = xlat & ~page_mask,
567 .addr_mask = page_mask,
a764040c
PX
568 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
569 .perm = IOMMU_RW,
570 };
571
572iotlb_fail:
573 return (IOMMUTLBEntry) {0};
574}
575
576/* Called from RCU critical section */
16620684 577MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
efa99a2f
PM
578 hwaddr *plen, bool is_write,
579 MemTxAttrs attrs)
a764040c
PX
580{
581 MemoryRegion *mr;
582 MemoryRegionSection section;
16620684 583 AddressSpace *as = NULL;
a764040c
PX
584
585 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd 586 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
49e14aa8 587 is_write, true, &as, attrs);
a764040c
PX
588 mr = section.mr;
589
fe680d0d 590 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 591 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 592 *plen = MIN(page, *plen);
a87f3954
PB
593 }
594
30951157 595 return mr;
90260c6c
JK
596}
597
1f871c5e
PM
598typedef struct TCGIOMMUNotifier {
599 IOMMUNotifier n;
600 MemoryRegion *mr;
601 CPUState *cpu;
602 int iommu_idx;
603 bool active;
604} TCGIOMMUNotifier;
605
606static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
607{
608 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
609
610 if (!notifier->active) {
611 return;
612 }
613 tlb_flush(notifier->cpu);
614 notifier->active = false;
615 /* We leave the notifier struct on the list to avoid reallocating it later.
616 * Generally the number of IOMMUs a CPU deals with will be small.
617 * In any case we can't unregister the iommu notifier from a notify
618 * callback.
619 */
620}
621
622static void tcg_register_iommu_notifier(CPUState *cpu,
623 IOMMUMemoryRegion *iommu_mr,
624 int iommu_idx)
625{
626 /* Make sure this CPU has an IOMMU notifier registered for this
627 * IOMMU/IOMMU index combination, so that we can flush its TLB
628 * when the IOMMU tells us the mappings we've cached have changed.
629 */
630 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
631 TCGIOMMUNotifier *notifier;
549d4005
EA
632 Error *err = NULL;
633 int i, ret;
1f871c5e
PM
634
635 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 636 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e
PM
637 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
638 break;
639 }
640 }
641 if (i == cpu->iommu_notifiers->len) {
642 /* Not found, add a new entry at the end of the array */
643 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
5601be3b
PM
644 notifier = g_new0(TCGIOMMUNotifier, 1);
645 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
1f871c5e
PM
646
647 notifier->mr = mr;
648 notifier->iommu_idx = iommu_idx;
649 notifier->cpu = cpu;
650 /* Rather than trying to register interest in the specific part
651 * of the iommu's address space that we've accessed and then
652 * expand it later as subsequent accesses touch more of it, we
653 * just register interest in the whole thing, on the assumption
654 * that iommu reconfiguration will be rare.
655 */
656 iommu_notifier_init(&notifier->n,
657 tcg_iommu_unmap_notify,
658 IOMMU_NOTIFIER_UNMAP,
659 0,
660 HWADDR_MAX,
661 iommu_idx);
549d4005
EA
662 ret = memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
663 &err);
664 if (ret) {
665 error_report_err(err);
666 exit(1);
667 }
1f871c5e
PM
668 }
669
670 if (!notifier->active) {
671 notifier->active = true;
672 }
673}
674
675static void tcg_iommu_free_notifier_list(CPUState *cpu)
676{
677 /* Destroy the CPU's notifier list */
678 int i;
679 TCGIOMMUNotifier *notifier;
680
681 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 682 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e 683 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
5601be3b 684 g_free(notifier);
1f871c5e
PM
685 }
686 g_array_free(cpu->iommu_notifiers, true);
687}
688
79e2b9ae 689/* Called from RCU critical section */
90260c6c 690MemoryRegionSection *
d7898cda 691address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
1f871c5e
PM
692 hwaddr *xlat, hwaddr *plen,
693 MemTxAttrs attrs, int *prot)
90260c6c 694{
30951157 695 MemoryRegionSection *section;
1f871c5e
PM
696 IOMMUMemoryRegion *iommu_mr;
697 IOMMUMemoryRegionClass *imrc;
698 IOMMUTLBEntry iotlb;
699 int iommu_idx;
f35e44e7 700 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda 701
1f871c5e
PM
702 for (;;) {
703 section = address_space_translate_internal(d, addr, &addr, plen, false);
704
705 iommu_mr = memory_region_get_iommu(section->mr);
706 if (!iommu_mr) {
707 break;
708 }
709
710 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
711
712 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
713 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
714 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
715 * doesn't short-cut its translation table walk.
716 */
717 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
718 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
719 | (addr & iotlb.addr_mask));
720 /* Update the caller's prot bits to remove permissions the IOMMU
721 * is giving us a failure response for. If we get down to no
722 * permissions left at all we can give up now.
723 */
724 if (!(iotlb.perm & IOMMU_RO)) {
725 *prot &= ~(PAGE_READ | PAGE_EXEC);
726 }
727 if (!(iotlb.perm & IOMMU_WO)) {
728 *prot &= ~PAGE_WRITE;
729 }
730
731 if (!*prot) {
732 goto translate_fail;
733 }
734
735 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
736 }
30951157 737
3df9d748 738 assert(!memory_region_is_iommu(section->mr));
1f871c5e 739 *xlat = addr;
30951157 740 return section;
1f871c5e
PM
741
742translate_fail:
743 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
90260c6c 744}
5b6dd868 745#endif
fd6ce8f6 746
b170fce3 747#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
748
749static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 750{
259186a7 751 CPUState *cpu = opaque;
a513fe19 752
5b6dd868
BS
753 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
754 version_id is increased. */
259186a7 755 cpu->interrupt_request &= ~0x01;
d10eb08f 756 tlb_flush(cpu);
5b6dd868 757
15a356c4
PD
758 /* loadvm has just updated the content of RAM, bypassing the
759 * usual mechanisms that ensure we flush TBs for writes to
760 * memory we've translated code from. So we must flush all TBs,
761 * which will now be stale.
762 */
763 tb_flush(cpu);
764
5b6dd868 765 return 0;
a513fe19 766}
7501267e 767
6c3bff0e
PD
768static int cpu_common_pre_load(void *opaque)
769{
770 CPUState *cpu = opaque;
771
adee6424 772 cpu->exception_index = -1;
6c3bff0e
PD
773
774 return 0;
775}
776
777static bool cpu_common_exception_index_needed(void *opaque)
778{
779 CPUState *cpu = opaque;
780
adee6424 781 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
782}
783
784static const VMStateDescription vmstate_cpu_common_exception_index = {
785 .name = "cpu_common/exception_index",
786 .version_id = 1,
787 .minimum_version_id = 1,
5cd8cada 788 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
789 .fields = (VMStateField[]) {
790 VMSTATE_INT32(exception_index, CPUState),
791 VMSTATE_END_OF_LIST()
792 }
793};
794
bac05aa9
AS
795static bool cpu_common_crash_occurred_needed(void *opaque)
796{
797 CPUState *cpu = opaque;
798
799 return cpu->crash_occurred;
800}
801
802static const VMStateDescription vmstate_cpu_common_crash_occurred = {
803 .name = "cpu_common/crash_occurred",
804 .version_id = 1,
805 .minimum_version_id = 1,
806 .needed = cpu_common_crash_occurred_needed,
807 .fields = (VMStateField[]) {
808 VMSTATE_BOOL(crash_occurred, CPUState),
809 VMSTATE_END_OF_LIST()
810 }
811};
812
1a1562f5 813const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
814 .name = "cpu_common",
815 .version_id = 1,
816 .minimum_version_id = 1,
6c3bff0e 817 .pre_load = cpu_common_pre_load,
5b6dd868 818 .post_load = cpu_common_post_load,
35d08458 819 .fields = (VMStateField[]) {
259186a7
AF
820 VMSTATE_UINT32(halted, CPUState),
821 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 822 VMSTATE_END_OF_LIST()
6c3bff0e 823 },
5cd8cada
JQ
824 .subsections = (const VMStateDescription*[]) {
825 &vmstate_cpu_common_exception_index,
bac05aa9 826 &vmstate_cpu_common_crash_occurred,
5cd8cada 827 NULL
5b6dd868
BS
828 }
829};
1a1562f5 830
5b6dd868 831#endif
ea041c0e 832
38d8f5c8 833CPUState *qemu_get_cpu(int index)
ea041c0e 834{
bdc44640 835 CPUState *cpu;
ea041c0e 836
bdc44640 837 CPU_FOREACH(cpu) {
55e5c285 838 if (cpu->cpu_index == index) {
bdc44640 839 return cpu;
55e5c285 840 }
ea041c0e 841 }
5b6dd868 842
bdc44640 843 return NULL;
ea041c0e
FB
844}
845
09daed84 846#if !defined(CONFIG_USER_ONLY)
80ceb07a
PX
847void cpu_address_space_init(CPUState *cpu, int asidx,
848 const char *prefix, MemoryRegion *mr)
09daed84 849{
12ebc9a7 850 CPUAddressSpace *newas;
80ceb07a 851 AddressSpace *as = g_new0(AddressSpace, 1);
87a621d8 852 char *as_name;
80ceb07a
PX
853
854 assert(mr);
87a621d8
PX
855 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
856 address_space_init(as, mr, as_name);
857 g_free(as_name);
12ebc9a7
PM
858
859 /* Target code should have set num_ases before calling us */
860 assert(asidx < cpu->num_ases);
861
56943e8c
PM
862 if (asidx == 0) {
863 /* address space 0 gets the convenience alias */
864 cpu->as = as;
865 }
866
12ebc9a7
PM
867 /* KVM cannot currently support multiple address spaces. */
868 assert(asidx == 0 || !kvm_enabled());
09daed84 869
12ebc9a7
PM
870 if (!cpu->cpu_ases) {
871 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 872 }
32857f4d 873
12ebc9a7
PM
874 newas = &cpu->cpu_ases[asidx];
875 newas->cpu = cpu;
876 newas->as = as;
56943e8c 877 if (tcg_enabled()) {
9458a9a1 878 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
12ebc9a7
PM
879 newas->tcg_as_listener.commit = tcg_commit;
880 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 881 }
09daed84 882}
651a5bc0
PM
883
884AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
885{
886 /* Return the AddressSpace corresponding to the specified index */
887 return cpu->cpu_ases[asidx].as;
888}
09daed84
EI
889#endif
890
7bbc124e 891void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 892{
9dfeca7c
BR
893 CPUClass *cc = CPU_GET_CLASS(cpu);
894
267f685b 895 cpu_list_remove(cpu);
9dfeca7c
BR
896
897 if (cc->vmsd != NULL) {
898 vmstate_unregister(NULL, cc->vmsd, cpu);
899 }
900 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
901 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
902 }
1f871c5e
PM
903#ifndef CONFIG_USER_ONLY
904 tcg_iommu_free_notifier_list(cpu);
905#endif
1c59eb39
BR
906}
907
c7e002c5
FZ
908Property cpu_common_props[] = {
909#ifndef CONFIG_USER_ONLY
910 /* Create a memory property for softmmu CPU object,
2e5b09fd 911 * so users can wire up its memory. (This can't go in hw/core/cpu.c
c7e002c5
FZ
912 * because that file is compiled only once for both user-mode
913 * and system builds.) The default if no link is set up is to use
914 * the system address space.
915 */
916 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
917 MemoryRegion *),
918#endif
919 DEFINE_PROP_END_OF_LIST(),
920};
921
39e329e3 922void cpu_exec_initfn(CPUState *cpu)
ea041c0e 923{
56943e8c 924 cpu->as = NULL;
12ebc9a7 925 cpu->num_ases = 0;
56943e8c 926
291135b5 927#ifndef CONFIG_USER_ONLY
291135b5 928 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
929 cpu->memory = system_memory;
930 object_ref(OBJECT(cpu->memory));
291135b5 931#endif
39e329e3
LV
932}
933
ce5b1bbf 934void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3 935{
55c3ceef 936 CPUClass *cc = CPU_GET_CLASS(cpu);
2dda6354 937 static bool tcg_target_initialized;
291135b5 938
267f685b 939 cpu_list_add(cpu);
1bc7e522 940
2dda6354
EC
941 if (tcg_enabled() && !tcg_target_initialized) {
942 tcg_target_initialized = true;
55c3ceef
RH
943 cc->tcg_initialize();
944 }
5005e253 945 tlb_init(cpu);
55c3ceef 946
30865f31
EC
947 qemu_plugin_vcpu_init_hook(cpu);
948
1bc7e522 949#ifndef CONFIG_USER_ONLY
e0d47944 950 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 951 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 952 }
b170fce3 953 if (cc->vmsd != NULL) {
741da0d3 954 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 955 }
1f871c5e 956
5601be3b 957 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
741da0d3 958#endif
ea041c0e
FB
959}
960
c1c8cfe5 961const char *parse_cpu_option(const char *cpu_option)
2278b939
IM
962{
963 ObjectClass *oc;
964 CPUClass *cc;
965 gchar **model_pieces;
966 const char *cpu_type;
967
c1c8cfe5 968 model_pieces = g_strsplit(cpu_option, ",", 2);
5b863f3e
EH
969 if (!model_pieces[0]) {
970 error_report("-cpu option cannot be empty");
971 exit(1);
972 }
2278b939
IM
973
974 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
975 if (oc == NULL) {
976 error_report("unable to find CPU model '%s'", model_pieces[0]);
977 g_strfreev(model_pieces);
978 exit(EXIT_FAILURE);
979 }
980
981 cpu_type = object_class_get_name(oc);
982 cc = CPU_CLASS(oc);
983 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
984 g_strfreev(model_pieces);
985 return cpu_type;
986}
987
c40d4792 988#if defined(CONFIG_USER_ONLY)
8bca9a03 989void tb_invalidate_phys_addr(target_ulong addr)
1e7855a5 990{
406bc339 991 mmap_lock();
ce9f5e27 992 tb_invalidate_phys_page_range(addr, addr + 1);
406bc339
PK
993 mmap_unlock();
994}
8bca9a03
PB
995
996static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
997{
998 tb_invalidate_phys_addr(pc);
999}
406bc339 1000#else
8bca9a03
PB
1001void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1002{
1003 ram_addr_t ram_addr;
1004 MemoryRegion *mr;
1005 hwaddr l = 1;
1006
c40d4792
PB
1007 if (!tcg_enabled()) {
1008 return;
1009 }
1010
694ea274 1011 RCU_READ_LOCK_GUARD();
8bca9a03
PB
1012 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1013 if (!(memory_region_is_ram(mr)
1014 || memory_region_is_romd(mr))) {
8bca9a03
PB
1015 return;
1016 }
1017 ram_addr = memory_region_get_ram_addr(mr) + addr;
ce9f5e27 1018 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
8bca9a03
PB
1019}
1020
406bc339
PK
1021static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1022{
b55f54bc
MF
1023 /*
1024 * There may not be a virtual to physical translation for the pc
1025 * right now, but there may exist cached TB for this pc.
1026 * Flush the whole TB cache to force re-translation of such TBs.
1027 * This is heavyweight, but we're debugging anyway.
1028 */
1029 tb_flush(cpu);
1e7855a5 1030}
406bc339 1031#endif
d720b93d 1032
74841f04 1033#ifndef CONFIG_USER_ONLY
6658ffb8 1034/* Add a watchpoint. */
75a34036 1035int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1036 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1037{
c0ce998e 1038 CPUWatchpoint *wp;
6658ffb8 1039
05068c0d 1040 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 1041 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
1042 error_report("tried to set invalid watchpoint at %"
1043 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
1044 return -EINVAL;
1045 }
7267c094 1046 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1047
1048 wp->vaddr = addr;
05068c0d 1049 wp->len = len;
a1d1bb31
AL
1050 wp->flags = flags;
1051
2dc9f411 1052 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
1053 if (flags & BP_GDB) {
1054 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1055 } else {
1056 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1057 }
6658ffb8 1058
31b030d4 1059 tlb_flush_page(cpu, addr);
a1d1bb31
AL
1060
1061 if (watchpoint)
1062 *watchpoint = wp;
1063 return 0;
6658ffb8
PB
1064}
1065
a1d1bb31 1066/* Remove a specific watchpoint. */
75a34036 1067int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1068 int flags)
6658ffb8 1069{
a1d1bb31 1070 CPUWatchpoint *wp;
6658ffb8 1071
ff4700b0 1072 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1073 if (addr == wp->vaddr && len == wp->len
6e140f28 1074 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 1075 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
1076 return 0;
1077 }
1078 }
a1d1bb31 1079 return -ENOENT;
6658ffb8
PB
1080}
1081
a1d1bb31 1082/* Remove a specific watchpoint by reference. */
75a34036 1083void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 1084{
ff4700b0 1085 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 1086
31b030d4 1087 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 1088
7267c094 1089 g_free(watchpoint);
a1d1bb31
AL
1090}
1091
1092/* Remove all matching watchpoints. */
75a34036 1093void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1094{
c0ce998e 1095 CPUWatchpoint *wp, *next;
a1d1bb31 1096
ff4700b0 1097 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
1098 if (wp->flags & mask) {
1099 cpu_watchpoint_remove_by_ref(cpu, wp);
1100 }
c0ce998e 1101 }
7d03f82f 1102}
05068c0d
PM
1103
1104/* Return true if this watchpoint address matches the specified
1105 * access (ie the address range covered by the watchpoint overlaps
1106 * partially or completely with the address range covered by the
1107 * access).
1108 */
56ad8b00
RH
1109static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
1110 vaddr addr, vaddr len)
05068c0d
PM
1111{
1112 /* We know the lengths are non-zero, but a little caution is
1113 * required to avoid errors in the case where the range ends
1114 * exactly at the top of the address space and so addr + len
1115 * wraps round to zero.
1116 */
1117 vaddr wpend = wp->vaddr + wp->len - 1;
1118 vaddr addrend = addr + len - 1;
1119
1120 return !(addr > wpend || wp->vaddr > addrend);
1121}
1122
56ad8b00
RH
1123/* Return flags for watchpoints that match addr + prot. */
1124int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
1125{
1126 CPUWatchpoint *wp;
1127 int ret = 0;
1128
1129 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1130 if (watchpoint_address_matches(wp, addr, TARGET_PAGE_SIZE)) {
1131 ret |= wp->flags;
1132 }
1133 }
1134 return ret;
1135}
74841f04 1136#endif /* !CONFIG_USER_ONLY */
7d03f82f 1137
a1d1bb31 1138/* Add a breakpoint. */
b3310ab3 1139int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 1140 CPUBreakpoint **breakpoint)
4c3a88a2 1141{
c0ce998e 1142 CPUBreakpoint *bp;
3b46e624 1143
7267c094 1144 bp = g_malloc(sizeof(*bp));
4c3a88a2 1145
a1d1bb31
AL
1146 bp->pc = pc;
1147 bp->flags = flags;
1148
2dc9f411 1149 /* keep all GDB-injected breakpoints in front */
00b941e5 1150 if (flags & BP_GDB) {
f0c3c505 1151 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 1152 } else {
f0c3c505 1153 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 1154 }
3b46e624 1155
f0c3c505 1156 breakpoint_invalidate(cpu, pc);
a1d1bb31 1157
00b941e5 1158 if (breakpoint) {
a1d1bb31 1159 *breakpoint = bp;
00b941e5 1160 }
4c3a88a2 1161 return 0;
4c3a88a2
FB
1162}
1163
a1d1bb31 1164/* Remove a specific breakpoint. */
b3310ab3 1165int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 1166{
a1d1bb31
AL
1167 CPUBreakpoint *bp;
1168
f0c3c505 1169 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 1170 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 1171 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
1172 return 0;
1173 }
7d03f82f 1174 }
a1d1bb31 1175 return -ENOENT;
7d03f82f
EI
1176}
1177
a1d1bb31 1178/* Remove a specific breakpoint by reference. */
b3310ab3 1179void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 1180{
f0c3c505
AF
1181 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1182
1183 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 1184
7267c094 1185 g_free(breakpoint);
a1d1bb31
AL
1186}
1187
1188/* Remove all matching breakpoints. */
b3310ab3 1189void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1190{
c0ce998e 1191 CPUBreakpoint *bp, *next;
a1d1bb31 1192
f0c3c505 1193 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
1194 if (bp->flags & mask) {
1195 cpu_breakpoint_remove_by_ref(cpu, bp);
1196 }
c0ce998e 1197 }
4c3a88a2
FB
1198}
1199
c33a346e
FB
1200/* enable or disable single step mode. EXCP_DEBUG is returned by the
1201 CPU loop after each instruction */
3825b28f 1202void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 1203{
ed2803da
AF
1204 if (cpu->singlestep_enabled != enabled) {
1205 cpu->singlestep_enabled = enabled;
1206 if (kvm_enabled()) {
38e478ec 1207 kvm_update_guest_debug(cpu, 0);
ed2803da 1208 } else {
ccbb4d44 1209 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 1210 /* XXX: only flush what is necessary */
bbd77c18 1211 tb_flush(cpu);
e22a25c9 1212 }
c33a346e 1213 }
c33a346e
FB
1214}
1215
a47dddd7 1216void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1217{
1218 va_list ap;
493ae1f0 1219 va_list ap2;
7501267e
FB
1220
1221 va_start(ap, fmt);
493ae1f0 1222 va_copy(ap2, ap);
7501267e
FB
1223 fprintf(stderr, "qemu: fatal: ");
1224 vfprintf(stderr, fmt, ap);
1225 fprintf(stderr, "\n");
90c84c56 1226 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1227 if (qemu_log_separate()) {
fc59d2d8 1228 FILE *logfile = qemu_log_lock();
93fcfe39
AL
1229 qemu_log("qemu: fatal: ");
1230 qemu_log_vprintf(fmt, ap2);
1231 qemu_log("\n");
a0762859 1232 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1233 qemu_log_flush();
fc59d2d8 1234 qemu_log_unlock(logfile);
93fcfe39 1235 qemu_log_close();
924edcae 1236 }
493ae1f0 1237 va_end(ap2);
f9373291 1238 va_end(ap);
7615936e 1239 replay_finish();
fd052bf6
RV
1240#if defined(CONFIG_USER_ONLY)
1241 {
1242 struct sigaction act;
1243 sigfillset(&act.sa_mask);
1244 act.sa_handler = SIG_DFL;
8347c185 1245 act.sa_flags = 0;
fd052bf6
RV
1246 sigaction(SIGABRT, &act, NULL);
1247 }
1248#endif
7501267e
FB
1249 abort();
1250}
1251
0124311e 1252#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1253/* Called from RCU critical section */
041603fe
PB
1254static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1255{
1256 RAMBlock *block;
1257
43771539 1258 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1259 if (block && addr - block->offset < block->max_length) {
68851b98 1260 return block;
041603fe 1261 }
99e15582 1262 RAMBLOCK_FOREACH(block) {
9b8424d5 1263 if (addr - block->offset < block->max_length) {
041603fe
PB
1264 goto found;
1265 }
1266 }
1267
1268 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1269 abort();
1270
1271found:
43771539
PB
1272 /* It is safe to write mru_block outside the iothread lock. This
1273 * is what happens:
1274 *
1275 * mru_block = xxx
1276 * rcu_read_unlock()
1277 * xxx removed from list
1278 * rcu_read_lock()
1279 * read mru_block
1280 * mru_block = NULL;
1281 * call_rcu(reclaim_ramblock, xxx);
1282 * rcu_read_unlock()
1283 *
1284 * atomic_rcu_set is not needed here. The block was already published
1285 * when it was placed into the list. Here we're just making an extra
1286 * copy of the pointer.
1287 */
041603fe
PB
1288 ram_list.mru_block = block;
1289 return block;
1290}
1291
a2f4d5be 1292static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1293{
9a13565d 1294 CPUState *cpu;
041603fe 1295 ram_addr_t start1;
a2f4d5be
JQ
1296 RAMBlock *block;
1297 ram_addr_t end;
1298
f28d0dfd 1299 assert(tcg_enabled());
a2f4d5be
JQ
1300 end = TARGET_PAGE_ALIGN(start + length);
1301 start &= TARGET_PAGE_MASK;
d24981d3 1302
694ea274 1303 RCU_READ_LOCK_GUARD();
041603fe
PB
1304 block = qemu_get_ram_block(start);
1305 assert(block == qemu_get_ram_block(end - 1));
1240be24 1306 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1307 CPU_FOREACH(cpu) {
1308 tlb_reset_dirty(cpu, start1, length);
1309 }
d24981d3
JQ
1310}
1311
5579c7f3 1312/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1313bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1314 ram_addr_t length,
1315 unsigned client)
1ccde1cb 1316{
5b82b703 1317 DirtyMemoryBlocks *blocks;
03eebc9e 1318 unsigned long end, page;
5b82b703 1319 bool dirty = false;
077874e0
PX
1320 RAMBlock *ramblock;
1321 uint64_t mr_offset, mr_size;
03eebc9e
SH
1322
1323 if (length == 0) {
1324 return false;
1325 }
f23db169 1326
03eebc9e
SH
1327 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1328 page = start >> TARGET_PAGE_BITS;
5b82b703 1329
694ea274
DDAG
1330 WITH_RCU_READ_LOCK_GUARD() {
1331 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1332 ramblock = qemu_get_ram_block(start);
1333 /* Range sanity check on the ramblock */
1334 assert(start >= ramblock->offset &&
1335 start + length <= ramblock->offset + ramblock->used_length);
5b82b703 1336
694ea274
DDAG
1337 while (page < end) {
1338 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1339 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1340 unsigned long num = MIN(end - page,
1341 DIRTY_MEMORY_BLOCK_SIZE - offset);
5b82b703 1342
694ea274
DDAG
1343 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1344 offset, num);
1345 page += num;
1346 }
5b82b703 1347
694ea274
DDAG
1348 mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset;
1349 mr_size = (end - page) << TARGET_PAGE_BITS;
1350 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
5b82b703
SH
1351 }
1352
03eebc9e 1353 if (dirty && tcg_enabled()) {
a2f4d5be 1354 tlb_reset_dirty_range_all(start, length);
5579c7f3 1355 }
03eebc9e
SH
1356
1357 return dirty;
1ccde1cb
FB
1358}
1359
8deaf12c 1360DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
5dea4079 1361 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
8deaf12c
GH
1362{
1363 DirtyMemoryBlocks *blocks;
5dea4079 1364 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
8deaf12c
GH
1365 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1366 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1367 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1368 DirtyBitmapSnapshot *snap;
1369 unsigned long page, end, dest;
1370
1371 snap = g_malloc0(sizeof(*snap) +
1372 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1373 snap->start = first;
1374 snap->end = last;
1375
1376 page = first >> TARGET_PAGE_BITS;
1377 end = last >> TARGET_PAGE_BITS;
1378 dest = 0;
1379
694ea274
DDAG
1380 WITH_RCU_READ_LOCK_GUARD() {
1381 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
8deaf12c 1382
694ea274
DDAG
1383 while (page < end) {
1384 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1385 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1386 unsigned long num = MIN(end - page,
1387 DIRTY_MEMORY_BLOCK_SIZE - offset);
8deaf12c 1388
694ea274
DDAG
1389 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1390 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1391 offset >>= BITS_PER_LEVEL;
8deaf12c 1392
694ea274
DDAG
1393 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1394 blocks->blocks[idx] + offset,
1395 num);
1396 page += num;
1397 dest += num >> BITS_PER_LEVEL;
1398 }
8deaf12c
GH
1399 }
1400
8deaf12c
GH
1401 if (tcg_enabled()) {
1402 tlb_reset_dirty_range_all(start, length);
1403 }
1404
077874e0
PX
1405 memory_region_clear_dirty_bitmap(mr, offset, length);
1406
8deaf12c
GH
1407 return snap;
1408}
1409
1410bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1411 ram_addr_t start,
1412 ram_addr_t length)
1413{
1414 unsigned long page, end;
1415
1416 assert(start >= snap->start);
1417 assert(start + length <= snap->end);
1418
1419 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1420 page = (start - snap->start) >> TARGET_PAGE_BITS;
1421
1422 while (page < end) {
1423 if (test_bit(page, snap->dirty)) {
1424 return true;
1425 }
1426 page++;
1427 }
1428 return false;
1429}
1430
79e2b9ae 1431/* Called from RCU critical section */
bb0e627a 1432hwaddr memory_region_section_get_iotlb(CPUState *cpu,
8f5db641 1433 MemoryRegionSection *section)
e5548617 1434{
8f5db641
RH
1435 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1436 return section - d->map.sections;
e5548617 1437}
9fa3e853
FB
1438#endif /* defined(CONFIG_USER_ONLY) */
1439
e2eef170 1440#if !defined(CONFIG_USER_ONLY)
8da3ff18 1441
b797ab1a
WY
1442static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1443 uint16_t section);
16620684 1444static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1445
06329cce 1446static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
a2b257d6 1447 qemu_anon_ram_alloc;
91138037
MA
1448
1449/*
1450 * Set a custom physical guest memory alloator.
1451 * Accelerators with unusual needs may need this. Hopefully, we can
1452 * get rid of it eventually.
1453 */
06329cce 1454void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
91138037
MA
1455{
1456 phys_mem_alloc = alloc;
1457}
1458
53cb28cb
MA
1459static uint16_t phys_section_add(PhysPageMap *map,
1460 MemoryRegionSection *section)
5312bd8b 1461{
68f3f65b
PB
1462 /* The physical section number is ORed with a page-aligned
1463 * pointer to produce the iotlb entries. Thus it should
1464 * never overflow into the page-aligned value.
1465 */
53cb28cb 1466 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1467
53cb28cb
MA
1468 if (map->sections_nb == map->sections_nb_alloc) {
1469 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1470 map->sections = g_renew(MemoryRegionSection, map->sections,
1471 map->sections_nb_alloc);
5312bd8b 1472 }
53cb28cb 1473 map->sections[map->sections_nb] = *section;
dfde4e6e 1474 memory_region_ref(section->mr);
53cb28cb 1475 return map->sections_nb++;
5312bd8b
AK
1476}
1477
058bc4b5
PB
1478static void phys_section_destroy(MemoryRegion *mr)
1479{
55b4e80b
DS
1480 bool have_sub_page = mr->subpage;
1481
dfde4e6e
PB
1482 memory_region_unref(mr);
1483
55b4e80b 1484 if (have_sub_page) {
058bc4b5 1485 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1486 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1487 g_free(subpage);
1488 }
1489}
1490
6092666e 1491static void phys_sections_free(PhysPageMap *map)
5312bd8b 1492{
9affd6fc
PB
1493 while (map->sections_nb > 0) {
1494 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1495 phys_section_destroy(section->mr);
1496 }
9affd6fc
PB
1497 g_free(map->sections);
1498 g_free(map->nodes);
5312bd8b
AK
1499}
1500
9950322a 1501static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1502{
9950322a 1503 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1504 subpage_t *subpage;
a8170e5e 1505 hwaddr base = section->offset_within_address_space
0f0cb164 1506 & TARGET_PAGE_MASK;
003a0cf2 1507 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1508 MemoryRegionSection subsection = {
1509 .offset_within_address_space = base,
052e87b0 1510 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1511 };
a8170e5e 1512 hwaddr start, end;
0f0cb164 1513
f3705d53 1514 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1515
f3705d53 1516 if (!(existing->mr->subpage)) {
16620684
AK
1517 subpage = subpage_init(fv, base);
1518 subsection.fv = fv;
0f0cb164 1519 subsection.mr = &subpage->iomem;
ac1970fb 1520 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1521 phys_section_add(&d->map, &subsection));
0f0cb164 1522 } else {
f3705d53 1523 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1524 }
1525 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1526 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1527 subpage_register(subpage, start, end,
1528 phys_section_add(&d->map, section));
0f0cb164
AK
1529}
1530
1531
9950322a 1532static void register_multipage(FlatView *fv,
052e87b0 1533 MemoryRegionSection *section)
33417e70 1534{
9950322a 1535 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1536 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1537 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1538 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1539 TARGET_PAGE_BITS));
dd81124b 1540
733d5ef5
PB
1541 assert(num_pages);
1542 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1543}
1544
494d1997
WY
1545/*
1546 * The range in *section* may look like this:
1547 *
1548 * |s|PPPPPPP|s|
1549 *
1550 * where s stands for subpage and P for page.
1551 */
8629d3fc 1552void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1553{
494d1997 1554 MemoryRegionSection remain = *section;
052e87b0 1555 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1556
494d1997
WY
1557 /* register first subpage */
1558 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1559 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1560 - remain.offset_within_address_space;
733d5ef5 1561
494d1997 1562 MemoryRegionSection now = remain;
052e87b0 1563 now.size = int128_min(int128_make64(left), now.size);
9950322a 1564 register_subpage(fv, &now);
494d1997
WY
1565 if (int128_eq(remain.size, now.size)) {
1566 return;
1567 }
052e87b0
PB
1568 remain.size = int128_sub(remain.size, now.size);
1569 remain.offset_within_address_space += int128_get64(now.size);
1570 remain.offset_within_region += int128_get64(now.size);
494d1997
WY
1571 }
1572
1573 /* register whole pages */
1574 if (int128_ge(remain.size, page_size)) {
1575 MemoryRegionSection now = remain;
1576 now.size = int128_and(now.size, int128_neg(page_size));
1577 register_multipage(fv, &now);
1578 if (int128_eq(remain.size, now.size)) {
1579 return;
69b67646 1580 }
494d1997
WY
1581 remain.size = int128_sub(remain.size, now.size);
1582 remain.offset_within_address_space += int128_get64(now.size);
1583 remain.offset_within_region += int128_get64(now.size);
0f0cb164 1584 }
494d1997
WY
1585
1586 /* register last subpage */
1587 register_subpage(fv, &remain);
0f0cb164
AK
1588}
1589
62a2744c
SY
1590void qemu_flush_coalesced_mmio_buffer(void)
1591{
1592 if (kvm_enabled())
1593 kvm_flush_coalesced_mmio_buffer();
1594}
1595
b2a8658e
UD
1596void qemu_mutex_lock_ramlist(void)
1597{
1598 qemu_mutex_lock(&ram_list.mutex);
1599}
1600
1601void qemu_mutex_unlock_ramlist(void)
1602{
1603 qemu_mutex_unlock(&ram_list.mutex);
1604}
1605
be9b23c4
PX
1606void ram_block_dump(Monitor *mon)
1607{
1608 RAMBlock *block;
1609 char *psize;
1610
694ea274 1611 RCU_READ_LOCK_GUARD();
be9b23c4
PX
1612 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1613 "Block Name", "PSize", "Offset", "Used", "Total");
1614 RAMBLOCK_FOREACH(block) {
1615 psize = size_to_str(block->page_size);
1616 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1617 " 0x%016" PRIx64 "\n", block->idstr, psize,
1618 (uint64_t)block->offset,
1619 (uint64_t)block->used_length,
1620 (uint64_t)block->max_length);
1621 g_free(psize);
1622 }
be9b23c4
PX
1623}
1624
9c607668
AK
1625#ifdef __linux__
1626/*
1627 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1628 * may or may not name the same files / on the same filesystem now as
1629 * when we actually open and map them. Iterate over the file
1630 * descriptors instead, and use qemu_fd_getpagesize().
1631 */
905b7ee4 1632static int find_min_backend_pagesize(Object *obj, void *opaque)
9c607668 1633{
9c607668
AK
1634 long *hpsize_min = opaque;
1635
1636 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
7d5489e6
DG
1637 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1638 long hpsize = host_memory_backend_pagesize(backend);
2b108085 1639
7d5489e6 1640 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
0de6e2a3 1641 *hpsize_min = hpsize;
9c607668
AK
1642 }
1643 }
1644
1645 return 0;
1646}
1647
905b7ee4
DH
1648static int find_max_backend_pagesize(Object *obj, void *opaque)
1649{
1650 long *hpsize_max = opaque;
1651
1652 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1653 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1654 long hpsize = host_memory_backend_pagesize(backend);
1655
1656 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1657 *hpsize_max = hpsize;
1658 }
1659 }
1660
1661 return 0;
1662}
1663
1664/*
1665 * TODO: We assume right now that all mapped host memory backends are
1666 * used as RAM, however some might be used for different purposes.
1667 */
1668long qemu_minrampagesize(void)
9c607668
AK
1669{
1670 long hpsize = LONG_MAX;
ad1172d8 1671 Object *memdev_root = object_resolve_path("/objects", NULL);
9c607668 1672
ad1172d8 1673 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
9c607668
AK
1674 return hpsize;
1675}
905b7ee4
DH
1676
1677long qemu_maxrampagesize(void)
1678{
ad1172d8 1679 long pagesize = 0;
905b7ee4
DH
1680 Object *memdev_root = object_resolve_path("/objects", NULL);
1681
ad1172d8 1682 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
905b7ee4
DH
1683 return pagesize;
1684}
9c607668 1685#else
905b7ee4
DH
1686long qemu_minrampagesize(void)
1687{
038adc2f 1688 return qemu_real_host_page_size;
905b7ee4
DH
1689}
1690long qemu_maxrampagesize(void)
9c607668 1691{
038adc2f 1692 return qemu_real_host_page_size;
9c607668
AK
1693}
1694#endif
1695
d5dbde46 1696#ifdef CONFIG_POSIX
d6af99c9
HZ
1697static int64_t get_file_size(int fd)
1698{
72d41eb4
SH
1699 int64_t size;
1700#if defined(__linux__)
1701 struct stat st;
1702
1703 if (fstat(fd, &st) < 0) {
1704 return -errno;
1705 }
1706
1707 /* Special handling for devdax character devices */
1708 if (S_ISCHR(st.st_mode)) {
1709 g_autofree char *subsystem_path = NULL;
1710 g_autofree char *subsystem = NULL;
1711
1712 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1713 major(st.st_rdev), minor(st.st_rdev));
1714 subsystem = g_file_read_link(subsystem_path, NULL);
1715
1716 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1717 g_autofree char *size_path = NULL;
1718 g_autofree char *size_str = NULL;
1719
1720 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1721 major(st.st_rdev), minor(st.st_rdev));
1722
1723 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1724 return g_ascii_strtoll(size_str, NULL, 0);
1725 }
1726 }
1727 }
1728#endif /* defined(__linux__) */
1729
1730 /* st.st_size may be zero for special files yet lseek(2) works */
1731 size = lseek(fd, 0, SEEK_END);
d6af99c9
HZ
1732 if (size < 0) {
1733 return -errno;
1734 }
1735 return size;
1736}
1737
8d37b030
MAL
1738static int file_ram_open(const char *path,
1739 const char *region_name,
1740 bool *created,
1741 Error **errp)
c902760f
MT
1742{
1743 char *filename;
8ca761f6
PF
1744 char *sanitized_name;
1745 char *c;
5c3ece79 1746 int fd = -1;
c902760f 1747
8d37b030 1748 *created = false;
fd97fd44
MA
1749 for (;;) {
1750 fd = open(path, O_RDWR);
1751 if (fd >= 0) {
1752 /* @path names an existing file, use it */
1753 break;
8d31d6b6 1754 }
fd97fd44
MA
1755 if (errno == ENOENT) {
1756 /* @path names a file that doesn't exist, create it */
1757 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1758 if (fd >= 0) {
8d37b030 1759 *created = true;
fd97fd44
MA
1760 break;
1761 }
1762 } else if (errno == EISDIR) {
1763 /* @path names a directory, create a file there */
1764 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1765 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1766 for (c = sanitized_name; *c != '\0'; c++) {
1767 if (*c == '/') {
1768 *c = '_';
1769 }
1770 }
8ca761f6 1771
fd97fd44
MA
1772 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1773 sanitized_name);
1774 g_free(sanitized_name);
8d31d6b6 1775
fd97fd44
MA
1776 fd = mkstemp(filename);
1777 if (fd >= 0) {
1778 unlink(filename);
1779 g_free(filename);
1780 break;
1781 }
1782 g_free(filename);
8d31d6b6 1783 }
fd97fd44
MA
1784 if (errno != EEXIST && errno != EINTR) {
1785 error_setg_errno(errp, errno,
1786 "can't open backing store %s for guest RAM",
1787 path);
8d37b030 1788 return -1;
fd97fd44
MA
1789 }
1790 /*
1791 * Try again on EINTR and EEXIST. The latter happens when
1792 * something else creates the file between our two open().
1793 */
8d31d6b6 1794 }
c902760f 1795
8d37b030
MAL
1796 return fd;
1797}
1798
1799static void *file_ram_alloc(RAMBlock *block,
1800 ram_addr_t memory,
1801 int fd,
1802 bool truncate,
1803 Error **errp)
1804{
1805 void *area;
1806
863e9621 1807 block->page_size = qemu_fd_getpagesize(fd);
98376843
HZ
1808 if (block->mr->align % block->page_size) {
1809 error_setg(errp, "alignment 0x%" PRIx64
1810 " must be multiples of page size 0x%zx",
1811 block->mr->align, block->page_size);
1812 return NULL;
61362b71
DH
1813 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1814 error_setg(errp, "alignment 0x%" PRIx64
1815 " must be a power of two", block->mr->align);
1816 return NULL;
98376843
HZ
1817 }
1818 block->mr->align = MAX(block->page_size, block->mr->align);
8360668e
HZ
1819#if defined(__s390x__)
1820 if (kvm_enabled()) {
1821 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1822 }
1823#endif
fd97fd44 1824
863e9621 1825 if (memory < block->page_size) {
fd97fd44 1826 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1827 "or larger than page size 0x%zx",
1828 memory, block->page_size);
8d37b030 1829 return NULL;
1775f111
HZ
1830 }
1831
863e9621 1832 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1833
1834 /*
1835 * ftruncate is not supported by hugetlbfs in older
1836 * hosts, so don't bother bailing out on errors.
1837 * If anything goes wrong with it under other filesystems,
1838 * mmap will fail.
d6af99c9
HZ
1839 *
1840 * Do not truncate the non-empty backend file to avoid corrupting
1841 * the existing data in the file. Disabling shrinking is not
1842 * enough. For example, the current vNVDIMM implementation stores
1843 * the guest NVDIMM labels at the end of the backend file. If the
1844 * backend file is later extended, QEMU will not be able to find
1845 * those labels. Therefore, extending the non-empty backend file
1846 * is disabled as well.
c902760f 1847 */
8d37b030 1848 if (truncate && ftruncate(fd, memory)) {
9742bf26 1849 perror("ftruncate");
7f56e740 1850 }
c902760f 1851
d2f39add 1852 area = qemu_ram_mmap(fd, memory, block->mr->align,
2ac0f162 1853 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
c902760f 1854 if (area == MAP_FAILED) {
7f56e740 1855 error_setg_errno(errp, errno,
fd97fd44 1856 "unable to map backing store for guest RAM");
8d37b030 1857 return NULL;
c902760f 1858 }
ef36fa14 1859
04b16653 1860 block->fd = fd;
c902760f
MT
1861 return area;
1862}
1863#endif
1864
154cc9ea
DDAG
1865/* Allocate space within the ram_addr_t space that governs the
1866 * dirty bitmaps.
1867 * Called with the ramlist lock held.
1868 */
d17b5288 1869static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1870{
1871 RAMBlock *block, *next_block;
3e837b2c 1872 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1873
49cd9ac6
SH
1874 assert(size != 0); /* it would hand out same offset multiple times */
1875
0dc3f44a 1876 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1877 return 0;
0d53d9fe 1878 }
04b16653 1879
99e15582 1880 RAMBLOCK_FOREACH(block) {
154cc9ea 1881 ram_addr_t candidate, next = RAM_ADDR_MAX;
04b16653 1882
801110ab
DDAG
1883 /* Align blocks to start on a 'long' in the bitmap
1884 * which makes the bitmap sync'ing take the fast path.
1885 */
154cc9ea 1886 candidate = block->offset + block->max_length;
801110ab 1887 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
04b16653 1888
154cc9ea
DDAG
1889 /* Search for the closest following block
1890 * and find the gap.
1891 */
99e15582 1892 RAMBLOCK_FOREACH(next_block) {
154cc9ea 1893 if (next_block->offset >= candidate) {
04b16653
AW
1894 next = MIN(next, next_block->offset);
1895 }
1896 }
154cc9ea
DDAG
1897
1898 /* If it fits remember our place and remember the size
1899 * of gap, but keep going so that we might find a smaller
1900 * gap to fill so avoiding fragmentation.
1901 */
1902 if (next - candidate >= size && next - candidate < mingap) {
1903 offset = candidate;
1904 mingap = next - candidate;
04b16653 1905 }
154cc9ea
DDAG
1906
1907 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
04b16653 1908 }
3e837b2c
AW
1909
1910 if (offset == RAM_ADDR_MAX) {
1911 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1912 (uint64_t)size);
1913 abort();
1914 }
1915
154cc9ea
DDAG
1916 trace_find_ram_offset(size, offset);
1917
04b16653
AW
1918 return offset;
1919}
1920
c136180c 1921static unsigned long last_ram_page(void)
d17b5288
AW
1922{
1923 RAMBlock *block;
1924 ram_addr_t last = 0;
1925
694ea274 1926 RCU_READ_LOCK_GUARD();
99e15582 1927 RAMBLOCK_FOREACH(block) {
62be4e3a 1928 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1929 }
b8c48993 1930 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1931}
1932
ddb97f1d
JB
1933static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1934{
1935 int ret;
ddb97f1d
JB
1936
1937 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1938 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1939 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1940 if (ret) {
1941 perror("qemu_madvise");
1942 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1943 "but dump_guest_core=off specified\n");
1944 }
1945 }
1946}
1947
422148d3
DDAG
1948const char *qemu_ram_get_idstr(RAMBlock *rb)
1949{
1950 return rb->idstr;
1951}
1952
754cb9c0
YK
1953void *qemu_ram_get_host_addr(RAMBlock *rb)
1954{
1955 return rb->host;
1956}
1957
1958ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1959{
1960 return rb->offset;
1961}
1962
1963ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1964{
1965 return rb->used_length;
1966}
1967
463a4ac2
DDAG
1968bool qemu_ram_is_shared(RAMBlock *rb)
1969{
1970 return rb->flags & RAM_SHARED;
1971}
1972
2ce16640
DDAG
1973/* Note: Only set at the start of postcopy */
1974bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1975{
1976 return rb->flags & RAM_UF_ZEROPAGE;
1977}
1978
1979void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1980{
1981 rb->flags |= RAM_UF_ZEROPAGE;
1982}
1983
b895de50
CLG
1984bool qemu_ram_is_migratable(RAMBlock *rb)
1985{
1986 return rb->flags & RAM_MIGRATABLE;
1987}
1988
1989void qemu_ram_set_migratable(RAMBlock *rb)
1990{
1991 rb->flags |= RAM_MIGRATABLE;
1992}
1993
1994void qemu_ram_unset_migratable(RAMBlock *rb)
1995{
1996 rb->flags &= ~RAM_MIGRATABLE;
1997}
1998
ae3a7047 1999/* Called with iothread lock held. */
fa53a0e5 2000void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 2001{
fa53a0e5 2002 RAMBlock *block;
20cfe881 2003
c5705a77
AK
2004 assert(new_block);
2005 assert(!new_block->idstr[0]);
84b89d78 2006
09e5ab63
AL
2007 if (dev) {
2008 char *id = qdev_get_dev_path(dev);
84b89d78
CM
2009 if (id) {
2010 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2011 g_free(id);
84b89d78
CM
2012 }
2013 }
2014 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2015
694ea274 2016 RCU_READ_LOCK_GUARD();
99e15582 2017 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
2018 if (block != new_block &&
2019 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
2020 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2021 new_block->idstr);
2022 abort();
2023 }
2024 }
c5705a77
AK
2025}
2026
ae3a7047 2027/* Called with iothread lock held. */
fa53a0e5 2028void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 2029{
ae3a7047
MD
2030 /* FIXME: arch_init.c assumes that this is not called throughout
2031 * migration. Ignore the problem since hot-unplug during migration
2032 * does not work anyway.
2033 */
20cfe881
HT
2034 if (block) {
2035 memset(block->idstr, 0, sizeof(block->idstr));
2036 }
2037}
2038
863e9621
DDAG
2039size_t qemu_ram_pagesize(RAMBlock *rb)
2040{
2041 return rb->page_size;
2042}
2043
67f11b5c
DDAG
2044/* Returns the largest size of page in use */
2045size_t qemu_ram_pagesize_largest(void)
2046{
2047 RAMBlock *block;
2048 size_t largest = 0;
2049
99e15582 2050 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
2051 largest = MAX(largest, qemu_ram_pagesize(block));
2052 }
2053
2054 return largest;
2055}
2056
8490fc78
LC
2057static int memory_try_enable_merging(void *addr, size_t len)
2058{
75cc7f01 2059 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
2060 /* disabled by the user */
2061 return 0;
2062 }
2063
2064 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2065}
2066
62be4e3a
MT
2067/* Only legal before guest might have detected the memory size: e.g. on
2068 * incoming migration, or right after reset.
2069 *
2070 * As memory core doesn't know how is memory accessed, it is up to
2071 * resize callback to update device state and/or add assertions to detect
2072 * misuse, if necessary.
2073 */
fa53a0e5 2074int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 2075{
62be4e3a
MT
2076 assert(block);
2077
4ed023ce 2078 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 2079
62be4e3a
MT
2080 if (block->used_length == newsize) {
2081 return 0;
2082 }
2083
2084 if (!(block->flags & RAM_RESIZEABLE)) {
2085 error_setg_errno(errp, EINVAL,
2086 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2087 " in != 0x" RAM_ADDR_FMT, block->idstr,
2088 newsize, block->used_length);
2089 return -EINVAL;
2090 }
2091
2092 if (block->max_length < newsize) {
2093 error_setg_errno(errp, EINVAL,
2094 "Length too large: %s: 0x" RAM_ADDR_FMT
2095 " > 0x" RAM_ADDR_FMT, block->idstr,
2096 newsize, block->max_length);
2097 return -EINVAL;
2098 }
2099
2100 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2101 block->used_length = newsize;
58d2707e
PB
2102 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2103 DIRTY_CLIENTS_ALL);
62be4e3a
MT
2104 memory_region_set_size(block->mr, newsize);
2105 if (block->resized) {
2106 block->resized(block->idstr, newsize, block->host);
2107 }
2108 return 0;
2109}
2110
61c490e2
BM
2111/*
2112 * Trigger sync on the given ram block for range [start, start + length]
2113 * with the backing store if one is available.
2114 * Otherwise no-op.
2115 * @Note: this is supposed to be a synchronous op.
2116 */
2117void qemu_ram_writeback(RAMBlock *block, ram_addr_t start, ram_addr_t length)
2118{
61c490e2
BM
2119 /* The requested range should fit in within the block range */
2120 g_assert((start + length) <= block->used_length);
2121
2122#ifdef CONFIG_LIBPMEM
2123 /* The lack of support for pmem should not block the sync */
2124 if (ramblock_is_pmem(block)) {
5d4c9549 2125 void *addr = ramblock_ptr(block, start);
61c490e2
BM
2126 pmem_persist(addr, length);
2127 return;
2128 }
2129#endif
2130 if (block->fd >= 0) {
2131 /**
2132 * Case there is no support for PMEM or the memory has not been
2133 * specified as persistent (or is not one) - use the msync.
2134 * Less optimal but still achieves the same goal
2135 */
5d4c9549 2136 void *addr = ramblock_ptr(block, start);
61c490e2
BM
2137 if (qemu_msync(addr, length, block->fd)) {
2138 warn_report("%s: failed to sync memory range: start: "
2139 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
2140 __func__, start, length);
2141 }
2142 }
2143}
2144
5b82b703
SH
2145/* Called with ram_list.mutex held */
2146static void dirty_memory_extend(ram_addr_t old_ram_size,
2147 ram_addr_t new_ram_size)
2148{
2149 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2150 DIRTY_MEMORY_BLOCK_SIZE);
2151 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2152 DIRTY_MEMORY_BLOCK_SIZE);
2153 int i;
2154
2155 /* Only need to extend if block count increased */
2156 if (new_num_blocks <= old_num_blocks) {
2157 return;
2158 }
2159
2160 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2161 DirtyMemoryBlocks *old_blocks;
2162 DirtyMemoryBlocks *new_blocks;
2163 int j;
2164
2165 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2166 new_blocks = g_malloc(sizeof(*new_blocks) +
2167 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2168
2169 if (old_num_blocks) {
2170 memcpy(new_blocks->blocks, old_blocks->blocks,
2171 old_num_blocks * sizeof(old_blocks->blocks[0]));
2172 }
2173
2174 for (j = old_num_blocks; j < new_num_blocks; j++) {
2175 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2176 }
2177
2178 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2179
2180 if (old_blocks) {
2181 g_free_rcu(old_blocks, rcu);
2182 }
2183 }
2184}
2185
06329cce 2186static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
c5705a77 2187{
e1c57ab8 2188 RAMBlock *block;
0d53d9fe 2189 RAMBlock *last_block = NULL;
2152f5ca 2190 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 2191 Error *err = NULL;
2152f5ca 2192
b8c48993 2193 old_ram_size = last_ram_page();
c5705a77 2194
b2a8658e 2195 qemu_mutex_lock_ramlist();
9b8424d5 2196 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
2197
2198 if (!new_block->host) {
2199 if (xen_enabled()) {
9b8424d5 2200 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
2201 new_block->mr, &err);
2202 if (err) {
2203 error_propagate(errp, err);
2204 qemu_mutex_unlock_ramlist();
39c350ee 2205 return;
37aa7a0e 2206 }
e1c57ab8 2207 } else {
9b8424d5 2208 new_block->host = phys_mem_alloc(new_block->max_length,
06329cce 2209 &new_block->mr->align, shared);
39228250 2210 if (!new_block->host) {
ef701d7b
HT
2211 error_setg_errno(errp, errno,
2212 "cannot set up guest memory '%s'",
2213 memory_region_name(new_block->mr));
2214 qemu_mutex_unlock_ramlist();
39c350ee 2215 return;
39228250 2216 }
9b8424d5 2217 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 2218 }
c902760f 2219 }
94a6b54f 2220
dd631697
LZ
2221 new_ram_size = MAX(old_ram_size,
2222 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2223 if (new_ram_size > old_ram_size) {
5b82b703 2224 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 2225 }
0d53d9fe
MD
2226 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2227 * QLIST (which has an RCU-friendly variant) does not have insertion at
2228 * tail, so save the last element in last_block.
2229 */
99e15582 2230 RAMBLOCK_FOREACH(block) {
0d53d9fe 2231 last_block = block;
9b8424d5 2232 if (block->max_length < new_block->max_length) {
abb26d63
PB
2233 break;
2234 }
2235 }
2236 if (block) {
0dc3f44a 2237 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 2238 } else if (last_block) {
0dc3f44a 2239 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 2240 } else { /* list is empty */
0dc3f44a 2241 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 2242 }
0d6d3c87 2243 ram_list.mru_block = NULL;
94a6b54f 2244
0dc3f44a
MD
2245 /* Write list before version */
2246 smp_wmb();
f798b07f 2247 ram_list.version++;
b2a8658e 2248 qemu_mutex_unlock_ramlist();
f798b07f 2249
9b8424d5 2250 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
2251 new_block->used_length,
2252 DIRTY_CLIENTS_ALL);
94a6b54f 2253
a904c911
PB
2254 if (new_block->host) {
2255 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2256 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
a028edea
AB
2257 /*
2258 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2259 * Configure it unless the machine is a qtest server, in which case
2260 * KVM is not used and it may be forked (eg for fuzzing purposes).
2261 */
2262 if (!qtest_enabled()) {
2263 qemu_madvise(new_block->host, new_block->max_length,
2264 QEMU_MADV_DONTFORK);
2265 }
0987d735 2266 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 2267 }
94a6b54f 2268}
e9a1ab19 2269
d5dbde46 2270#ifdef CONFIG_POSIX
38b3362d 2271RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2272 uint32_t ram_flags, int fd,
38b3362d 2273 Error **errp)
e1c57ab8
PB
2274{
2275 RAMBlock *new_block;
ef701d7b 2276 Error *local_err = NULL;
8d37b030 2277 int64_t file_size;
e1c57ab8 2278
a4de8552
JH
2279 /* Just support these ram flags by now. */
2280 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2281
e1c57ab8 2282 if (xen_enabled()) {
7f56e740 2283 error_setg(errp, "-mem-path not supported with Xen");
528f46af 2284 return NULL;
e1c57ab8
PB
2285 }
2286
e45e7ae2
MAL
2287 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2288 error_setg(errp,
2289 "host lacks kvm mmu notifiers, -mem-path unsupported");
2290 return NULL;
2291 }
2292
e1c57ab8
PB
2293 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2294 /*
2295 * file_ram_alloc() needs to allocate just like
2296 * phys_mem_alloc, but we haven't bothered to provide
2297 * a hook there.
2298 */
7f56e740
PB
2299 error_setg(errp,
2300 "-mem-path not supported with this accelerator");
528f46af 2301 return NULL;
e1c57ab8
PB
2302 }
2303
4ed023ce 2304 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
2305 file_size = get_file_size(fd);
2306 if (file_size > 0 && file_size < size) {
c001c3b3 2307 error_setg(errp, "backing store size 0x%" PRIx64
8d37b030 2308 " does not match 'size' option 0x" RAM_ADDR_FMT,
c001c3b3 2309 file_size, size);
8d37b030
MAL
2310 return NULL;
2311 }
2312
e1c57ab8
PB
2313 new_block = g_malloc0(sizeof(*new_block));
2314 new_block->mr = mr;
9b8424d5
MT
2315 new_block->used_length = size;
2316 new_block->max_length = size;
cbfc0171 2317 new_block->flags = ram_flags;
8d37b030 2318 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
2319 if (!new_block->host) {
2320 g_free(new_block);
528f46af 2321 return NULL;
7f56e740
PB
2322 }
2323
cbfc0171 2324 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
ef701d7b
HT
2325 if (local_err) {
2326 g_free(new_block);
2327 error_propagate(errp, local_err);
528f46af 2328 return NULL;
ef701d7b 2329 }
528f46af 2330 return new_block;
38b3362d
MAL
2331
2332}
2333
2334
2335RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2336 uint32_t ram_flags, const char *mem_path,
38b3362d
MAL
2337 Error **errp)
2338{
2339 int fd;
2340 bool created;
2341 RAMBlock *block;
2342
2343 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2344 if (fd < 0) {
2345 return NULL;
2346 }
2347
cbfc0171 2348 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
38b3362d
MAL
2349 if (!block) {
2350 if (created) {
2351 unlink(mem_path);
2352 }
2353 close(fd);
2354 return NULL;
2355 }
2356
2357 return block;
e1c57ab8 2358}
0b183fc8 2359#endif
e1c57ab8 2360
62be4e3a 2361static
528f46af
FZ
2362RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2363 void (*resized)(const char*,
2364 uint64_t length,
2365 void *host),
06329cce 2366 void *host, bool resizeable, bool share,
528f46af 2367 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2368{
2369 RAMBlock *new_block;
ef701d7b 2370 Error *local_err = NULL;
e1c57ab8 2371
4ed023ce
DDAG
2372 size = HOST_PAGE_ALIGN(size);
2373 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2374 new_block = g_malloc0(sizeof(*new_block));
2375 new_block->mr = mr;
62be4e3a 2376 new_block->resized = resized;
9b8424d5
MT
2377 new_block->used_length = size;
2378 new_block->max_length = max_size;
62be4e3a 2379 assert(max_size >= size);
e1c57ab8 2380 new_block->fd = -1;
038adc2f 2381 new_block->page_size = qemu_real_host_page_size;
e1c57ab8
PB
2382 new_block->host = host;
2383 if (host) {
7bd4f430 2384 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2385 }
62be4e3a
MT
2386 if (resizeable) {
2387 new_block->flags |= RAM_RESIZEABLE;
2388 }
06329cce 2389 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2390 if (local_err) {
2391 g_free(new_block);
2392 error_propagate(errp, local_err);
528f46af 2393 return NULL;
ef701d7b 2394 }
528f46af 2395 return new_block;
e1c57ab8
PB
2396}
2397
528f46af 2398RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2399 MemoryRegion *mr, Error **errp)
2400{
06329cce
MA
2401 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2402 false, mr, errp);
62be4e3a
MT
2403}
2404
06329cce
MA
2405RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2406 MemoryRegion *mr, Error **errp)
6977dfe6 2407{
06329cce
MA
2408 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2409 share, mr, errp);
62be4e3a
MT
2410}
2411
528f46af 2412RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2413 void (*resized)(const char*,
2414 uint64_t length,
2415 void *host),
2416 MemoryRegion *mr, Error **errp)
2417{
06329cce
MA
2418 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2419 false, mr, errp);
6977dfe6
YT
2420}
2421
43771539
PB
2422static void reclaim_ramblock(RAMBlock *block)
2423{
2424 if (block->flags & RAM_PREALLOC) {
2425 ;
2426 } else if (xen_enabled()) {
2427 xen_invalidate_map_cache_entry(block->host);
2428#ifndef _WIN32
2429 } else if (block->fd >= 0) {
53adb9d4 2430 qemu_ram_munmap(block->fd, block->host, block->max_length);
43771539
PB
2431 close(block->fd);
2432#endif
2433 } else {
2434 qemu_anon_ram_free(block->host, block->max_length);
2435 }
2436 g_free(block);
2437}
2438
f1060c55 2439void qemu_ram_free(RAMBlock *block)
e9a1ab19 2440{
85bc2a15
MAL
2441 if (!block) {
2442 return;
2443 }
2444
0987d735
PB
2445 if (block->host) {
2446 ram_block_notify_remove(block->host, block->max_length);
2447 }
2448
b2a8658e 2449 qemu_mutex_lock_ramlist();
f1060c55
FZ
2450 QLIST_REMOVE_RCU(block, next);
2451 ram_list.mru_block = NULL;
2452 /* Write list before version */
2453 smp_wmb();
2454 ram_list.version++;
2455 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2456 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2457}
2458
cd19cfa2
HY
2459#ifndef _WIN32
2460void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2461{
2462 RAMBlock *block;
2463 ram_addr_t offset;
2464 int flags;
2465 void *area, *vaddr;
2466
99e15582 2467 RAMBLOCK_FOREACH(block) {
cd19cfa2 2468 offset = addr - block->offset;
9b8424d5 2469 if (offset < block->max_length) {
1240be24 2470 vaddr = ramblock_ptr(block, offset);
7bd4f430 2471 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2472 ;
dfeaf2ab
MA
2473 } else if (xen_enabled()) {
2474 abort();
cd19cfa2
HY
2475 } else {
2476 flags = MAP_FIXED;
3435f395 2477 if (block->fd >= 0) {
dbcb8981
PB
2478 flags |= (block->flags & RAM_SHARED ?
2479 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2480 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2481 flags, block->fd, offset);
cd19cfa2 2482 } else {
2eb9fbaa
MA
2483 /*
2484 * Remap needs to match alloc. Accelerators that
2485 * set phys_mem_alloc never remap. If they did,
2486 * we'd need a remap hook here.
2487 */
2488 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2489
cd19cfa2
HY
2490 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2491 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2492 flags, -1, 0);
cd19cfa2
HY
2493 }
2494 if (area != vaddr) {
493d89bf
AF
2495 error_report("Could not remap addr: "
2496 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2497 length, addr);
cd19cfa2
HY
2498 exit(1);
2499 }
8490fc78 2500 memory_try_enable_merging(vaddr, length);
ddb97f1d 2501 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2502 }
cd19cfa2
HY
2503 }
2504 }
2505}
2506#endif /* !_WIN32 */
2507
1b5ec234 2508/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2509 * This should not be used for general purpose DMA. Use address_space_map
2510 * or address_space_rw instead. For local memory (e.g. video ram) that the
2511 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2512 *
49b24afc 2513 * Called within RCU critical section.
1b5ec234 2514 */
0878d0e1 2515void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2516{
3655cb9c
GA
2517 RAMBlock *block = ram_block;
2518
2519 if (block == NULL) {
2520 block = qemu_get_ram_block(addr);
0878d0e1 2521 addr -= block->offset;
3655cb9c 2522 }
ae3a7047
MD
2523
2524 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2525 /* We need to check if the requested address is in the RAM
2526 * because we don't want to map the entire memory in QEMU.
2527 * In that case just map until the end of the page.
2528 */
2529 if (block->offset == 0) {
1ff7c598 2530 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2531 }
ae3a7047 2532
1ff7c598 2533 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2534 }
0878d0e1 2535 return ramblock_ptr(block, addr);
dc828ca1
PB
2536}
2537
0878d0e1 2538/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2539 * but takes a size argument.
0dc3f44a 2540 *
e81bcda5 2541 * Called within RCU critical section.
ae3a7047 2542 */
3655cb9c 2543static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2544 hwaddr *size, bool lock)
38bee5dc 2545{
3655cb9c 2546 RAMBlock *block = ram_block;
8ab934f9
SS
2547 if (*size == 0) {
2548 return NULL;
2549 }
e81bcda5 2550
3655cb9c
GA
2551 if (block == NULL) {
2552 block = qemu_get_ram_block(addr);
0878d0e1 2553 addr -= block->offset;
3655cb9c 2554 }
0878d0e1 2555 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2556
2557 if (xen_enabled() && block->host == NULL) {
2558 /* We need to check if the requested address is in the RAM
2559 * because we don't want to map the entire memory in QEMU.
2560 * In that case just map the requested area.
2561 */
2562 if (block->offset == 0) {
f5aa69bd 2563 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2564 }
2565
f5aa69bd 2566 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2567 }
e81bcda5 2568
0878d0e1 2569 return ramblock_ptr(block, addr);
38bee5dc
SS
2570}
2571
f90bb71b
DDAG
2572/* Return the offset of a hostpointer within a ramblock */
2573ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2574{
2575 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2576 assert((uintptr_t)host >= (uintptr_t)rb->host);
2577 assert(res < rb->max_length);
2578
2579 return res;
2580}
2581
422148d3
DDAG
2582/*
2583 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2584 * in that RAMBlock.
2585 *
2586 * ptr: Host pointer to look up
2587 * round_offset: If true round the result offset down to a page boundary
2588 * *ram_addr: set to result ram_addr
2589 * *offset: set to result offset within the RAMBlock
2590 *
2591 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2592 *
2593 * By the time this function returns, the returned pointer is not protected
2594 * by RCU anymore. If the caller is not within an RCU critical section and
2595 * does not hold the iothread lock, it must have other means of protecting the
2596 * pointer, such as a reference to the region that includes the incoming
2597 * ram_addr_t.
2598 */
422148d3 2599RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2600 ram_addr_t *offset)
5579c7f3 2601{
94a6b54f
PB
2602 RAMBlock *block;
2603 uint8_t *host = ptr;
2604
868bb33f 2605 if (xen_enabled()) {
f615f396 2606 ram_addr_t ram_addr;
694ea274 2607 RCU_READ_LOCK_GUARD();
f615f396
PB
2608 ram_addr = xen_ram_addr_from_mapcache(ptr);
2609 block = qemu_get_ram_block(ram_addr);
422148d3 2610 if (block) {
d6b6aec4 2611 *offset = ram_addr - block->offset;
422148d3 2612 }
422148d3 2613 return block;
712c2b41
SS
2614 }
2615
694ea274 2616 RCU_READ_LOCK_GUARD();
0dc3f44a 2617 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2618 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2619 goto found;
2620 }
2621
99e15582 2622 RAMBLOCK_FOREACH(block) {
432d268c
JN
2623 /* This case append when the block is not mapped. */
2624 if (block->host == NULL) {
2625 continue;
2626 }
9b8424d5 2627 if (host - block->host < block->max_length) {
23887b79 2628 goto found;
f471a17e 2629 }
94a6b54f 2630 }
432d268c 2631
1b5ec234 2632 return NULL;
23887b79
PB
2633
2634found:
422148d3
DDAG
2635 *offset = (host - block->host);
2636 if (round_offset) {
2637 *offset &= TARGET_PAGE_MASK;
2638 }
422148d3
DDAG
2639 return block;
2640}
2641
e3dd7493
DDAG
2642/*
2643 * Finds the named RAMBlock
2644 *
2645 * name: The name of RAMBlock to find
2646 *
2647 * Returns: RAMBlock (or NULL if not found)
2648 */
2649RAMBlock *qemu_ram_block_by_name(const char *name)
2650{
2651 RAMBlock *block;
2652
99e15582 2653 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2654 if (!strcmp(name, block->idstr)) {
2655 return block;
2656 }
2657 }
2658
2659 return NULL;
2660}
2661
422148d3
DDAG
2662/* Some of the softmmu routines need to translate from a host pointer
2663 (typically a TLB entry) back to a ram offset. */
07bdaa41 2664ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2665{
2666 RAMBlock *block;
f615f396 2667 ram_addr_t offset;
422148d3 2668
f615f396 2669 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2670 if (!block) {
07bdaa41 2671 return RAM_ADDR_INVALID;
422148d3
DDAG
2672 }
2673
07bdaa41 2674 return block->offset + offset;
e890261f 2675}
f471a17e 2676
0f459d16 2677/* Generate a debug exception if a watchpoint has been hit. */
0026348b
DH
2678void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
2679 MemTxAttrs attrs, int flags, uintptr_t ra)
0f459d16 2680{
568496c0 2681 CPUClass *cc = CPU_GET_CLASS(cpu);
a1d1bb31 2682 CPUWatchpoint *wp;
0f459d16 2683
5aa1ef71 2684 assert(tcg_enabled());
ff4700b0 2685 if (cpu->watchpoint_hit) {
50b107c5
RH
2686 /*
2687 * We re-entered the check after replacing the TB.
2688 * Now raise the debug interrupt so that it will
2689 * trigger after the current instruction.
2690 */
2691 qemu_mutex_lock_iothread();
93afeade 2692 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
50b107c5 2693 qemu_mutex_unlock_iothread();
06d55cc1
AL
2694 return;
2695 }
0026348b
DH
2696
2697 addr = cc->adjust_watchpoint_address(cpu, addr, len);
ff4700b0 2698 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
56ad8b00 2699 if (watchpoint_address_matches(wp, addr, len)
05068c0d 2700 && (wp->flags & flags)) {
08225676
PM
2701 if (flags == BP_MEM_READ) {
2702 wp->flags |= BP_WATCHPOINT_HIT_READ;
2703 } else {
2704 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2705 }
0026348b 2706 wp->hitaddr = MAX(addr, wp->vaddr);
66b9b43c 2707 wp->hitattrs = attrs;
ff4700b0 2708 if (!cpu->watchpoint_hit) {
568496c0
SF
2709 if (wp->flags & BP_CPU &&
2710 !cc->debug_check_watchpoint(cpu, wp)) {
2711 wp->flags &= ~BP_WATCHPOINT_HIT;
2712 continue;
2713 }
ff4700b0 2714 cpu->watchpoint_hit = wp;
a5e99826 2715
0ac20318 2716 mmap_lock();
ae57db63 2717 tb_check_watchpoint(cpu, ra);
6e140f28 2718 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2719 cpu->exception_index = EXCP_DEBUG;
0ac20318 2720 mmap_unlock();
0026348b 2721 cpu_loop_exit_restore(cpu, ra);
6e140f28 2722 } else {
9b990ee5
RH
2723 /* Force execution of one insn next time. */
2724 cpu->cflags_next_tb = 1 | curr_cflags();
0ac20318 2725 mmap_unlock();
0026348b
DH
2726 if (ra) {
2727 cpu_restore_state(cpu, ra, true);
2728 }
6886b980 2729 cpu_loop_exit_noexc(cpu);
6e140f28 2730 }
06d55cc1 2731 }
6e140f28
AL
2732 } else {
2733 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2734 }
2735 }
2736}
2737
b2a44fca 2738static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
a152be43 2739 MemTxAttrs attrs, void *buf, hwaddr len);
16620684 2740static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
a152be43 2741 const void *buf, hwaddr len);
0c249ff7 2742static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 2743 bool is_write, MemTxAttrs attrs);
16620684 2744
f25a49e0
PM
2745static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2746 unsigned len, MemTxAttrs attrs)
db7b5426 2747{
acc9d80b 2748 subpage_t *subpage = opaque;
ff6cff75 2749 uint8_t buf[8];
5c9eb028 2750 MemTxResult res;
791af8c8 2751
db7b5426 2752#if defined(DEBUG_SUBPAGE)
016e9d62 2753 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2754 subpage, len, addr);
db7b5426 2755#endif
16620684 2756 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2757 if (res) {
2758 return res;
f25a49e0 2759 }
6d3ede54
PM
2760 *data = ldn_p(buf, len);
2761 return MEMTX_OK;
db7b5426
BS
2762}
2763
f25a49e0
PM
2764static MemTxResult subpage_write(void *opaque, hwaddr addr,
2765 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2766{
acc9d80b 2767 subpage_t *subpage = opaque;
ff6cff75 2768 uint8_t buf[8];
acc9d80b 2769
db7b5426 2770#if defined(DEBUG_SUBPAGE)
016e9d62 2771 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2772 " value %"PRIx64"\n",
2773 __func__, subpage, len, addr, value);
db7b5426 2774#endif
6d3ede54 2775 stn_p(buf, len, value);
16620684 2776 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2777}
2778
c353e4cc 2779static bool subpage_accepts(void *opaque, hwaddr addr,
8372d383
PM
2780 unsigned len, bool is_write,
2781 MemTxAttrs attrs)
c353e4cc 2782{
acc9d80b 2783 subpage_t *subpage = opaque;
c353e4cc 2784#if defined(DEBUG_SUBPAGE)
016e9d62 2785 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2786 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2787#endif
2788
16620684 2789 return flatview_access_valid(subpage->fv, addr + subpage->base,
eace72b7 2790 len, is_write, attrs);
c353e4cc
PB
2791}
2792
70c68e44 2793static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2794 .read_with_attrs = subpage_read,
2795 .write_with_attrs = subpage_write,
ff6cff75
PB
2796 .impl.min_access_size = 1,
2797 .impl.max_access_size = 8,
2798 .valid.min_access_size = 1,
2799 .valid.max_access_size = 8,
c353e4cc 2800 .valid.accepts = subpage_accepts,
70c68e44 2801 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2802};
2803
b797ab1a
WY
2804static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2805 uint16_t section)
db7b5426
BS
2806{
2807 int idx, eidx;
2808
2809 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2810 return -1;
2811 idx = SUBPAGE_IDX(start);
2812 eidx = SUBPAGE_IDX(end);
2813#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2814 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2815 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2816#endif
db7b5426 2817 for (; idx <= eidx; idx++) {
5312bd8b 2818 mmio->sub_section[idx] = section;
db7b5426
BS
2819 }
2820
2821 return 0;
2822}
2823
16620684 2824static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 2825{
c227f099 2826 subpage_t *mmio;
db7b5426 2827
b797ab1a 2828 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2615fabd 2829 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 2830 mmio->fv = fv;
1eec614b 2831 mmio->base = base;
2c9b15ca 2832 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2833 NULL, TARGET_PAGE_SIZE);
b3b00c78 2834 mmio->iomem.subpage = true;
db7b5426 2835#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2836 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2837 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2838#endif
db7b5426
BS
2839
2840 return mmio;
2841}
2842
16620684 2843static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 2844{
16620684 2845 assert(fv);
5312bd8b 2846 MemoryRegionSection section = {
16620684 2847 .fv = fv,
5312bd8b
AK
2848 .mr = mr,
2849 .offset_within_address_space = 0,
2850 .offset_within_region = 0,
052e87b0 2851 .size = int128_2_64(),
5312bd8b
AK
2852 };
2853
53cb28cb 2854 return phys_section_add(map, &section);
5312bd8b
AK
2855}
2856
2d54f194
PM
2857MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2858 hwaddr index, MemTxAttrs attrs)
aa102231 2859{
a54c87b6
PM
2860 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2861 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2862 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2863 MemoryRegionSection *sections = d->map.sections;
9d82b5a7 2864
2d54f194 2865 return &sections[index & ~TARGET_PAGE_MASK];
aa102231
AK
2866}
2867
e9179ce1
AK
2868static void io_mem_init(void)
2869{
2c9b15ca 2870 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2871 NULL, UINT64_MAX);
e9179ce1
AK
2872}
2873
8629d3fc 2874AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 2875{
53cb28cb
MA
2876 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2877 uint16_t n;
2878
16620684 2879 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 2880 assert(n == PHYS_SECTION_UNASSIGNED);
00752703 2881
9736e55b 2882 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
2883
2884 return d;
00752703
PB
2885}
2886
66a6df1d 2887void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
2888{
2889 phys_sections_free(&d->map);
2890 g_free(d);
2891}
2892
9458a9a1
PB
2893static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2894{
2895}
2896
2897static void tcg_log_global_after_sync(MemoryListener *listener)
2898{
2899 CPUAddressSpace *cpuas;
2900
2901 /* Wait for the CPU to end the current TB. This avoids the following
2902 * incorrect race:
2903 *
2904 * vCPU migration
2905 * ---------------------- -------------------------
2906 * TLB check -> slow path
2907 * notdirty_mem_write
2908 * write to RAM
2909 * mark dirty
2910 * clear dirty flag
2911 * TLB check -> fast path
2912 * read memory
2913 * write to RAM
2914 *
2915 * by pushing the migration thread's memory read after the vCPU thread has
2916 * written the memory.
2917 */
86cf9e15
PD
2918 if (replay_mode == REPLAY_MODE_NONE) {
2919 /*
2920 * VGA can make calls to this function while updating the screen.
2921 * In record/replay mode this causes a deadlock, because
2922 * run_on_cpu waits for rr mutex. Therefore no races are possible
2923 * in this case and no need for making run_on_cpu when
2924 * record/replay is not enabled.
2925 */
2926 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2927 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2928 }
9458a9a1
PB
2929}
2930
1d71148e 2931static void tcg_commit(MemoryListener *listener)
50c1e149 2932{
32857f4d
PM
2933 CPUAddressSpace *cpuas;
2934 AddressSpaceDispatch *d;
117712c3 2935
f28d0dfd 2936 assert(tcg_enabled());
117712c3
AK
2937 /* since each CPU stores ram addresses in its TLB cache, we must
2938 reset the modified entries */
32857f4d
PM
2939 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2940 cpu_reloading_memory_map();
2941 /* The CPU and TLB are protected by the iothread lock.
2942 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2943 * may have split the RCU critical section.
2944 */
66a6df1d 2945 d = address_space_to_dispatch(cpuas->as);
f35e44e7 2946 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2947 tlb_flush(cpuas->cpu);
50c1e149
AK
2948}
2949
62152b8a
AK
2950static void memory_map_init(void)
2951{
7267c094 2952 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2953
57271d63 2954 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2955 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2956
7267c094 2957 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2958 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2959 65536);
7dca8043 2960 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2961}
2962
2963MemoryRegion *get_system_memory(void)
2964{
2965 return system_memory;
2966}
2967
309cb471
AK
2968MemoryRegion *get_system_io(void)
2969{
2970 return system_io;
2971}
2972
e2eef170
PB
2973#endif /* !defined(CONFIG_USER_ONLY) */
2974
13eb76e0
FB
2975/* physical memory access (slow version, mainly for debug) */
2976#if defined(CONFIG_USER_ONLY)
f17ec444 2977int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
28c80bfe 2978 void *ptr, target_ulong len, bool is_write)
13eb76e0 2979{
0c249ff7
LZ
2980 int flags;
2981 target_ulong l, page;
53a5960a 2982 void * p;
d7ef71ef 2983 uint8_t *buf = ptr;
13eb76e0
FB
2984
2985 while (len > 0) {
2986 page = addr & TARGET_PAGE_MASK;
2987 l = (page + TARGET_PAGE_SIZE) - addr;
2988 if (l > len)
2989 l = len;
2990 flags = page_get_flags(page);
2991 if (!(flags & PAGE_VALID))
a68fe89c 2992 return -1;
13eb76e0
FB
2993 if (is_write) {
2994 if (!(flags & PAGE_WRITE))
a68fe89c 2995 return -1;
579a97f7 2996 /* XXX: this code should not depend on lock_user */
72fb7daa 2997 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2998 return -1;
72fb7daa
AJ
2999 memcpy(p, buf, l);
3000 unlock_user(p, addr, l);
13eb76e0
FB
3001 } else {
3002 if (!(flags & PAGE_READ))
a68fe89c 3003 return -1;
579a97f7 3004 /* XXX: this code should not depend on lock_user */
72fb7daa 3005 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3006 return -1;
72fb7daa 3007 memcpy(buf, p, l);
5b257578 3008 unlock_user(p, addr, 0);
13eb76e0
FB
3009 }
3010 len -= l;
3011 buf += l;
3012 addr += l;
3013 }
a68fe89c 3014 return 0;
13eb76e0 3015}
8df1cd07 3016
13eb76e0 3017#else
51d7a9eb 3018
845b6214 3019static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 3020 hwaddr length)
51d7a9eb 3021{
e87f7778 3022 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
3023 addr += memory_region_get_ram_addr(mr);
3024
e87f7778
PB
3025 /* No early return if dirty_log_mask is or becomes 0, because
3026 * cpu_physical_memory_set_dirty_range will still call
3027 * xen_modified_memory.
3028 */
3029 if (dirty_log_mask) {
3030 dirty_log_mask =
3031 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3032 }
3033 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 3034 assert(tcg_enabled());
e87f7778
PB
3035 tb_invalidate_phys_range(addr, addr + length);
3036 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 3037 }
e87f7778 3038 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
3039}
3040
047be4ed
SH
3041void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3042{
3043 /*
3044 * In principle this function would work on other memory region types too,
3045 * but the ROM device use case is the only one where this operation is
3046 * necessary. Other memory regions should use the
3047 * address_space_read/write() APIs.
3048 */
3049 assert(memory_region_is_romd(mr));
3050
3051 invalidate_and_set_dirty(mr, addr, size);
3052}
3053
23326164 3054static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 3055{
e1622f4b 3056 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
3057
3058 /* Regions are assumed to support 1-4 byte accesses unless
3059 otherwise specified. */
23326164
RH
3060 if (access_size_max == 0) {
3061 access_size_max = 4;
3062 }
3063
3064 /* Bound the maximum access by the alignment of the address. */
3065 if (!mr->ops->impl.unaligned) {
3066 unsigned align_size_max = addr & -addr;
3067 if (align_size_max != 0 && align_size_max < access_size_max) {
3068 access_size_max = align_size_max;
3069 }
82f2563f 3070 }
23326164
RH
3071
3072 /* Don't attempt accesses larger than the maximum. */
3073 if (l > access_size_max) {
3074 l = access_size_max;
82f2563f 3075 }
6554f5c0 3076 l = pow2floor(l);
23326164
RH
3077
3078 return l;
82f2563f
PB
3079}
3080
4840f10e 3081static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 3082{
4840f10e
JK
3083 bool unlocked = !qemu_mutex_iothread_locked();
3084 bool release_lock = false;
3085
3086 if (unlocked && mr->global_locking) {
3087 qemu_mutex_lock_iothread();
3088 unlocked = false;
3089 release_lock = true;
3090 }
125b3806 3091 if (mr->flush_coalesced_mmio) {
4840f10e
JK
3092 if (unlocked) {
3093 qemu_mutex_lock_iothread();
3094 }
125b3806 3095 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
3096 if (unlocked) {
3097 qemu_mutex_unlock_iothread();
3098 }
125b3806 3099 }
4840f10e
JK
3100
3101 return release_lock;
125b3806
PB
3102}
3103
a203ac70 3104/* Called within RCU critical section. */
16620684
AK
3105static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3106 MemTxAttrs attrs,
a152be43 3107 const void *ptr,
0c249ff7 3108 hwaddr len, hwaddr addr1,
16620684 3109 hwaddr l, MemoryRegion *mr)
13eb76e0 3110{
20804676 3111 uint8_t *ram_ptr;
791af8c8 3112 uint64_t val;
3b643495 3113 MemTxResult result = MEMTX_OK;
4840f10e 3114 bool release_lock = false;
a152be43 3115 const uint8_t *buf = ptr;
3b46e624 3116
a203ac70 3117 for (;;) {
eb7eeb88
PB
3118 if (!memory_access_is_direct(mr, true)) {
3119 release_lock |= prepare_mmio_access(mr);
3120 l = memory_access_size(mr, l, addr1);
3121 /* XXX: could force current_cpu to NULL to avoid
3122 potential bugs */
9bf825bf 3123 val = ldn_he_p(buf, l);
3d9e7c3e 3124 result |= memory_region_dispatch_write(mr, addr1, val,
9bf825bf 3125 size_memop(l), attrs);
13eb76e0 3126 } else {
eb7eeb88 3127 /* RAM case */
20804676
PMD
3128 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3129 memcpy(ram_ptr, buf, l);
eb7eeb88 3130 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 3131 }
4840f10e
JK
3132
3133 if (release_lock) {
3134 qemu_mutex_unlock_iothread();
3135 release_lock = false;
3136 }
3137
13eb76e0
FB
3138 len -= l;
3139 buf += l;
3140 addr += l;
a203ac70
PB
3141
3142 if (!len) {
3143 break;
3144 }
3145
3146 l = len;
efa99a2f 3147 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
13eb76e0 3148 }
fd8aaa76 3149
3b643495 3150 return result;
13eb76e0 3151}
8df1cd07 3152
4c6ebbb3 3153/* Called from RCU critical section. */
16620684 3154static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
a152be43 3155 const void *buf, hwaddr len)
ac1970fb 3156{
eb7eeb88 3157 hwaddr l;
eb7eeb88
PB
3158 hwaddr addr1;
3159 MemoryRegion *mr;
3160 MemTxResult result = MEMTX_OK;
eb7eeb88 3161
4c6ebbb3 3162 l = len;
efa99a2f 3163 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
4c6ebbb3
PB
3164 result = flatview_write_continue(fv, addr, attrs, buf, len,
3165 addr1, l, mr);
a203ac70
PB
3166
3167 return result;
3168}
3169
3170/* Called within RCU critical section. */
16620684 3171MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
a152be43 3172 MemTxAttrs attrs, void *ptr,
0c249ff7 3173 hwaddr len, hwaddr addr1, hwaddr l,
16620684 3174 MemoryRegion *mr)
a203ac70 3175{
20804676 3176 uint8_t *ram_ptr;
a203ac70
PB
3177 uint64_t val;
3178 MemTxResult result = MEMTX_OK;
3179 bool release_lock = false;
a152be43 3180 uint8_t *buf = ptr;
eb7eeb88 3181
a203ac70 3182 for (;;) {
eb7eeb88
PB
3183 if (!memory_access_is_direct(mr, false)) {
3184 /* I/O case */
3185 release_lock |= prepare_mmio_access(mr);
3186 l = memory_access_size(mr, l, addr1);
3d9e7c3e 3187 result |= memory_region_dispatch_read(mr, addr1, &val,
9bf825bf
TN
3188 size_memop(l), attrs);
3189 stn_he_p(buf, l, val);
eb7eeb88
PB
3190 } else {
3191 /* RAM case */
20804676
PMD
3192 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3193 memcpy(buf, ram_ptr, l);
eb7eeb88
PB
3194 }
3195
3196 if (release_lock) {
3197 qemu_mutex_unlock_iothread();
3198 release_lock = false;
3199 }
3200
3201 len -= l;
3202 buf += l;
3203 addr += l;
a203ac70
PB
3204
3205 if (!len) {
3206 break;
3207 }
3208
3209 l = len;
efa99a2f 3210 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
a203ac70
PB
3211 }
3212
3213 return result;
3214}
3215
b2a44fca
PB
3216/* Called from RCU critical section. */
3217static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
a152be43 3218 MemTxAttrs attrs, void *buf, hwaddr len)
a203ac70
PB
3219{
3220 hwaddr l;
3221 hwaddr addr1;
3222 MemoryRegion *mr;
eb7eeb88 3223
b2a44fca 3224 l = len;
efa99a2f 3225 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
b2a44fca
PB
3226 return flatview_read_continue(fv, addr, attrs, buf, len,
3227 addr1, l, mr);
ac1970fb
AK
3228}
3229
b2a44fca 3230MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
daa3dda4 3231 MemTxAttrs attrs, void *buf, hwaddr len)
b2a44fca
PB
3232{
3233 MemTxResult result = MEMTX_OK;
3234 FlatView *fv;
3235
3236 if (len > 0) {
694ea274 3237 RCU_READ_LOCK_GUARD();
b2a44fca
PB
3238 fv = address_space_to_flatview(as);
3239 result = flatview_read(fv, addr, attrs, buf, len);
b2a44fca
PB
3240 }
3241
3242 return result;
3243}
3244
4c6ebbb3
PB
3245MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3246 MemTxAttrs attrs,
daa3dda4 3247 const void *buf, hwaddr len)
4c6ebbb3
PB
3248{
3249 MemTxResult result = MEMTX_OK;
3250 FlatView *fv;
3251
3252 if (len > 0) {
694ea274 3253 RCU_READ_LOCK_GUARD();
4c6ebbb3
PB
3254 fv = address_space_to_flatview(as);
3255 result = flatview_write(fv, addr, attrs, buf, len);
4c6ebbb3
PB
3256 }
3257
3258 return result;
3259}
3260
db84fd97 3261MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
daa3dda4 3262 void *buf, hwaddr len, bool is_write)
db84fd97
PB
3263{
3264 if (is_write) {
3265 return address_space_write(as, addr, attrs, buf, len);
3266 } else {
3267 return address_space_read_full(as, addr, attrs, buf, len);
3268 }
3269}
3270
d7ef71ef 3271void cpu_physical_memory_rw(hwaddr addr, void *buf,
28c80bfe 3272 hwaddr len, bool is_write)
ac1970fb 3273{
5c9eb028
PM
3274 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3275 buf, len, is_write);
ac1970fb
AK
3276}
3277
582b55a9
AG
3278enum write_rom_type {
3279 WRITE_DATA,
3280 FLUSH_CACHE,
3281};
3282
75693e14
PM
3283static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3284 hwaddr addr,
3285 MemTxAttrs attrs,
daa3dda4 3286 const void *ptr,
0c249ff7 3287 hwaddr len,
75693e14 3288 enum write_rom_type type)
d0ecd2aa 3289{
149f54b5 3290 hwaddr l;
20804676 3291 uint8_t *ram_ptr;
149f54b5 3292 hwaddr addr1;
5c8a00ce 3293 MemoryRegion *mr;
daa3dda4 3294 const uint8_t *buf = ptr;
3b46e624 3295
694ea274 3296 RCU_READ_LOCK_GUARD();
d0ecd2aa 3297 while (len > 0) {
149f54b5 3298 l = len;
75693e14 3299 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3b46e624 3300
5c8a00ce
PB
3301 if (!(memory_region_is_ram(mr) ||
3302 memory_region_is_romd(mr))) {
b242e0e0 3303 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3304 } else {
d0ecd2aa 3305 /* ROM/RAM case */
20804676 3306 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3307 switch (type) {
3308 case WRITE_DATA:
20804676 3309 memcpy(ram_ptr, buf, l);
845b6214 3310 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3311 break;
3312 case FLUSH_CACHE:
20804676 3313 flush_icache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr + l);
582b55a9
AG
3314 break;
3315 }
d0ecd2aa
FB
3316 }
3317 len -= l;
3318 buf += l;
3319 addr += l;
3320 }
75693e14 3321 return MEMTX_OK;
d0ecd2aa
FB
3322}
3323
582b55a9 3324/* used for ROM loading : can write in RAM and ROM */
3c8133f9
PM
3325MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3326 MemTxAttrs attrs,
daa3dda4 3327 const void *buf, hwaddr len)
582b55a9 3328{
3c8133f9
PM
3329 return address_space_write_rom_internal(as, addr, attrs,
3330 buf, len, WRITE_DATA);
582b55a9
AG
3331}
3332
0c249ff7 3333void cpu_flush_icache_range(hwaddr start, hwaddr len)
582b55a9
AG
3334{
3335 /*
3336 * This function should do the same thing as an icache flush that was
3337 * triggered from within the guest. For TCG we are always cache coherent,
3338 * so there is no need to flush anything. For KVM / Xen we need to flush
3339 * the host's instruction cache at least.
3340 */
3341 if (tcg_enabled()) {
3342 return;
3343 }
3344
75693e14
PM
3345 address_space_write_rom_internal(&address_space_memory,
3346 start, MEMTXATTRS_UNSPECIFIED,
3347 NULL, len, FLUSH_CACHE);
582b55a9
AG
3348}
3349
6d16c2f8 3350typedef struct {
d3e71559 3351 MemoryRegion *mr;
6d16c2f8 3352 void *buffer;
a8170e5e
AK
3353 hwaddr addr;
3354 hwaddr len;
c2cba0ff 3355 bool in_use;
6d16c2f8
AL
3356} BounceBuffer;
3357
3358static BounceBuffer bounce;
3359
ba223c29 3360typedef struct MapClient {
e95205e1 3361 QEMUBH *bh;
72cf2d4f 3362 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3363} MapClient;
3364
38e047b5 3365QemuMutex map_client_list_lock;
b58deb34 3366static QLIST_HEAD(, MapClient) map_client_list
72cf2d4f 3367 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3368
e95205e1
FZ
3369static void cpu_unregister_map_client_do(MapClient *client)
3370{
3371 QLIST_REMOVE(client, link);
3372 g_free(client);
3373}
3374
33b6c2ed
FZ
3375static void cpu_notify_map_clients_locked(void)
3376{
3377 MapClient *client;
3378
3379 while (!QLIST_EMPTY(&map_client_list)) {
3380 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3381 qemu_bh_schedule(client->bh);
3382 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3383 }
3384}
3385
e95205e1 3386void cpu_register_map_client(QEMUBH *bh)
ba223c29 3387{
7267c094 3388 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3389
38e047b5 3390 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3391 client->bh = bh;
72cf2d4f 3392 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3393 if (!atomic_read(&bounce.in_use)) {
3394 cpu_notify_map_clients_locked();
3395 }
38e047b5 3396 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3397}
3398
38e047b5 3399void cpu_exec_init_all(void)
ba223c29 3400{
38e047b5 3401 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3402 /* The data structures we set up here depend on knowing the page size,
3403 * so no more changes can be made after this point.
3404 * In an ideal world, nothing we did before we had finished the
3405 * machine setup would care about the target page size, and we could
3406 * do this much later, rather than requiring board models to state
3407 * up front what their requirements are.
3408 */
3409 finalize_target_page_bits();
38e047b5 3410 io_mem_init();
680a4783 3411 memory_map_init();
38e047b5 3412 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3413}
3414
e95205e1 3415void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3416{
3417 MapClient *client;
3418
e95205e1
FZ
3419 qemu_mutex_lock(&map_client_list_lock);
3420 QLIST_FOREACH(client, &map_client_list, link) {
3421 if (client->bh == bh) {
3422 cpu_unregister_map_client_do(client);
3423 break;
3424 }
ba223c29 3425 }
e95205e1 3426 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3427}
3428
3429static void cpu_notify_map_clients(void)
3430{
38e047b5 3431 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3432 cpu_notify_map_clients_locked();
38e047b5 3433 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3434}
3435
0c249ff7 3436static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 3437 bool is_write, MemTxAttrs attrs)
51644ab7 3438{
5c8a00ce 3439 MemoryRegion *mr;
51644ab7
PB
3440 hwaddr l, xlat;
3441
3442 while (len > 0) {
3443 l = len;
efa99a2f 3444 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
5c8a00ce
PB
3445 if (!memory_access_is_direct(mr, is_write)) {
3446 l = memory_access_size(mr, l, addr);
eace72b7 3447 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
51644ab7
PB
3448 return false;
3449 }
3450 }
3451
3452 len -= l;
3453 addr += l;
3454 }
3455 return true;
3456}
3457
16620684 3458bool address_space_access_valid(AddressSpace *as, hwaddr addr,
0c249ff7 3459 hwaddr len, bool is_write,
fddffa42 3460 MemTxAttrs attrs)
16620684 3461{
11e732a5
PB
3462 FlatView *fv;
3463 bool result;
3464
694ea274 3465 RCU_READ_LOCK_GUARD();
11e732a5 3466 fv = address_space_to_flatview(as);
eace72b7 3467 result = flatview_access_valid(fv, addr, len, is_write, attrs);
11e732a5 3468 return result;
16620684
AK
3469}
3470
715c31ec 3471static hwaddr
16620684 3472flatview_extend_translation(FlatView *fv, hwaddr addr,
53d0790d
PM
3473 hwaddr target_len,
3474 MemoryRegion *mr, hwaddr base, hwaddr len,
3475 bool is_write, MemTxAttrs attrs)
715c31ec
PB
3476{
3477 hwaddr done = 0;
3478 hwaddr xlat;
3479 MemoryRegion *this_mr;
3480
3481 for (;;) {
3482 target_len -= len;
3483 addr += len;
3484 done += len;
3485 if (target_len == 0) {
3486 return done;
3487 }
3488
3489 len = target_len;
16620684 3490 this_mr = flatview_translate(fv, addr, &xlat,
efa99a2f 3491 &len, is_write, attrs);
715c31ec
PB
3492 if (this_mr != mr || xlat != base + done) {
3493 return done;
3494 }
3495 }
3496}
3497
6d16c2f8
AL
3498/* Map a physical memory region into a host virtual address.
3499 * May map a subset of the requested range, given by and returned in *plen.
3500 * May return NULL if resources needed to perform the mapping are exhausted.
3501 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3502 * Use cpu_register_map_client() to know when retrying the map operation is
3503 * likely to succeed.
6d16c2f8 3504 */
ac1970fb 3505void *address_space_map(AddressSpace *as,
a8170e5e
AK
3506 hwaddr addr,
3507 hwaddr *plen,
f26404fb
PM
3508 bool is_write,
3509 MemTxAttrs attrs)
6d16c2f8 3510{
a8170e5e 3511 hwaddr len = *plen;
715c31ec
PB
3512 hwaddr l, xlat;
3513 MemoryRegion *mr;
e81bcda5 3514 void *ptr;
ad0c60fa 3515 FlatView *fv;
6d16c2f8 3516
e3127ae0
PB
3517 if (len == 0) {
3518 return NULL;
3519 }
38bee5dc 3520
e3127ae0 3521 l = len;
694ea274 3522 RCU_READ_LOCK_GUARD();
ad0c60fa 3523 fv = address_space_to_flatview(as);
efa99a2f 3524 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
41063e1e 3525
e3127ae0 3526 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3527 if (atomic_xchg(&bounce.in_use, true)) {
e3127ae0 3528 return NULL;
6d16c2f8 3529 }
e85d9db5
KW
3530 /* Avoid unbounded allocations */
3531 l = MIN(l, TARGET_PAGE_SIZE);
3532 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3533 bounce.addr = addr;
3534 bounce.len = l;
d3e71559
PB
3535
3536 memory_region_ref(mr);
3537 bounce.mr = mr;
e3127ae0 3538 if (!is_write) {
16620684 3539 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3540 bounce.buffer, l);
8ab934f9 3541 }
6d16c2f8 3542
e3127ae0
PB
3543 *plen = l;
3544 return bounce.buffer;
3545 }
3546
e3127ae0 3547
d3e71559 3548 memory_region_ref(mr);
16620684 3549 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
53d0790d 3550 l, is_write, attrs);
f5aa69bd 3551 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3552
3553 return ptr;
6d16c2f8
AL
3554}
3555
ac1970fb 3556/* Unmaps a memory region previously mapped by address_space_map().
ae5883ab 3557 * Will also mark the memory as dirty if is_write is true. access_len gives
6d16c2f8
AL
3558 * the amount of memory that was actually read or written by the caller.
3559 */
a8170e5e 3560void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
ae5883ab 3561 bool is_write, hwaddr access_len)
6d16c2f8
AL
3562{
3563 if (buffer != bounce.buffer) {
d3e71559
PB
3564 MemoryRegion *mr;
3565 ram_addr_t addr1;
3566
07bdaa41 3567 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3568 assert(mr != NULL);
6d16c2f8 3569 if (is_write) {
845b6214 3570 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3571 }
868bb33f 3572 if (xen_enabled()) {
e41d7c69 3573 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3574 }
d3e71559 3575 memory_region_unref(mr);
6d16c2f8
AL
3576 return;
3577 }
3578 if (is_write) {
5c9eb028
PM
3579 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3580 bounce.buffer, access_len);
6d16c2f8 3581 }
f8a83245 3582 qemu_vfree(bounce.buffer);
6d16c2f8 3583 bounce.buffer = NULL;
d3e71559 3584 memory_region_unref(bounce.mr);
c2cba0ff 3585 atomic_mb_set(&bounce.in_use, false);
ba223c29 3586 cpu_notify_map_clients();
6d16c2f8 3587}
d0ecd2aa 3588
a8170e5e
AK
3589void *cpu_physical_memory_map(hwaddr addr,
3590 hwaddr *plen,
28c80bfe 3591 bool is_write)
ac1970fb 3592{
f26404fb
PM
3593 return address_space_map(&address_space_memory, addr, plen, is_write,
3594 MEMTXATTRS_UNSPECIFIED);
ac1970fb
AK
3595}
3596
a8170e5e 3597void cpu_physical_memory_unmap(void *buffer, hwaddr len,
28c80bfe 3598 bool is_write, hwaddr access_len)
ac1970fb
AK
3599{
3600 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3601}
3602
0ce265ff
PB
3603#define ARG1_DECL AddressSpace *as
3604#define ARG1 as
3605#define SUFFIX
3606#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
0ce265ff
PB
3607#define RCU_READ_LOCK(...) rcu_read_lock()
3608#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3609#include "memory_ldst.inc.c"
1e78bcc1 3610
1f4e496e
PB
3611int64_t address_space_cache_init(MemoryRegionCache *cache,
3612 AddressSpace *as,
3613 hwaddr addr,
3614 hwaddr len,
3615 bool is_write)
3616{
48564041
PB
3617 AddressSpaceDispatch *d;
3618 hwaddr l;
3619 MemoryRegion *mr;
3620
3621 assert(len > 0);
3622
3623 l = len;
3624 cache->fv = address_space_get_flatview(as);
3625 d = flatview_to_dispatch(cache->fv);
3626 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3627
3628 mr = cache->mrs.mr;
3629 memory_region_ref(mr);
3630 if (memory_access_is_direct(mr, is_write)) {
53d0790d
PM
3631 /* We don't care about the memory attributes here as we're only
3632 * doing this if we found actual RAM, which behaves the same
3633 * regardless of attributes; so UNSPECIFIED is fine.
3634 */
48564041 3635 l = flatview_extend_translation(cache->fv, addr, len, mr,
53d0790d
PM
3636 cache->xlat, l, is_write,
3637 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3638 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3639 } else {
3640 cache->ptr = NULL;
3641 }
3642
3643 cache->len = l;
3644 cache->is_write = is_write;
3645 return l;
1f4e496e
PB
3646}
3647
3648void address_space_cache_invalidate(MemoryRegionCache *cache,
3649 hwaddr addr,
3650 hwaddr access_len)
3651{
48564041
PB
3652 assert(cache->is_write);
3653 if (likely(cache->ptr)) {
3654 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3655 }
1f4e496e
PB
3656}
3657
3658void address_space_cache_destroy(MemoryRegionCache *cache)
3659{
48564041
PB
3660 if (!cache->mrs.mr) {
3661 return;
3662 }
3663
3664 if (xen_enabled()) {
3665 xen_invalidate_map_cache_entry(cache->ptr);
3666 }
3667 memory_region_unref(cache->mrs.mr);
3668 flatview_unref(cache->fv);
3669 cache->mrs.mr = NULL;
3670 cache->fv = NULL;
3671}
3672
3673/* Called from RCU critical section. This function has the same
3674 * semantics as address_space_translate, but it only works on a
3675 * predefined range of a MemoryRegion that was mapped with
3676 * address_space_cache_init.
3677 */
3678static inline MemoryRegion *address_space_translate_cached(
3679 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
bc6b1cec 3680 hwaddr *plen, bool is_write, MemTxAttrs attrs)
48564041
PB
3681{
3682 MemoryRegionSection section;
3683 MemoryRegion *mr;
3684 IOMMUMemoryRegion *iommu_mr;
3685 AddressSpace *target_as;
3686
3687 assert(!cache->ptr);
3688 *xlat = addr + cache->xlat;
3689
3690 mr = cache->mrs.mr;
3691 iommu_mr = memory_region_get_iommu(mr);
3692 if (!iommu_mr) {
3693 /* MMIO region. */
3694 return mr;
3695 }
3696
3697 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3698 NULL, is_write, true,
2f7b009c 3699 &target_as, attrs);
48564041
PB
3700 return section.mr;
3701}
3702
3703/* Called from RCU critical section. address_space_read_cached uses this
3704 * out of line function when the target is an MMIO or IOMMU region.
3705 */
3706void
3707address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3708 void *buf, hwaddr len)
48564041
PB
3709{
3710 hwaddr addr1, l;
3711 MemoryRegion *mr;
3712
3713 l = len;
bc6b1cec
PM
3714 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3715 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3716 flatview_read_continue(cache->fv,
3717 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3718 addr1, l, mr);
3719}
3720
3721/* Called from RCU critical section. address_space_write_cached uses this
3722 * out of line function when the target is an MMIO or IOMMU region.
3723 */
3724void
3725address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3726 const void *buf, hwaddr len)
48564041
PB
3727{
3728 hwaddr addr1, l;
3729 MemoryRegion *mr;
3730
3731 l = len;
bc6b1cec
PM
3732 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3733 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3734 flatview_write_continue(cache->fv,
3735 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3736 addr1, l, mr);
1f4e496e
PB
3737}
3738
3739#define ARG1_DECL MemoryRegionCache *cache
3740#define ARG1 cache
48564041
PB
3741#define SUFFIX _cached_slow
3742#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
48564041
PB
3743#define RCU_READ_LOCK() ((void)0)
3744#define RCU_READ_UNLOCK() ((void)0)
1f4e496e
PB
3745#include "memory_ldst.inc.c"
3746
5e2972fd 3747/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3748int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
28c80bfe 3749 void *ptr, target_ulong len, bool is_write)
13eb76e0 3750{
a8170e5e 3751 hwaddr phys_addr;
0c249ff7 3752 target_ulong l, page;
d7ef71ef 3753 uint8_t *buf = ptr;
13eb76e0 3754
79ca7a1b 3755 cpu_synchronize_state(cpu);
13eb76e0 3756 while (len > 0) {
5232e4c7
PM
3757 int asidx;
3758 MemTxAttrs attrs;
3759
13eb76e0 3760 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3761 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3762 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3763 /* if no physical page mapped, return an error */
3764 if (phys_addr == -1)
3765 return -1;
3766 l = (page + TARGET_PAGE_SIZE) - addr;
3767 if (l > len)
3768 l = len;
5e2972fd 3769 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3770 if (is_write) {
3c8133f9 3771 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
ea7a5330 3772 attrs, buf, l);
2e38847b 3773 } else {
19f70347
PM
3774 address_space_read(cpu->cpu_ases[asidx].as, phys_addr, attrs, buf,
3775 l);
2e38847b 3776 }
13eb76e0
FB
3777 len -= l;
3778 buf += l;
3779 addr += l;
3780 }
3781 return 0;
3782}
038629a6
DDAG
3783
3784/*
3785 * Allows code that needs to deal with migration bitmaps etc to still be built
3786 * target independent.
3787 */
20afaed9 3788size_t qemu_target_page_size(void)
038629a6 3789{
20afaed9 3790 return TARGET_PAGE_SIZE;
038629a6
DDAG
3791}
3792
46d702b1
JQ
3793int qemu_target_page_bits(void)
3794{
3795 return TARGET_PAGE_BITS;
3796}
3797
3798int qemu_target_page_bits_min(void)
3799{
3800 return TARGET_PAGE_BITS_MIN;
3801}
a68fe89c 3802#endif
13eb76e0 3803
98ed8ecf 3804bool target_words_bigendian(void)
8e4a424b
BS
3805{
3806#if defined(TARGET_WORDS_BIGENDIAN)
3807 return true;
3808#else
3809 return false;
3810#endif
3811}
3812
76f35538 3813#ifndef CONFIG_USER_ONLY
a8170e5e 3814bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3815{
5c8a00ce 3816 MemoryRegion*mr;
149f54b5 3817 hwaddr l = 1;
41063e1e 3818 bool res;
76f35538 3819
694ea274 3820 RCU_READ_LOCK_GUARD();
5c8a00ce 3821 mr = address_space_translate(&address_space_memory,
bc6b1cec
PM
3822 phys_addr, &phys_addr, &l, false,
3823 MEMTXATTRS_UNSPECIFIED);
76f35538 3824
41063e1e 3825 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
41063e1e 3826 return res;
76f35538 3827}
bd2fa51f 3828
e3807054 3829int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3830{
3831 RAMBlock *block;
e3807054 3832 int ret = 0;
bd2fa51f 3833
694ea274 3834 RCU_READ_LOCK_GUARD();
99e15582 3835 RAMBLOCK_FOREACH(block) {
754cb9c0 3836 ret = func(block, opaque);
e3807054
DDAG
3837 if (ret) {
3838 break;
3839 }
bd2fa51f 3840 }
e3807054 3841 return ret;
bd2fa51f 3842}
d3a5038c
DDAG
3843
3844/*
3845 * Unmap pages of memory from start to start+length such that
3846 * they a) read as 0, b) Trigger whatever fault mechanism
3847 * the OS provides for postcopy.
3848 * The pages must be unmapped by the end of the function.
3849 * Returns: 0 on success, none-0 on failure
3850 *
3851 */
3852int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3853{
3854 int ret = -1;
3855
3856 uint8_t *host_startaddr = rb->host + start;
3857
619bd31d 3858 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
d3a5038c
DDAG
3859 error_report("ram_block_discard_range: Unaligned start address: %p",
3860 host_startaddr);
3861 goto err;
3862 }
3863
3864 if ((start + length) <= rb->used_length) {
db144f70 3865 bool need_madvise, need_fallocate;
619bd31d 3866 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
72821d93
WY
3867 error_report("ram_block_discard_range: Unaligned length: %zx",
3868 length);
d3a5038c
DDAG
3869 goto err;
3870 }
3871
3872 errno = ENOTSUP; /* If we are missing MADVISE etc */
3873
db144f70
DDAG
3874 /* The logic here is messy;
3875 * madvise DONTNEED fails for hugepages
3876 * fallocate works on hugepages and shmem
3877 */
3878 need_madvise = (rb->page_size == qemu_host_page_size);
3879 need_fallocate = rb->fd != -1;
3880 if (need_fallocate) {
3881 /* For a file, this causes the area of the file to be zero'd
3882 * if read, and for hugetlbfs also causes it to be unmapped
3883 * so a userfault will trigger.
e2fa71f5
DDAG
3884 */
3885#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3886 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3887 start, length);
db144f70
DDAG
3888 if (ret) {
3889 ret = -errno;
3890 error_report("ram_block_discard_range: Failed to fallocate "
3891 "%s:%" PRIx64 " +%zx (%d)",
3892 rb->idstr, start, length, ret);
3893 goto err;
3894 }
3895#else
3896 ret = -ENOSYS;
3897 error_report("ram_block_discard_range: fallocate not available/file"
3898 "%s:%" PRIx64 " +%zx (%d)",
3899 rb->idstr, start, length, ret);
3900 goto err;
e2fa71f5
DDAG
3901#endif
3902 }
db144f70
DDAG
3903 if (need_madvise) {
3904 /* For normal RAM this causes it to be unmapped,
3905 * for shared memory it causes the local mapping to disappear
3906 * and to fall back on the file contents (which we just
3907 * fallocate'd away).
3908 */
3909#if defined(CONFIG_MADVISE)
3910 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3911 if (ret) {
3912 ret = -errno;
3913 error_report("ram_block_discard_range: Failed to discard range "
3914 "%s:%" PRIx64 " +%zx (%d)",
3915 rb->idstr, start, length, ret);
3916 goto err;
3917 }
3918#else
3919 ret = -ENOSYS;
3920 error_report("ram_block_discard_range: MADVISE not available"
d3a5038c
DDAG
3921 "%s:%" PRIx64 " +%zx (%d)",
3922 rb->idstr, start, length, ret);
db144f70
DDAG
3923 goto err;
3924#endif
d3a5038c 3925 }
db144f70
DDAG
3926 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3927 need_madvise, need_fallocate, ret);
d3a5038c
DDAG
3928 } else {
3929 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3930 "/%zx/" RAM_ADDR_FMT")",
3931 rb->idstr, start, length, rb->used_length);
3932 }
3933
3934err:
3935 return ret;
3936}
3937
a4de8552
JH
3938bool ramblock_is_pmem(RAMBlock *rb)
3939{
3940 return rb->flags & RAM_PMEM;
3941}
3942
ec3f8c99 3943#endif
a0be0c58
YZ
3944
3945void page_size_init(void)
3946{
3947 /* NOTE: we can always suppose that qemu_host_page_size >=
3948 TARGET_PAGE_SIZE */
a0be0c58
YZ
3949 if (qemu_host_page_size == 0) {
3950 qemu_host_page_size = qemu_real_host_page_size;
3951 }
3952 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3953 qemu_host_page_size = TARGET_PAGE_SIZE;
3954 }
3955 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3956}
5e8fd947
AK
3957
3958#if !defined(CONFIG_USER_ONLY)
3959
b6b71cb5 3960static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
5e8fd947
AK
3961{
3962 if (start == end - 1) {
b6b71cb5 3963 qemu_printf("\t%3d ", start);
5e8fd947 3964 } else {
b6b71cb5 3965 qemu_printf("\t%3d..%-3d ", start, end - 1);
5e8fd947 3966 }
b6b71cb5 3967 qemu_printf(" skip=%d ", skip);
5e8fd947 3968 if (ptr == PHYS_MAP_NODE_NIL) {
b6b71cb5 3969 qemu_printf(" ptr=NIL");
5e8fd947 3970 } else if (!skip) {
b6b71cb5 3971 qemu_printf(" ptr=#%d", ptr);
5e8fd947 3972 } else {
b6b71cb5 3973 qemu_printf(" ptr=[%d]", ptr);
5e8fd947 3974 }
b6b71cb5 3975 qemu_printf("\n");
5e8fd947
AK
3976}
3977
3978#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3979 int128_sub((size), int128_one())) : 0)
3980
b6b71cb5 3981void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
5e8fd947
AK
3982{
3983 int i;
3984
b6b71cb5
MA
3985 qemu_printf(" Dispatch\n");
3986 qemu_printf(" Physical sections\n");
5e8fd947
AK
3987
3988 for (i = 0; i < d->map.sections_nb; ++i) {
3989 MemoryRegionSection *s = d->map.sections + i;
3990 const char *names[] = { " [unassigned]", " [not dirty]",
3991 " [ROM]", " [watch]" };
3992
b6b71cb5
MA
3993 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
3994 " %s%s%s%s%s",
5e8fd947
AK
3995 i,
3996 s->offset_within_address_space,
3997 s->offset_within_address_space + MR_SIZE(s->mr->size),
3998 s->mr->name ? s->mr->name : "(noname)",
3999 i < ARRAY_SIZE(names) ? names[i] : "",
4000 s->mr == root ? " [ROOT]" : "",
4001 s == d->mru_section ? " [MRU]" : "",
4002 s->mr->is_iommu ? " [iommu]" : "");
4003
4004 if (s->mr->alias) {
b6b71cb5 4005 qemu_printf(" alias=%s", s->mr->alias->name ?
5e8fd947
AK
4006 s->mr->alias->name : "noname");
4007 }
b6b71cb5 4008 qemu_printf("\n");
5e8fd947
AK
4009 }
4010
b6b71cb5 4011 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
5e8fd947
AK
4012 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4013 for (i = 0; i < d->map.nodes_nb; ++i) {
4014 int j, jprev;
4015 PhysPageEntry prev;
4016 Node *n = d->map.nodes + i;
4017
b6b71cb5 4018 qemu_printf(" [%d]\n", i);
5e8fd947
AK
4019
4020 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4021 PhysPageEntry *pe = *n + j;
4022
4023 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4024 continue;
4025 }
4026
b6b71cb5 4027 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4028
4029 jprev = j;
4030 prev = *pe;
4031 }
4032
4033 if (jprev != ARRAY_SIZE(*n)) {
b6b71cb5 4034 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4035 }
4036 }
4037}
4038
4039#endif