]> git.ipfire.org Git - thirdparty/qemu.git/blame - exec.c
tcg: Implement gvec support for rotate by scalar
[thirdparty/qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
14a48c1d 19
7b31bbc2 20#include "qemu/osdep.h"
a8d25326 21#include "qemu-common.h"
da34e65c 22#include "qapi/error.h"
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
51180423 27#include "exec/target_page.h"
dcb32f1d 28#include "tcg/tcg.h"
741da0d3 29#include "hw/qdev-core.h"
c7e002c5 30#include "hw/qdev-properties.h"
4485bd26 31#if !defined(CONFIG_USER_ONLY)
47c8ca53 32#include "hw/boards.h"
33c11879 33#include "hw/xen/xen.h"
4485bd26 34#endif
9c17d615 35#include "sysemu/kvm.h"
2ff3de68 36#include "sysemu/sysemu.h"
14a48c1d 37#include "sysemu/tcg.h"
a028edea 38#include "sysemu/qtest.h"
1de7afc9
PB
39#include "qemu/timer.h"
40#include "qemu/config-file.h"
75a34036 41#include "qemu/error-report.h"
b6b71cb5 42#include "qemu/qemu-print.h"
53a5960a 43#if defined(CONFIG_USER_ONLY)
a9c94277 44#include "qemu.h"
432d268c 45#else /* !CONFIG_USER_ONLY */
741da0d3 46#include "exec/memory.h"
df43d49c 47#include "exec/ioport.h"
741da0d3 48#include "sysemu/dma.h"
b58c5c2d 49#include "sysemu/hostmem.h"
79ca7a1b 50#include "sysemu/hw_accel.h"
741da0d3 51#include "exec/address-spaces.h"
9c17d615 52#include "sysemu/xen-mapcache.h"
0ab8ed18 53#include "trace-root.h"
d3a5038c 54
e2fa71f5 55#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
e2fa71f5
DDAG
56#include <linux/falloc.h>
57#endif
58
53a5960a 59#endif
0dc3f44a 60#include "qemu/rcu_queue.h"
4840f10e 61#include "qemu/main-loop.h"
5b6dd868 62#include "translate-all.h"
7615936e 63#include "sysemu/replay.h"
0cac1b66 64
022c62cb 65#include "exec/memory-internal.h"
220c3ebd 66#include "exec/ram_addr.h"
508127e2 67#include "exec/log.h"
67d95c15 68
61c490e2
BM
69#include "qemu/pmem.h"
70
9dfeca7c
BR
71#include "migration/vmstate.h"
72
b35ba30f 73#include "qemu/range.h"
794e8f30
MT
74#ifndef _WIN32
75#include "qemu/mmap-alloc.h"
76#endif
b35ba30f 77
be9b23c4
PX
78#include "monitor/monitor.h"
79
db7b5426 80//#define DEBUG_SUBPAGE
1196be37 81
e2eef170 82#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
83/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
84 * are protected by the ramlist lock.
85 */
0d53d9fe 86RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
87
88static MemoryRegion *system_memory;
309cb471 89static MemoryRegion *system_io;
62152b8a 90
f6790af6
AK
91AddressSpace address_space_io;
92AddressSpace address_space_memory;
2673a5da 93
acc9d80b 94static MemoryRegion io_mem_unassigned;
e2eef170 95#endif
9fa3e853 96
f481ee2d
PB
97CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
98
6a00d601
FB
99/* current CPU in the current thread. It is only valid inside
100 cpu_exec() */
f240eb6f 101__thread CPUState *current_cpu;
6a00d601 102
a0be0c58
YZ
103uintptr_t qemu_host_page_size;
104intptr_t qemu_host_page_mask;
a0be0c58 105
e2eef170 106#if !defined(CONFIG_USER_ONLY)
fe3dada3
PB
107/* 0 = Do not count executed instructions.
108 1 = Precise instruction counting.
109 2 = Adaptive rate instruction counting. */
110int use_icount;
4346ae3e 111
1db8abb1
PB
112typedef struct PhysPageEntry PhysPageEntry;
113
114struct PhysPageEntry {
9736e55b 115 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 116 uint32_t skip : 6;
9736e55b 117 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 118 uint32_t ptr : 26;
1db8abb1
PB
119};
120
8b795765
MT
121#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
122
03f49957 123/* Size of the L2 (and L3, etc) page tables. */
57271d63 124#define ADDR_SPACE_BITS 64
03f49957 125
026736ce 126#define P_L2_BITS 9
03f49957
PB
127#define P_L2_SIZE (1 << P_L2_BITS)
128
129#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
130
131typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 132
53cb28cb 133typedef struct PhysPageMap {
79e2b9ae
PB
134 struct rcu_head rcu;
135
53cb28cb
MA
136 unsigned sections_nb;
137 unsigned sections_nb_alloc;
138 unsigned nodes_nb;
139 unsigned nodes_nb_alloc;
140 Node *nodes;
141 MemoryRegionSection *sections;
142} PhysPageMap;
143
1db8abb1 144struct AddressSpaceDispatch {
729633c2 145 MemoryRegionSection *mru_section;
1db8abb1
PB
146 /* This is a multi-level map on the physical address space.
147 * The bottom level has pointers to MemoryRegionSections.
148 */
149 PhysPageEntry phys_map;
53cb28cb 150 PhysPageMap map;
1db8abb1
PB
151};
152
90260c6c
JK
153#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
154typedef struct subpage_t {
155 MemoryRegion iomem;
16620684 156 FlatView *fv;
90260c6c 157 hwaddr base;
2615fabd 158 uint16_t sub_section[];
90260c6c
JK
159} subpage_t;
160
b41aac4f 161#define PHYS_SECTION_UNASSIGNED 0
5312bd8b 162
e2eef170 163static void io_mem_init(void);
62152b8a 164static void memory_map_init(void);
9458a9a1 165static void tcg_log_global_after_sync(MemoryListener *listener);
09daed84 166static void tcg_commit(MemoryListener *listener);
e2eef170 167
32857f4d
PM
168/**
169 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
170 * @cpu: the CPU whose AddressSpace this is
171 * @as: the AddressSpace itself
172 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
173 * @tcg_as_listener: listener for tracking changes to the AddressSpace
174 */
175struct CPUAddressSpace {
176 CPUState *cpu;
177 AddressSpace *as;
178 struct AddressSpaceDispatch *memory_dispatch;
179 MemoryListener tcg_as_listener;
180};
181
8deaf12c
GH
182struct DirtyBitmapSnapshot {
183 ram_addr_t start;
184 ram_addr_t end;
185 unsigned long dirty[];
186};
187
6658ffb8 188#endif
fd6ce8f6 189
6d9a1304 190#if !defined(CONFIG_USER_ONLY)
d6f2ea22 191
53cb28cb 192static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 193{
101420b8 194 static unsigned alloc_hint = 16;
53cb28cb 195 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
c95cfd04 196 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
53cb28cb 197 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 198 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 199 }
f7bf5461
AK
200}
201
db94604b 202static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
203{
204 unsigned i;
8b795765 205 uint32_t ret;
db94604b
PB
206 PhysPageEntry e;
207 PhysPageEntry *p;
f7bf5461 208
53cb28cb 209 ret = map->nodes_nb++;
db94604b 210 p = map->nodes[ret];
f7bf5461 211 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 212 assert(ret != map->nodes_nb_alloc);
db94604b
PB
213
214 e.skip = leaf ? 0 : 1;
215 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 216 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 217 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 218 }
f7bf5461 219 return ret;
d6f2ea22
AK
220}
221
53cb28cb 222static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
56b15076 223 hwaddr *index, uint64_t *nb, uint16_t leaf,
2999097b 224 int level)
f7bf5461
AK
225{
226 PhysPageEntry *p;
03f49957 227 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 228
9736e55b 229 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 230 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 231 }
db94604b 232 p = map->nodes[lp->ptr];
03f49957 233 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 234
03f49957 235 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 236 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 237 lp->skip = 0;
c19e8800 238 lp->ptr = leaf;
07f07b31
AK
239 *index += step;
240 *nb -= step;
2999097b 241 } else {
53cb28cb 242 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
243 }
244 ++lp;
f7bf5461
AK
245 }
246}
247
ac1970fb 248static void phys_page_set(AddressSpaceDispatch *d,
56b15076 249 hwaddr index, uint64_t nb,
2999097b 250 uint16_t leaf)
f7bf5461 251{
2999097b 252 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 253 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 254
53cb28cb 255 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
256}
257
b35ba30f
MT
258/* Compact a non leaf page entry. Simply detect that the entry has a single child,
259 * and update our entry so we can skip it and go directly to the destination.
260 */
efee678d 261static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
262{
263 unsigned valid_ptr = P_L2_SIZE;
264 int valid = 0;
265 PhysPageEntry *p;
266 int i;
267
268 if (lp->ptr == PHYS_MAP_NODE_NIL) {
269 return;
270 }
271
272 p = nodes[lp->ptr];
273 for (i = 0; i < P_L2_SIZE; i++) {
274 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
275 continue;
276 }
277
278 valid_ptr = i;
279 valid++;
280 if (p[i].skip) {
efee678d 281 phys_page_compact(&p[i], nodes);
b35ba30f
MT
282 }
283 }
284
285 /* We can only compress if there's only one child. */
286 if (valid != 1) {
287 return;
288 }
289
290 assert(valid_ptr < P_L2_SIZE);
291
292 /* Don't compress if it won't fit in the # of bits we have. */
526ca236
WY
293 if (P_L2_LEVELS >= (1 << 6) &&
294 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
b35ba30f
MT
295 return;
296 }
297
298 lp->ptr = p[valid_ptr].ptr;
299 if (!p[valid_ptr].skip) {
300 /* If our only child is a leaf, make this a leaf. */
301 /* By design, we should have made this node a leaf to begin with so we
302 * should never reach here.
303 * But since it's so simple to handle this, let's do it just in case we
304 * change this rule.
305 */
306 lp->skip = 0;
307 } else {
308 lp->skip += p[valid_ptr].skip;
309 }
310}
311
8629d3fc 312void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 313{
b35ba30f 314 if (d->phys_map.skip) {
efee678d 315 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
316 }
317}
318
29cb533d
FZ
319static inline bool section_covers_addr(const MemoryRegionSection *section,
320 hwaddr addr)
321{
322 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
323 * the section must cover the entire address space.
324 */
258dfaaa 325 return int128_gethi(section->size) ||
29cb533d 326 range_covers_byte(section->offset_within_address_space,
258dfaaa 327 int128_getlo(section->size), addr);
29cb533d
FZ
328}
329
003a0cf2 330static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 331{
003a0cf2
PX
332 PhysPageEntry lp = d->phys_map, *p;
333 Node *nodes = d->map.nodes;
334 MemoryRegionSection *sections = d->map.sections;
97115a8d 335 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 336 int i;
f1f6e3b8 337
9736e55b 338 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 339 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 340 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 341 }
9affd6fc 342 p = nodes[lp.ptr];
03f49957 343 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 344 }
b35ba30f 345
29cb533d 346 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
347 return &sections[lp.ptr];
348 } else {
349 return &sections[PHYS_SECTION_UNASSIGNED];
350 }
f3705d53
AK
351}
352
79e2b9ae 353/* Called from RCU critical section */
c7086b4a 354static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
355 hwaddr addr,
356 bool resolve_subpage)
9f029603 357{
729633c2 358 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c
JK
359 subpage_t *subpage;
360
07c114bb
PB
361 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
362 !section_covers_addr(section, addr)) {
003a0cf2 363 section = phys_page_find(d, addr);
07c114bb 364 atomic_set(&d->mru_section, section);
729633c2 365 }
90260c6c
JK
366 if (resolve_subpage && section->mr->subpage) {
367 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 368 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
369 }
370 return section;
9f029603
JK
371}
372
79e2b9ae 373/* Called from RCU critical section */
90260c6c 374static MemoryRegionSection *
c7086b4a 375address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 376 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
377{
378 MemoryRegionSection *section;
965eb2fc 379 MemoryRegion *mr;
a87f3954 380 Int128 diff;
149f54b5 381
c7086b4a 382 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
383 /* Compute offset within MemoryRegionSection */
384 addr -= section->offset_within_address_space;
385
386 /* Compute offset within MemoryRegion */
387 *xlat = addr + section->offset_within_region;
388
965eb2fc 389 mr = section->mr;
b242e0e0
PB
390
391 /* MMIO registers can be expected to perform full-width accesses based only
392 * on their address, without considering adjacent registers that could
393 * decode to completely different MemoryRegions. When such registers
394 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
395 * regions overlap wildly. For this reason we cannot clamp the accesses
396 * here.
397 *
398 * If the length is small (as is the case for address_space_ldl/stl),
399 * everything works fine. If the incoming length is large, however,
400 * the caller really has to do the clamping through memory_access_size.
401 */
965eb2fc 402 if (memory_region_is_ram(mr)) {
e4a511f8 403 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
404 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
405 }
149f54b5
PB
406 return section;
407}
90260c6c 408
a411c84b
PB
409/**
410 * address_space_translate_iommu - translate an address through an IOMMU
411 * memory region and then through the target address space.
412 *
413 * @iommu_mr: the IOMMU memory region that we start the translation from
414 * @addr: the address to be translated through the MMU
415 * @xlat: the translated address offset within the destination memory region.
416 * It cannot be %NULL.
417 * @plen_out: valid read/write length of the translated address. It
418 * cannot be %NULL.
419 * @page_mask_out: page mask for the translated address. This
420 * should only be meaningful for IOMMU translated
421 * addresses, since there may be huge pages that this bit
422 * would tell. It can be %NULL if we don't care about it.
423 * @is_write: whether the translation operation is for write
424 * @is_mmio: whether this can be MMIO, set true if it can
425 * @target_as: the address space targeted by the IOMMU
2f7b009c 426 * @attrs: transaction attributes
a411c84b
PB
427 *
428 * This function is called from RCU critical section. It is the common
429 * part of flatview_do_translate and address_space_translate_cached.
430 */
431static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
432 hwaddr *xlat,
433 hwaddr *plen_out,
434 hwaddr *page_mask_out,
435 bool is_write,
436 bool is_mmio,
2f7b009c
PM
437 AddressSpace **target_as,
438 MemTxAttrs attrs)
a411c84b
PB
439{
440 MemoryRegionSection *section;
441 hwaddr page_mask = (hwaddr)-1;
442
443 do {
444 hwaddr addr = *xlat;
445 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
2c91bcf2
PM
446 int iommu_idx = 0;
447 IOMMUTLBEntry iotlb;
448
449 if (imrc->attrs_to_index) {
450 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
451 }
452
453 iotlb = imrc->translate(iommu_mr, addr, is_write ?
454 IOMMU_WO : IOMMU_RO, iommu_idx);
a411c84b
PB
455
456 if (!(iotlb.perm & (1 << is_write))) {
457 goto unassigned;
458 }
459
460 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
461 | (addr & iotlb.addr_mask));
462 page_mask &= iotlb.addr_mask;
463 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
464 *target_as = iotlb.target_as;
465
466 section = address_space_translate_internal(
467 address_space_to_dispatch(iotlb.target_as), addr, xlat,
468 plen_out, is_mmio);
469
470 iommu_mr = memory_region_get_iommu(section->mr);
471 } while (unlikely(iommu_mr));
472
473 if (page_mask_out) {
474 *page_mask_out = page_mask;
475 }
476 return *section;
477
478unassigned:
479 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
480}
481
d5e5fafd
PX
482/**
483 * flatview_do_translate - translate an address in FlatView
484 *
485 * @fv: the flat view that we want to translate on
486 * @addr: the address to be translated in above address space
487 * @xlat: the translated address offset within memory region. It
488 * cannot be @NULL.
489 * @plen_out: valid read/write length of the translated address. It
490 * can be @NULL when we don't care about it.
491 * @page_mask_out: page mask for the translated address. This
492 * should only be meaningful for IOMMU translated
493 * addresses, since there may be huge pages that this bit
494 * would tell. It can be @NULL if we don't care about it.
495 * @is_write: whether the translation operation is for write
496 * @is_mmio: whether this can be MMIO, set true if it can
ad2804d9 497 * @target_as: the address space targeted by the IOMMU
49e14aa8 498 * @attrs: memory transaction attributes
d5e5fafd
PX
499 *
500 * This function is called from RCU critical section
501 */
16620684
AK
502static MemoryRegionSection flatview_do_translate(FlatView *fv,
503 hwaddr addr,
504 hwaddr *xlat,
d5e5fafd
PX
505 hwaddr *plen_out,
506 hwaddr *page_mask_out,
16620684
AK
507 bool is_write,
508 bool is_mmio,
49e14aa8
PM
509 AddressSpace **target_as,
510 MemTxAttrs attrs)
052c8fa9 511{
052c8fa9 512 MemoryRegionSection *section;
3df9d748 513 IOMMUMemoryRegion *iommu_mr;
d5e5fafd
PX
514 hwaddr plen = (hwaddr)(-1);
515
ad2804d9
PB
516 if (!plen_out) {
517 plen_out = &plen;
d5e5fafd 518 }
052c8fa9 519
a411c84b
PB
520 section = address_space_translate_internal(
521 flatview_to_dispatch(fv), addr, xlat,
522 plen_out, is_mmio);
052c8fa9 523
a411c84b
PB
524 iommu_mr = memory_region_get_iommu(section->mr);
525 if (unlikely(iommu_mr)) {
526 return address_space_translate_iommu(iommu_mr, xlat,
527 plen_out, page_mask_out,
528 is_write, is_mmio,
2f7b009c 529 target_as, attrs);
052c8fa9 530 }
d5e5fafd 531 if (page_mask_out) {
a411c84b
PB
532 /* Not behind an IOMMU, use default page size. */
533 *page_mask_out = ~TARGET_PAGE_MASK;
d5e5fafd
PX
534 }
535
a764040c 536 return *section;
052c8fa9
JW
537}
538
539/* Called from RCU critical section */
a764040c 540IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
7446eb07 541 bool is_write, MemTxAttrs attrs)
90260c6c 542{
a764040c 543 MemoryRegionSection section;
076a93d7 544 hwaddr xlat, page_mask;
30951157 545
076a93d7
PX
546 /*
547 * This can never be MMIO, and we don't really care about plen,
548 * but page mask.
549 */
550 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
49e14aa8
PM
551 NULL, &page_mask, is_write, false, &as,
552 attrs);
30951157 553
a764040c
PX
554 /* Illegal translation */
555 if (section.mr == &io_mem_unassigned) {
556 goto iotlb_fail;
557 }
30951157 558
a764040c
PX
559 /* Convert memory region offset into address space offset */
560 xlat += section.offset_within_address_space -
561 section.offset_within_region;
562
a764040c 563 return (IOMMUTLBEntry) {
e76bb18f 564 .target_as = as,
076a93d7
PX
565 .iova = addr & ~page_mask,
566 .translated_addr = xlat & ~page_mask,
567 .addr_mask = page_mask,
a764040c
PX
568 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
569 .perm = IOMMU_RW,
570 };
571
572iotlb_fail:
573 return (IOMMUTLBEntry) {0};
574}
575
576/* Called from RCU critical section */
16620684 577MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
efa99a2f
PM
578 hwaddr *plen, bool is_write,
579 MemTxAttrs attrs)
a764040c
PX
580{
581 MemoryRegion *mr;
582 MemoryRegionSection section;
16620684 583 AddressSpace *as = NULL;
a764040c
PX
584
585 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd 586 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
49e14aa8 587 is_write, true, &as, attrs);
a764040c
PX
588 mr = section.mr;
589
fe680d0d 590 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 591 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 592 *plen = MIN(page, *plen);
a87f3954
PB
593 }
594
30951157 595 return mr;
90260c6c
JK
596}
597
1f871c5e
PM
598typedef struct TCGIOMMUNotifier {
599 IOMMUNotifier n;
600 MemoryRegion *mr;
601 CPUState *cpu;
602 int iommu_idx;
603 bool active;
604} TCGIOMMUNotifier;
605
606static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
607{
608 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
609
610 if (!notifier->active) {
611 return;
612 }
613 tlb_flush(notifier->cpu);
614 notifier->active = false;
615 /* We leave the notifier struct on the list to avoid reallocating it later.
616 * Generally the number of IOMMUs a CPU deals with will be small.
617 * In any case we can't unregister the iommu notifier from a notify
618 * callback.
619 */
620}
621
622static void tcg_register_iommu_notifier(CPUState *cpu,
623 IOMMUMemoryRegion *iommu_mr,
624 int iommu_idx)
625{
626 /* Make sure this CPU has an IOMMU notifier registered for this
627 * IOMMU/IOMMU index combination, so that we can flush its TLB
628 * when the IOMMU tells us the mappings we've cached have changed.
629 */
630 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
631 TCGIOMMUNotifier *notifier;
549d4005
EA
632 Error *err = NULL;
633 int i, ret;
1f871c5e
PM
634
635 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 636 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e
PM
637 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
638 break;
639 }
640 }
641 if (i == cpu->iommu_notifiers->len) {
642 /* Not found, add a new entry at the end of the array */
643 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
5601be3b
PM
644 notifier = g_new0(TCGIOMMUNotifier, 1);
645 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
1f871c5e
PM
646
647 notifier->mr = mr;
648 notifier->iommu_idx = iommu_idx;
649 notifier->cpu = cpu;
650 /* Rather than trying to register interest in the specific part
651 * of the iommu's address space that we've accessed and then
652 * expand it later as subsequent accesses touch more of it, we
653 * just register interest in the whole thing, on the assumption
654 * that iommu reconfiguration will be rare.
655 */
656 iommu_notifier_init(&notifier->n,
657 tcg_iommu_unmap_notify,
658 IOMMU_NOTIFIER_UNMAP,
659 0,
660 HWADDR_MAX,
661 iommu_idx);
549d4005
EA
662 ret = memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
663 &err);
664 if (ret) {
665 error_report_err(err);
666 exit(1);
667 }
1f871c5e
PM
668 }
669
670 if (!notifier->active) {
671 notifier->active = true;
672 }
673}
674
675static void tcg_iommu_free_notifier_list(CPUState *cpu)
676{
677 /* Destroy the CPU's notifier list */
678 int i;
679 TCGIOMMUNotifier *notifier;
680
681 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 682 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e 683 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
5601be3b 684 g_free(notifier);
1f871c5e
PM
685 }
686 g_array_free(cpu->iommu_notifiers, true);
687}
688
79e2b9ae 689/* Called from RCU critical section */
90260c6c 690MemoryRegionSection *
d7898cda 691address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
1f871c5e
PM
692 hwaddr *xlat, hwaddr *plen,
693 MemTxAttrs attrs, int *prot)
90260c6c 694{
30951157 695 MemoryRegionSection *section;
1f871c5e
PM
696 IOMMUMemoryRegion *iommu_mr;
697 IOMMUMemoryRegionClass *imrc;
698 IOMMUTLBEntry iotlb;
699 int iommu_idx;
f35e44e7 700 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda 701
1f871c5e
PM
702 for (;;) {
703 section = address_space_translate_internal(d, addr, &addr, plen, false);
704
705 iommu_mr = memory_region_get_iommu(section->mr);
706 if (!iommu_mr) {
707 break;
708 }
709
710 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
711
712 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
713 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
714 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
715 * doesn't short-cut its translation table walk.
716 */
717 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
718 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
719 | (addr & iotlb.addr_mask));
720 /* Update the caller's prot bits to remove permissions the IOMMU
721 * is giving us a failure response for. If we get down to no
722 * permissions left at all we can give up now.
723 */
724 if (!(iotlb.perm & IOMMU_RO)) {
725 *prot &= ~(PAGE_READ | PAGE_EXEC);
726 }
727 if (!(iotlb.perm & IOMMU_WO)) {
728 *prot &= ~PAGE_WRITE;
729 }
730
731 if (!*prot) {
732 goto translate_fail;
733 }
734
735 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
736 }
30951157 737
3df9d748 738 assert(!memory_region_is_iommu(section->mr));
1f871c5e 739 *xlat = addr;
30951157 740 return section;
1f871c5e
PM
741
742translate_fail:
743 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
90260c6c 744}
5b6dd868 745#endif
fd6ce8f6 746
b170fce3 747#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
748
749static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 750{
259186a7 751 CPUState *cpu = opaque;
a513fe19 752
5b6dd868
BS
753 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
754 version_id is increased. */
259186a7 755 cpu->interrupt_request &= ~0x01;
d10eb08f 756 tlb_flush(cpu);
5b6dd868 757
15a356c4
PD
758 /* loadvm has just updated the content of RAM, bypassing the
759 * usual mechanisms that ensure we flush TBs for writes to
760 * memory we've translated code from. So we must flush all TBs,
761 * which will now be stale.
762 */
763 tb_flush(cpu);
764
5b6dd868 765 return 0;
a513fe19 766}
7501267e 767
6c3bff0e
PD
768static int cpu_common_pre_load(void *opaque)
769{
770 CPUState *cpu = opaque;
771
adee6424 772 cpu->exception_index = -1;
6c3bff0e
PD
773
774 return 0;
775}
776
777static bool cpu_common_exception_index_needed(void *opaque)
778{
779 CPUState *cpu = opaque;
780
adee6424 781 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
782}
783
784static const VMStateDescription vmstate_cpu_common_exception_index = {
785 .name = "cpu_common/exception_index",
786 .version_id = 1,
787 .minimum_version_id = 1,
5cd8cada 788 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
789 .fields = (VMStateField[]) {
790 VMSTATE_INT32(exception_index, CPUState),
791 VMSTATE_END_OF_LIST()
792 }
793};
794
bac05aa9
AS
795static bool cpu_common_crash_occurred_needed(void *opaque)
796{
797 CPUState *cpu = opaque;
798
799 return cpu->crash_occurred;
800}
801
802static const VMStateDescription vmstate_cpu_common_crash_occurred = {
803 .name = "cpu_common/crash_occurred",
804 .version_id = 1,
805 .minimum_version_id = 1,
806 .needed = cpu_common_crash_occurred_needed,
807 .fields = (VMStateField[]) {
808 VMSTATE_BOOL(crash_occurred, CPUState),
809 VMSTATE_END_OF_LIST()
810 }
811};
812
1a1562f5 813const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
814 .name = "cpu_common",
815 .version_id = 1,
816 .minimum_version_id = 1,
6c3bff0e 817 .pre_load = cpu_common_pre_load,
5b6dd868 818 .post_load = cpu_common_post_load,
35d08458 819 .fields = (VMStateField[]) {
259186a7
AF
820 VMSTATE_UINT32(halted, CPUState),
821 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 822 VMSTATE_END_OF_LIST()
6c3bff0e 823 },
5cd8cada
JQ
824 .subsections = (const VMStateDescription*[]) {
825 &vmstate_cpu_common_exception_index,
bac05aa9 826 &vmstate_cpu_common_crash_occurred,
5cd8cada 827 NULL
5b6dd868
BS
828 }
829};
1a1562f5 830
5b6dd868 831#endif
ea041c0e 832
38d8f5c8 833CPUState *qemu_get_cpu(int index)
ea041c0e 834{
bdc44640 835 CPUState *cpu;
ea041c0e 836
bdc44640 837 CPU_FOREACH(cpu) {
55e5c285 838 if (cpu->cpu_index == index) {
bdc44640 839 return cpu;
55e5c285 840 }
ea041c0e 841 }
5b6dd868 842
bdc44640 843 return NULL;
ea041c0e
FB
844}
845
09daed84 846#if !defined(CONFIG_USER_ONLY)
80ceb07a
PX
847void cpu_address_space_init(CPUState *cpu, int asidx,
848 const char *prefix, MemoryRegion *mr)
09daed84 849{
12ebc9a7 850 CPUAddressSpace *newas;
80ceb07a 851 AddressSpace *as = g_new0(AddressSpace, 1);
87a621d8 852 char *as_name;
80ceb07a
PX
853
854 assert(mr);
87a621d8
PX
855 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
856 address_space_init(as, mr, as_name);
857 g_free(as_name);
12ebc9a7
PM
858
859 /* Target code should have set num_ases before calling us */
860 assert(asidx < cpu->num_ases);
861
56943e8c
PM
862 if (asidx == 0) {
863 /* address space 0 gets the convenience alias */
864 cpu->as = as;
865 }
866
12ebc9a7
PM
867 /* KVM cannot currently support multiple address spaces. */
868 assert(asidx == 0 || !kvm_enabled());
09daed84 869
12ebc9a7
PM
870 if (!cpu->cpu_ases) {
871 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 872 }
32857f4d 873
12ebc9a7
PM
874 newas = &cpu->cpu_ases[asidx];
875 newas->cpu = cpu;
876 newas->as = as;
56943e8c 877 if (tcg_enabled()) {
9458a9a1 878 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
12ebc9a7
PM
879 newas->tcg_as_listener.commit = tcg_commit;
880 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 881 }
09daed84 882}
651a5bc0
PM
883
884AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
885{
886 /* Return the AddressSpace corresponding to the specified index */
887 return cpu->cpu_ases[asidx].as;
888}
09daed84
EI
889#endif
890
7bbc124e 891void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 892{
9dfeca7c
BR
893 CPUClass *cc = CPU_GET_CLASS(cpu);
894
267f685b 895 cpu_list_remove(cpu);
9dfeca7c
BR
896
897 if (cc->vmsd != NULL) {
898 vmstate_unregister(NULL, cc->vmsd, cpu);
899 }
900 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
901 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
902 }
1f871c5e
PM
903#ifndef CONFIG_USER_ONLY
904 tcg_iommu_free_notifier_list(cpu);
905#endif
1c59eb39
BR
906}
907
c7e002c5
FZ
908Property cpu_common_props[] = {
909#ifndef CONFIG_USER_ONLY
910 /* Create a memory property for softmmu CPU object,
2e5b09fd 911 * so users can wire up its memory. (This can't go in hw/core/cpu.c
c7e002c5
FZ
912 * because that file is compiled only once for both user-mode
913 * and system builds.) The default if no link is set up is to use
914 * the system address space.
915 */
916 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
917 MemoryRegion *),
918#endif
919 DEFINE_PROP_END_OF_LIST(),
920};
921
39e329e3 922void cpu_exec_initfn(CPUState *cpu)
ea041c0e 923{
56943e8c 924 cpu->as = NULL;
12ebc9a7 925 cpu->num_ases = 0;
56943e8c 926
291135b5 927#ifndef CONFIG_USER_ONLY
291135b5 928 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
929 cpu->memory = system_memory;
930 object_ref(OBJECT(cpu->memory));
291135b5 931#endif
39e329e3
LV
932}
933
ce5b1bbf 934void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3 935{
55c3ceef 936 CPUClass *cc = CPU_GET_CLASS(cpu);
2dda6354 937 static bool tcg_target_initialized;
291135b5 938
267f685b 939 cpu_list_add(cpu);
1bc7e522 940
2dda6354
EC
941 if (tcg_enabled() && !tcg_target_initialized) {
942 tcg_target_initialized = true;
55c3ceef
RH
943 cc->tcg_initialize();
944 }
5005e253 945 tlb_init(cpu);
55c3ceef 946
30865f31
EC
947 qemu_plugin_vcpu_init_hook(cpu);
948
1bc7e522 949#ifndef CONFIG_USER_ONLY
e0d47944 950 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 951 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 952 }
b170fce3 953 if (cc->vmsd != NULL) {
741da0d3 954 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 955 }
1f871c5e 956
5601be3b 957 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
741da0d3 958#endif
ea041c0e
FB
959}
960
c1c8cfe5 961const char *parse_cpu_option(const char *cpu_option)
2278b939
IM
962{
963 ObjectClass *oc;
964 CPUClass *cc;
965 gchar **model_pieces;
966 const char *cpu_type;
967
c1c8cfe5 968 model_pieces = g_strsplit(cpu_option, ",", 2);
5b863f3e
EH
969 if (!model_pieces[0]) {
970 error_report("-cpu option cannot be empty");
971 exit(1);
972 }
2278b939
IM
973
974 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
975 if (oc == NULL) {
976 error_report("unable to find CPU model '%s'", model_pieces[0]);
977 g_strfreev(model_pieces);
978 exit(EXIT_FAILURE);
979 }
980
981 cpu_type = object_class_get_name(oc);
982 cc = CPU_CLASS(oc);
983 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
984 g_strfreev(model_pieces);
985 return cpu_type;
986}
987
c40d4792 988#if defined(CONFIG_USER_ONLY)
8bca9a03 989void tb_invalidate_phys_addr(target_ulong addr)
1e7855a5 990{
406bc339 991 mmap_lock();
ce9f5e27 992 tb_invalidate_phys_page_range(addr, addr + 1);
406bc339
PK
993 mmap_unlock();
994}
8bca9a03
PB
995
996static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
997{
998 tb_invalidate_phys_addr(pc);
999}
406bc339 1000#else
8bca9a03
PB
1001void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1002{
1003 ram_addr_t ram_addr;
1004 MemoryRegion *mr;
1005 hwaddr l = 1;
1006
c40d4792
PB
1007 if (!tcg_enabled()) {
1008 return;
1009 }
1010
694ea274 1011 RCU_READ_LOCK_GUARD();
8bca9a03
PB
1012 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1013 if (!(memory_region_is_ram(mr)
1014 || memory_region_is_romd(mr))) {
8bca9a03
PB
1015 return;
1016 }
1017 ram_addr = memory_region_get_ram_addr(mr) + addr;
ce9f5e27 1018 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
8bca9a03
PB
1019}
1020
406bc339
PK
1021static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1022{
b55f54bc
MF
1023 /*
1024 * There may not be a virtual to physical translation for the pc
1025 * right now, but there may exist cached TB for this pc.
1026 * Flush the whole TB cache to force re-translation of such TBs.
1027 * This is heavyweight, but we're debugging anyway.
1028 */
1029 tb_flush(cpu);
1e7855a5 1030}
406bc339 1031#endif
d720b93d 1032
74841f04 1033#ifndef CONFIG_USER_ONLY
6658ffb8 1034/* Add a watchpoint. */
75a34036 1035int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1036 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1037{
c0ce998e 1038 CPUWatchpoint *wp;
6658ffb8 1039
05068c0d 1040 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 1041 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
1042 error_report("tried to set invalid watchpoint at %"
1043 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
1044 return -EINVAL;
1045 }
7267c094 1046 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1047
1048 wp->vaddr = addr;
05068c0d 1049 wp->len = len;
a1d1bb31
AL
1050 wp->flags = flags;
1051
2dc9f411 1052 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
1053 if (flags & BP_GDB) {
1054 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1055 } else {
1056 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1057 }
6658ffb8 1058
31b030d4 1059 tlb_flush_page(cpu, addr);
a1d1bb31
AL
1060
1061 if (watchpoint)
1062 *watchpoint = wp;
1063 return 0;
6658ffb8
PB
1064}
1065
a1d1bb31 1066/* Remove a specific watchpoint. */
75a34036 1067int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1068 int flags)
6658ffb8 1069{
a1d1bb31 1070 CPUWatchpoint *wp;
6658ffb8 1071
ff4700b0 1072 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1073 if (addr == wp->vaddr && len == wp->len
6e140f28 1074 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 1075 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
1076 return 0;
1077 }
1078 }
a1d1bb31 1079 return -ENOENT;
6658ffb8
PB
1080}
1081
a1d1bb31 1082/* Remove a specific watchpoint by reference. */
75a34036 1083void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 1084{
ff4700b0 1085 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 1086
31b030d4 1087 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 1088
7267c094 1089 g_free(watchpoint);
a1d1bb31
AL
1090}
1091
1092/* Remove all matching watchpoints. */
75a34036 1093void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1094{
c0ce998e 1095 CPUWatchpoint *wp, *next;
a1d1bb31 1096
ff4700b0 1097 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
1098 if (wp->flags & mask) {
1099 cpu_watchpoint_remove_by_ref(cpu, wp);
1100 }
c0ce998e 1101 }
7d03f82f 1102}
05068c0d
PM
1103
1104/* Return true if this watchpoint address matches the specified
1105 * access (ie the address range covered by the watchpoint overlaps
1106 * partially or completely with the address range covered by the
1107 * access).
1108 */
56ad8b00
RH
1109static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
1110 vaddr addr, vaddr len)
05068c0d
PM
1111{
1112 /* We know the lengths are non-zero, but a little caution is
1113 * required to avoid errors in the case where the range ends
1114 * exactly at the top of the address space and so addr + len
1115 * wraps round to zero.
1116 */
1117 vaddr wpend = wp->vaddr + wp->len - 1;
1118 vaddr addrend = addr + len - 1;
1119
1120 return !(addr > wpend || wp->vaddr > addrend);
1121}
1122
56ad8b00
RH
1123/* Return flags for watchpoints that match addr + prot. */
1124int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
1125{
1126 CPUWatchpoint *wp;
1127 int ret = 0;
1128
1129 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
9835936d 1130 if (watchpoint_address_matches(wp, addr, len)) {
56ad8b00
RH
1131 ret |= wp->flags;
1132 }
1133 }
1134 return ret;
1135}
74841f04 1136#endif /* !CONFIG_USER_ONLY */
7d03f82f 1137
a1d1bb31 1138/* Add a breakpoint. */
b3310ab3 1139int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 1140 CPUBreakpoint **breakpoint)
4c3a88a2 1141{
c0ce998e 1142 CPUBreakpoint *bp;
3b46e624 1143
7267c094 1144 bp = g_malloc(sizeof(*bp));
4c3a88a2 1145
a1d1bb31
AL
1146 bp->pc = pc;
1147 bp->flags = flags;
1148
2dc9f411 1149 /* keep all GDB-injected breakpoints in front */
00b941e5 1150 if (flags & BP_GDB) {
f0c3c505 1151 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 1152 } else {
f0c3c505 1153 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 1154 }
3b46e624 1155
f0c3c505 1156 breakpoint_invalidate(cpu, pc);
a1d1bb31 1157
00b941e5 1158 if (breakpoint) {
a1d1bb31 1159 *breakpoint = bp;
00b941e5 1160 }
4c3a88a2 1161 return 0;
4c3a88a2
FB
1162}
1163
a1d1bb31 1164/* Remove a specific breakpoint. */
b3310ab3 1165int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 1166{
a1d1bb31
AL
1167 CPUBreakpoint *bp;
1168
f0c3c505 1169 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 1170 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 1171 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
1172 return 0;
1173 }
7d03f82f 1174 }
a1d1bb31 1175 return -ENOENT;
7d03f82f
EI
1176}
1177
a1d1bb31 1178/* Remove a specific breakpoint by reference. */
b3310ab3 1179void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 1180{
f0c3c505
AF
1181 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1182
1183 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 1184
7267c094 1185 g_free(breakpoint);
a1d1bb31
AL
1186}
1187
1188/* Remove all matching breakpoints. */
b3310ab3 1189void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1190{
c0ce998e 1191 CPUBreakpoint *bp, *next;
a1d1bb31 1192
f0c3c505 1193 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
1194 if (bp->flags & mask) {
1195 cpu_breakpoint_remove_by_ref(cpu, bp);
1196 }
c0ce998e 1197 }
4c3a88a2
FB
1198}
1199
c33a346e
FB
1200/* enable or disable single step mode. EXCP_DEBUG is returned by the
1201 CPU loop after each instruction */
3825b28f 1202void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 1203{
ed2803da
AF
1204 if (cpu->singlestep_enabled != enabled) {
1205 cpu->singlestep_enabled = enabled;
1206 if (kvm_enabled()) {
38e478ec 1207 kvm_update_guest_debug(cpu, 0);
ed2803da 1208 } else {
ccbb4d44 1209 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 1210 /* XXX: only flush what is necessary */
bbd77c18 1211 tb_flush(cpu);
e22a25c9 1212 }
c33a346e 1213 }
c33a346e
FB
1214}
1215
a47dddd7 1216void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1217{
1218 va_list ap;
493ae1f0 1219 va_list ap2;
7501267e
FB
1220
1221 va_start(ap, fmt);
493ae1f0 1222 va_copy(ap2, ap);
7501267e
FB
1223 fprintf(stderr, "qemu: fatal: ");
1224 vfprintf(stderr, fmt, ap);
1225 fprintf(stderr, "\n");
90c84c56 1226 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1227 if (qemu_log_separate()) {
fc59d2d8 1228 FILE *logfile = qemu_log_lock();
93fcfe39
AL
1229 qemu_log("qemu: fatal: ");
1230 qemu_log_vprintf(fmt, ap2);
1231 qemu_log("\n");
a0762859 1232 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1233 qemu_log_flush();
fc59d2d8 1234 qemu_log_unlock(logfile);
93fcfe39 1235 qemu_log_close();
924edcae 1236 }
493ae1f0 1237 va_end(ap2);
f9373291 1238 va_end(ap);
7615936e 1239 replay_finish();
fd052bf6
RV
1240#if defined(CONFIG_USER_ONLY)
1241 {
1242 struct sigaction act;
1243 sigfillset(&act.sa_mask);
1244 act.sa_handler = SIG_DFL;
8347c185 1245 act.sa_flags = 0;
fd052bf6
RV
1246 sigaction(SIGABRT, &act, NULL);
1247 }
1248#endif
7501267e
FB
1249 abort();
1250}
1251
0124311e 1252#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1253/* Called from RCU critical section */
041603fe
PB
1254static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1255{
1256 RAMBlock *block;
1257
43771539 1258 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1259 if (block && addr - block->offset < block->max_length) {
68851b98 1260 return block;
041603fe 1261 }
99e15582 1262 RAMBLOCK_FOREACH(block) {
9b8424d5 1263 if (addr - block->offset < block->max_length) {
041603fe
PB
1264 goto found;
1265 }
1266 }
1267
1268 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1269 abort();
1270
1271found:
43771539
PB
1272 /* It is safe to write mru_block outside the iothread lock. This
1273 * is what happens:
1274 *
1275 * mru_block = xxx
1276 * rcu_read_unlock()
1277 * xxx removed from list
1278 * rcu_read_lock()
1279 * read mru_block
1280 * mru_block = NULL;
1281 * call_rcu(reclaim_ramblock, xxx);
1282 * rcu_read_unlock()
1283 *
1284 * atomic_rcu_set is not needed here. The block was already published
1285 * when it was placed into the list. Here we're just making an extra
1286 * copy of the pointer.
1287 */
041603fe
PB
1288 ram_list.mru_block = block;
1289 return block;
1290}
1291
a2f4d5be 1292static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1293{
9a13565d 1294 CPUState *cpu;
041603fe 1295 ram_addr_t start1;
a2f4d5be
JQ
1296 RAMBlock *block;
1297 ram_addr_t end;
1298
f28d0dfd 1299 assert(tcg_enabled());
a2f4d5be
JQ
1300 end = TARGET_PAGE_ALIGN(start + length);
1301 start &= TARGET_PAGE_MASK;
d24981d3 1302
694ea274 1303 RCU_READ_LOCK_GUARD();
041603fe
PB
1304 block = qemu_get_ram_block(start);
1305 assert(block == qemu_get_ram_block(end - 1));
1240be24 1306 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1307 CPU_FOREACH(cpu) {
1308 tlb_reset_dirty(cpu, start1, length);
1309 }
d24981d3
JQ
1310}
1311
5579c7f3 1312/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1313bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1314 ram_addr_t length,
1315 unsigned client)
1ccde1cb 1316{
5b82b703 1317 DirtyMemoryBlocks *blocks;
25aa6b37 1318 unsigned long end, page, start_page;
5b82b703 1319 bool dirty = false;
077874e0
PX
1320 RAMBlock *ramblock;
1321 uint64_t mr_offset, mr_size;
03eebc9e
SH
1322
1323 if (length == 0) {
1324 return false;
1325 }
f23db169 1326
03eebc9e 1327 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
25aa6b37
MB
1328 start_page = start >> TARGET_PAGE_BITS;
1329 page = start_page;
5b82b703 1330
694ea274
DDAG
1331 WITH_RCU_READ_LOCK_GUARD() {
1332 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1333 ramblock = qemu_get_ram_block(start);
1334 /* Range sanity check on the ramblock */
1335 assert(start >= ramblock->offset &&
1336 start + length <= ramblock->offset + ramblock->used_length);
5b82b703 1337
694ea274
DDAG
1338 while (page < end) {
1339 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1340 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1341 unsigned long num = MIN(end - page,
1342 DIRTY_MEMORY_BLOCK_SIZE - offset);
5b82b703 1343
694ea274
DDAG
1344 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1345 offset, num);
1346 page += num;
1347 }
5b82b703 1348
25aa6b37
MB
1349 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1350 mr_size = (end - start_page) << TARGET_PAGE_BITS;
694ea274 1351 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
5b82b703
SH
1352 }
1353
03eebc9e 1354 if (dirty && tcg_enabled()) {
a2f4d5be 1355 tlb_reset_dirty_range_all(start, length);
5579c7f3 1356 }
03eebc9e
SH
1357
1358 return dirty;
1ccde1cb
FB
1359}
1360
8deaf12c 1361DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
5dea4079 1362 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
8deaf12c
GH
1363{
1364 DirtyMemoryBlocks *blocks;
5dea4079 1365 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
8deaf12c
GH
1366 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1367 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1368 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1369 DirtyBitmapSnapshot *snap;
1370 unsigned long page, end, dest;
1371
1372 snap = g_malloc0(sizeof(*snap) +
1373 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1374 snap->start = first;
1375 snap->end = last;
1376
1377 page = first >> TARGET_PAGE_BITS;
1378 end = last >> TARGET_PAGE_BITS;
1379 dest = 0;
1380
694ea274
DDAG
1381 WITH_RCU_READ_LOCK_GUARD() {
1382 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
8deaf12c 1383
694ea274
DDAG
1384 while (page < end) {
1385 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1386 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1387 unsigned long num = MIN(end - page,
1388 DIRTY_MEMORY_BLOCK_SIZE - offset);
8deaf12c 1389
694ea274
DDAG
1390 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1391 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1392 offset >>= BITS_PER_LEVEL;
8deaf12c 1393
694ea274
DDAG
1394 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1395 blocks->blocks[idx] + offset,
1396 num);
1397 page += num;
1398 dest += num >> BITS_PER_LEVEL;
1399 }
8deaf12c
GH
1400 }
1401
8deaf12c
GH
1402 if (tcg_enabled()) {
1403 tlb_reset_dirty_range_all(start, length);
1404 }
1405
077874e0
PX
1406 memory_region_clear_dirty_bitmap(mr, offset, length);
1407
8deaf12c
GH
1408 return snap;
1409}
1410
1411bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1412 ram_addr_t start,
1413 ram_addr_t length)
1414{
1415 unsigned long page, end;
1416
1417 assert(start >= snap->start);
1418 assert(start + length <= snap->end);
1419
1420 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1421 page = (start - snap->start) >> TARGET_PAGE_BITS;
1422
1423 while (page < end) {
1424 if (test_bit(page, snap->dirty)) {
1425 return true;
1426 }
1427 page++;
1428 }
1429 return false;
1430}
1431
79e2b9ae 1432/* Called from RCU critical section */
bb0e627a 1433hwaddr memory_region_section_get_iotlb(CPUState *cpu,
8f5db641 1434 MemoryRegionSection *section)
e5548617 1435{
8f5db641
RH
1436 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1437 return section - d->map.sections;
e5548617 1438}
9fa3e853
FB
1439#endif /* defined(CONFIG_USER_ONLY) */
1440
e2eef170 1441#if !defined(CONFIG_USER_ONLY)
8da3ff18 1442
b797ab1a
WY
1443static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1444 uint16_t section);
16620684 1445static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1446
06329cce 1447static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
a2b257d6 1448 qemu_anon_ram_alloc;
91138037
MA
1449
1450/*
1451 * Set a custom physical guest memory alloator.
1452 * Accelerators with unusual needs may need this. Hopefully, we can
1453 * get rid of it eventually.
1454 */
06329cce 1455void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
91138037
MA
1456{
1457 phys_mem_alloc = alloc;
1458}
1459
53cb28cb
MA
1460static uint16_t phys_section_add(PhysPageMap *map,
1461 MemoryRegionSection *section)
5312bd8b 1462{
68f3f65b
PB
1463 /* The physical section number is ORed with a page-aligned
1464 * pointer to produce the iotlb entries. Thus it should
1465 * never overflow into the page-aligned value.
1466 */
53cb28cb 1467 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1468
53cb28cb
MA
1469 if (map->sections_nb == map->sections_nb_alloc) {
1470 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1471 map->sections = g_renew(MemoryRegionSection, map->sections,
1472 map->sections_nb_alloc);
5312bd8b 1473 }
53cb28cb 1474 map->sections[map->sections_nb] = *section;
dfde4e6e 1475 memory_region_ref(section->mr);
53cb28cb 1476 return map->sections_nb++;
5312bd8b
AK
1477}
1478
058bc4b5
PB
1479static void phys_section_destroy(MemoryRegion *mr)
1480{
55b4e80b
DS
1481 bool have_sub_page = mr->subpage;
1482
dfde4e6e
PB
1483 memory_region_unref(mr);
1484
55b4e80b 1485 if (have_sub_page) {
058bc4b5 1486 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1487 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1488 g_free(subpage);
1489 }
1490}
1491
6092666e 1492static void phys_sections_free(PhysPageMap *map)
5312bd8b 1493{
9affd6fc
PB
1494 while (map->sections_nb > 0) {
1495 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1496 phys_section_destroy(section->mr);
1497 }
9affd6fc
PB
1498 g_free(map->sections);
1499 g_free(map->nodes);
5312bd8b
AK
1500}
1501
9950322a 1502static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1503{
9950322a 1504 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1505 subpage_t *subpage;
a8170e5e 1506 hwaddr base = section->offset_within_address_space
0f0cb164 1507 & TARGET_PAGE_MASK;
003a0cf2 1508 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1509 MemoryRegionSection subsection = {
1510 .offset_within_address_space = base,
052e87b0 1511 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1512 };
a8170e5e 1513 hwaddr start, end;
0f0cb164 1514
f3705d53 1515 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1516
f3705d53 1517 if (!(existing->mr->subpage)) {
16620684
AK
1518 subpage = subpage_init(fv, base);
1519 subsection.fv = fv;
0f0cb164 1520 subsection.mr = &subpage->iomem;
ac1970fb 1521 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1522 phys_section_add(&d->map, &subsection));
0f0cb164 1523 } else {
f3705d53 1524 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1525 }
1526 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1527 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1528 subpage_register(subpage, start, end,
1529 phys_section_add(&d->map, section));
0f0cb164
AK
1530}
1531
1532
9950322a 1533static void register_multipage(FlatView *fv,
052e87b0 1534 MemoryRegionSection *section)
33417e70 1535{
9950322a 1536 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1537 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1538 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1539 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1540 TARGET_PAGE_BITS));
dd81124b 1541
733d5ef5
PB
1542 assert(num_pages);
1543 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1544}
1545
494d1997
WY
1546/*
1547 * The range in *section* may look like this:
1548 *
1549 * |s|PPPPPPP|s|
1550 *
1551 * where s stands for subpage and P for page.
1552 */
8629d3fc 1553void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1554{
494d1997 1555 MemoryRegionSection remain = *section;
052e87b0 1556 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1557
494d1997
WY
1558 /* register first subpage */
1559 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1560 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1561 - remain.offset_within_address_space;
733d5ef5 1562
494d1997 1563 MemoryRegionSection now = remain;
052e87b0 1564 now.size = int128_min(int128_make64(left), now.size);
9950322a 1565 register_subpage(fv, &now);
494d1997
WY
1566 if (int128_eq(remain.size, now.size)) {
1567 return;
1568 }
052e87b0
PB
1569 remain.size = int128_sub(remain.size, now.size);
1570 remain.offset_within_address_space += int128_get64(now.size);
1571 remain.offset_within_region += int128_get64(now.size);
494d1997
WY
1572 }
1573
1574 /* register whole pages */
1575 if (int128_ge(remain.size, page_size)) {
1576 MemoryRegionSection now = remain;
1577 now.size = int128_and(now.size, int128_neg(page_size));
1578 register_multipage(fv, &now);
1579 if (int128_eq(remain.size, now.size)) {
1580 return;
69b67646 1581 }
494d1997
WY
1582 remain.size = int128_sub(remain.size, now.size);
1583 remain.offset_within_address_space += int128_get64(now.size);
1584 remain.offset_within_region += int128_get64(now.size);
0f0cb164 1585 }
494d1997
WY
1586
1587 /* register last subpage */
1588 register_subpage(fv, &remain);
0f0cb164
AK
1589}
1590
62a2744c
SY
1591void qemu_flush_coalesced_mmio_buffer(void)
1592{
1593 if (kvm_enabled())
1594 kvm_flush_coalesced_mmio_buffer();
1595}
1596
b2a8658e
UD
1597void qemu_mutex_lock_ramlist(void)
1598{
1599 qemu_mutex_lock(&ram_list.mutex);
1600}
1601
1602void qemu_mutex_unlock_ramlist(void)
1603{
1604 qemu_mutex_unlock(&ram_list.mutex);
1605}
1606
be9b23c4
PX
1607void ram_block_dump(Monitor *mon)
1608{
1609 RAMBlock *block;
1610 char *psize;
1611
694ea274 1612 RCU_READ_LOCK_GUARD();
be9b23c4
PX
1613 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1614 "Block Name", "PSize", "Offset", "Used", "Total");
1615 RAMBLOCK_FOREACH(block) {
1616 psize = size_to_str(block->page_size);
1617 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1618 " 0x%016" PRIx64 "\n", block->idstr, psize,
1619 (uint64_t)block->offset,
1620 (uint64_t)block->used_length,
1621 (uint64_t)block->max_length);
1622 g_free(psize);
1623 }
be9b23c4
PX
1624}
1625
9c607668
AK
1626#ifdef __linux__
1627/*
1628 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1629 * may or may not name the same files / on the same filesystem now as
1630 * when we actually open and map them. Iterate over the file
1631 * descriptors instead, and use qemu_fd_getpagesize().
1632 */
905b7ee4 1633static int find_min_backend_pagesize(Object *obj, void *opaque)
9c607668 1634{
9c607668
AK
1635 long *hpsize_min = opaque;
1636
1637 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
7d5489e6
DG
1638 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1639 long hpsize = host_memory_backend_pagesize(backend);
2b108085 1640
7d5489e6 1641 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
0de6e2a3 1642 *hpsize_min = hpsize;
9c607668
AK
1643 }
1644 }
1645
1646 return 0;
1647}
1648
905b7ee4
DH
1649static int find_max_backend_pagesize(Object *obj, void *opaque)
1650{
1651 long *hpsize_max = opaque;
1652
1653 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1654 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1655 long hpsize = host_memory_backend_pagesize(backend);
1656
1657 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1658 *hpsize_max = hpsize;
1659 }
1660 }
1661
1662 return 0;
1663}
1664
1665/*
1666 * TODO: We assume right now that all mapped host memory backends are
1667 * used as RAM, however some might be used for different purposes.
1668 */
1669long qemu_minrampagesize(void)
9c607668
AK
1670{
1671 long hpsize = LONG_MAX;
ad1172d8 1672 Object *memdev_root = object_resolve_path("/objects", NULL);
9c607668 1673
ad1172d8 1674 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
9c607668
AK
1675 return hpsize;
1676}
905b7ee4
DH
1677
1678long qemu_maxrampagesize(void)
1679{
ad1172d8 1680 long pagesize = 0;
905b7ee4
DH
1681 Object *memdev_root = object_resolve_path("/objects", NULL);
1682
ad1172d8 1683 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
905b7ee4
DH
1684 return pagesize;
1685}
9c607668 1686#else
905b7ee4
DH
1687long qemu_minrampagesize(void)
1688{
038adc2f 1689 return qemu_real_host_page_size;
905b7ee4
DH
1690}
1691long qemu_maxrampagesize(void)
9c607668 1692{
038adc2f 1693 return qemu_real_host_page_size;
9c607668
AK
1694}
1695#endif
1696
d5dbde46 1697#ifdef CONFIG_POSIX
d6af99c9
HZ
1698static int64_t get_file_size(int fd)
1699{
72d41eb4
SH
1700 int64_t size;
1701#if defined(__linux__)
1702 struct stat st;
1703
1704 if (fstat(fd, &st) < 0) {
1705 return -errno;
1706 }
1707
1708 /* Special handling for devdax character devices */
1709 if (S_ISCHR(st.st_mode)) {
1710 g_autofree char *subsystem_path = NULL;
1711 g_autofree char *subsystem = NULL;
1712
1713 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1714 major(st.st_rdev), minor(st.st_rdev));
1715 subsystem = g_file_read_link(subsystem_path, NULL);
1716
1717 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1718 g_autofree char *size_path = NULL;
1719 g_autofree char *size_str = NULL;
1720
1721 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1722 major(st.st_rdev), minor(st.st_rdev));
1723
1724 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1725 return g_ascii_strtoll(size_str, NULL, 0);
1726 }
1727 }
1728 }
1729#endif /* defined(__linux__) */
1730
1731 /* st.st_size may be zero for special files yet lseek(2) works */
1732 size = lseek(fd, 0, SEEK_END);
d6af99c9
HZ
1733 if (size < 0) {
1734 return -errno;
1735 }
1736 return size;
1737}
1738
8d37b030
MAL
1739static int file_ram_open(const char *path,
1740 const char *region_name,
1741 bool *created,
1742 Error **errp)
c902760f
MT
1743{
1744 char *filename;
8ca761f6
PF
1745 char *sanitized_name;
1746 char *c;
5c3ece79 1747 int fd = -1;
c902760f 1748
8d37b030 1749 *created = false;
fd97fd44
MA
1750 for (;;) {
1751 fd = open(path, O_RDWR);
1752 if (fd >= 0) {
1753 /* @path names an existing file, use it */
1754 break;
8d31d6b6 1755 }
fd97fd44
MA
1756 if (errno == ENOENT) {
1757 /* @path names a file that doesn't exist, create it */
1758 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1759 if (fd >= 0) {
8d37b030 1760 *created = true;
fd97fd44
MA
1761 break;
1762 }
1763 } else if (errno == EISDIR) {
1764 /* @path names a directory, create a file there */
1765 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1766 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1767 for (c = sanitized_name; *c != '\0'; c++) {
1768 if (*c == '/') {
1769 *c = '_';
1770 }
1771 }
8ca761f6 1772
fd97fd44
MA
1773 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1774 sanitized_name);
1775 g_free(sanitized_name);
8d31d6b6 1776
fd97fd44
MA
1777 fd = mkstemp(filename);
1778 if (fd >= 0) {
1779 unlink(filename);
1780 g_free(filename);
1781 break;
1782 }
1783 g_free(filename);
8d31d6b6 1784 }
fd97fd44
MA
1785 if (errno != EEXIST && errno != EINTR) {
1786 error_setg_errno(errp, errno,
1787 "can't open backing store %s for guest RAM",
1788 path);
8d37b030 1789 return -1;
fd97fd44
MA
1790 }
1791 /*
1792 * Try again on EINTR and EEXIST. The latter happens when
1793 * something else creates the file between our two open().
1794 */
8d31d6b6 1795 }
c902760f 1796
8d37b030
MAL
1797 return fd;
1798}
1799
1800static void *file_ram_alloc(RAMBlock *block,
1801 ram_addr_t memory,
1802 int fd,
1803 bool truncate,
1804 Error **errp)
1805{
1806 void *area;
1807
863e9621 1808 block->page_size = qemu_fd_getpagesize(fd);
98376843
HZ
1809 if (block->mr->align % block->page_size) {
1810 error_setg(errp, "alignment 0x%" PRIx64
1811 " must be multiples of page size 0x%zx",
1812 block->mr->align, block->page_size);
1813 return NULL;
61362b71
DH
1814 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1815 error_setg(errp, "alignment 0x%" PRIx64
1816 " must be a power of two", block->mr->align);
1817 return NULL;
98376843
HZ
1818 }
1819 block->mr->align = MAX(block->page_size, block->mr->align);
8360668e
HZ
1820#if defined(__s390x__)
1821 if (kvm_enabled()) {
1822 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1823 }
1824#endif
fd97fd44 1825
863e9621 1826 if (memory < block->page_size) {
fd97fd44 1827 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1828 "or larger than page size 0x%zx",
1829 memory, block->page_size);
8d37b030 1830 return NULL;
1775f111
HZ
1831 }
1832
863e9621 1833 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1834
1835 /*
1836 * ftruncate is not supported by hugetlbfs in older
1837 * hosts, so don't bother bailing out on errors.
1838 * If anything goes wrong with it under other filesystems,
1839 * mmap will fail.
d6af99c9
HZ
1840 *
1841 * Do not truncate the non-empty backend file to avoid corrupting
1842 * the existing data in the file. Disabling shrinking is not
1843 * enough. For example, the current vNVDIMM implementation stores
1844 * the guest NVDIMM labels at the end of the backend file. If the
1845 * backend file is later extended, QEMU will not be able to find
1846 * those labels. Therefore, extending the non-empty backend file
1847 * is disabled as well.
c902760f 1848 */
8d37b030 1849 if (truncate && ftruncate(fd, memory)) {
9742bf26 1850 perror("ftruncate");
7f56e740 1851 }
c902760f 1852
d2f39add 1853 area = qemu_ram_mmap(fd, memory, block->mr->align,
2ac0f162 1854 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
c902760f 1855 if (area == MAP_FAILED) {
7f56e740 1856 error_setg_errno(errp, errno,
fd97fd44 1857 "unable to map backing store for guest RAM");
8d37b030 1858 return NULL;
c902760f 1859 }
ef36fa14 1860
04b16653 1861 block->fd = fd;
c902760f
MT
1862 return area;
1863}
1864#endif
1865
154cc9ea
DDAG
1866/* Allocate space within the ram_addr_t space that governs the
1867 * dirty bitmaps.
1868 * Called with the ramlist lock held.
1869 */
d17b5288 1870static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1871{
1872 RAMBlock *block, *next_block;
3e837b2c 1873 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1874
49cd9ac6
SH
1875 assert(size != 0); /* it would hand out same offset multiple times */
1876
0dc3f44a 1877 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1878 return 0;
0d53d9fe 1879 }
04b16653 1880
99e15582 1881 RAMBLOCK_FOREACH(block) {
154cc9ea 1882 ram_addr_t candidate, next = RAM_ADDR_MAX;
04b16653 1883
801110ab
DDAG
1884 /* Align blocks to start on a 'long' in the bitmap
1885 * which makes the bitmap sync'ing take the fast path.
1886 */
154cc9ea 1887 candidate = block->offset + block->max_length;
801110ab 1888 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
04b16653 1889
154cc9ea
DDAG
1890 /* Search for the closest following block
1891 * and find the gap.
1892 */
99e15582 1893 RAMBLOCK_FOREACH(next_block) {
154cc9ea 1894 if (next_block->offset >= candidate) {
04b16653
AW
1895 next = MIN(next, next_block->offset);
1896 }
1897 }
154cc9ea
DDAG
1898
1899 /* If it fits remember our place and remember the size
1900 * of gap, but keep going so that we might find a smaller
1901 * gap to fill so avoiding fragmentation.
1902 */
1903 if (next - candidate >= size && next - candidate < mingap) {
1904 offset = candidate;
1905 mingap = next - candidate;
04b16653 1906 }
154cc9ea
DDAG
1907
1908 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
04b16653 1909 }
3e837b2c
AW
1910
1911 if (offset == RAM_ADDR_MAX) {
1912 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1913 (uint64_t)size);
1914 abort();
1915 }
1916
154cc9ea
DDAG
1917 trace_find_ram_offset(size, offset);
1918
04b16653
AW
1919 return offset;
1920}
1921
c136180c 1922static unsigned long last_ram_page(void)
d17b5288
AW
1923{
1924 RAMBlock *block;
1925 ram_addr_t last = 0;
1926
694ea274 1927 RCU_READ_LOCK_GUARD();
99e15582 1928 RAMBLOCK_FOREACH(block) {
62be4e3a 1929 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1930 }
b8c48993 1931 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1932}
1933
ddb97f1d
JB
1934static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1935{
1936 int ret;
ddb97f1d
JB
1937
1938 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1939 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1940 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1941 if (ret) {
1942 perror("qemu_madvise");
1943 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1944 "but dump_guest_core=off specified\n");
1945 }
1946 }
1947}
1948
422148d3
DDAG
1949const char *qemu_ram_get_idstr(RAMBlock *rb)
1950{
1951 return rb->idstr;
1952}
1953
754cb9c0
YK
1954void *qemu_ram_get_host_addr(RAMBlock *rb)
1955{
1956 return rb->host;
1957}
1958
1959ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1960{
1961 return rb->offset;
1962}
1963
1964ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1965{
1966 return rb->used_length;
1967}
1968
463a4ac2
DDAG
1969bool qemu_ram_is_shared(RAMBlock *rb)
1970{
1971 return rb->flags & RAM_SHARED;
1972}
1973
2ce16640
DDAG
1974/* Note: Only set at the start of postcopy */
1975bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1976{
1977 return rb->flags & RAM_UF_ZEROPAGE;
1978}
1979
1980void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1981{
1982 rb->flags |= RAM_UF_ZEROPAGE;
1983}
1984
b895de50
CLG
1985bool qemu_ram_is_migratable(RAMBlock *rb)
1986{
1987 return rb->flags & RAM_MIGRATABLE;
1988}
1989
1990void qemu_ram_set_migratable(RAMBlock *rb)
1991{
1992 rb->flags |= RAM_MIGRATABLE;
1993}
1994
1995void qemu_ram_unset_migratable(RAMBlock *rb)
1996{
1997 rb->flags &= ~RAM_MIGRATABLE;
1998}
1999
ae3a7047 2000/* Called with iothread lock held. */
fa53a0e5 2001void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 2002{
fa53a0e5 2003 RAMBlock *block;
20cfe881 2004
c5705a77
AK
2005 assert(new_block);
2006 assert(!new_block->idstr[0]);
84b89d78 2007
09e5ab63
AL
2008 if (dev) {
2009 char *id = qdev_get_dev_path(dev);
84b89d78
CM
2010 if (id) {
2011 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2012 g_free(id);
84b89d78
CM
2013 }
2014 }
2015 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2016
694ea274 2017 RCU_READ_LOCK_GUARD();
99e15582 2018 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
2019 if (block != new_block &&
2020 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
2021 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2022 new_block->idstr);
2023 abort();
2024 }
2025 }
c5705a77
AK
2026}
2027
ae3a7047 2028/* Called with iothread lock held. */
fa53a0e5 2029void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 2030{
ae3a7047
MD
2031 /* FIXME: arch_init.c assumes that this is not called throughout
2032 * migration. Ignore the problem since hot-unplug during migration
2033 * does not work anyway.
2034 */
20cfe881
HT
2035 if (block) {
2036 memset(block->idstr, 0, sizeof(block->idstr));
2037 }
2038}
2039
863e9621
DDAG
2040size_t qemu_ram_pagesize(RAMBlock *rb)
2041{
2042 return rb->page_size;
2043}
2044
67f11b5c
DDAG
2045/* Returns the largest size of page in use */
2046size_t qemu_ram_pagesize_largest(void)
2047{
2048 RAMBlock *block;
2049 size_t largest = 0;
2050
99e15582 2051 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
2052 largest = MAX(largest, qemu_ram_pagesize(block));
2053 }
2054
2055 return largest;
2056}
2057
8490fc78
LC
2058static int memory_try_enable_merging(void *addr, size_t len)
2059{
75cc7f01 2060 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
2061 /* disabled by the user */
2062 return 0;
2063 }
2064
2065 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2066}
2067
62be4e3a
MT
2068/* Only legal before guest might have detected the memory size: e.g. on
2069 * incoming migration, or right after reset.
2070 *
2071 * As memory core doesn't know how is memory accessed, it is up to
2072 * resize callback to update device state and/or add assertions to detect
2073 * misuse, if necessary.
2074 */
fa53a0e5 2075int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 2076{
ce4adc0b
DH
2077 const ram_addr_t unaligned_size = newsize;
2078
62be4e3a
MT
2079 assert(block);
2080
4ed023ce 2081 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 2082
62be4e3a 2083 if (block->used_length == newsize) {
ce4adc0b
DH
2084 /*
2085 * We don't have to resize the ram block (which only knows aligned
2086 * sizes), however, we have to notify if the unaligned size changed.
2087 */
2088 if (unaligned_size != memory_region_size(block->mr)) {
2089 memory_region_set_size(block->mr, unaligned_size);
2090 if (block->resized) {
2091 block->resized(block->idstr, unaligned_size, block->host);
2092 }
2093 }
62be4e3a
MT
2094 return 0;
2095 }
2096
2097 if (!(block->flags & RAM_RESIZEABLE)) {
2098 error_setg_errno(errp, EINVAL,
2099 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2100 " in != 0x" RAM_ADDR_FMT, block->idstr,
2101 newsize, block->used_length);
2102 return -EINVAL;
2103 }
2104
2105 if (block->max_length < newsize) {
2106 error_setg_errno(errp, EINVAL,
2107 "Length too large: %s: 0x" RAM_ADDR_FMT
2108 " > 0x" RAM_ADDR_FMT, block->idstr,
2109 newsize, block->max_length);
2110 return -EINVAL;
2111 }
2112
2113 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2114 block->used_length = newsize;
58d2707e
PB
2115 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2116 DIRTY_CLIENTS_ALL);
ce4adc0b 2117 memory_region_set_size(block->mr, unaligned_size);
62be4e3a 2118 if (block->resized) {
ce4adc0b 2119 block->resized(block->idstr, unaligned_size, block->host);
62be4e3a
MT
2120 }
2121 return 0;
2122}
2123
61c490e2
BM
2124/*
2125 * Trigger sync on the given ram block for range [start, start + length]
2126 * with the backing store if one is available.
2127 * Otherwise no-op.
2128 * @Note: this is supposed to be a synchronous op.
2129 */
2130void qemu_ram_writeback(RAMBlock *block, ram_addr_t start, ram_addr_t length)
2131{
61c490e2
BM
2132 /* The requested range should fit in within the block range */
2133 g_assert((start + length) <= block->used_length);
2134
2135#ifdef CONFIG_LIBPMEM
2136 /* The lack of support for pmem should not block the sync */
2137 if (ramblock_is_pmem(block)) {
5d4c9549 2138 void *addr = ramblock_ptr(block, start);
61c490e2
BM
2139 pmem_persist(addr, length);
2140 return;
2141 }
2142#endif
2143 if (block->fd >= 0) {
2144 /**
2145 * Case there is no support for PMEM or the memory has not been
2146 * specified as persistent (or is not one) - use the msync.
2147 * Less optimal but still achieves the same goal
2148 */
5d4c9549 2149 void *addr = ramblock_ptr(block, start);
61c490e2
BM
2150 if (qemu_msync(addr, length, block->fd)) {
2151 warn_report("%s: failed to sync memory range: start: "
2152 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
2153 __func__, start, length);
2154 }
2155 }
2156}
2157
5b82b703
SH
2158/* Called with ram_list.mutex held */
2159static void dirty_memory_extend(ram_addr_t old_ram_size,
2160 ram_addr_t new_ram_size)
2161{
2162 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2163 DIRTY_MEMORY_BLOCK_SIZE);
2164 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2165 DIRTY_MEMORY_BLOCK_SIZE);
2166 int i;
2167
2168 /* Only need to extend if block count increased */
2169 if (new_num_blocks <= old_num_blocks) {
2170 return;
2171 }
2172
2173 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2174 DirtyMemoryBlocks *old_blocks;
2175 DirtyMemoryBlocks *new_blocks;
2176 int j;
2177
2178 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2179 new_blocks = g_malloc(sizeof(*new_blocks) +
2180 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2181
2182 if (old_num_blocks) {
2183 memcpy(new_blocks->blocks, old_blocks->blocks,
2184 old_num_blocks * sizeof(old_blocks->blocks[0]));
2185 }
2186
2187 for (j = old_num_blocks; j < new_num_blocks; j++) {
2188 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2189 }
2190
2191 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2192
2193 if (old_blocks) {
2194 g_free_rcu(old_blocks, rcu);
2195 }
2196 }
2197}
2198
06329cce 2199static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
c5705a77 2200{
e1c57ab8 2201 RAMBlock *block;
0d53d9fe 2202 RAMBlock *last_block = NULL;
2152f5ca 2203 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 2204 Error *err = NULL;
2152f5ca 2205
b8c48993 2206 old_ram_size = last_ram_page();
c5705a77 2207
b2a8658e 2208 qemu_mutex_lock_ramlist();
9b8424d5 2209 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
2210
2211 if (!new_block->host) {
2212 if (xen_enabled()) {
9b8424d5 2213 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
2214 new_block->mr, &err);
2215 if (err) {
2216 error_propagate(errp, err);
2217 qemu_mutex_unlock_ramlist();
39c350ee 2218 return;
37aa7a0e 2219 }
e1c57ab8 2220 } else {
9b8424d5 2221 new_block->host = phys_mem_alloc(new_block->max_length,
06329cce 2222 &new_block->mr->align, shared);
39228250 2223 if (!new_block->host) {
ef701d7b
HT
2224 error_setg_errno(errp, errno,
2225 "cannot set up guest memory '%s'",
2226 memory_region_name(new_block->mr));
2227 qemu_mutex_unlock_ramlist();
39c350ee 2228 return;
39228250 2229 }
9b8424d5 2230 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 2231 }
c902760f 2232 }
94a6b54f 2233
dd631697
LZ
2234 new_ram_size = MAX(old_ram_size,
2235 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2236 if (new_ram_size > old_ram_size) {
5b82b703 2237 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 2238 }
0d53d9fe
MD
2239 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2240 * QLIST (which has an RCU-friendly variant) does not have insertion at
2241 * tail, so save the last element in last_block.
2242 */
99e15582 2243 RAMBLOCK_FOREACH(block) {
0d53d9fe 2244 last_block = block;
9b8424d5 2245 if (block->max_length < new_block->max_length) {
abb26d63
PB
2246 break;
2247 }
2248 }
2249 if (block) {
0dc3f44a 2250 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 2251 } else if (last_block) {
0dc3f44a 2252 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 2253 } else { /* list is empty */
0dc3f44a 2254 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 2255 }
0d6d3c87 2256 ram_list.mru_block = NULL;
94a6b54f 2257
0dc3f44a
MD
2258 /* Write list before version */
2259 smp_wmb();
f798b07f 2260 ram_list.version++;
b2a8658e 2261 qemu_mutex_unlock_ramlist();
f798b07f 2262
9b8424d5 2263 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
2264 new_block->used_length,
2265 DIRTY_CLIENTS_ALL);
94a6b54f 2266
a904c911
PB
2267 if (new_block->host) {
2268 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2269 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
a028edea
AB
2270 /*
2271 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2272 * Configure it unless the machine is a qtest server, in which case
2273 * KVM is not used and it may be forked (eg for fuzzing purposes).
2274 */
2275 if (!qtest_enabled()) {
2276 qemu_madvise(new_block->host, new_block->max_length,
2277 QEMU_MADV_DONTFORK);
2278 }
0987d735 2279 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 2280 }
94a6b54f 2281}
e9a1ab19 2282
d5dbde46 2283#ifdef CONFIG_POSIX
38b3362d 2284RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2285 uint32_t ram_flags, int fd,
38b3362d 2286 Error **errp)
e1c57ab8
PB
2287{
2288 RAMBlock *new_block;
ef701d7b 2289 Error *local_err = NULL;
8d37b030 2290 int64_t file_size;
e1c57ab8 2291
a4de8552
JH
2292 /* Just support these ram flags by now. */
2293 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2294
e1c57ab8 2295 if (xen_enabled()) {
7f56e740 2296 error_setg(errp, "-mem-path not supported with Xen");
528f46af 2297 return NULL;
e1c57ab8
PB
2298 }
2299
e45e7ae2
MAL
2300 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2301 error_setg(errp,
2302 "host lacks kvm mmu notifiers, -mem-path unsupported");
2303 return NULL;
2304 }
2305
e1c57ab8
PB
2306 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2307 /*
2308 * file_ram_alloc() needs to allocate just like
2309 * phys_mem_alloc, but we haven't bothered to provide
2310 * a hook there.
2311 */
7f56e740
PB
2312 error_setg(errp,
2313 "-mem-path not supported with this accelerator");
528f46af 2314 return NULL;
e1c57ab8
PB
2315 }
2316
4ed023ce 2317 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
2318 file_size = get_file_size(fd);
2319 if (file_size > 0 && file_size < size) {
c001c3b3 2320 error_setg(errp, "backing store size 0x%" PRIx64
8d37b030 2321 " does not match 'size' option 0x" RAM_ADDR_FMT,
c001c3b3 2322 file_size, size);
8d37b030
MAL
2323 return NULL;
2324 }
2325
e1c57ab8
PB
2326 new_block = g_malloc0(sizeof(*new_block));
2327 new_block->mr = mr;
9b8424d5
MT
2328 new_block->used_length = size;
2329 new_block->max_length = size;
cbfc0171 2330 new_block->flags = ram_flags;
8d37b030 2331 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
2332 if (!new_block->host) {
2333 g_free(new_block);
528f46af 2334 return NULL;
7f56e740
PB
2335 }
2336
cbfc0171 2337 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
ef701d7b
HT
2338 if (local_err) {
2339 g_free(new_block);
2340 error_propagate(errp, local_err);
528f46af 2341 return NULL;
ef701d7b 2342 }
528f46af 2343 return new_block;
38b3362d
MAL
2344
2345}
2346
2347
2348RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2349 uint32_t ram_flags, const char *mem_path,
38b3362d
MAL
2350 Error **errp)
2351{
2352 int fd;
2353 bool created;
2354 RAMBlock *block;
2355
2356 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2357 if (fd < 0) {
2358 return NULL;
2359 }
2360
cbfc0171 2361 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
38b3362d
MAL
2362 if (!block) {
2363 if (created) {
2364 unlink(mem_path);
2365 }
2366 close(fd);
2367 return NULL;
2368 }
2369
2370 return block;
e1c57ab8 2371}
0b183fc8 2372#endif
e1c57ab8 2373
62be4e3a 2374static
528f46af
FZ
2375RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2376 void (*resized)(const char*,
2377 uint64_t length,
2378 void *host),
06329cce 2379 void *host, bool resizeable, bool share,
528f46af 2380 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2381{
2382 RAMBlock *new_block;
ef701d7b 2383 Error *local_err = NULL;
e1c57ab8 2384
4ed023ce
DDAG
2385 size = HOST_PAGE_ALIGN(size);
2386 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2387 new_block = g_malloc0(sizeof(*new_block));
2388 new_block->mr = mr;
62be4e3a 2389 new_block->resized = resized;
9b8424d5
MT
2390 new_block->used_length = size;
2391 new_block->max_length = max_size;
62be4e3a 2392 assert(max_size >= size);
e1c57ab8 2393 new_block->fd = -1;
038adc2f 2394 new_block->page_size = qemu_real_host_page_size;
e1c57ab8
PB
2395 new_block->host = host;
2396 if (host) {
7bd4f430 2397 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2398 }
62be4e3a
MT
2399 if (resizeable) {
2400 new_block->flags |= RAM_RESIZEABLE;
2401 }
06329cce 2402 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2403 if (local_err) {
2404 g_free(new_block);
2405 error_propagate(errp, local_err);
528f46af 2406 return NULL;
ef701d7b 2407 }
528f46af 2408 return new_block;
e1c57ab8
PB
2409}
2410
528f46af 2411RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2412 MemoryRegion *mr, Error **errp)
2413{
06329cce
MA
2414 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2415 false, mr, errp);
62be4e3a
MT
2416}
2417
06329cce
MA
2418RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2419 MemoryRegion *mr, Error **errp)
6977dfe6 2420{
06329cce
MA
2421 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2422 share, mr, errp);
62be4e3a
MT
2423}
2424
528f46af 2425RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2426 void (*resized)(const char*,
2427 uint64_t length,
2428 void *host),
2429 MemoryRegion *mr, Error **errp)
2430{
06329cce
MA
2431 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2432 false, mr, errp);
6977dfe6
YT
2433}
2434
43771539
PB
2435static void reclaim_ramblock(RAMBlock *block)
2436{
2437 if (block->flags & RAM_PREALLOC) {
2438 ;
2439 } else if (xen_enabled()) {
2440 xen_invalidate_map_cache_entry(block->host);
2441#ifndef _WIN32
2442 } else if (block->fd >= 0) {
53adb9d4 2443 qemu_ram_munmap(block->fd, block->host, block->max_length);
43771539
PB
2444 close(block->fd);
2445#endif
2446 } else {
2447 qemu_anon_ram_free(block->host, block->max_length);
2448 }
2449 g_free(block);
2450}
2451
f1060c55 2452void qemu_ram_free(RAMBlock *block)
e9a1ab19 2453{
85bc2a15
MAL
2454 if (!block) {
2455 return;
2456 }
2457
0987d735
PB
2458 if (block->host) {
2459 ram_block_notify_remove(block->host, block->max_length);
2460 }
2461
b2a8658e 2462 qemu_mutex_lock_ramlist();
f1060c55
FZ
2463 QLIST_REMOVE_RCU(block, next);
2464 ram_list.mru_block = NULL;
2465 /* Write list before version */
2466 smp_wmb();
2467 ram_list.version++;
2468 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2469 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2470}
2471
cd19cfa2
HY
2472#ifndef _WIN32
2473void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2474{
2475 RAMBlock *block;
2476 ram_addr_t offset;
2477 int flags;
2478 void *area, *vaddr;
2479
99e15582 2480 RAMBLOCK_FOREACH(block) {
cd19cfa2 2481 offset = addr - block->offset;
9b8424d5 2482 if (offset < block->max_length) {
1240be24 2483 vaddr = ramblock_ptr(block, offset);
7bd4f430 2484 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2485 ;
dfeaf2ab
MA
2486 } else if (xen_enabled()) {
2487 abort();
cd19cfa2
HY
2488 } else {
2489 flags = MAP_FIXED;
3435f395 2490 if (block->fd >= 0) {
dbcb8981
PB
2491 flags |= (block->flags & RAM_SHARED ?
2492 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2493 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2494 flags, block->fd, offset);
cd19cfa2 2495 } else {
2eb9fbaa
MA
2496 /*
2497 * Remap needs to match alloc. Accelerators that
2498 * set phys_mem_alloc never remap. If they did,
2499 * we'd need a remap hook here.
2500 */
2501 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2502
cd19cfa2
HY
2503 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2504 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2505 flags, -1, 0);
cd19cfa2
HY
2506 }
2507 if (area != vaddr) {
493d89bf
AF
2508 error_report("Could not remap addr: "
2509 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2510 length, addr);
cd19cfa2
HY
2511 exit(1);
2512 }
8490fc78 2513 memory_try_enable_merging(vaddr, length);
ddb97f1d 2514 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2515 }
cd19cfa2
HY
2516 }
2517 }
2518}
2519#endif /* !_WIN32 */
2520
1b5ec234 2521/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2522 * This should not be used for general purpose DMA. Use address_space_map
2523 * or address_space_rw instead. For local memory (e.g. video ram) that the
2524 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2525 *
49b24afc 2526 * Called within RCU critical section.
1b5ec234 2527 */
0878d0e1 2528void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2529{
3655cb9c
GA
2530 RAMBlock *block = ram_block;
2531
2532 if (block == NULL) {
2533 block = qemu_get_ram_block(addr);
0878d0e1 2534 addr -= block->offset;
3655cb9c 2535 }
ae3a7047
MD
2536
2537 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2538 /* We need to check if the requested address is in the RAM
2539 * because we don't want to map the entire memory in QEMU.
2540 * In that case just map until the end of the page.
2541 */
2542 if (block->offset == 0) {
1ff7c598 2543 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2544 }
ae3a7047 2545
1ff7c598 2546 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2547 }
0878d0e1 2548 return ramblock_ptr(block, addr);
dc828ca1
PB
2549}
2550
0878d0e1 2551/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2552 * but takes a size argument.
0dc3f44a 2553 *
e81bcda5 2554 * Called within RCU critical section.
ae3a7047 2555 */
3655cb9c 2556static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2557 hwaddr *size, bool lock)
38bee5dc 2558{
3655cb9c 2559 RAMBlock *block = ram_block;
8ab934f9
SS
2560 if (*size == 0) {
2561 return NULL;
2562 }
e81bcda5 2563
3655cb9c
GA
2564 if (block == NULL) {
2565 block = qemu_get_ram_block(addr);
0878d0e1 2566 addr -= block->offset;
3655cb9c 2567 }
0878d0e1 2568 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2569
2570 if (xen_enabled() && block->host == NULL) {
2571 /* We need to check if the requested address is in the RAM
2572 * because we don't want to map the entire memory in QEMU.
2573 * In that case just map the requested area.
2574 */
2575 if (block->offset == 0) {
f5aa69bd 2576 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2577 }
2578
f5aa69bd 2579 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2580 }
e81bcda5 2581
0878d0e1 2582 return ramblock_ptr(block, addr);
38bee5dc
SS
2583}
2584
f90bb71b
DDAG
2585/* Return the offset of a hostpointer within a ramblock */
2586ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2587{
2588 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2589 assert((uintptr_t)host >= (uintptr_t)rb->host);
2590 assert(res < rb->max_length);
2591
2592 return res;
2593}
2594
422148d3
DDAG
2595/*
2596 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2597 * in that RAMBlock.
2598 *
2599 * ptr: Host pointer to look up
2600 * round_offset: If true round the result offset down to a page boundary
2601 * *ram_addr: set to result ram_addr
2602 * *offset: set to result offset within the RAMBlock
2603 *
2604 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2605 *
2606 * By the time this function returns, the returned pointer is not protected
2607 * by RCU anymore. If the caller is not within an RCU critical section and
2608 * does not hold the iothread lock, it must have other means of protecting the
2609 * pointer, such as a reference to the region that includes the incoming
2610 * ram_addr_t.
2611 */
422148d3 2612RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2613 ram_addr_t *offset)
5579c7f3 2614{
94a6b54f
PB
2615 RAMBlock *block;
2616 uint8_t *host = ptr;
2617
868bb33f 2618 if (xen_enabled()) {
f615f396 2619 ram_addr_t ram_addr;
694ea274 2620 RCU_READ_LOCK_GUARD();
f615f396
PB
2621 ram_addr = xen_ram_addr_from_mapcache(ptr);
2622 block = qemu_get_ram_block(ram_addr);
422148d3 2623 if (block) {
d6b6aec4 2624 *offset = ram_addr - block->offset;
422148d3 2625 }
422148d3 2626 return block;
712c2b41
SS
2627 }
2628
694ea274 2629 RCU_READ_LOCK_GUARD();
0dc3f44a 2630 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2631 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2632 goto found;
2633 }
2634
99e15582 2635 RAMBLOCK_FOREACH(block) {
432d268c
JN
2636 /* This case append when the block is not mapped. */
2637 if (block->host == NULL) {
2638 continue;
2639 }
9b8424d5 2640 if (host - block->host < block->max_length) {
23887b79 2641 goto found;
f471a17e 2642 }
94a6b54f 2643 }
432d268c 2644
1b5ec234 2645 return NULL;
23887b79
PB
2646
2647found:
422148d3
DDAG
2648 *offset = (host - block->host);
2649 if (round_offset) {
2650 *offset &= TARGET_PAGE_MASK;
2651 }
422148d3
DDAG
2652 return block;
2653}
2654
e3dd7493
DDAG
2655/*
2656 * Finds the named RAMBlock
2657 *
2658 * name: The name of RAMBlock to find
2659 *
2660 * Returns: RAMBlock (or NULL if not found)
2661 */
2662RAMBlock *qemu_ram_block_by_name(const char *name)
2663{
2664 RAMBlock *block;
2665
99e15582 2666 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2667 if (!strcmp(name, block->idstr)) {
2668 return block;
2669 }
2670 }
2671
2672 return NULL;
2673}
2674
422148d3
DDAG
2675/* Some of the softmmu routines need to translate from a host pointer
2676 (typically a TLB entry) back to a ram offset. */
07bdaa41 2677ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2678{
2679 RAMBlock *block;
f615f396 2680 ram_addr_t offset;
422148d3 2681
f615f396 2682 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2683 if (!block) {
07bdaa41 2684 return RAM_ADDR_INVALID;
422148d3
DDAG
2685 }
2686
07bdaa41 2687 return block->offset + offset;
e890261f 2688}
f471a17e 2689
0f459d16 2690/* Generate a debug exception if a watchpoint has been hit. */
0026348b
DH
2691void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
2692 MemTxAttrs attrs, int flags, uintptr_t ra)
0f459d16 2693{
568496c0 2694 CPUClass *cc = CPU_GET_CLASS(cpu);
a1d1bb31 2695 CPUWatchpoint *wp;
0f459d16 2696
5aa1ef71 2697 assert(tcg_enabled());
ff4700b0 2698 if (cpu->watchpoint_hit) {
50b107c5
RH
2699 /*
2700 * We re-entered the check after replacing the TB.
2701 * Now raise the debug interrupt so that it will
2702 * trigger after the current instruction.
2703 */
2704 qemu_mutex_lock_iothread();
93afeade 2705 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
50b107c5 2706 qemu_mutex_unlock_iothread();
06d55cc1
AL
2707 return;
2708 }
0026348b
DH
2709
2710 addr = cc->adjust_watchpoint_address(cpu, addr, len);
ff4700b0 2711 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
56ad8b00 2712 if (watchpoint_address_matches(wp, addr, len)
05068c0d 2713 && (wp->flags & flags)) {
08225676
PM
2714 if (flags == BP_MEM_READ) {
2715 wp->flags |= BP_WATCHPOINT_HIT_READ;
2716 } else {
2717 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2718 }
0026348b 2719 wp->hitaddr = MAX(addr, wp->vaddr);
66b9b43c 2720 wp->hitattrs = attrs;
ff4700b0 2721 if (!cpu->watchpoint_hit) {
568496c0
SF
2722 if (wp->flags & BP_CPU &&
2723 !cc->debug_check_watchpoint(cpu, wp)) {
2724 wp->flags &= ~BP_WATCHPOINT_HIT;
2725 continue;
2726 }
ff4700b0 2727 cpu->watchpoint_hit = wp;
a5e99826 2728
0ac20318 2729 mmap_lock();
ae57db63 2730 tb_check_watchpoint(cpu, ra);
6e140f28 2731 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2732 cpu->exception_index = EXCP_DEBUG;
0ac20318 2733 mmap_unlock();
0026348b 2734 cpu_loop_exit_restore(cpu, ra);
6e140f28 2735 } else {
9b990ee5
RH
2736 /* Force execution of one insn next time. */
2737 cpu->cflags_next_tb = 1 | curr_cflags();
0ac20318 2738 mmap_unlock();
0026348b
DH
2739 if (ra) {
2740 cpu_restore_state(cpu, ra, true);
2741 }
6886b980 2742 cpu_loop_exit_noexc(cpu);
6e140f28 2743 }
06d55cc1 2744 }
6e140f28
AL
2745 } else {
2746 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2747 }
2748 }
2749}
2750
b2a44fca 2751static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
a152be43 2752 MemTxAttrs attrs, void *buf, hwaddr len);
16620684 2753static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
a152be43 2754 const void *buf, hwaddr len);
0c249ff7 2755static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 2756 bool is_write, MemTxAttrs attrs);
16620684 2757
f25a49e0
PM
2758static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2759 unsigned len, MemTxAttrs attrs)
db7b5426 2760{
acc9d80b 2761 subpage_t *subpage = opaque;
ff6cff75 2762 uint8_t buf[8];
5c9eb028 2763 MemTxResult res;
791af8c8 2764
db7b5426 2765#if defined(DEBUG_SUBPAGE)
016e9d62 2766 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2767 subpage, len, addr);
db7b5426 2768#endif
16620684 2769 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2770 if (res) {
2771 return res;
f25a49e0 2772 }
6d3ede54
PM
2773 *data = ldn_p(buf, len);
2774 return MEMTX_OK;
db7b5426
BS
2775}
2776
f25a49e0
PM
2777static MemTxResult subpage_write(void *opaque, hwaddr addr,
2778 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2779{
acc9d80b 2780 subpage_t *subpage = opaque;
ff6cff75 2781 uint8_t buf[8];
acc9d80b 2782
db7b5426 2783#if defined(DEBUG_SUBPAGE)
016e9d62 2784 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2785 " value %"PRIx64"\n",
2786 __func__, subpage, len, addr, value);
db7b5426 2787#endif
6d3ede54 2788 stn_p(buf, len, value);
16620684 2789 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2790}
2791
c353e4cc 2792static bool subpage_accepts(void *opaque, hwaddr addr,
8372d383
PM
2793 unsigned len, bool is_write,
2794 MemTxAttrs attrs)
c353e4cc 2795{
acc9d80b 2796 subpage_t *subpage = opaque;
c353e4cc 2797#if defined(DEBUG_SUBPAGE)
016e9d62 2798 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2799 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2800#endif
2801
16620684 2802 return flatview_access_valid(subpage->fv, addr + subpage->base,
eace72b7 2803 len, is_write, attrs);
c353e4cc
PB
2804}
2805
70c68e44 2806static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2807 .read_with_attrs = subpage_read,
2808 .write_with_attrs = subpage_write,
ff6cff75
PB
2809 .impl.min_access_size = 1,
2810 .impl.max_access_size = 8,
2811 .valid.min_access_size = 1,
2812 .valid.max_access_size = 8,
c353e4cc 2813 .valid.accepts = subpage_accepts,
70c68e44 2814 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2815};
2816
b797ab1a
WY
2817static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2818 uint16_t section)
db7b5426
BS
2819{
2820 int idx, eidx;
2821
2822 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2823 return -1;
2824 idx = SUBPAGE_IDX(start);
2825 eidx = SUBPAGE_IDX(end);
2826#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2827 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2828 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2829#endif
db7b5426 2830 for (; idx <= eidx; idx++) {
5312bd8b 2831 mmio->sub_section[idx] = section;
db7b5426
BS
2832 }
2833
2834 return 0;
2835}
2836
16620684 2837static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 2838{
c227f099 2839 subpage_t *mmio;
db7b5426 2840
b797ab1a 2841 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2615fabd 2842 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 2843 mmio->fv = fv;
1eec614b 2844 mmio->base = base;
2c9b15ca 2845 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2846 NULL, TARGET_PAGE_SIZE);
b3b00c78 2847 mmio->iomem.subpage = true;
db7b5426 2848#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2849 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2850 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2851#endif
db7b5426
BS
2852
2853 return mmio;
2854}
2855
16620684 2856static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 2857{
16620684 2858 assert(fv);
5312bd8b 2859 MemoryRegionSection section = {
16620684 2860 .fv = fv,
5312bd8b
AK
2861 .mr = mr,
2862 .offset_within_address_space = 0,
2863 .offset_within_region = 0,
052e87b0 2864 .size = int128_2_64(),
5312bd8b
AK
2865 };
2866
53cb28cb 2867 return phys_section_add(map, &section);
5312bd8b
AK
2868}
2869
2d54f194
PM
2870MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2871 hwaddr index, MemTxAttrs attrs)
aa102231 2872{
a54c87b6
PM
2873 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2874 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2875 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2876 MemoryRegionSection *sections = d->map.sections;
9d82b5a7 2877
2d54f194 2878 return &sections[index & ~TARGET_PAGE_MASK];
aa102231
AK
2879}
2880
e9179ce1
AK
2881static void io_mem_init(void)
2882{
2c9b15ca 2883 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2884 NULL, UINT64_MAX);
e9179ce1
AK
2885}
2886
8629d3fc 2887AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 2888{
53cb28cb
MA
2889 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2890 uint16_t n;
2891
16620684 2892 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 2893 assert(n == PHYS_SECTION_UNASSIGNED);
00752703 2894
9736e55b 2895 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
2896
2897 return d;
00752703
PB
2898}
2899
66a6df1d 2900void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
2901{
2902 phys_sections_free(&d->map);
2903 g_free(d);
2904}
2905
9458a9a1
PB
2906static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2907{
2908}
2909
2910static void tcg_log_global_after_sync(MemoryListener *listener)
2911{
2912 CPUAddressSpace *cpuas;
2913
2914 /* Wait for the CPU to end the current TB. This avoids the following
2915 * incorrect race:
2916 *
2917 * vCPU migration
2918 * ---------------------- -------------------------
2919 * TLB check -> slow path
2920 * notdirty_mem_write
2921 * write to RAM
2922 * mark dirty
2923 * clear dirty flag
2924 * TLB check -> fast path
2925 * read memory
2926 * write to RAM
2927 *
2928 * by pushing the migration thread's memory read after the vCPU thread has
2929 * written the memory.
2930 */
86cf9e15
PD
2931 if (replay_mode == REPLAY_MODE_NONE) {
2932 /*
2933 * VGA can make calls to this function while updating the screen.
2934 * In record/replay mode this causes a deadlock, because
2935 * run_on_cpu waits for rr mutex. Therefore no races are possible
2936 * in this case and no need for making run_on_cpu when
2937 * record/replay is not enabled.
2938 */
2939 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2940 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2941 }
9458a9a1
PB
2942}
2943
1d71148e 2944static void tcg_commit(MemoryListener *listener)
50c1e149 2945{
32857f4d
PM
2946 CPUAddressSpace *cpuas;
2947 AddressSpaceDispatch *d;
117712c3 2948
f28d0dfd 2949 assert(tcg_enabled());
117712c3
AK
2950 /* since each CPU stores ram addresses in its TLB cache, we must
2951 reset the modified entries */
32857f4d
PM
2952 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2953 cpu_reloading_memory_map();
2954 /* The CPU and TLB are protected by the iothread lock.
2955 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2956 * may have split the RCU critical section.
2957 */
66a6df1d 2958 d = address_space_to_dispatch(cpuas->as);
f35e44e7 2959 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2960 tlb_flush(cpuas->cpu);
50c1e149
AK
2961}
2962
62152b8a
AK
2963static void memory_map_init(void)
2964{
7267c094 2965 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2966
57271d63 2967 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2968 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2969
7267c094 2970 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2971 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2972 65536);
7dca8043 2973 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2974}
2975
2976MemoryRegion *get_system_memory(void)
2977{
2978 return system_memory;
2979}
2980
309cb471
AK
2981MemoryRegion *get_system_io(void)
2982{
2983 return system_io;
2984}
2985
e2eef170
PB
2986#endif /* !defined(CONFIG_USER_ONLY) */
2987
13eb76e0
FB
2988/* physical memory access (slow version, mainly for debug) */
2989#if defined(CONFIG_USER_ONLY)
f17ec444 2990int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
28c80bfe 2991 void *ptr, target_ulong len, bool is_write)
13eb76e0 2992{
0c249ff7
LZ
2993 int flags;
2994 target_ulong l, page;
53a5960a 2995 void * p;
d7ef71ef 2996 uint8_t *buf = ptr;
13eb76e0
FB
2997
2998 while (len > 0) {
2999 page = addr & TARGET_PAGE_MASK;
3000 l = (page + TARGET_PAGE_SIZE) - addr;
3001 if (l > len)
3002 l = len;
3003 flags = page_get_flags(page);
3004 if (!(flags & PAGE_VALID))
a68fe89c 3005 return -1;
13eb76e0
FB
3006 if (is_write) {
3007 if (!(flags & PAGE_WRITE))
a68fe89c 3008 return -1;
579a97f7 3009 /* XXX: this code should not depend on lock_user */
72fb7daa 3010 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3011 return -1;
72fb7daa
AJ
3012 memcpy(p, buf, l);
3013 unlock_user(p, addr, l);
13eb76e0
FB
3014 } else {
3015 if (!(flags & PAGE_READ))
a68fe89c 3016 return -1;
579a97f7 3017 /* XXX: this code should not depend on lock_user */
72fb7daa 3018 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3019 return -1;
72fb7daa 3020 memcpy(buf, p, l);
5b257578 3021 unlock_user(p, addr, 0);
13eb76e0
FB
3022 }
3023 len -= l;
3024 buf += l;
3025 addr += l;
3026 }
a68fe89c 3027 return 0;
13eb76e0 3028}
8df1cd07 3029
13eb76e0 3030#else
51d7a9eb 3031
845b6214 3032static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 3033 hwaddr length)
51d7a9eb 3034{
e87f7778 3035 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
3036 addr += memory_region_get_ram_addr(mr);
3037
e87f7778
PB
3038 /* No early return if dirty_log_mask is or becomes 0, because
3039 * cpu_physical_memory_set_dirty_range will still call
3040 * xen_modified_memory.
3041 */
3042 if (dirty_log_mask) {
3043 dirty_log_mask =
3044 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3045 }
3046 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 3047 assert(tcg_enabled());
e87f7778
PB
3048 tb_invalidate_phys_range(addr, addr + length);
3049 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 3050 }
e87f7778 3051 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
3052}
3053
047be4ed
SH
3054void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3055{
3056 /*
3057 * In principle this function would work on other memory region types too,
3058 * but the ROM device use case is the only one where this operation is
3059 * necessary. Other memory regions should use the
3060 * address_space_read/write() APIs.
3061 */
3062 assert(memory_region_is_romd(mr));
3063
3064 invalidate_and_set_dirty(mr, addr, size);
3065}
3066
23326164 3067static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 3068{
e1622f4b 3069 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
3070
3071 /* Regions are assumed to support 1-4 byte accesses unless
3072 otherwise specified. */
23326164
RH
3073 if (access_size_max == 0) {
3074 access_size_max = 4;
3075 }
3076
3077 /* Bound the maximum access by the alignment of the address. */
3078 if (!mr->ops->impl.unaligned) {
3079 unsigned align_size_max = addr & -addr;
3080 if (align_size_max != 0 && align_size_max < access_size_max) {
3081 access_size_max = align_size_max;
3082 }
82f2563f 3083 }
23326164
RH
3084
3085 /* Don't attempt accesses larger than the maximum. */
3086 if (l > access_size_max) {
3087 l = access_size_max;
82f2563f 3088 }
6554f5c0 3089 l = pow2floor(l);
23326164
RH
3090
3091 return l;
82f2563f
PB
3092}
3093
4840f10e 3094static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 3095{
4840f10e
JK
3096 bool unlocked = !qemu_mutex_iothread_locked();
3097 bool release_lock = false;
3098
3099 if (unlocked && mr->global_locking) {
3100 qemu_mutex_lock_iothread();
3101 unlocked = false;
3102 release_lock = true;
3103 }
125b3806 3104 if (mr->flush_coalesced_mmio) {
4840f10e
JK
3105 if (unlocked) {
3106 qemu_mutex_lock_iothread();
3107 }
125b3806 3108 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
3109 if (unlocked) {
3110 qemu_mutex_unlock_iothread();
3111 }
125b3806 3112 }
4840f10e
JK
3113
3114 return release_lock;
125b3806
PB
3115}
3116
a203ac70 3117/* Called within RCU critical section. */
16620684
AK
3118static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3119 MemTxAttrs attrs,
a152be43 3120 const void *ptr,
0c249ff7 3121 hwaddr len, hwaddr addr1,
16620684 3122 hwaddr l, MemoryRegion *mr)
13eb76e0 3123{
20804676 3124 uint8_t *ram_ptr;
791af8c8 3125 uint64_t val;
3b643495 3126 MemTxResult result = MEMTX_OK;
4840f10e 3127 bool release_lock = false;
a152be43 3128 const uint8_t *buf = ptr;
3b46e624 3129
a203ac70 3130 for (;;) {
eb7eeb88
PB
3131 if (!memory_access_is_direct(mr, true)) {
3132 release_lock |= prepare_mmio_access(mr);
3133 l = memory_access_size(mr, l, addr1);
3134 /* XXX: could force current_cpu to NULL to avoid
3135 potential bugs */
9bf825bf 3136 val = ldn_he_p(buf, l);
3d9e7c3e 3137 result |= memory_region_dispatch_write(mr, addr1, val,
9bf825bf 3138 size_memop(l), attrs);
13eb76e0 3139 } else {
eb7eeb88 3140 /* RAM case */
20804676
PMD
3141 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3142 memcpy(ram_ptr, buf, l);
eb7eeb88 3143 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 3144 }
4840f10e
JK
3145
3146 if (release_lock) {
3147 qemu_mutex_unlock_iothread();
3148 release_lock = false;
3149 }
3150
13eb76e0
FB
3151 len -= l;
3152 buf += l;
3153 addr += l;
a203ac70
PB
3154
3155 if (!len) {
3156 break;
3157 }
3158
3159 l = len;
efa99a2f 3160 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
13eb76e0 3161 }
fd8aaa76 3162
3b643495 3163 return result;
13eb76e0 3164}
8df1cd07 3165
4c6ebbb3 3166/* Called from RCU critical section. */
16620684 3167static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
a152be43 3168 const void *buf, hwaddr len)
ac1970fb 3169{
eb7eeb88 3170 hwaddr l;
eb7eeb88
PB
3171 hwaddr addr1;
3172 MemoryRegion *mr;
3173 MemTxResult result = MEMTX_OK;
eb7eeb88 3174
4c6ebbb3 3175 l = len;
efa99a2f 3176 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
4c6ebbb3
PB
3177 result = flatview_write_continue(fv, addr, attrs, buf, len,
3178 addr1, l, mr);
a203ac70
PB
3179
3180 return result;
3181}
3182
3183/* Called within RCU critical section. */
16620684 3184MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
a152be43 3185 MemTxAttrs attrs, void *ptr,
0c249ff7 3186 hwaddr len, hwaddr addr1, hwaddr l,
16620684 3187 MemoryRegion *mr)
a203ac70 3188{
20804676 3189 uint8_t *ram_ptr;
a203ac70
PB
3190 uint64_t val;
3191 MemTxResult result = MEMTX_OK;
3192 bool release_lock = false;
a152be43 3193 uint8_t *buf = ptr;
eb7eeb88 3194
a203ac70 3195 for (;;) {
eb7eeb88
PB
3196 if (!memory_access_is_direct(mr, false)) {
3197 /* I/O case */
3198 release_lock |= prepare_mmio_access(mr);
3199 l = memory_access_size(mr, l, addr1);
3d9e7c3e 3200 result |= memory_region_dispatch_read(mr, addr1, &val,
9bf825bf
TN
3201 size_memop(l), attrs);
3202 stn_he_p(buf, l, val);
eb7eeb88
PB
3203 } else {
3204 /* RAM case */
20804676
PMD
3205 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3206 memcpy(buf, ram_ptr, l);
eb7eeb88
PB
3207 }
3208
3209 if (release_lock) {
3210 qemu_mutex_unlock_iothread();
3211 release_lock = false;
3212 }
3213
3214 len -= l;
3215 buf += l;
3216 addr += l;
a203ac70
PB
3217
3218 if (!len) {
3219 break;
3220 }
3221
3222 l = len;
efa99a2f 3223 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
a203ac70
PB
3224 }
3225
3226 return result;
3227}
3228
b2a44fca
PB
3229/* Called from RCU critical section. */
3230static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
a152be43 3231 MemTxAttrs attrs, void *buf, hwaddr len)
a203ac70
PB
3232{
3233 hwaddr l;
3234 hwaddr addr1;
3235 MemoryRegion *mr;
eb7eeb88 3236
b2a44fca 3237 l = len;
efa99a2f 3238 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
b2a44fca
PB
3239 return flatview_read_continue(fv, addr, attrs, buf, len,
3240 addr1, l, mr);
ac1970fb
AK
3241}
3242
b2a44fca 3243MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
daa3dda4 3244 MemTxAttrs attrs, void *buf, hwaddr len)
b2a44fca
PB
3245{
3246 MemTxResult result = MEMTX_OK;
3247 FlatView *fv;
3248
3249 if (len > 0) {
694ea274 3250 RCU_READ_LOCK_GUARD();
b2a44fca
PB
3251 fv = address_space_to_flatview(as);
3252 result = flatview_read(fv, addr, attrs, buf, len);
b2a44fca
PB
3253 }
3254
3255 return result;
3256}
3257
4c6ebbb3
PB
3258MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3259 MemTxAttrs attrs,
daa3dda4 3260 const void *buf, hwaddr len)
4c6ebbb3
PB
3261{
3262 MemTxResult result = MEMTX_OK;
3263 FlatView *fv;
3264
3265 if (len > 0) {
694ea274 3266 RCU_READ_LOCK_GUARD();
4c6ebbb3
PB
3267 fv = address_space_to_flatview(as);
3268 result = flatview_write(fv, addr, attrs, buf, len);
4c6ebbb3
PB
3269 }
3270
3271 return result;
3272}
3273
db84fd97 3274MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
daa3dda4 3275 void *buf, hwaddr len, bool is_write)
db84fd97
PB
3276{
3277 if (is_write) {
3278 return address_space_write(as, addr, attrs, buf, len);
3279 } else {
3280 return address_space_read_full(as, addr, attrs, buf, len);
3281 }
3282}
3283
d7ef71ef 3284void cpu_physical_memory_rw(hwaddr addr, void *buf,
28c80bfe 3285 hwaddr len, bool is_write)
ac1970fb 3286{
5c9eb028
PM
3287 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3288 buf, len, is_write);
ac1970fb
AK
3289}
3290
582b55a9
AG
3291enum write_rom_type {
3292 WRITE_DATA,
3293 FLUSH_CACHE,
3294};
3295
75693e14
PM
3296static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3297 hwaddr addr,
3298 MemTxAttrs attrs,
daa3dda4 3299 const void *ptr,
0c249ff7 3300 hwaddr len,
75693e14 3301 enum write_rom_type type)
d0ecd2aa 3302{
149f54b5 3303 hwaddr l;
20804676 3304 uint8_t *ram_ptr;
149f54b5 3305 hwaddr addr1;
5c8a00ce 3306 MemoryRegion *mr;
daa3dda4 3307 const uint8_t *buf = ptr;
3b46e624 3308
694ea274 3309 RCU_READ_LOCK_GUARD();
d0ecd2aa 3310 while (len > 0) {
149f54b5 3311 l = len;
75693e14 3312 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3b46e624 3313
5c8a00ce
PB
3314 if (!(memory_region_is_ram(mr) ||
3315 memory_region_is_romd(mr))) {
b242e0e0 3316 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3317 } else {
d0ecd2aa 3318 /* ROM/RAM case */
20804676 3319 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3320 switch (type) {
3321 case WRITE_DATA:
20804676 3322 memcpy(ram_ptr, buf, l);
845b6214 3323 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3324 break;
3325 case FLUSH_CACHE:
20804676 3326 flush_icache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr + l);
582b55a9
AG
3327 break;
3328 }
d0ecd2aa
FB
3329 }
3330 len -= l;
3331 buf += l;
3332 addr += l;
3333 }
75693e14 3334 return MEMTX_OK;
d0ecd2aa
FB
3335}
3336
582b55a9 3337/* used for ROM loading : can write in RAM and ROM */
3c8133f9
PM
3338MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3339 MemTxAttrs attrs,
daa3dda4 3340 const void *buf, hwaddr len)
582b55a9 3341{
3c8133f9
PM
3342 return address_space_write_rom_internal(as, addr, attrs,
3343 buf, len, WRITE_DATA);
582b55a9
AG
3344}
3345
0c249ff7 3346void cpu_flush_icache_range(hwaddr start, hwaddr len)
582b55a9
AG
3347{
3348 /*
3349 * This function should do the same thing as an icache flush that was
3350 * triggered from within the guest. For TCG we are always cache coherent,
3351 * so there is no need to flush anything. For KVM / Xen we need to flush
3352 * the host's instruction cache at least.
3353 */
3354 if (tcg_enabled()) {
3355 return;
3356 }
3357
75693e14
PM
3358 address_space_write_rom_internal(&address_space_memory,
3359 start, MEMTXATTRS_UNSPECIFIED,
3360 NULL, len, FLUSH_CACHE);
582b55a9
AG
3361}
3362
6d16c2f8 3363typedef struct {
d3e71559 3364 MemoryRegion *mr;
6d16c2f8 3365 void *buffer;
a8170e5e
AK
3366 hwaddr addr;
3367 hwaddr len;
c2cba0ff 3368 bool in_use;
6d16c2f8
AL
3369} BounceBuffer;
3370
3371static BounceBuffer bounce;
3372
ba223c29 3373typedef struct MapClient {
e95205e1 3374 QEMUBH *bh;
72cf2d4f 3375 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3376} MapClient;
3377
38e047b5 3378QemuMutex map_client_list_lock;
b58deb34 3379static QLIST_HEAD(, MapClient) map_client_list
72cf2d4f 3380 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3381
e95205e1
FZ
3382static void cpu_unregister_map_client_do(MapClient *client)
3383{
3384 QLIST_REMOVE(client, link);
3385 g_free(client);
3386}
3387
33b6c2ed
FZ
3388static void cpu_notify_map_clients_locked(void)
3389{
3390 MapClient *client;
3391
3392 while (!QLIST_EMPTY(&map_client_list)) {
3393 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3394 qemu_bh_schedule(client->bh);
3395 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3396 }
3397}
3398
e95205e1 3399void cpu_register_map_client(QEMUBH *bh)
ba223c29 3400{
7267c094 3401 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3402
38e047b5 3403 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3404 client->bh = bh;
72cf2d4f 3405 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3406 if (!atomic_read(&bounce.in_use)) {
3407 cpu_notify_map_clients_locked();
3408 }
38e047b5 3409 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3410}
3411
38e047b5 3412void cpu_exec_init_all(void)
ba223c29 3413{
38e047b5 3414 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3415 /* The data structures we set up here depend on knowing the page size,
3416 * so no more changes can be made after this point.
3417 * In an ideal world, nothing we did before we had finished the
3418 * machine setup would care about the target page size, and we could
3419 * do this much later, rather than requiring board models to state
3420 * up front what their requirements are.
3421 */
3422 finalize_target_page_bits();
38e047b5 3423 io_mem_init();
680a4783 3424 memory_map_init();
38e047b5 3425 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3426}
3427
e95205e1 3428void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3429{
3430 MapClient *client;
3431
e95205e1
FZ
3432 qemu_mutex_lock(&map_client_list_lock);
3433 QLIST_FOREACH(client, &map_client_list, link) {
3434 if (client->bh == bh) {
3435 cpu_unregister_map_client_do(client);
3436 break;
3437 }
ba223c29 3438 }
e95205e1 3439 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3440}
3441
3442static void cpu_notify_map_clients(void)
3443{
38e047b5 3444 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3445 cpu_notify_map_clients_locked();
38e047b5 3446 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3447}
3448
0c249ff7 3449static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 3450 bool is_write, MemTxAttrs attrs)
51644ab7 3451{
5c8a00ce 3452 MemoryRegion *mr;
51644ab7
PB
3453 hwaddr l, xlat;
3454
3455 while (len > 0) {
3456 l = len;
efa99a2f 3457 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
5c8a00ce
PB
3458 if (!memory_access_is_direct(mr, is_write)) {
3459 l = memory_access_size(mr, l, addr);
eace72b7 3460 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
51644ab7
PB
3461 return false;
3462 }
3463 }
3464
3465 len -= l;
3466 addr += l;
3467 }
3468 return true;
3469}
3470
16620684 3471bool address_space_access_valid(AddressSpace *as, hwaddr addr,
0c249ff7 3472 hwaddr len, bool is_write,
fddffa42 3473 MemTxAttrs attrs)
16620684 3474{
11e732a5
PB
3475 FlatView *fv;
3476 bool result;
3477
694ea274 3478 RCU_READ_LOCK_GUARD();
11e732a5 3479 fv = address_space_to_flatview(as);
eace72b7 3480 result = flatview_access_valid(fv, addr, len, is_write, attrs);
11e732a5 3481 return result;
16620684
AK
3482}
3483
715c31ec 3484static hwaddr
16620684 3485flatview_extend_translation(FlatView *fv, hwaddr addr,
53d0790d
PM
3486 hwaddr target_len,
3487 MemoryRegion *mr, hwaddr base, hwaddr len,
3488 bool is_write, MemTxAttrs attrs)
715c31ec
PB
3489{
3490 hwaddr done = 0;
3491 hwaddr xlat;
3492 MemoryRegion *this_mr;
3493
3494 for (;;) {
3495 target_len -= len;
3496 addr += len;
3497 done += len;
3498 if (target_len == 0) {
3499 return done;
3500 }
3501
3502 len = target_len;
16620684 3503 this_mr = flatview_translate(fv, addr, &xlat,
efa99a2f 3504 &len, is_write, attrs);
715c31ec
PB
3505 if (this_mr != mr || xlat != base + done) {
3506 return done;
3507 }
3508 }
3509}
3510
6d16c2f8
AL
3511/* Map a physical memory region into a host virtual address.
3512 * May map a subset of the requested range, given by and returned in *plen.
3513 * May return NULL if resources needed to perform the mapping are exhausted.
3514 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3515 * Use cpu_register_map_client() to know when retrying the map operation is
3516 * likely to succeed.
6d16c2f8 3517 */
ac1970fb 3518void *address_space_map(AddressSpace *as,
a8170e5e
AK
3519 hwaddr addr,
3520 hwaddr *plen,
f26404fb
PM
3521 bool is_write,
3522 MemTxAttrs attrs)
6d16c2f8 3523{
a8170e5e 3524 hwaddr len = *plen;
715c31ec
PB
3525 hwaddr l, xlat;
3526 MemoryRegion *mr;
e81bcda5 3527 void *ptr;
ad0c60fa 3528 FlatView *fv;
6d16c2f8 3529
e3127ae0
PB
3530 if (len == 0) {
3531 return NULL;
3532 }
38bee5dc 3533
e3127ae0 3534 l = len;
694ea274 3535 RCU_READ_LOCK_GUARD();
ad0c60fa 3536 fv = address_space_to_flatview(as);
efa99a2f 3537 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
41063e1e 3538
e3127ae0 3539 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3540 if (atomic_xchg(&bounce.in_use, true)) {
e3127ae0 3541 return NULL;
6d16c2f8 3542 }
e85d9db5
KW
3543 /* Avoid unbounded allocations */
3544 l = MIN(l, TARGET_PAGE_SIZE);
3545 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3546 bounce.addr = addr;
3547 bounce.len = l;
d3e71559
PB
3548
3549 memory_region_ref(mr);
3550 bounce.mr = mr;
e3127ae0 3551 if (!is_write) {
16620684 3552 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3553 bounce.buffer, l);
8ab934f9 3554 }
6d16c2f8 3555
e3127ae0
PB
3556 *plen = l;
3557 return bounce.buffer;
3558 }
3559
e3127ae0 3560
d3e71559 3561 memory_region_ref(mr);
16620684 3562 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
53d0790d 3563 l, is_write, attrs);
f5aa69bd 3564 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3565
3566 return ptr;
6d16c2f8
AL
3567}
3568
ac1970fb 3569/* Unmaps a memory region previously mapped by address_space_map().
ae5883ab 3570 * Will also mark the memory as dirty if is_write is true. access_len gives
6d16c2f8
AL
3571 * the amount of memory that was actually read or written by the caller.
3572 */
a8170e5e 3573void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
ae5883ab 3574 bool is_write, hwaddr access_len)
6d16c2f8
AL
3575{
3576 if (buffer != bounce.buffer) {
d3e71559
PB
3577 MemoryRegion *mr;
3578 ram_addr_t addr1;
3579
07bdaa41 3580 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3581 assert(mr != NULL);
6d16c2f8 3582 if (is_write) {
845b6214 3583 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3584 }
868bb33f 3585 if (xen_enabled()) {
e41d7c69 3586 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3587 }
d3e71559 3588 memory_region_unref(mr);
6d16c2f8
AL
3589 return;
3590 }
3591 if (is_write) {
5c9eb028
PM
3592 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3593 bounce.buffer, access_len);
6d16c2f8 3594 }
f8a83245 3595 qemu_vfree(bounce.buffer);
6d16c2f8 3596 bounce.buffer = NULL;
d3e71559 3597 memory_region_unref(bounce.mr);
c2cba0ff 3598 atomic_mb_set(&bounce.in_use, false);
ba223c29 3599 cpu_notify_map_clients();
6d16c2f8 3600}
d0ecd2aa 3601
a8170e5e
AK
3602void *cpu_physical_memory_map(hwaddr addr,
3603 hwaddr *plen,
28c80bfe 3604 bool is_write)
ac1970fb 3605{
f26404fb
PM
3606 return address_space_map(&address_space_memory, addr, plen, is_write,
3607 MEMTXATTRS_UNSPECIFIED);
ac1970fb
AK
3608}
3609
a8170e5e 3610void cpu_physical_memory_unmap(void *buffer, hwaddr len,
28c80bfe 3611 bool is_write, hwaddr access_len)
ac1970fb
AK
3612{
3613 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3614}
3615
0ce265ff
PB
3616#define ARG1_DECL AddressSpace *as
3617#define ARG1 as
3618#define SUFFIX
3619#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
0ce265ff
PB
3620#define RCU_READ_LOCK(...) rcu_read_lock()
3621#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3622#include "memory_ldst.inc.c"
1e78bcc1 3623
1f4e496e
PB
3624int64_t address_space_cache_init(MemoryRegionCache *cache,
3625 AddressSpace *as,
3626 hwaddr addr,
3627 hwaddr len,
3628 bool is_write)
3629{
48564041
PB
3630 AddressSpaceDispatch *d;
3631 hwaddr l;
3632 MemoryRegion *mr;
3633
3634 assert(len > 0);
3635
3636 l = len;
3637 cache->fv = address_space_get_flatview(as);
3638 d = flatview_to_dispatch(cache->fv);
3639 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3640
3641 mr = cache->mrs.mr;
3642 memory_region_ref(mr);
3643 if (memory_access_is_direct(mr, is_write)) {
53d0790d
PM
3644 /* We don't care about the memory attributes here as we're only
3645 * doing this if we found actual RAM, which behaves the same
3646 * regardless of attributes; so UNSPECIFIED is fine.
3647 */
48564041 3648 l = flatview_extend_translation(cache->fv, addr, len, mr,
53d0790d
PM
3649 cache->xlat, l, is_write,
3650 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3651 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3652 } else {
3653 cache->ptr = NULL;
3654 }
3655
3656 cache->len = l;
3657 cache->is_write = is_write;
3658 return l;
1f4e496e
PB
3659}
3660
3661void address_space_cache_invalidate(MemoryRegionCache *cache,
3662 hwaddr addr,
3663 hwaddr access_len)
3664{
48564041
PB
3665 assert(cache->is_write);
3666 if (likely(cache->ptr)) {
3667 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3668 }
1f4e496e
PB
3669}
3670
3671void address_space_cache_destroy(MemoryRegionCache *cache)
3672{
48564041
PB
3673 if (!cache->mrs.mr) {
3674 return;
3675 }
3676
3677 if (xen_enabled()) {
3678 xen_invalidate_map_cache_entry(cache->ptr);
3679 }
3680 memory_region_unref(cache->mrs.mr);
3681 flatview_unref(cache->fv);
3682 cache->mrs.mr = NULL;
3683 cache->fv = NULL;
3684}
3685
3686/* Called from RCU critical section. This function has the same
3687 * semantics as address_space_translate, but it only works on a
3688 * predefined range of a MemoryRegion that was mapped with
3689 * address_space_cache_init.
3690 */
3691static inline MemoryRegion *address_space_translate_cached(
3692 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
bc6b1cec 3693 hwaddr *plen, bool is_write, MemTxAttrs attrs)
48564041
PB
3694{
3695 MemoryRegionSection section;
3696 MemoryRegion *mr;
3697 IOMMUMemoryRegion *iommu_mr;
3698 AddressSpace *target_as;
3699
3700 assert(!cache->ptr);
3701 *xlat = addr + cache->xlat;
3702
3703 mr = cache->mrs.mr;
3704 iommu_mr = memory_region_get_iommu(mr);
3705 if (!iommu_mr) {
3706 /* MMIO region. */
3707 return mr;
3708 }
3709
3710 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3711 NULL, is_write, true,
2f7b009c 3712 &target_as, attrs);
48564041
PB
3713 return section.mr;
3714}
3715
3716/* Called from RCU critical section. address_space_read_cached uses this
3717 * out of line function when the target is an MMIO or IOMMU region.
3718 */
3719void
3720address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3721 void *buf, hwaddr len)
48564041
PB
3722{
3723 hwaddr addr1, l;
3724 MemoryRegion *mr;
3725
3726 l = len;
bc6b1cec
PM
3727 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3728 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3729 flatview_read_continue(cache->fv,
3730 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3731 addr1, l, mr);
3732}
3733
3734/* Called from RCU critical section. address_space_write_cached uses this
3735 * out of line function when the target is an MMIO or IOMMU region.
3736 */
3737void
3738address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3739 const void *buf, hwaddr len)
48564041
PB
3740{
3741 hwaddr addr1, l;
3742 MemoryRegion *mr;
3743
3744 l = len;
bc6b1cec
PM
3745 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3746 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3747 flatview_write_continue(cache->fv,
3748 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3749 addr1, l, mr);
1f4e496e
PB
3750}
3751
3752#define ARG1_DECL MemoryRegionCache *cache
3753#define ARG1 cache
48564041
PB
3754#define SUFFIX _cached_slow
3755#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
48564041
PB
3756#define RCU_READ_LOCK() ((void)0)
3757#define RCU_READ_UNLOCK() ((void)0)
1f4e496e
PB
3758#include "memory_ldst.inc.c"
3759
5e2972fd 3760/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3761int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
28c80bfe 3762 void *ptr, target_ulong len, bool is_write)
13eb76e0 3763{
a8170e5e 3764 hwaddr phys_addr;
0c249ff7 3765 target_ulong l, page;
d7ef71ef 3766 uint8_t *buf = ptr;
13eb76e0 3767
79ca7a1b 3768 cpu_synchronize_state(cpu);
13eb76e0 3769 while (len > 0) {
5232e4c7
PM
3770 int asidx;
3771 MemTxAttrs attrs;
3772
13eb76e0 3773 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3774 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3775 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3776 /* if no physical page mapped, return an error */
3777 if (phys_addr == -1)
3778 return -1;
3779 l = (page + TARGET_PAGE_SIZE) - addr;
3780 if (l > len)
3781 l = len;
5e2972fd 3782 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3783 if (is_write) {
3c8133f9 3784 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
ea7a5330 3785 attrs, buf, l);
2e38847b 3786 } else {
19f70347
PM
3787 address_space_read(cpu->cpu_ases[asidx].as, phys_addr, attrs, buf,
3788 l);
2e38847b 3789 }
13eb76e0
FB
3790 len -= l;
3791 buf += l;
3792 addr += l;
3793 }
3794 return 0;
3795}
038629a6
DDAG
3796
3797/*
3798 * Allows code that needs to deal with migration bitmaps etc to still be built
3799 * target independent.
3800 */
20afaed9 3801size_t qemu_target_page_size(void)
038629a6 3802{
20afaed9 3803 return TARGET_PAGE_SIZE;
038629a6
DDAG
3804}
3805
46d702b1
JQ
3806int qemu_target_page_bits(void)
3807{
3808 return TARGET_PAGE_BITS;
3809}
3810
3811int qemu_target_page_bits_min(void)
3812{
3813 return TARGET_PAGE_BITS_MIN;
3814}
a68fe89c 3815#endif
13eb76e0 3816
98ed8ecf 3817bool target_words_bigendian(void)
8e4a424b
BS
3818{
3819#if defined(TARGET_WORDS_BIGENDIAN)
3820 return true;
3821#else
3822 return false;
3823#endif
3824}
3825
76f35538 3826#ifndef CONFIG_USER_ONLY
a8170e5e 3827bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3828{
5c8a00ce 3829 MemoryRegion*mr;
149f54b5 3830 hwaddr l = 1;
41063e1e 3831 bool res;
76f35538 3832
694ea274 3833 RCU_READ_LOCK_GUARD();
5c8a00ce 3834 mr = address_space_translate(&address_space_memory,
bc6b1cec
PM
3835 phys_addr, &phys_addr, &l, false,
3836 MEMTXATTRS_UNSPECIFIED);
76f35538 3837
41063e1e 3838 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
41063e1e 3839 return res;
76f35538 3840}
bd2fa51f 3841
e3807054 3842int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3843{
3844 RAMBlock *block;
e3807054 3845 int ret = 0;
bd2fa51f 3846
694ea274 3847 RCU_READ_LOCK_GUARD();
99e15582 3848 RAMBLOCK_FOREACH(block) {
754cb9c0 3849 ret = func(block, opaque);
e3807054
DDAG
3850 if (ret) {
3851 break;
3852 }
bd2fa51f 3853 }
e3807054 3854 return ret;
bd2fa51f 3855}
d3a5038c
DDAG
3856
3857/*
3858 * Unmap pages of memory from start to start+length such that
3859 * they a) read as 0, b) Trigger whatever fault mechanism
3860 * the OS provides for postcopy.
3861 * The pages must be unmapped by the end of the function.
3862 * Returns: 0 on success, none-0 on failure
3863 *
3864 */
3865int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3866{
3867 int ret = -1;
3868
3869 uint8_t *host_startaddr = rb->host + start;
3870
619bd31d 3871 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
d3a5038c
DDAG
3872 error_report("ram_block_discard_range: Unaligned start address: %p",
3873 host_startaddr);
3874 goto err;
3875 }
3876
3877 if ((start + length) <= rb->used_length) {
db144f70 3878 bool need_madvise, need_fallocate;
619bd31d 3879 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
72821d93
WY
3880 error_report("ram_block_discard_range: Unaligned length: %zx",
3881 length);
d3a5038c
DDAG
3882 goto err;
3883 }
3884
3885 errno = ENOTSUP; /* If we are missing MADVISE etc */
3886
db144f70
DDAG
3887 /* The logic here is messy;
3888 * madvise DONTNEED fails for hugepages
3889 * fallocate works on hugepages and shmem
3890 */
3891 need_madvise = (rb->page_size == qemu_host_page_size);
3892 need_fallocate = rb->fd != -1;
3893 if (need_fallocate) {
3894 /* For a file, this causes the area of the file to be zero'd
3895 * if read, and for hugetlbfs also causes it to be unmapped
3896 * so a userfault will trigger.
e2fa71f5
DDAG
3897 */
3898#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3899 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3900 start, length);
db144f70
DDAG
3901 if (ret) {
3902 ret = -errno;
3903 error_report("ram_block_discard_range: Failed to fallocate "
3904 "%s:%" PRIx64 " +%zx (%d)",
3905 rb->idstr, start, length, ret);
3906 goto err;
3907 }
3908#else
3909 ret = -ENOSYS;
3910 error_report("ram_block_discard_range: fallocate not available/file"
3911 "%s:%" PRIx64 " +%zx (%d)",
3912 rb->idstr, start, length, ret);
3913 goto err;
e2fa71f5
DDAG
3914#endif
3915 }
db144f70
DDAG
3916 if (need_madvise) {
3917 /* For normal RAM this causes it to be unmapped,
3918 * for shared memory it causes the local mapping to disappear
3919 * and to fall back on the file contents (which we just
3920 * fallocate'd away).
3921 */
3922#if defined(CONFIG_MADVISE)
3923 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3924 if (ret) {
3925 ret = -errno;
3926 error_report("ram_block_discard_range: Failed to discard range "
3927 "%s:%" PRIx64 " +%zx (%d)",
3928 rb->idstr, start, length, ret);
3929 goto err;
3930 }
3931#else
3932 ret = -ENOSYS;
3933 error_report("ram_block_discard_range: MADVISE not available"
d3a5038c
DDAG
3934 "%s:%" PRIx64 " +%zx (%d)",
3935 rb->idstr, start, length, ret);
db144f70
DDAG
3936 goto err;
3937#endif
d3a5038c 3938 }
db144f70
DDAG
3939 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3940 need_madvise, need_fallocate, ret);
d3a5038c
DDAG
3941 } else {
3942 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3943 "/%zx/" RAM_ADDR_FMT")",
3944 rb->idstr, start, length, rb->used_length);
3945 }
3946
3947err:
3948 return ret;
3949}
3950
a4de8552
JH
3951bool ramblock_is_pmem(RAMBlock *rb)
3952{
3953 return rb->flags & RAM_PMEM;
3954}
3955
ec3f8c99 3956#endif
a0be0c58
YZ
3957
3958void page_size_init(void)
3959{
3960 /* NOTE: we can always suppose that qemu_host_page_size >=
3961 TARGET_PAGE_SIZE */
a0be0c58
YZ
3962 if (qemu_host_page_size == 0) {
3963 qemu_host_page_size = qemu_real_host_page_size;
3964 }
3965 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3966 qemu_host_page_size = TARGET_PAGE_SIZE;
3967 }
3968 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3969}
5e8fd947
AK
3970
3971#if !defined(CONFIG_USER_ONLY)
3972
b6b71cb5 3973static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
5e8fd947
AK
3974{
3975 if (start == end - 1) {
b6b71cb5 3976 qemu_printf("\t%3d ", start);
5e8fd947 3977 } else {
b6b71cb5 3978 qemu_printf("\t%3d..%-3d ", start, end - 1);
5e8fd947 3979 }
b6b71cb5 3980 qemu_printf(" skip=%d ", skip);
5e8fd947 3981 if (ptr == PHYS_MAP_NODE_NIL) {
b6b71cb5 3982 qemu_printf(" ptr=NIL");
5e8fd947 3983 } else if (!skip) {
b6b71cb5 3984 qemu_printf(" ptr=#%d", ptr);
5e8fd947 3985 } else {
b6b71cb5 3986 qemu_printf(" ptr=[%d]", ptr);
5e8fd947 3987 }
b6b71cb5 3988 qemu_printf("\n");
5e8fd947
AK
3989}
3990
3991#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3992 int128_sub((size), int128_one())) : 0)
3993
b6b71cb5 3994void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
5e8fd947
AK
3995{
3996 int i;
3997
b6b71cb5
MA
3998 qemu_printf(" Dispatch\n");
3999 qemu_printf(" Physical sections\n");
5e8fd947
AK
4000
4001 for (i = 0; i < d->map.sections_nb; ++i) {
4002 MemoryRegionSection *s = d->map.sections + i;
4003 const char *names[] = { " [unassigned]", " [not dirty]",
4004 " [ROM]", " [watch]" };
4005
b6b71cb5
MA
4006 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4007 " %s%s%s%s%s",
5e8fd947
AK
4008 i,
4009 s->offset_within_address_space,
4010 s->offset_within_address_space + MR_SIZE(s->mr->size),
4011 s->mr->name ? s->mr->name : "(noname)",
4012 i < ARRAY_SIZE(names) ? names[i] : "",
4013 s->mr == root ? " [ROOT]" : "",
4014 s == d->mru_section ? " [MRU]" : "",
4015 s->mr->is_iommu ? " [iommu]" : "");
4016
4017 if (s->mr->alias) {
b6b71cb5 4018 qemu_printf(" alias=%s", s->mr->alias->name ?
5e8fd947
AK
4019 s->mr->alias->name : "noname");
4020 }
b6b71cb5 4021 qemu_printf("\n");
5e8fd947
AK
4022 }
4023
b6b71cb5 4024 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
5e8fd947
AK
4025 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4026 for (i = 0; i < d->map.nodes_nb; ++i) {
4027 int j, jprev;
4028 PhysPageEntry prev;
4029 Node *n = d->map.nodes + i;
4030
b6b71cb5 4031 qemu_printf(" [%d]\n", i);
5e8fd947
AK
4032
4033 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4034 PhysPageEntry *pe = *n + j;
4035
4036 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4037 continue;
4038 }
4039
b6b71cb5 4040 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4041
4042 jprev = j;
4043 prev = *pe;
4044 }
4045
4046 if (jprev != ARRAY_SIZE(*n)) {
b6b71cb5 4047 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4048 }
4049 }
4050}
4051
4052#endif